Optical harmonic generation occurs when high intensity light (> 10^10 W m^–2) interacts with a nonlinear material. Electrical control of the nonlinear optical response enables applications such as gate-tunable switches and frequency converters. Graphene displays exceptionally strong light–matter interaction and electrically and broadband tunable third-order nonlinear susceptibility. Here, we show that the third-harmonic generation efficiency in graphene can be increased by almost two orders of magnitude by controlling the Fermi energy and the incident photon energy. This enhancement is due to logarithmic resonances in the imaginary part of the nonlinear conductivity arising from resonant multiphoton transitions. Thanks to the linear dispersion of the massless Dirac fermions, gate controllable third-harmonic enhancement can be achieved over an ultrabroad bandwidth, paving the way for electrically tunable broadband frequency converters for applications in optical communications and signal processing.

Broadband, electrically tuneable, third harmonic generation in graphene

A. Tomadin;M. Polini;
2018-01-01

Abstract

Optical harmonic generation occurs when high intensity light (> 10^10 W m^–2) interacts with a nonlinear material. Electrical control of the nonlinear optical response enables applications such as gate-tunable switches and frequency converters. Graphene displays exceptionally strong light–matter interaction and electrically and broadband tunable third-order nonlinear susceptibility. Here, we show that the third-harmonic generation efficiency in graphene can be increased by almost two orders of magnitude by controlling the Fermi energy and the incident photon energy. This enhancement is due to logarithmic resonances in the imaginary part of the nonlinear conductivity arising from resonant multiphoton transitions. Thanks to the linear dispersion of the massless Dirac fermions, gate controllable third-harmonic enhancement can be achieved over an ultrabroad bandwidth, paving the way for electrically tunable broadband frequency converters for applications in optical communications and signal processing.
2018
Soavi, G.; Wang, G.; Rostami, H.; Purdie, D.; De Fazio, D.; Ma, T.; Luo, B.; Wang, J.; Ott, A. K.; Yoon, D.; Bourelle, S.; Muench, J. E.; Goykhman, I.; Dal Conte, S.; Celebrano, M.; Tomadin, A.; Polini, M.; Cerullo, G.; Ferrari, A. C.
File in questo prodotto:
File Dimensione Formato  
2018-naturenanotech-soavi.pdf

solo utenti autorizzati

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.62 MB
Formato Adobe PDF
3.62 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
1710.03694_soavi.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Documento in Pre-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.86 MB
Formato Adobe PDF
2.86 MB Adobe PDF Visualizza/Apri
naturenanotech-soavi.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 624.23 kB
Formato Adobe PDF
624.23 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/984524
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 211
  • ???jsp.display-item.citation.isi??? 192
social impact