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Abstract
In this note, we prove thatminimal networks enjoymin-
imizing properties for the length functional. A minimal
network is, roughly speaking, a subset of ℝ2 composed
of straight segments joining at triple junctions forming
angles equal to 2

3
𝜋; in particular such objects are just

critical points of the length functional a priori. We show
that a minimal network Γ∗: (i) minimizes mass among
currents with coefficients in an explicit group (indepen-
dent ofΓ∗) having the sameboundary ofΓ∗, (ii) identifies
the interfaces of a partition of a neighborhood of Γ∗
solving the minimal partition problem among partitions
with same boundary traces. Consequences and sharp-
ness of such results are discussed. The proofs reduce to
rather simple and direct arguments based on the exhi-
bition of (global or local) calibrations associated to the
minimal network.
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1 INTRODUCTION

The Steiner problem in its classical formulation (see, for instance, [9]) reads as follows: given  a
collection of 𝑛 points 𝑝1, … , 𝑝𝑛 in the Euclidean plane, one wants to find a connected set 𝐾 that
contains  whose length is minimal, namely one looks for
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2 PLUDA and POZZETTA

inf {1(𝐾) ∶ 𝐾 ⊂ ℝ2, connected and such that  ⊂ 𝐾} . (1.1)

This problem has a long history (for a detailed presentation, we refer to [13]) and existence of
minimizers is known even inmore general ambients, like suitablemetric spaces [19]. In particular,
whenever the problem is set in ℝ𝑛, it is well-known that minimizers are finite union of segments
thatmeet at triple junctions forming angles of 120◦ [13]. Due to their clear relevance in the problem
wegive a name to the elements of this precise class of networks:we call themminimal networks. As
the number of points of  increases, the number of configurations that are candidate minimizers
rapidly increase. Hence, not only minimizers may not be unique, but identifying them is by no
means an easy task, also in terms of efficient algorithms (the Steiner problem is classified as NP-
hard from a computational point of view).
A possible tool to validate theminimality of a certain candidate is the notion of calibration. The

classical concept of calibration for a 𝑑-dimensional oriented manifold𝑀 in ℝ𝑛 is a closed 𝑑-form
𝜔 such that |𝜔| ⩽ 1 and ⟨𝜔, 𝑣⟩ = 1 for every tangent vector 𝑣 to𝑀. The existence of a calibration𝜔
for𝑀 is a sufficient condition for𝑀 to be area minimizing in its homology class. Indeed, let𝑁 be
a 𝑑-dimensional oriented manifold with the same boundary of𝑀. Using the conditions satisfied
by 𝜔 and Stokes’ theorem, we get

Vol(𝑀) = ∫𝑀 𝜔 = ∫𝑁 𝜔 ⩽ Vol(𝑁) ,

as desired.
The definition of calibration for minimal surfaces does not work directly for the Steiner prob-

lem because neither the competitors nor the minimizers of the problem admit an orientation that
is compatible with their boundary. However there have been several successful adaptations of the
notion: starting from the paired calibrations by Lawlor and Morgan [14] and their suitable gen-
eralizations [7, 8], passing to calibrations for integral currents with coefficient in groups [15, 16],
rank-one tensor valued measures [5, 6], and calibrations to study clusters with multiplicities [18].
We alsomention an adaptation of calibrations to an evolution setting presented in [11], in this case
calibrations are useful to show weak-strong uniqueness of 𝐵𝑉 solutions to the multi-phase mean
curvature flow.
The aim of this note is to prove minimizing properties of minimal networks in ℝ2 via suitable

notions of calibrations.We refer to Subsection 1.1 for the basic definitions about networks. Roughly
speaking, a network is identified by a compact connected graph 𝐺 with 1-dimensional edges and
by an immersion Γ ∶ 𝐺 → ℝ2, see Definitions 1.3 and 1.4. A minimal network Γ∗ ∶ 𝐺 → ℝ2 is a
network with straight edges ending either at endpoints or at junctions of order 3 forming angles
equal to 2

3
𝜋, see Definition 1.7. We shall see that minimal networks enjoy minimizing proper-

ties for the length functional, defined as the sum of the lengths of each edge. Essentially due
to the possible presence of loops, minimal networks may not be strictly stable critical points of
the length functional, nevertheless it turns out that they minimize the length functional among
several classes of competitors.
In [15], Marchese and Massaccesi rephrased the Steiner problem as a mass minimization prob-

lem among rectifiable currents with coefficients in a discrete subgroup  of ℝ𝑛−1 (with 𝑛 equal to
the number of points to connect) and their reformulation allows for a natural notion of calibra-
tion (see [15, section 3]). In this paper, we prove that we can canonically associate to any minimal
network Γ∗ a current 𝑇 with coefficients in a subgroup of ℝ2, also producing a calibration for 𝑇
and hence showing that 𝑇 is mass minimizing among normal currents 𝑇 with coefficients in ℝ2
such that 𝜕𝑇 = 𝜕𝑇. We refer to Section 2 for definitions and terminology about currents.

 14692120, 0, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/blm
s.12908 by C

ochraneItalia, W
iley O

nline L
ibrary on [14/08/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



MINIMIZING PROPERTIES OF NETWORKS VIA GLOBAL AND LOCAL CALIBRATIONS 3

Theorem1.1 (cf. Theorem 2.9). Let Γ∗ ∶ 𝐺 → ℝ2 be aminimal network. Then there exists a normed
subgroup (, ‖ ⋅ ‖) of ℝ2 such that the following holds.
There exists a 1-rectifiable current 𝑇 with coefficients in  such that supp(𝑇) = Γ∗, L(Γ∗) = 𝕄(𝑇),

and there exists a calibration 𝜔 ∈ 𝐶∞𝑐 (ℝ
2,𝑀2×2(ℝ)) for 𝑇 in the sense of Definition 2.6.

In particular, 𝑇 is a mass minimizing current among 1-normal currents with coefficients in ℝ2
with the same boundary of 𝑇.

In fact, the group  in the previous theoremwill be explicitly exhibited in the proof and we will
see that the calibration turns out to be (identified by) the identity matrix. Also, the group will be
independent of the topology of the minimal network Γ∗ and of the number of its endpoints. We
mention that an analogous argument has been employed in [18, 20], of which Theorem 1.1 can
be seen as a particular case; however the proof of Theorem 1.1 is obtained here by performing a
simpler and more explicit construction.
We will also derive consequences of Theorem 1.1 regarding minimizing properties of minimal

networks among several classes of networks. The length of a minimal network Γ∗ ∶ 𝐺 → ℝ2 can
be proved to be less than the one of suitable networks Γ ∶ 𝐻 → ℝ2 having (some) endpoints in
common with Γ∗, possibly immersed edges and junctions of higher order. In particular, com-
parison networks Γ ∶ 𝐻 → ℝ2 may have different topology with respect to Γ∗ ∶ 𝐺 → ℝ2; more
precisely, 𝐺 can be assumed to be (homeomorphic to) a suitable quotient of𝐻, see Corollary 2.13,
or, conversely, 𝐻 can be assumed to be (homeomorphic to) a suitable quotient of 𝐺, see Corol-
lary 2.14. These results give applicable comparison results among classes of networks, yielding
explicit applications of the more abstract Theorem 1.1.
The Steiner problem has also been proved to be equivalent to the so-called minimal partition

problem. A Caccioppoli partition 𝐄 of a bounded open Lipschitz set Ω is a collection of finite
perimeter sets 𝐸1, … , 𝐸𝑛 sets that are essentially disjoint and that cover Ω. Given a reference par-
tition 𝐄̃ = (𝐸1, … , 𝐸𝑛) of Ω we say that 𝐄 = (𝐸1, … , 𝐸𝑛) is a minimizer of the minimal partition
problem if

𝑛∑
𝑖=1

𝑃(𝐸𝑖, Ω) ⩽
𝑛∑
𝑖=1

𝑃(𝐹𝑖, Ω)

among any partition 𝐅 = (𝐹1, … , 𝐹𝑛) with the property that trΩ𝜒𝐸𝑖 = trΩ𝜒𝐸𝑖 = trΩ𝜒𝐹𝑖 , where the
latter symbols denote traces on the boundary of Ω (see, for instance, [2, 3, 17]).
In this paper, we show that we can associate to a minimal network Γ∗ an open set Ω and a

partition 𝐄̃ = (𝐸1, 𝐸2, 𝐸3) of Ω such that Γ∗ coincides with the set of interfaces of 𝐄̃ in Ω, also
producing a suitable calibration for 𝐄̃ showing that such partition is a minimizer for the minimal
partition problem ofΩ among partitions with the same boundary traces. We refer to Section 3 for
definitions and terminology on partitions.

Theorem1.2 (cf. Theorem 3.9). Let Γ∗ ∶ 𝐺 → ℝ2 be aminimal network such that Γ∗(𝐺) ⊂ 𝐷 where
𝐷 is a domain of class 𝐶1 homeomorphic to a closed disk, and Γ∗(𝐺) ∩ 𝜕𝐷 is the set of endpoints
of Γ∗.
Then there exists a bounded open set Ω′ ⊂ ℝ2 such that Γ∗(𝐺) ⊂ Ω′, Ω∶=Ω′ ∩ int (𝐷) has Lip-

schitz boundary, there exists a Caccioppoli partition 𝐄̃ = (𝐸1, 𝐸2, 𝐸3) of Ω such that Ω∩ ∪𝑖𝜕𝐸𝑖 =
Ω ∩ Γ∗(𝐺) and there exists a local paired calibration for 𝐄̃ inΩ.
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4 PLUDA and POZZETTA

In particular, 𝐄̃ is a minimizer for  in, that is the class of partitions having the same trace of
𝐄̃ on 𝜕Ω.

In the above theorem, Ω is essentially constructed as the intersection of a suitably small
tubular neighborhood of Γ∗(𝐺) with 𝐷. This can be interpreted as a local minimality result. In
fact, Ω cannot be taken to be an arbitrary neighborhood of the given minimal network Γ∗. In
Remark 3.10, we construct a counterexample to the minimality among partitions in case such
tubular neighborhood is too large.
To the best of our knowledge, the tool of calibrations has never been used before to prove local

minimality in the framework of the Steiner problem or minimal partitions.

Addendum
After this workwas completed, a result analogous to Theorem 1.2 appeared in [10].More precisely,
the authors prove that if a Caccioppoli partition of a given set𝐷 is a suitable stationary point of the
interface length functional, then it is minimizing for the minimal partition problem of 𝐷 among
partitions sufficiently close in 𝐿1 to the stationary one. The previous result is based on a calibration
argument similar to the one employed in the present work, but the construction of the calibration
is different.

Organization
We collect below terminology on networks. In Section 2, we introduce calibrations for currents
and we prove Theorem 1.1. In Section 3, we define the minimal partition problem, local paired
calibrations, and we prove Theorem 1.2.
Throughout this paper, we do not identify functions coinciding almost everywhere with respect to

a measure.

1.1 Networks

For a regular curve 𝛾 ∶ [0, 1] → ℝ2 of class 𝐻2, define

𝜏∶=
𝛾′|𝛾′| , 𝜈∶=R(𝜏),

the tangent and the normal vector, respectively, where R denotes counterclockwise rotation of
𝜋
2
. We define 𝑑𝑠∶=|𝛾′|𝑑𝑥 the arclength element and 𝜕𝑠∶=|𝛾′|−1𝜕𝑥 the arclength derivative. The

curvature of 𝛾 is the vector 𝜅∶=𝜕2𝑠 𝛾.

Definition 1.3. Fix 𝑁 ∈ ℕ and let 𝑖 ∈ {1, … ,𝑁}, 𝐸𝑖 ∶= [0, 1] × {𝑖}, 𝐸 ∶=
⋃𝑁
𝑖=1 𝐸𝑖 and 𝑉 ∶=⋃𝑁

𝑖=1{0, 1} × {𝑖}. Let ∼ be an equivalence relation that identifies points of 𝑉. A graph 𝐺 is the
topological quotient space of 𝐸 induced by ∼, that is

𝐺 ∶= 𝐸
/
∼ ,

and we assume that 𝐺 is connected.
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MINIMIZING PROPERTIES OF NETWORKS VIA GLOBAL AND LOCAL CALIBRATIONS 5

Denoting by𝜋 ∶ 𝐸 → 𝐺 the projection onto the quotient, an endpoint is a point 𝑝 ∈ 𝐺 such that
𝜋−1(𝑝) ⊂ 𝑉 and it is a singleton, a junction is a point𝑚 ∈ 𝐺 such that 𝜋−1(𝑚) ⊂ 𝑉 and it is not a
singleton. The order of a junction if the cardinality ♯𝜋−1(𝑚). We will always assume that the order
of a junction in a graph is greater or equal to 3.
A subgraph𝐺′ ⊂ 𝐺 is a topological subspace of a graph𝐺 that is a graph itself with the structure

induced by 𝐺. More precisely, 𝐺′ is a graph and there exists a subset 𝐸′ ⊂ 𝐸 such that 𝐺′ = 𝐸′∕∼
where ∼ is the same equivalence relation defining 𝐺.

Definition 1.4. An immersed network (or, simply, network) is a pair = (𝐺, Γ) where

Γ ∶ 𝐺 → ℝ2

is a continuous map and 𝐺 is a graph and each map 𝛾𝑖 ∶= Γ|𝐸𝑖 is an immersion of class 𝐶1 (up to
the boundary).

Definition 1.5. Anetwork = (𝐺, Γ) is an immersed triple junctions network if it is an immersed
network and each junction of 𝐺 has order 3.

Definition 1.6. Let = (𝐺, Γ) be a network of class𝐶1 and let 𝑒 ∈ {0, 1}. The inner tangent vector
of a regular curve 𝛾𝑖 of at 𝑒 is the vector

(−1)𝑒
(𝛾𝑖)′(𝑒)|(𝛾𝑖)′(𝑒)| .

Definition 1.7. A network = (𝐺, Γ) isminimal if eachmap 𝛾𝑖 ∶= Γ|𝐸𝑖 is an embedding of class
𝐻2, for every 𝑖 ≠ 𝑗 the curves 𝛾𝑖 and 𝛾𝑗 do not intersect in their interior, and 𝜋(0, 𝑖) ≠ 𝜋(1, 𝑖) for
any 𝑖. Moreover, each junction of 𝐺 has order 3 and the sum of the inner tangent vectors at a
junction is zero. Furthermore the curvature of the parameterization of each edge is identically
zero, that is, each 𝛾𝑖 is the embedding of a straight segment.

We shall usually denote a network by directly writing the map Γ ∶ 𝐺 → ℝ2. Moreover, with a
little abuse of terminology, we shall employ the words junctions and endpoints also referring to
their images in ℝ2.

Definition 1.8. Given an immersed network (𝐺, Γ)we denote by 𝓁(𝛾𝑖) the length of the curve 𝛾𝑖 .
The length of the network Γ is

𝐿(Γ) ∶=
𝑁∑
𝑖=1

𝓁(𝛾𝑖) .

By computing the first variation of the length functional, one easily gets two necessary con-
ditions that a network has to satisfy to be a critical point of 𝐿: each curve of the network is a
straight segment and the inner tangent vectors of the curves meeting at a junction sum up to zero.
Hence, minimal networks are critical points of the length functional. However, also networks
with junctions of order higher than three may happen to be critical points.
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6 PLUDA and POZZETTA

2 MINIMALITY AMONG CURRENTSWITH COEFFICIENTS IN A
GROUP

In this section, we give a summary of the theory of currents with coefficients in a group presented
in a simplified setting that is convenient for our purposes. For further details, we refer, for instance,
to [12, 15, 21, 22].
Let 𝑘 ∈ {0, 1}. Consider ℝ2 endowed with a norm ‖ ⋅ ‖ and denote by ‖ ⋅ ‖∗ the correspond-

ing dual norm. We denote by Λ𝑘(ℝ2) the vector space of 𝑘-vectors in ℝ2. In particular, Λ0(ℝ2)
coincides with ℝ and Λ1(ℝ2) is just ℝ2.

Definition 2.1 (𝑘-covector with values in ℝ2). A 𝑘-covector with values in ℝ2 is a linear map 𝜔 ∶
Λ𝑘(ℝ

2) → ℝ2. We denote by Λ𝑘
2
(ℝ2) the space of 𝑘-covectors with values in ℝ2.

We define the comass of a covector 𝜔 ∈ Λ𝑘
2
(ℝ2)

|𝜔|com ∶= sup{‖𝜔(𝜏)‖∗ ∶ 𝜏 ∈ Λ𝑘(ℝ2) with |𝜏| ⩽ 1} ,
where |𝜏| is the norm of a 𝑘-vector with respect to the Euclidean norm.

Observe that 0-covectors with values inℝ2 are linear maps 𝜔 ∶ ℝ → ℝ2, while 1-covectors with
values in ℝ2 coincide with linear maps from ℝ2 to ℝ2.
We remark that, as 𝑘 ∈ {0, 1} in the previous definition, 𝜏 ∈ Λ𝑘(ℝ2) is automatically a simple

𝑘-vector, and thus the previous definition of comass coincides with the usual one considered in
the theory of currents.

Definition 2.2 (𝑘-form with values in ℝ2). A 𝑘-form with values in ℝ2 is a function 𝜔 ∶ ℝ2 →
Λ𝑘
2
(ℝ2)with compact support such that 𝑥 ↦ 𝜔(𝑥)(𝜏) is smooth for any 𝜏 ∈ Λ𝑘(ℝ2). We denote by

𝐶∞𝑐 (ℝ
2, Λ𝑘

2
(ℝ2)) the space of 𝑘-forms with values in ℝ2.

The comass of 𝜔 ∈ 𝐶∞𝑐 (ℝ
2, Λ𝑘

2
(ℝ2)) is defined by

‖𝜔‖com ∶= sup
𝑥∈ℝ2

|𝜔(𝑥)|com .
The space 𝐶∞𝑐 (ℝ

2, Λ𝑘
2
(ℝ2)) is endowed with the following notion of convergence: we say that

𝜔𝑛 ∈ 𝐶
∞
𝑐 (ℝ

2, Λ𝑘
2
(ℝ2)) converges to 𝜔 ∈ 𝐶∞𝑐 (ℝ

2, Λ𝑘
2
(ℝ2)) if there exists a compact set𝐾 ⊂ ℝ2 such

that the support of 𝜔𝑛 is contained in 𝐾 for any 𝑛 and 𝜔𝑛(⋅)(𝜏) converges to 𝜔(⋅)(𝜏) in 𝐶𝑚(𝐾) for
any𝑚 for any 𝜏 ∈ Λ𝑘(ℝ2).

A form 𝜔 ∈ 𝐶∞𝑐 (ℝ
2, Λ𝑘

2
(ℝ2)) is identified by a couple (𝜔1, 𝜔2) where 𝜔𝑖 ∶ ℝ2 → Λ𝑘(ℝ2) is a

standard 𝑘-form with compact support, in the sense that 𝜔(𝑥)(𝜏) = (𝜔1(𝑥)(𝜏), 𝜔2(𝑥)(𝜏)) for any
𝜏 ∈ Λ𝑘(ℝ

2) and 𝑥 ∈ ℝ2. We define the differential 𝑑𝜔 of 𝜔 ∈ 𝐶∞𝑐 (ℝ
2, Λ𝑘

2
(ℝ2)) component-wise by

𝑑𝜔∶=(𝑑𝜔1, 𝑑𝜔2).
We can now define also 𝑘-currents with coefficients in ℝ2.

Definition 2.3 (𝑘-current with coefficients in ℝ2). A 𝑘-current with coefficients in ℝ2 is a linear
map

𝑇 ∶ 𝐶∞𝑐 (ℝ
2, Λ𝑘2(ℝ

2)) → ℝ ,
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MINIMIZING PROPERTIES OF NETWORKS VIA GLOBAL AND LOCAL CALIBRATIONS 7

that is continuous with respect to convergence in 𝐶∞𝑐 (ℝ
2, Λ𝑘

2
(ℝ2)), that is, if 𝜔𝑛 → 𝜔 with respect

to convergence in 𝐶∞𝑐 (ℝ
2, Λ𝑘

2
(ℝ2)) then 𝑇(𝜔𝑛) → 𝑇(𝜔).

The boundary of a 1-current 𝑇 with coefficients in ℝ2 is the 0-current with coefficients in ℝ2
defined by

𝜕𝑇(𝜔) ∶= 𝑇(𝑑𝜔) , ∀𝜔 ∈ 𝐶∞𝑐 (ℝ
2, Λ02(ℝ

2)).

Given 𝑇 a 𝑘-current with coefficients in ℝ2, itsmass is

𝕄(𝑇) ∶= sup
{
𝑇(𝜔) ∶ 𝜔 ∈ 𝐶∞𝑐 (ℝ

2, Λ𝑘2(ℝ
2)) with ‖𝜔‖com ⩽ 1} .

A 1-current 𝑇 with coefficients in ℝ2 is said to be normal if𝕄(𝑇) < ∞ and𝕄(𝜕𝑇) < ∞.

We are now able to define the object of our main interest for our purposes.

Definition 2.4 (1-rectifiable current with coefficients in ). Let Σ ⊂ ℝ2 be a 1-rectifiable set. An
orientation 𝜏 on Σ is a measurable map 𝜏 ∶ Σ → ℝ2 such that 𝜏(𝑥) ∈ 𝑇𝑥Σ and |𝜏(𝑥)| = 1 for 1-
almost every 𝑥 ∈ Σ. Let  be a discrete subgroup of (ℝ2, +). A -valued multiplicity function 𝜃 on
Σ is a function in 𝐿1

loc
(1⌞Σ; ).

A 1-current 𝑇 is rectifiable with coefficients in  if there exist a 1-rectifiable set Σ ⊂ ℝ2, an orien-
tation 𝜏, and a -valued multiplicity function 𝜃 on Σ such that, recalling that ℝ2 ≡ Λ1(ℝ2), there
holds

𝑇(𝜔) = ∫Σ ⟨𝜔(𝑥)(𝜏(𝑥)), 𝜃(𝑥)⟩ d1 ,

for any 𝜔 ∈ 𝐶∞𝑐 (ℝ
2, Λ1

2
(ℝ2)), where ⟨⋅, ⋅⟩ denotes the usual Euclidean scalar product on ℝ2.

In analogy with the usual 1-rectifiable currents, a 1-rectifiable current with coefficients in will
be denoted by the triple 𝑇 = [Σ, 𝜏, 𝜃].

Thanks to the above representation, if 𝑇 = [Σ, 𝜏, 𝜃] is a 1-rectifiable current with coefficients in
 one can write its mass as

𝕄(𝑇) = ∫Σ ‖𝜃(𝑥)‖ d1 .

Remark 2.5 (Currents with multiplicity g induced by an immersion). If 𝛾 ∶ [0, 1] → ℝ2 is a
Lipschitz immersion and g ∈ ℝ2 is a fixed vector, the immersion induces a 1-rectifiable cur-
rent 𝑇 = [𝛾([0, 1]), 𝜏, 𝜃] by choosing 𝜏 and 𝜃 as follows. Let 𝜏̃(𝑥)∶=

∑
𝑝∈𝛾−1(𝑥) 𝛾

′(𝑝)∕|𝛾′(𝑝)| and
𝜃(𝑥)∶=|𝜏̃(𝑥)| g for any 𝑥 ∈ 𝛾([0, 1]) such that 𝛾 is differentiable at any𝑝 ∈ 𝛾−1(𝑥)with |𝛾′(𝑝)| > 0,
and then 𝜏(𝑥)∶=𝜏̃(𝑥)∕|𝜏̃(𝑥)| for any 𝑥 such that also |𝜏̃(𝑥)| ≠ 0 (𝜏 and 𝜃 are defined arbitrarily
elsewhere).
The area formula immediately yields 𝑇(𝜔) = ∫ 10 ⟨𝜔(𝛾(𝑡))(𝛾′(𝑡)), g⟩𝑑𝑡 for any 1-form 𝜔 with

values in ℝ2. In particular 𝜕𝑇 = g𝛿𝛾(1) − g𝛿𝛾(0).

As noticed above, the space of 1-covectors with values in ℝ2 is the space of linear maps from
ℝ2 to ℝ2, hence it is isomorphic to the space of matrices 𝑀2×2(ℝ). From now on, we shall
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8 PLUDA and POZZETTA

make use of this identification without further mention and we will denote the set of 1-forms
by 𝐶∞𝑐 (ℝ

2,𝑀2×2(ℝ)). Therefore, for 𝜔 ∈ 𝐶∞𝑐 (ℝ
2,𝑀2×2(ℝ)) we shall write

𝜔 =

[
𝜔1(𝑥)

𝜔2(𝑥)

]
,

where 𝜔𝑖 = (𝜔𝑖,1, 𝜔𝑖,2) ∶ ℝ2 → ℝ2 is smooth with compact support and identifies the standard 1-
form 𝜔𝑖,1𝑑𝑥1 + 𝜔𝑖,2𝑑𝑥2.
We recall here the notion of calibrations for rectifiable currents with coefficients in a group

introduced by Marchese and Massaccesi in [15].

Definition 2.6 (Calibration for 1-rectifiable currents). Let 𝑇 = [Σ, 𝜏, 𝜃] be a 1-rectifiable current
with coefficients in  and 𝜔 ∈ 𝐶∞𝑐 (ℝ2,𝑀2×2(ℝ)). Then 𝜔 is a calibration for 𝑇 if

(i) 𝑑𝜔 = 0;
(ii) ‖𝜔‖com ⩽ 1;
(iii) ⟨𝜔(𝑥)(𝜏(𝑥)), 𝜃(𝑥)⟩ = ‖𝜃(𝑥)‖ for1-almost every 𝑥 ∈ Σ.

We recall from [15] how this notion of calibration for currents implies minimality properties for
the mass of the calibrated current current.
For a given set of points in the plane 𝑝1, … , 𝑝𝑛 ∈ ℝ2, let 𝐵 be a 0-current of the form

𝐵 ∶= 𝑐1𝛿𝑝1 +⋯ + 𝑐𝑛𝛿𝑝𝑛 with 𝑐𝑖 ∈  ,
that is, 𝐵(𝑓) =

∑𝑛
𝑖=1⟨𝑐𝑖, 𝑓(𝑝𝑖)⟩ for any 0-form 𝑓 with values in ℝ2.

Remark 2.7. It is easily checked that 𝐵 = 𝑐1𝛿𝑝1 +⋯ + 𝑐𝑛𝛿𝑝𝑛 is the boundary of a 1-rectifiable
current with bounded support with coefficients in  if and only if∑𝑛

𝑖=1 𝑐𝑖 = 0.
Indeed, if 𝐵 = 𝜕𝑇, let 𝜔 = 𝑣𝜒(𝑥) be the 0-formwith values inℝ2 where 𝑣 ∈ ℝ2 is fixed and 𝜒 ∈

𝐶∞𝑐 (ℝ
2) equals 1 in a neighborhood of the support of 𝑇; hence 0 = 𝑇(𝑑𝜔) = 𝐵(𝜔) = ⟨𝑣,∑𝑛

𝑖=1 𝑐𝑖⟩.
Arbitrariness of 𝑣 implies

∑𝑛
𝑖=1 𝑐𝑖 = 0. On the other hand, if

∑𝑛
𝑖=1 𝑐𝑖 = 0, let 𝑞 ≠ 𝑝𝑖 for any 𝑖; hence

it suffices to take 𝑇 =
∑𝑛
𝑖=1 𝑇𝑖 where 𝑇𝑖 is the current induced by a 𝐶

1 embedding 𝛾𝑖 ∶ [0, 1] → ℝ2

from 𝑞 to 𝑝𝑖 endowed with multiplicity 𝑐𝑖 .

We define the classes

1 ∶= {𝑇 ∶ 𝑇 is a 1-rectifiable currents with coefficients in , 𝜕𝑇 = 𝐵} ,
2 ∶= {

𝑇 ∶ 𝑇 is a 1-normal currents with coefficients in ℝ2, 𝜕𝑇 = 𝐵
}
.

Obviously, 1 ⊂ 2.
In case 1 is nonempty and contains a current 𝑇 with a calibration 𝜔, then 𝑇 solves a mass

minimization problem as stated in the next proposition.

Proposition 2.8 [15, Proposition 3.2]. In the notation above, suppose that 𝜔 ∈ 𝐶∞𝑐 (ℝ
2,𝑀2×2(ℝ)) is

a calibration for some 𝑇 ∈ 1. Then
𝕄(𝑇) ⩽ 𝕄(𝑇)
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MINIMIZING PROPERTIES OF NETWORKS VIA GLOBAL AND LOCAL CALIBRATIONS 9

g1

g2

g3

F IGURE 1 The unit ball in the norm ‖ ⋅ ‖.

for every 𝑇 ∈ 2.

From now on, let {𝑒1, 𝑒2} be the canonical basis of ℝ2. We define g1 ∶= 𝑒1, g2 ∶= (−
1
2
, −

√
3

2
)

and g3 ∶= −g1 − g2. We choose a norm ‖ ⋅ ‖ on ℝ2 such that ‖g1‖ = ‖g2‖ = ‖g1 + g2‖ = 1, the
unit ball with respect to ‖ ⋅ ‖ is the regular hexagon in Figure 1, and ‖ ⋅ ‖ is defined on the rest of
ℝ2 by homogeneity. We define  to be the discrete group generated by g1 and g2 with respect to
addition.

Theorem 2.9. Let Γ∗ ∶ 𝐺 → ℝ2 be a minimal network with endpoints 𝑝1, … , 𝑝𝑛 ∈ ℝ2. Let ,
g1, g2, g3, and ‖ ⋅ ‖ be as above.
Then there exists a 1-rectifiable current 𝑇 with coefficients in  with boundary 𝐵∶=𝜕𝑇 =

𝑐1𝛿𝑝1 +⋯ + 𝑐𝑛𝛿𝑝𝑛 such that 𝑐𝑖 ∈ {±g1, ±g2, ±g3}, supp(𝑇) = Γ∗, L(Γ∗) = 𝕄(𝑇), and there exists a
calibration 𝜔 ∈ 𝐶∞𝑐 (ℝ

2,𝑀2×2(ℝ)) for 𝑇.
In particular, 𝑇 is a mass minimizing current among 1-normal currents with coefficients in ℝ2

with boundary 𝐵.

Proof. Up to translations we can fix one of the endpoints of Γ∗ to be the origin of ℝ2 and we can
rotateΓ∗ so that all its straight edges are parallel to either g1, g2, or g3. Then the desired 1-rectifiable
current 𝑇 = [Σ, 𝜏, 𝜃] with coefficients in  is defined as follows: Σ = Γ∗(𝐺) is the 1-rectifiable set,
the orientation 𝜏 and the multiplicity 𝜃 are constant in the interior of each straight segment and
we set 𝜏(𝑥) = 𝜃(𝑥) = g𝑖 if and only if 𝑥 is an interior point of a straight edge of Γ∗ parallel to g𝑖 (𝜏
and 𝜃 are defined arbitrarily at endpoints and junctions).
It is immediately checked that 𝐵∶=𝜕𝑇 has the desired form, as no boundary is generated at

triple junctions. Moreover, supp(𝑇) = Γ∗ and L(Γ∗) = 𝕄(𝑇).
Finally, we claim that the identity matrix

𝜔 =

[
1 0

0 1

]
,

identifying a 1-form in 𝐶∞𝑐 (ℝ
2,𝑀2×2(ℝ)), is a calibration for 𝑇. Indeed 𝑑𝜔 = 0 trivially. Next,

to show that ‖𝜔‖com ⩽ 1 we notice that the unit ball of the norm of the group is convex and
that its extreme points are ±g1, ±g2, ±g3 and hence it is sufficient to estimate ⟨𝜔(𝑣(𝑥)), ⋅⟩ against
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10 PLUDA and POZZETTA

±g1, ±g2, ±g3, where 𝑣(𝑥) is generic unit vector 𝑣(𝑥) = (cos 𝛼(𝑥), sin 𝛼(𝑥)). So, we have

|⟨𝜔(𝑣(𝑥)), g1⟩| = ||||
⟨[
1 0

0 1

] [
cos 𝛼(𝑥)

sin 𝛼(𝑥)

]
,

[
1

0

]⟩|||| = | cos 𝛼(𝑥)| ⩽ 1 ,
and similarly |⟨𝜔(𝑣(𝑥)), g2⟩| = | sin(𝛼(𝑥) + 𝜋∕6)| ⩽ 1, and |⟨𝜔(𝑣(𝑥)), g3⟩| = | sin(𝛼(𝑥) − 𝜋∕6)|
⩽ 1.
To conclude, we check that ⟨𝜔(𝜏(𝑥)), 𝜃(𝑥)⟩ = ‖𝜃(𝑥)‖ 1-almost every on Σ. But this is

immediate as

⟨𝜔(𝜏(𝑥)), 𝜃(𝑥)⟩ = ⟨𝜏(𝑥), 𝜃(𝑥)⟩ = ⟨𝜃(𝑥), 𝜃(𝑥)⟩ = 1 = ‖𝜃(𝑥)‖
by definition of the orientation and of the norm ‖ ⋅ ‖. □

Using Theorem 2.9, we directly derive a proof of the fact that minimal networks minimize
length among competitor networks having the same topology.

Corollary 2.10. LetΓ∗ ∶ 𝐺 → ℝ2 be aminimal network. ThenL(Γ∗) ⩽ L(Γ) for any immersed triple
junctions network Γ ∶ 𝐺 → ℝ2 having the same endpoints of Γ∗.

Proof. Let 𝑇 be given by Theorem 2.9, let 𝐵∶=𝜕𝑇. The claim follows from Theorem 2.9 if we can
show that given an immersed triple junctions network Γ ∶ 𝐺 → ℝ2 having the same endpoints
of Γ∗, there exists a 1-rectifiable current with coefficient in  and boundary 𝜕𝑇 = 𝐵 such that
𝕄(𝑇) ⩽ L(Γ).
Recalling the construction of 𝑇 = [Γ∗(𝐺), 𝜏, 𝜃] in the proof of Theorem 2.9, the multiplicity

𝜃 is constant along each edge of Γ∗. Hence, for any edge 𝐸𝑖 of the graph 𝐺 we can associate
g𝐸𝑖 ∈ {g1, g2, g3} such that 𝜃(Γ∗(𝑝)) = g𝐸𝑖 for 1-almost every 𝑝 ∈ 𝐸𝑖 . Moreover, up to inverting
the orientation of the edges of𝐺, we can assume that 𝜏(Γ∗(𝑝)) = 𝜏Γ∗|𝐸𝑖 (𝑝) for any 𝑝 in the interior
of 𝐸𝑖 and any 𝑖, that is, the orientation of 𝑇 is the one induced by the immersions Γ∗|𝐸𝑖 .
So, we can define the desired current by taking 𝑇∶=[Γ(𝐺), 𝜏Γ, 𝜃Γ] as follows. For any edge 𝐸𝑖 of

𝐺 let 𝑇𝐸𝑖∶=[Γ|𝐸𝑖 (𝐸𝑖), 𝜏𝑖, 𝜃𝑖] be the current induced by Γ|𝐸𝑖 as in Remark 2.5 taking g = g𝐸𝑖 . Hence,
define 𝑇∶=

∑
𝐸𝑖
𝑇𝐸𝑖 .

As Γ∗ and Γ have the same domain graph 𝐺, whose edge have a fixed orientation, recall-
ing Remark 2.5 it follows that 𝜕𝑇 = 𝜕𝑇 = 𝐵. Moreover, as ‖𝜃Γ(𝑥)‖ ⩽ ∑

𝐸𝑖
♯(Γ|𝐸𝑖 )−1(𝑥) ‖g𝐸𝑖‖ =

♯Γ−1(𝑥), it follows that𝕄(𝑇) ⩽ L(Γ). □

Remark 2.11. By approximation, the result in Corollary 2.10 clearly holds also in case themaps Γ|𝐸𝑖
of the comparison networks are just Lipschitz immersions, that is, Lipschitz maps with almost
everywhere nonvanishing derivative (Γ|𝐸𝑖 )′.
We now derive further minimizing properties of minimal networks among competitors with

possibly different topologies.
Consider a graph𝐺 and another graph𝐻 that contains a copy of the graph𝐺. The next corollary

roughly states that if we consider a minimal network Γ∗ ∶ 𝐺 → ℝ2 and a network Γ ∶ 𝐻 → ℝ2

with the same endpoints of Γ∗, then the length of Γ is no less than the one of Γ∗.
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MINIMIZING PROPERTIES OF NETWORKS VIA GLOBAL AND LOCAL CALIBRATIONS 11

F IGURE 2 Left: A minimal network Γ∗ ∶ 𝐺 → ℝ2. Right: A network Γ ∶ 𝐻 → ℝ2, the graph𝐻 does not
contain a homeomorphic copy of 𝐺 and clearly 𝐿(Γ) < 𝐿(Γ∗).

F IGURE 3 Left: A minimal network Γ∗ ∶ 𝐺 → ℝ2. Right: A competitor Γ ∶ 𝐻 → ℝ2, fulfilling the
hypothesis of Corollary 2.13.

We observe that some topological assumption of this kind is also necessary for the length of a
given Γ∗ to be minimizing. Otherwise, given a fixed minimal network Γ∗ ∶ 𝐺 → ℝ2 whose image
contains a cycle, just by deleting an interior segment of an edge of the cycle one gets a strictly
shorter minimal network (with two additional endpoints) as depicted in Figure 2.

Corollary 2.12. Let Γ∗ ∶ 𝐺 → ℝ2 be a minimal network. Let Γ ∶ 𝐻 → ℝ2 be an immersed network
such that there exist a subset𝐺′ ⊂ 𝐻 and a homeomorphism 𝑓 ∶ 𝐺 → 𝐺′ such that Γ∗(𝑞) = Γ(𝑓(𝑞))
for any endpoint 𝑞 of 𝐺. Then L(Γ∗) ⩽ L(Γ).

Proof. For any edge 𝐸𝑖 of 𝐺, let 𝐽𝑖 be the set of junctions of 𝐻 contained in 𝑓(𝐸𝑖). Up to
homeomorphism, we can assume that the restriction of 𝑓 on 𝐸𝑖 ⧵ 𝑓−1(𝐽𝑖) is a smooth diffeomor-
phism between intervals. Hence, for any edge 𝐸𝑖 of 𝐺, the map Γ◦𝑓|𝐸𝑖 is Lipschitz with almost
everywhere nonvanishing derivative. Therefore, the map Γ′∶=Γ◦𝑓 ∶ 𝐺 → ℝ2 defines a (Lipschitz
regular) immersed triple junctions network with same endpoints of Γ∗. Hence, Corollary 2.10 and
Remark 2.11 apply and we get L(Γ∗) ⩽ L(Γ′) ⩽ L(Γ). □

Exploiting the previous corollary, it is possible to compare the length of aminimal network Γ∗ ∶
𝐺 → ℝ2 with the length of a suitable immersed network Γ ∶ 𝐻 → ℝ2 possibly having different
topology. In the next statement, we consider comparison networks Γ ∶ 𝐻 → ℝ2 having “richer
topology,” in the sense that 𝐺 is assumed to be homeomorphic to a topological quotient of 𝐻. In
particular,𝐻 may have more edges and endpoints than 𝐺 (see Figure 3).

Corollary 2.13. Let Γ∗ ∶ 𝐺 → ℝ2 be a minimal network. Let Γ ∶ 𝐻 → ℝ2 be an immersed network
such that

(1) there exist connected pairwise disjoint subgraphs𝐻𝑖 ⊂ 𝐻 such that, letting𝐻∶=𝐻∕∼ the quotient
space that identifies each𝐻𝑖 with a point, there exists a homeomorphism 𝐹 ∶ 𝐺 → 𝐻;

(2) 𝜋−1(𝐹(𝑞)) ∩ ∪𝑖𝐻𝑖 = ∅ for any endpoint 𝑞 of 𝐺, where 𝜋 ∶ 𝐻 → 𝐻 is the natural projection;
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12 PLUDA and POZZETTA

(3) for any endpoint 𝑞 of 𝐺 there holds Γ∗(𝑞) = Γ(𝐹(𝑞)).†

Then L(Γ∗) ⩽ L(Γ).

Proof. We want to show that there exists a subset 𝐺′ ⊂ 𝐻 homeomorphic to 𝐺. In this way,
employing also (3), applying Corollary 2.12 we get the result.
We are going to define 𝐺′ by selecting suitable paths contained in the subgraphs𝐻𝑖 in order to

join the connected components of 𝐻 ⧵ ∪𝑖𝐻𝑖 so to get a subset 𝐺′ homeomorphic to 𝐺.
By (1) and (2), for any subgraph𝐻𝑖 , using the homeomorphism 𝐹−1, the point 𝜋(𝐻𝑖) ∈ 𝐻 corre-

sponds either to an interior point of an edge 𝐸𝑗 of 𝐺, or to a triple junction𝑚 of 𝐺. We distinguish
the two cases.

∙ Suppose that, up to renaming,𝜋(𝐻𝑖) corresponds to an interior point of the edge𝐸1 in𝐺. Hence,
𝐻𝑖 ∩ 𝐻 ⧵ 𝐻𝑖 consists of two points 𝑥, 𝑦 that are endpoints of two (different) edges 𝐿1, 𝐿2 of 𝐻.
As𝐻𝑖 is connected, there exists an embedding 𝛼 ∶ [0, 1] → 𝐻𝑖 connecting 𝑥 and 𝑦.
Hence, 𝐿1 ∪ 𝛼([0, 1]) ∪ 𝐿2 is homeomorphic to 𝐸1.

∙ Suppose that, up to renaming, 𝜋(𝐻𝑖) corresponds to a triple junction 𝑚 in 𝐺 where the edges
𝐸1, 𝐸2, 𝐸3 concur. Hence, 𝐻𝑖 ∩ 𝐻 ⧵ 𝐻𝑖 consists of three points 𝑎1, 𝑎2, 𝑎3 that are endpoints of
three (different) edges 𝐿1, 𝐿2, 𝐿3 of𝐻. Up to renaming, there exist embeddings 𝛼12 ∶ [0, 1] → 𝐻𝑖
from 𝑎1 to 𝑎2 not passing through 𝑎3 and 𝛼13 ∶ [0, 1] → 𝐻𝑖 from 𝑎1 to 𝑎3 not passing through
𝑎2.
Indeed 𝐻𝑖 is connected, thus there is an embedding 𝜎 ∶ [0, 1] → 𝐻𝑖 from 𝑎1 to 𝑎2. If 𝜎 does

not touch 𝑎3, by connectedness there is an embedding 𝜎̃ ∶ [0, 1] → 𝐻𝑖 from 𝑎3 to 𝑎1. If 𝑎2 ∉
𝜎̃([0, 1]), we are done. If 𝑎2 ∈ 𝜎̃([0, 1]), then the claim follows by taking 𝑎2 in place of 𝑎1 and
by splitting 𝜎̃ into two embeddings. If otherwise 𝑎3 ∈ 𝜎([0, 1]), then the claim follows by taking
𝑎3 in place of 𝑎1 and by splitting 𝜎 into two embeddings.
Therefore, there is a junction 𝑤 of𝐻 and times 𝑡2, 𝑡3 ∈ (0, 1) such that 𝛼12(𝑡2) = 𝛼13(𝑡3) = 𝑤

and 𝛼12((𝑡2, 1]) ∩ 𝛼13((𝑡3, 1]) = ∅.
Hence, 𝐿1 ∪ 𝛼12([0, 1]) ∪ 𝛼13((𝑡3, 1]) ∪ 𝐿2 ∪ 𝐿3 is homeomorphic to 𝐸1 ∪ 𝐸2 ∪ 𝐸3 in 𝐺.

Performing the selections in the previous items for any𝐻𝑖 , we obtain subsets 𝑆𝑖 ⊂ 𝐻𝑖 such that𝐺 is
homeomorphic to 𝐺′∶=(𝐻 ⧵ ∪𝑖𝐻𝑖) ∪

⋃
𝑖 𝑆𝑖 via a homeomorphism 𝑓 ∶ 𝐺 → 𝐺′ such that Γ∗(𝑞) =

Γ(𝑓(𝑞)) for any endpoint of 𝐺, by 3). Hence, Corollary 2.12 applies and the proof follows. □

In contrast to Corollary 2.13, exploiting again the general Theorem 2.9, we can further prove
that a minimal network Γ∗ ∶ 𝐺 → ℝ2 is also length-minimizing among suitable immersed net-
works Γ ∶ 𝐻 → ℝ2 having poorer topology. In this case, “poorer topology” means that 𝐻 is
homeomorphic to a quotient of 𝐺. In particular, 𝐻 may have less edges than 𝐺 (see Figure 4).

Corollary 2.14. Let Γ∗ ∶ 𝐺 → ℝ2 be a minimal network. Let Γ ∶ 𝐻 → ℝ2 be an immersed network
such that

(1) there exist connected pairwise disjoint subgraphs𝐺𝑖 ⊂ 𝐺 such that, letting𝐺∶=𝐺∕∼ the quotient
space that identifies each 𝐺𝑖 with a point, there exists a homeomorphism 𝐹 ∶ 𝐺 → 𝐻;

(2) for any endpoint 𝑞 of 𝐺, there holds that 𝑞 ∉ ∪𝑖𝐺𝑖 and Γ∗(𝑞) = Γ(𝐹(𝜋(𝑞))), where 𝜋 ∶ 𝐺 → 𝐺

is the natural projection.

† Γ(𝐹(𝑞)) is well-defined because, by (2), 𝜋−1(𝐹(𝑞)) is a singleton for any endpoint 𝑞 of 𝐺.

 14692120, 0, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/blm
s.12908 by C

ochraneItalia, W
iley O

nline L
ibrary on [14/08/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



MINIMIZING PROPERTIES OF NETWORKS VIA GLOBAL AND LOCAL CALIBRATIONS 13

F IGURE 4 Two couples of minimal networks Γ∗ ∶ 𝐺 → ℝ2 and competitors Γ ∶ 𝐻 → ℝ2 fulfilling the
hypothesis of Corollary 2.14.

Then L(Γ∗) ⩽ L(Γ).

Proof. Let 𝑇 = [Γ∗(𝐺), 𝜏, 𝜃] be given by Theorem 2.9. As in the proof of Corollary 2.10, for any
edge 𝐸𝑗 of the graph 𝐺 we can associate g𝐸𝑗 ∈ {g1, g2, g3} such that 𝜃(Γ∗(𝑝)) = g𝐸𝑗 for 1-almost
every 𝑝 ∈ 𝐸𝑗 . Moreover, up to inverting the orientation of the edges of 𝐺, we can assume that
𝜏(Γ∗(𝑝)) = 𝜏Γ∗|𝐸𝑗 (𝑝) for any 𝑝 in the interior of 𝐸𝑗 and any 𝑗. Also, for any edge 𝐸𝑗 , we denote
𝑇𝐸𝑗∶=[Γ∗|𝐸𝑗 , 𝜏𝑗, 𝜃𝑗] where 𝜏𝑗(𝑥) = 𝜏Γ∗|𝐸𝑗 (Γ−1(𝑥)) and 𝜃𝑗(𝑥) = g𝐸𝑗 on Γ∗|𝐸𝑗 (and zero elsewhere).
For any subgraph 𝐺𝑖 , consider the current 𝑆𝑖∶=

∑
𝐸𝑗⊂𝐺𝑖

𝑇𝐸𝑗 . As by (2) no endpoints of 𝐺 touch
∪𝑖𝐺𝑖 , then 𝜕𝑆𝑖 =

∑
𝑗 g
𝑖
𝑗
𝛿𝑚𝑖

𝑗
for some junctions 𝑀𝑖 = {𝑚𝑖𝑗}𝑗 ⊂ ℝ

2 depending on 𝑖 and elements of

the group {g 𝑖
𝑗
}𝑗 . Hence,

∑
𝑗 g
𝑖
𝑗
= 0 by Remark 2.7, for any 𝑖. Moreover, for given 𝐺𝑖 , we denote by

ℰ𝑖∶={(𝑒𝑘, 𝐸𝑘) ∶ 𝑒𝑘 ∈ {0, 1}, 𝐸𝑘 edge of 𝐺 has the endpoint 𝑒𝑘 lying in 𝐺𝑖} .

As 𝑇 has no boundary at junctions, that is, 𝜕𝑇 is supported on endpoints, it follows that∑
(𝑒𝑘,𝐸𝑘)∈ℰ𝑖

(−1)1+𝑒𝑘g𝐸𝑘 = −
∑
𝑗

g 𝑖𝑗 = 0, (2.1)

for any 𝑖.
We want to associate to Γ ∶ 𝐻 → ℝ2 a suitable current 𝑇 with 𝜕𝑇 = 𝜕𝑇. With little abuse of

terminology, we will say that 𝜋(𝐸𝑘) is an edge of 𝐺 for any edge 𝐸𝑘 of 𝐺 not belonging to ∪𝑖𝐺𝑖;
in particular, for such a 𝑘, 𝜋(𝐸𝑘) is an oriented interval. By (2) we have that 𝐹(𝜋(𝐺𝑖)) is either a
junction of𝐻 or an interior point of some edge of𝐻. If the latter case happens for some 𝐺𝑖0 , then
ℰ𝑖0 = {(𝑒𝑘1 , 𝐸𝑘1), (𝑒𝑘2 , 𝐸𝑘2)} has two elements. As g𝐸𝑗 ∈ {g1, g2, g3} for any edge 𝐸𝑗 of 𝐺, then (2.1)
implies that g𝐸𝑘1

= g𝐸𝑘2
and 𝑒𝑘1 ≠ 𝑒𝑘2 . Hence, there is an embedding 𝛼𝑘1,𝑘2 ∶ [0, 1] → 𝐺 whose

image is 𝜋(𝐸𝑘1) ∪ 𝜋(𝐺𝑖) ∪ 𝜋(𝐸𝑘2) and 𝛼𝑘1,𝑘2 preserves the orientation of 𝜋(𝐸𝑘1), 𝜋(𝐸𝑘2), that is,
the restriction 𝛼𝑘1,𝑘2 ∶ 𝛼

−1
𝑘1,𝑘2

(𝜋(𝐸𝑘𝓁 )) → 𝜋(𝐸𝑘𝓁 ) is an orientation preserving homeomorphism for
𝓁 = 1, 2.
Therefore, up to inverting orientations of edges of 𝐻, we have that the restriction 𝐹 ∶

𝐹−1(𝐻𝑠) → 𝐻𝑠 is orientation preserving for any edge 𝐻𝑠 of 𝐻, that is, if 𝜋(𝐸𝑘) ⊂ 𝐹−1(𝐻𝑠) and
𝐸𝑘 ∩ (∪𝑖𝐺𝑖) = ∅ then the restriction 𝐹 ∶ 𝜋(𝐸𝑘) → 𝐹(𝜋(𝐸𝑘)) ⊂ 𝐻𝑠 is orientation preserving. Also,
we can associate to any edge𝐻𝑠 of𝐻 a group element g𝑠 ∈ {g1, g2, g3}where g𝑠 = g𝐸𝑘 for any edge
𝐸𝑘 of 𝐺 ⧵ (∪𝑖𝐺𝑖) with 𝜋(𝐸𝑘) ⊂ 𝐹−1(𝐻𝑠).
Finally, we can define the desired current 𝑇 =

∑
𝑠 𝑇𝐻𝑠 , where 𝑇𝐻𝑠∶=[Γ|𝐻𝑠 , 𝜎𝑠, 𝜗𝑠] is the current

induced by the immersion Γ|𝐻𝑠 as in Remark 2.5 taking g = g𝑠.
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14 PLUDA and POZZETTA

By the above observations, we have 𝜕𝑇𝐻𝑠 = g𝑠𝛿Γ|𝐻𝑠 (1) − g𝑠𝛿Γ|𝐻𝑠 (0). Now junctions of 𝐻 corre-

spond: either to junctions of 𝐺 not belonging to ∪𝑖𝐺𝑖 , or to identified graphs 𝜋(𝐺𝑖) in 𝐺. Calling
𝑀∶={𝑚𝑖 = Γ(𝐹(𝜋(𝐺𝑖))) ∶ 𝐹(𝜋(𝐺𝑖)) is a junction in 𝐻} ⊂ ℝ2, as 𝐹 is orientation preserving, we
get

𝜕𝑇 =
∑
𝑠

𝜕𝑇𝐻𝑠 = 𝜕𝑇 +
∑
𝑚𝑖∈𝑀

∑
(𝑒𝑘,𝐸𝑘)∈ℰ𝑖

(−1)1+𝑒𝑘g𝐸𝑘𝑚𝑖
(2.1)
= 𝜕𝑇.

Moreover, ‖∑𝑘 𝜗𝑘(𝑥)‖ ⩽ ∑
𝑘 ♯(Γ|𝐻𝑘)−1(𝑥) ‖g𝐸𝑘‖ = ♯Γ−1(𝑥), thus 𝕄(𝑇) ⩽ L(Γ). Hence, Theo-

rem 2.9 implies L(Γ∗) ⩽ 𝕄(𝑇) ⩽ L(Γ). □

Remark 2.15. By approximation, the results in Corollaries 2.12, 2.13, and 2.14 hold also in case the
maps Γ|𝐸𝑖 of the comparison networks are just Lipschitz immersions.
3 LOCALMINIMALITY AMONG PARTITIONS

LetΩ ⊂ ℝ2 be open. We denote by 𝑃(𝐸,Ω) ∶= |𝐷𝜒𝐸|(Ω) the (relative) perimeter of a measurable
set 𝐸 ⊂ Ω inΩ. The symbol 𝜕∗𝐸 denotes the reduced boundary of 𝐸, namely the set of points 𝑥 ∈
spt|𝐷𝜒𝐸| where the generalized outer unit normal to 𝐸 exists. Recall that |𝐷𝜒𝐸| is concentrated
on 𝜕∗𝐸. For the theory of sets of finite perimeter and functions of bounded variation, we refer the
reader to [4].
We say that𝐄 = (𝐸1, … , 𝐸𝑛), for 𝑛 ∈ ℕwith 𝑛 ⩾ 2, is Caccioppoli partition ofΩ if 𝐸𝑖 ⊂ Ω for any

𝑖, |𝐸𝑖 ∩ 𝐸𝑗| = 0 for 𝑖 ≠ 𝑗, |Ω ⧵ ∪𝑛𝑖=1𝐸𝑖| = 0, and∑𝑛
𝑖=1 𝑃(𝐸𝑖, Ω) < +∞. We denote by Σ𝑖𝑗 ∶= 𝜕∗𝐸𝑖 ∩

𝜕∗𝐸𝑗 and by 𝜈𝑖𝑗 = 𝜈𝑖 = −𝜈𝑗 the unit normal to Σ𝑖𝑗 , where 𝜈𝑖 is the generalized outer unit normal
to the set 𝐸𝑖 . In particular, we can think of 𝜈𝑖𝑗 as a normal pointing from 𝐸𝑖 into 𝐸𝑗 .
We shall mostly focus our attention to Caccioppoli partitions 𝐄 = (𝐸1, 𝐸2, 𝐸3) defined by three

sets. We remark that, thanks to [4, Theorem 4.17], it holds 1(𝜕∗𝐸1 ∩ 𝜕
∗𝐸2 ∩ 𝜕

∗𝐸3) = 0, or
equivalently

1(Σ𝑖𝑗 ∩ Σ𝑖𝑘) = 0 for 𝑖, 𝑗, 𝑘 ∈ {1, 2, 3} with 𝑗 ≠ 𝑘 .
Moreover, 𝑃(𝐸𝑖, Ω) = 1(Σ𝑖𝑗 ∪ Σ𝑖𝑘) = 1(Σ𝑖𝑗) +1(Σ𝑖𝑘), for any distinct 𝑖, 𝑗, 𝑘 and then

1
2

3∑
𝑖=1

𝑃(𝐸𝑖, Ω) = 1(Σ12 ∩ Ω) +1(Σ23 ∩ Ω) +1(Σ31 ∩ Ω) .

We recall from [4, Theorem 3.87] that 𝐵𝑉 functions admit (inner) traces on boundaries of open
sets with Lipschitz boundary. More precisely, if Ω ⊂ ℝ2 is a bounded open set with Lipschitz
boundary and 𝑢 ∈ [𝐵𝑉(Ω)]𝑛, then for 1-almost every point 𝑥 ∈ 𝜕Ω there exists trΩ𝑢(𝑥) ∈ ℝ𝑛
such that

lim
𝑟→0+

1

𝑟2 ∫𝐵𝑟(𝑥)∩Ω |𝑢(𝑦) − trΩ𝑢(𝑥)|𝑑𝑦 = 0.
Moreover, the function trΩ𝑢 belongs to [𝐿1(𝜕Ω,1)]𝑛.
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MINIMIZING PROPERTIES OF NETWORKS VIA GLOBAL AND LOCAL CALIBRATIONS 15

If 𝐹 ⊂ ℝ2 is measurable and 𝑢 ∶ 𝐹 → ℝ𝑛 is a (possibly vector-valued) measurable function, we
say that 𝑢 has approximate limit ap - lim𝑦→𝑥 𝑢 = 𝑢0 ∈ ℝ𝑛 at 𝑥 ∈ 𝐹 if

lim
𝑟→0+

1

𝑟2 ∫𝐵𝑟(𝑥)∩𝐹 |𝑢(𝑦) − 𝑢0|𝑑𝑦 = 0.
Adopting the above terminology, trΩ𝑢(𝑥) = ap - lim𝑦→𝑥 𝑢 for 1-almost every 𝑥 ∈ 𝜕Ω, for 𝑢 ∈
𝐵𝑉(Ω) with Ω Lipschitz and bounded.
Let us now fix a bounded open setΩ ⊂ ℝ2 with Lipschitz boundary and let 𝐄̂ = (𝐸1, 𝐸2, 𝐸3) be

a fixed Caccioppoli partition of Ω. We define

 ∶=
{
𝐄 = (𝐸1, 𝐸2, 𝐸3) ∶ 𝐄 is a Caccioppoli partition of Ω, trΩ𝜒𝐸𝑖 = trΩ𝜒𝐸𝑖 1-almost every on 𝜕Ω

}
.

Clearly, 𝐄̂ itself is an element of. For every 𝐄 ∈  we introduce the energy

(𝐄) ∶= 1
2

3∑
𝑖=1

𝑃(𝐸𝑖, Ω) .

A partition 𝐄̃ ∈  is aminimizer of  in Ω if

(𝐄̃) ⩽ (𝐄)
for every 𝐄 ∈ .
Definition 3.1 (Approximately regular vector fields on ℝ2). Let Ω ⊂ ℝ2 be a bounded open set
with Lipschitz boundary. Ameasurable vector fieldΦ ∶ Ω → ℝ2 is said to be approximately regular
if it is bounded and for every Lipschitz curve† 𝛾 ⊂ Ω there holds

ap - lim
𝑦→𝑥

(
Φ(𝑦) ⋅ 𝜈𝛾(𝑥)

)
= Φ(𝑥) ⋅ 𝜈𝛾(𝑥),

at1-almost every 𝑥 ∈ 𝛾, for any chosen unit normal to 𝛾 at 𝑥.

We recall that we are assuming measurable functions to be defined pointwise, hence Φ(𝑥) ⋅
𝜈𝛾(𝑥) is a well-defined number in the above definition.
In this paper, when we talk about the divergence of a bounded vector field Φ ∶ Ω → ℝ2 we

refer to the distributional divergence ofΦ, that is ∫Ω 𝑢 div Φ∶= − ∫Ω ∇𝑢 ⋅ Φ𝑑𝑥 for any 𝑢 ∈ 𝐶1𝑐 (Ω).
We say that div Φ ∈ 𝐿𝑝(Ω) whenever the distributional divergence is represented by an 𝐿𝑝(Ω)-
function, still denoted by div Φ.
If 𝑢 ∈ 𝐵𝑉(Ω), we denote by 𝐷𝑢 = (𝜕1𝑢, 𝜕2𝑢) the vector valued measure satisfying∑
𝑖 ∫Ω Φ𝑖 𝑑(𝜕𝑖𝑢) = − ∫Ω 𝑢 div Φ𝑑𝑥 for anyΦ ∈ 𝐶1𝑐 (Ω), and we denote ∫Ω Φ ⋅ 𝐷𝑢∶=

∑
𝑖 ∫Ω Φ𝑖 𝑑(𝜕𝑖𝑢)

for any field Φ such that the latter expression makes sense.

†Here by Lipschitz curve, we mean the image of a Lipschitz embedding 𝜎 ∶ [0, 1] → Ω.
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16 PLUDA and POZZETTA

Lemma 3.2 (Divergence theorem for approximately regular vector field, [1, Lemma 2.4]). Let Ω
be a bounded open set in ℝ2 with Lipschitz boundary and let 𝜈𝜕Ω be its inner normal, which is well-
defined 1-almost every on 𝜕Ω. Let Φ ∶ Ω → ℝ2 be an approximately regular vector field and let
𝑢 ∈ 𝐵𝑉(Ω). Assume that div Φ ∈ 𝐿∞(Ω) and trΩ𝑢 Φ ∈ 𝐿1(𝜕Ω,1). Then

∫Ω Φ ⋅ 𝐷𝑢 = −∫Ω 𝑢 div Φ𝑑𝑥 − ∫𝜕Ω trΩ𝑢 Φ ⋅ 𝜈𝜕Ω 𝑑1 , (3.1)

where Φ ⋅ 𝜈𝜕Ω(𝑥) = ap - lim𝑦→𝑥(Φ(𝑦) ⋅ 𝜈𝛾(𝑥)) at1-almost every 𝑥 ∈ 𝜕Ω.

In what follows we will apply Lemma 3.2 to characteristic functions of sets of finite perimeter.

Corollary 3.3. Let Ω ⊂ ℝ2 be a bounded open set with Lipschitz boundary and let 𝐄, 𝐄̃ ∈ . Let
Φ ∶ Ω → ℝ2 be an approximately regular vector field with div Φ = 0. Then

∫Ω Φ ⋅ 𝐷𝜒𝐸𝑖 = ∫Ω Φ ⋅ 𝐷𝜒𝐸𝑖 ,

for any 𝑖 = 1, 2, 3.

Proof. Using the fact that div Φ = 0, formula (3.1) applied with 𝑢 = 𝜒𝐸𝑖 or 𝑢 = 𝜒𝐸𝑖 reduces to

∫Ω Φ ⋅ 𝐷𝜒𝐸𝑖 = −∫𝜕Ω trΩ𝜒𝐸𝑖 Φ ⋅ 𝜈𝜕Ω 𝑑1 ,

∫Ω Φ ⋅ 𝐷𝜒𝐸𝑖 = −∫𝜕Ω trΩ𝜒𝐸𝑖 Φ ⋅ 𝜈𝜕Ω 𝑑1 ,

for any 𝑖 = 1, 2, 3. By definition of the set , the two right-hand sides above are equal, and the
claim follows. □

Roughly speaking, the next lemma states the well-known fact that if a piecewise smooth vector
field is such that its normal component along its jump set is well-defined, then the distributional
divergence is simply given by the pointwise divergence of the field computed where it is smooth.
We provide a proof for the convenience of the reader.

Lemma3.4. LetΩ be a bounded open set with Lipschitz boundary. LetΨ ∶ Ω → ℝ2 be ameasurable
bounded vector field. Suppose that that there exists a Caccioppoli partition 𝐅 = (𝐹1, … , 𝐹𝑛) of Ω,
where 𝐹𝑖 is open with Lipschitz boundary, such that Ψ|𝐹𝑖 ∈ 𝐶1(𝐹𝑖) with div (Ψ|𝐹𝑖 ) ∈ 𝐿∞(𝐹𝑖) and

tr𝐹𝑖 (Ψ|𝐹𝑖 ) ⋅ 𝜈𝑖 = −tr𝐹𝑗 (Ψ|𝐹𝑗 ) ⋅ 𝜈𝑗, (3.2)

for any 𝑖 ≠ 𝑗, at1-almost every point on 𝜕∗𝐹𝑖 ∩ 𝜕∗𝐹𝑗 , where 𝜈𝑖 is the1-almost every defined outer
normal to 𝐹𝑖 .
Then the distributional divergence of Ψ is given by

div Ψ =
𝑛∑
𝑖=1

𝜒𝐹𝑖div (Ψ|𝐹𝑖 ) 𝑑𝑥.
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MINIMIZING PROPERTIES OF NETWORKS VIA GLOBAL AND LOCAL CALIBRATIONS 17

If also div (Ψ|𝐹𝑖 ) = 0 on 𝐹𝑖 for any 𝑖, then div Ψ = 0.
Proof. By assumptions, we see that Ψ|𝐹𝑖 ∈ [𝐵𝑉(𝐹𝑖)]2. As 𝐵𝑉 functions admit inner traces on
boundaries of Lipschitz domains, we see that the field Ψ𝑖 ∶ 𝐹𝑖 → ℝ2 defined by

Ψ𝑖(𝑥)∶=

{
Ψ(𝑥) 𝑥 ∈ 𝐹𝑖,

tr𝐹𝑖 (Ψ|𝐹𝑖 ) 1-almost every on 𝜕∗𝐹𝑖 ,

and arbitrarily defined on 𝜕𝐹𝑖 where tr𝐹𝑖Ψ|𝐹𝑖 does not exist, is approximately regular.
Let 𝑢 ∈ 𝐶1𝑐 (Ω). Applying Lemma 3.2 on each 𝐹𝑖 , we can compute

∫Ω Ψ ⋅∇𝑢 𝑑𝑥 =
∑
𝑖
∫𝐹𝑖 ∇𝑢 ⋅ Ψ𝑖 𝑑𝑥 = −

∑
𝑖
∫𝐹𝑖 𝑢 div (Ψ|𝐹𝑖 ) 𝑑𝑥 +

∑
𝑖
∫𝜕∗𝐹𝑖 𝑢 Ψ𝑖 ⋅ 𝜈𝑖 𝑑

1

= −
∑
𝑖
∫𝐹𝑖 𝑢 div (Ψ|𝐹𝑖 ) 𝑑𝑥.

□

Definition 3.5 (Local paired calibration). A local paired calibration for a Caccioppoli partition
𝐄 = (𝐸1, 𝐸2, 𝐸3) is a collection of three approximately regular vector fields Φ1,Φ2, Φ3 ∶ Ω → ℝ2

such that

(1) div Φ𝑖 = 0 for 𝑖 = 1, 2, 3,
(2) |Φ𝑖 − Φ𝑗| ⩽ 1 1-almost every in Ω, for 𝑖, 𝑗 = 1, 2, 3, 𝑖 ≠ 𝑗,
(3) (Φ𝑖 − Φ𝑗) ⋅ 𝜈𝑖𝑗 = 1 1-almost every in Σ𝑖𝑗 , for 𝑖, 𝑗 = 1, 2, 3, 𝑖 ≠ 𝑗.
Remark 3.6. The concept of local paired calibration is nothing but the notion of paired calibration
introduced by Lawlor and Morgan in [14] restricted to the case of a partition of Ω composed of
three sets.

Remark 3.7. LetΩ be bounded, let𝐄 ∈  and assume that there exist approximately regular fields
Ψ12, Ψ23, Ψ31 ∶ Ω → ℝ2 such that

∙ div Ψ12 = div Ψ23 = div Ψ31 = 0,
∙ |Ψ12|, |Ψ23|, |Ψ31| ⩽ 11-almost every in Ω,
∙ Ψ𝑖𝑗 ⋅ 𝜈𝑖𝑗 = 11-almost every in Σ𝑖𝑗 , for 𝑖, 𝑗 = 1, 2, 3 such that Ψ𝑖𝑗 is defined,
∙ Ψ12 + Ψ23 + Ψ31 = 01-almost every in Ω.

Then there exists a local paired calibration for 𝐄.
Indeed, fix an arbitrary approximately regular field Φ1 with div Φ1 = 0, for example,

Φ1(𝑥, 𝑦)∶=(0, 0)|Ω. Hence, set Φ2∶=Φ1 − Ψ12 and Φ3∶=Ψ31 + Φ1. Then Φ𝑖 − Φ𝑗 = Ψ𝑖𝑗 1-almost
every in Ω. Hence, the properties of Ψ12, Ψ23, Ψ31 imply that Φ1,Φ2, Φ3 give a local paired
calibration for 𝐄.

The next lemma states that existence of a local paired calibration for a partition implies that it
is minimizing.We provide a detailed proof that formalizes the general principle introduced in [14,
sections 1.1 and 1.2].
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18 PLUDA and POZZETTA

Lemma 3.8. If Φ is a local paired calibration for 𝐄̃ ∈ , then 𝐄̃ ∈  is a minimizer of  inΩ.

Proof. Using the third condition in the definition of local paired calibration, denoting by 𝜈𝑖𝑗 the
usual normal at the interfaces of 𝐄̃, and the structure of Caccioppoli partitions [4, Theorem 4.17]
we have

(𝐄̃) = 1
2

3∑
𝑖=1

𝑃(𝐸𝑖, Ω) = 1(Σ̃12 ∩ Ω) +1(Σ̃23 ∩ Ω) +1(Σ̃31 ∩ Ω)

(3)
= ∫Σ̃12∩Ω(Φ1 − Φ2) ⋅ 𝜈12 d

1 + ∫Σ̃23∩Ω(Φ2 − Φ3) ⋅ 𝜈23 d
1 + ∫Σ̃31∩Ω(Φ3 − Φ1) ⋅ 𝜈31 d

1

=
3∑
𝑖=1

∫Ω Φ𝑖 ⋅ 𝐷𝜒𝐸𝑖 .

Thanks to the divergence free condition on the vector fields, we can apply Corollary 3.3 getting

3∑
𝑖=1

∫Ω Φ𝑖 ⋅ 𝐷𝜒𝐸𝑖
(1)
=

3∑
𝑖=1

∫Ω Φ𝑖 ⋅ 𝐷𝜒𝐸𝑖 .

To conclude, we use the second condition in the definition of local paired calibration to get

3∑
𝑖=1

∫ΩΦ𝑖 ⋅ 𝐷𝜒𝐸𝑖

= ∫Σ12∩Ω(Φ1 − Φ2) ⋅ 𝜈12 d
1 + ∫Σ23∩Ω(Φ2 − Φ3) ⋅ 𝜈23 d

1 + ∫Σ31∩Ω(Φ3 − Φ1) ⋅ 𝜈31 d
1

⩽ ∫Σ12∩Ω |Φ1 − Φ2| d1 + ∫Σ23∩Ω |Φ2 − Φ3| d1 + ∫Σ31∩Ω |Φ3 − Φ1| d1

(2)
⩽ 1(Σ12 ∩ Ω) +1(Σ23 ∩ Ω) +1(Σ31 ∩ Ω) =

1
2

3∑
𝑖=1

𝑃(𝐸𝑖, Ω) = (𝐄) .

Following the chain of inequalities, we have (𝐄̃) ⩽ (𝐄) as desired. □

We conclude by proving the localminimality of a partition induced by a minimal network.

Theorem 3.9. Let Γ∗ ∶ 𝐺 → ℝ2 be a minimal network such that Γ∗(𝐺) ⊂ 𝐷 where 𝐷 is a domain
of class 𝐶1 homeomorphic to a closed disk, and Γ∗(𝐺) ∩ 𝜕𝐷 is the set of endpoints of Γ∗.
Then there exists a bounded open set Ω′ ⊂ ℝ2 such that Γ∗(𝐺) ⊂ Ω′, Ω∶=Ω′ ∩ int (𝐷) has Lip-

schitz boundary, there exists a Caccioppoli partition 𝐄̃ = (𝐸1, 𝐸2, 𝐸3) of Ω such that Ω∩ ∪𝑖𝜕𝐸𝑖 =
Ω ∩ Γ∗(𝐺) and there exists a local paired calibration for 𝐄̃ inΩ.
In particular, 𝐄̃ is a minimizer for  in, that is the class of partitions having the same trace of

𝐄̃ on 𝜕Ω.
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MINIMIZING PROPERTIES OF NETWORKS VIA GLOBAL AND LOCAL CALIBRATIONS 19

F IGURE 5 Left: Partition 𝐄̃′ = (𝐸′
1
, 𝐸′
2
, 𝐸′
3
) of Ω′. Right: Split of Ω′ in four regions 𝑅1, 𝑅2, 𝑅𝑇𝑢, 𝑅𝑇𝑑 .

F IGURE 6 Picture of the three fields Ψ12, Ψ23, Ψ31.

Proof. Let us assume that 𝐺 has at least two junctions. The cases with no junctions or with one
junction are easier to treat with the construction outlined in the rest of the proof.
We first consider a simple configuration in which Γ∗(𝐺) is composed of five curves that meet

at two triple junctions. Let Γ′∗(𝐺) be the network having all edges equal to those of Γ∗(𝐺) except
for those ending at an endpoint, which are lengthened by an additive length equal to 𝛿′ ∈ (0, 1)
(that will be suitably chosen later). We first construct a calibration for the Caccioppoli partition
identified by the new network Γ′∗(𝐺) containing Γ∗(𝐺), over an open setΩ

′ containing Γ∗(𝐺) (see
Figure 5). Eventually, in the general case, a restriction of both the partition and the calibration to
𝐷 will give the desired calibration of a partition of the final set Ω.
We call 𝑂1, 𝑂2 the two junctions and we let 𝑑 be the distance between 𝑂1 and 𝑂2. We define

the set Ω′ to be the 𝛿-tubular neighborhood of Γ′∗(𝐺) with 𝛿 =
𝑑
√
3

8
truncated at each of the four

new endpoints with the line passing through the endpoint that is orthogonal to the corresponding
edge. We thus define the partition 𝐸′

1
, 𝐸′
2
, 𝐸′
3
as in Figure 5 on the left.

Let 𝑀 be the midpoint between 𝑂1 and 𝑂2. We consider two lines 𝓁1,𝓁2 through 𝑀 forming
an angle of 30◦ with the segment connecting 𝑂1 and 𝑂2. By the choice of 𝛿, the two lines meet
𝜕Ω′ at points whose projections on the edge 𝑂1 𝑂2 lie in the interior of the edge; hence the lines
split Ω′ in four open regions that we denote 𝑅1, 𝑅2, 𝑅𝑇𝑢, 𝑅𝑇𝑑, as in Figure 5. Now we construct a
calibration for 𝐄̃′. Thanks to Remark 3.7 we can exhibit directly the “difference fields” Ψ12, Ψ23,
Ψ31 (see Figure 6). We define the fields pointwise on each region by
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20 PLUDA and POZZETTA

𝐑𝐞𝐠𝐢𝐨𝐧𝑅1 ∶ Ψ12 =
(√
3∕2, −1∕2

)
, Ψ23 = (0, 1), Ψ31 =

(
−
√
3∕2, −1∕2

)
,

𝐑𝐞𝐠𝐢𝐨𝐧𝑅2 ∶ Ψ12 =
(
−
√
3∕2, −1∕2

)
, Ψ23 = (0, 1), Ψ31 =

(√
3∕2, −1∕2

)
,

𝐑𝐞𝐠𝐢𝐨𝐧𝑅𝑇𝑢 ∶ Ψ12 = (0, 0), Ψ23 = (0, 1), Ψ31 = (0, −1) ,

𝐑𝐞𝐠𝐢𝐨𝐧𝑅𝑇𝑑 ∶ Ψ12 = (0, −1), Ψ23 = (0, 1), Ψ31 = (0, 0) .

Moreover, the fields Ψ𝑖𝑗 are pointwise defined on 𝜕Ω′ ∪ 𝓁1 ∪ 𝓁2 by taking traces from suitable
corresponding regions.More precisely, we setΨ𝑖𝑗|𝜕𝑅⧵{𝑀} = tr𝑅(Ψ𝑖𝑗|𝑅) for regions𝑅 ∈ {𝑅1, 𝑅2}, and
Ψ𝑖𝑗|𝜕Ω′∩𝑆⧵(𝑅1∪𝑅2) = tr𝑆(Ψ𝑖𝑗|𝑆) for regions 𝑆 ∈ {𝑅𝑇𝑢, 𝑅𝑇𝑑 }, and Ψ𝑖𝑗(𝑀) = 0.
To prove that Ψ12, Ψ23, Ψ31 induce a local paired calibration, we check the four conditions of

Remark 3.7.
The divergence free condition immediately follows from Lemma 3.4. Indeed, the fields are

constant in the regions 𝑅1, 𝑅2, 𝑅𝑇𝑢 and 𝑅𝑇𝑑 , so within each regions they have zero divergence.
Moreover, one can easily prove that the condition (3.2) is satisfied. As an example, we check it for
Ψ12 in the transition between 𝑅1 and 𝑅𝑇𝑢 .
As 𝜈𝑅1 = (1∕2,

√
3∕2) and 𝜈𝑅𝑇𝑢 = −𝜈𝑅1 = (−1∕2, −

√
3∕2), by direct computation we have:

tr𝑅1(Ψ12|𝑅1) ⋅ 𝜈𝑅1 = (√3∕2, −1∕2) ⋅ (1∕2,√3∕2) = 0 ,
tr𝑅𝑇𝑢

(Ψ12|𝑅𝑇𝑢 ) ⋅ 𝜈𝑅𝑇𝑢 = (0, 0) ⋅ (−1∕2, −√3∕2) = 0
hence tr𝑅1(Ψ12|𝑅1) ⋅ 𝜈𝑅1 = −tr𝑅𝑇𝑢 (Ψ12|𝑅𝑇𝑢 ) ⋅ 𝜈𝑅𝑇𝑢 . The computations are completely analogous for
all the other transitions and fields.
Moreover, we have |Ψ1| = |Ψ2| = |Ψ3| = 1. Finally, the third and fourth condition of

Remark 3.7 are trivial to check.
We now pass to the general case. Let Γ∗, 𝐷 be as in the statement. Denote by {𝐷𝑗} the collection

of the connected components of int(𝐷) ⧵ Γ∗(𝐺). For any 𝑗, atmost six edges of Γ∗(𝐺) are contained
in the boundary 𝜕𝐷𝑗, and in particular 𝜕𝐷𝑗 is a hexagonwhenever 𝜕𝐷𝑗 ∩ 𝜕𝐷 = ∅. Indeed, if at least
seven edges of Γ∗(𝐺) are contained in the boundary 𝜕𝐷𝑗 , as𝐷𝑗 and 𝜕𝐷𝑗 are connected, we can split
𝜕𝐷𝑗 as a union 𝜕𝐷𝑗 = 𝜕(ℝ2 ⧵ 𝐷𝑗) ∪

⨆
𝑘 𝑆

𝑖
𝑘
, where each 𝑆𝑖

𝑘
is (the image of) a minimal network

with only one endpoint, such endpoint being the intersection of 𝑆𝑖
𝑘
with 𝜕(ℝ2 ⧵ 𝐷𝑗). But minimal

networks 𝑆with only one endpoint do not exist, otherwise the distance function from the endpoint
would not achieve a maximum on 𝑆. Nonexistence of minimal networks with one endpoint also
implies that if a path in int(𝐷) crosses an edge of Γ∗(𝐺), then it passes from a component 𝐷𝑗 to a
different component 𝐷𝑗′ . Similarly, one notices that minimal networks with only two endpoints
(and at least a triple junction) do not exist, and thus either 𝜕𝐷𝑖 ∩ 𝜕𝐷𝑘 = ∅ or 𝜕𝐷𝑖 ∩ 𝜕𝐷𝑘 is an edge
of Γ∗(𝐺), for 𝑖 ≠ 𝑘.
We define a planar graph 𝑄 whose vertices are the components {𝐷𝑗} and we say that 𝐷𝑗 and

𝐷𝑘, for 𝑗 ≠ 𝑘, are connected by an edge if and only if 𝜕𝐷𝑖 ∩ 𝜕𝐷𝑘 is an edge of Γ∗(𝐺). By the above
observations it readily follows that 𝑄 is homeomorphic to a subset of the planar triangular graph
𝑄′ identified by the lattice {𝑛(1, 0) + 𝑚(1∕2,

√
3∕2) ∶ 𝑛,𝑚 ∈ ℤ}. In fact, a homeomorphism can

be constructed by iteration as follows. Starting from a first component 𝐷𝑗1 , if 𝑥 ∈ 𝜕𝐷𝑗1 is a triple
junction of Γ∗(𝐺), parameterizing a circle of small radius centered at 𝑥 starting from a point in𝐷𝑗1
identifies a triangle in 𝑄. Repeating the construction for the other triple junctions lying on 𝜕𝐷𝑗1 ,
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MINIMIZING PROPERTIES OF NETWORKS VIA GLOBAL AND LOCAL CALIBRATIONS 21

F IGURE 7 Left: Partition 𝐄̃′ = (𝐸′
1
, 𝐸′
2
, 𝐸′
3
), in yellow the set 𝐸′

1
, in red 𝐸′

2
and in blue 𝐸′

3
. Right: The three

fields: Ψ12 in blue, Ψ23 in yellow and Ψ31 in red.

which are six at most, and then iterating the construction on adjacent components eventually
leads to the desired homeomorphism.
As the triangular graph𝑄′ can be colored with three colors, there exists a Caccioppoli partition

𝐅 = (𝐹1, 𝐹2, 𝐹3), consisting of just three sets, of 𝐷 such that int (𝐷) ∩ Γ∗(𝐺) = int (𝐷) ∩ ∪𝑖𝜕𝐹𝑖 .

Now let 𝑑 be the minimal length among the edges of Γ∗. For 𝛿 ∈ (0,
𝑑
√
3

8
) small enough and

𝛿′ ∈ (0, 1) that will be suitably chosen we consider the new network Γ′∗(𝐺) as before having the
same edges of Γ∗(𝐺) except for those connected to endpoints that are extended by a length equal
to 𝛿′, and we take Ω′ equal to the 𝛿-tubular neighborhood of Γ′∗(𝐺), orthogonally truncated at
endpoints. By assumptions, as 𝐷 has boundary of class 𝐶1, for almost every 𝛿′, 𝛿 suitably small,
𝜕Ω′ intersects 𝜕𝐷 transversely. Therefore, choosing any such 𝛿′, 𝛿, the set Ω∶=Ω′ ∩ int (𝐷) is an
open set with Lipschitz boundary. We define the desired Caccioppoli partition 𝐄̃ = (𝐸1, 𝐸2, 𝐸3) of
Ω by setting 𝐸𝑖∶=𝐹𝑖 ∩ Ω′ for any 𝑖 = 1, 2, 3.
It remains to exhibit a local paired calibration for 𝐄̃. Along any edge that is not connected

to an endpoint, we locally perform the same construction of Figure 5 for the network Γ′∗. More
precisely, at anymidpoint𝑀𝑖𝑗 between any two triple junctions𝑂𝑖 and𝑂𝑗 connected by an edge 𝐿,
we consider two lines through𝑀𝑖𝑗 forming an angle of 30◦ with the segment connecting 𝑂𝑖 and
𝑂𝑗 . By the choice of 𝛿, such lines intersect 𝜕Ω′ at points whose projections along the direction
determined by 𝐿 lie in the interior of 𝐿. Hence, such lines divide Ω′ into open regions where we
can set Ψ12, Ψ23, Ψ31 to be the suitable rotation of ±

2𝜋
3
of the vector (0,1) like done in the simpler

case in Figure 5.
The only issue that we need to check is the fact that a choice of these fields is coherent along

an arbitrary cycle of the network, see Figure 7. As we proved that a cycle in Γ∗ is a hexagon, this is
easily established by directly prescribing a choice of Ψ12, Ψ23, Ψ31, depending on the preassigned
𝐸′
1
, 𝐸′
2
, 𝐸′
3
as done before, along a cycle as inFigure 7,which formapartition ofΩ′. Up to relabeling,

we have that𝐸′
𝑖
∩ int (𝐷) = 𝐸𝑖 for 𝑖 = 1, 2, 3. Hence, taking pointwise restrictions on𝐷 of the fields

defining the calibration for 𝐄̃′ on Ω′, we get a calibration for 𝐄̃ on Ω. □

Remark 3.10. In the construction in Theorem 3.9 of a neighborhood relative to 𝐷 of a minimal
network Γ∗ together with a Caccioppoli partition minimizing for  , it is not possible to choose
the neighborhood arbitrarily large. More precisely, recall that in the proof of Theorem 3.9, Ω is
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22 PLUDA and POZZETTA

F IGURE 8 Partitions 𝐄 and 𝐅 in Remark 3.10.

F IGURE 9 Continuous lines: Upper-right quarter of Γ∗ in Remark 3.10. Dotted line: half of the upper
horizontal edge of the interfaces of 𝐅 in Remark 3.10.

essentially given by a tubular neighborhood of Γ∗ of width 𝛿 <
√
3𝑑∕8 where 𝑑 is the length of

the shortest edge, intersected with the given domain 𝐷. Here we construct an example showing
that for a choice of a bigger 𝛿, the partition associated to a minimal network Γ∗ is no longer a
minimizer for  in Ω.
Consider the minimal network Γ∗ depicted in Figure 8 on the left, together with a 𝛿-

tubular neighborhood (orthogonally truncated at endpoints) Ω and the associated partition 𝐄 =
(𝐸1, 𝐸2, 𝐸3), for 𝛿 to be chosen (comparing to the notation of Theorem3.9, herewe can take𝐷 equal
to a suitable 𝐶1 topological disk containingΩ). In this case, Γ∗ is composed of five curves joining
at two triple junction whose distance equals 𝑑, and we assume that the four edges connected to
endpoints have length strictly bigger than 𝑑. We consider a comparison partition 𝐅 (not induced
by a network!) in the class of partitions having the same trace of𝐄 on the boundary, as depicted
in Figure 8 on the right. The interfaces determining the partition 𝐅 are obtained by deleting the
central curve of Γ∗, by shortening the four edges connected to endpoints of the same amount, and
then by joining with two horizontal segments the four new endpoints of the shortened edges.
We claim that if 𝛿 >

√
3

4
𝑑, then 𝐅 can be chosen so that (𝐅) < (𝐄), giving an upper bound

on the width of the tubular neighborhood where the partition induced by Γ∗ may be minimizing
for  .
Indeed, let 𝑎 be half of the length of one of the horizontal edges of the interfaces of 𝐅 and let

𝑏 be the length of the deleted portion of one of the four external edges of Γ∗ (see Figure 9). By
symmetry, if 𝑑

2
+ 2𝑏 > 2𝑎 then (𝐅) < (𝐄). Letting ℎ be the distance between the horizontal

edge of Γ∗ and the horizontal part of the interfaces of 𝐅, then 𝑏 =
2√
3
ℎ and 𝑎 = 𝑑

2
+ 𝑏
2
= 𝑑
2
+ ℎ√

3
.
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Hence, the condition 𝑑
2
+ 2𝑏 > 2𝑎 is equivalent toℎ >

√
3

4
𝑑. Hence, whenever 𝛿 >

√
3

4
𝑑, then such

a partition 𝐅 satisfying (𝐅) < (𝐄) can be constructed within Ω.
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