The interest in hydrokinetic conversion systems has significantly grown over the last decade with a special focus on cross-flow systems, generally known as Vertical Axis Water Turbines (VAWTs). However, analyzing of regions of interest for tidal energy extraction and outlining optimal rotor geometry is currently very computationally expensive via conventional 3D Computational Fluid Dynamics (CFD) methods. In this work, a VAWT load prediction routine developed at University of Pisa based upon the Blade Element-Momentum (BEM) theory is presented and validated against high-resolution 2D CFD simulations. Our model is able to work in two configurations, i.e. Double-Multiple Streamtube (DMST) mode, using 1D flow simplifications for quick analyses, and Hybrid mode, coupled to a CFD software for more accurate results. As a practical application, our routine is employed for a site assessment analysis of the Cape Cod area to quickly highlight oceanic regions with high hydrokinetic potential, where further higher-order and more computationally expensive CFD analyses can be performed. Ocean data are obtained from data-assimilative ocean simulations predicted by the 4D regional ocean modeling system of the Multidisciplinary Simulation, Estimation, and Assimilation Systems (MSEAS) group of the Massachusetts Institute of Technology.

Scalable Coupled Ocean and Water Turbine Modeling for Assessing Ocean Energy Extraction

Stefano Deluca;Stefania Zanforlin;Benedetto Rocchio;
2019-01-01

Abstract

The interest in hydrokinetic conversion systems has significantly grown over the last decade with a special focus on cross-flow systems, generally known as Vertical Axis Water Turbines (VAWTs). However, analyzing of regions of interest for tidal energy extraction and outlining optimal rotor geometry is currently very computationally expensive via conventional 3D Computational Fluid Dynamics (CFD) methods. In this work, a VAWT load prediction routine developed at University of Pisa based upon the Blade Element-Momentum (BEM) theory is presented and validated against high-resolution 2D CFD simulations. Our model is able to work in two configurations, i.e. Double-Multiple Streamtube (DMST) mode, using 1D flow simplifications for quick analyses, and Hybrid mode, coupled to a CFD software for more accurate results. As a practical application, our routine is employed for a site assessment analysis of the Cape Cod area to quickly highlight oceanic regions with high hydrokinetic potential, where further higher-order and more computationally expensive CFD analyses can be performed. Ocean data are obtained from data-assimilative ocean simulations predicted by the 4D regional ocean modeling system of the Multidisciplinary Simulation, Estimation, and Assimilation Systems (MSEAS) group of the Massachusetts Institute of Technology.
2019
978-153864814-8
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/989844
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact