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A B S T R A C T

Electronic payment methods have become increasingly popular for business transactions, both online and in-
person, across the globe. Anomalies like online fraud and default payments, which can result in substantial
financial losses, have become more common as the usage of credit cards in online purchases has increased. To
address this issue, researchers have explored various machine learning models and their ensemble techniques
for detecting anomalies in credit card transaction data. However, detecting anomalies in this data can be
challenging due to overlapping class samples and an imbalanced class distribution. Therefore, the detection
rate of anomalies from minority class samples is relatively low, and general learning algorithms can be biased
towards the majority class samples. In this paper, we propose a model called Credit Card Anomaly Detection
(CCAD) that leverages the base learners paradigm and meta-learning ensemble techniques to improve the
detection rate of credit card anomalies. We utilize four outlier detection algorithms as base learners and
XGBoost algorithm as meta learner in the proposed stacked ensemble approach to detect anomaly in credit
card transactions. We apply stratified sampling technique and k-fold cross-validation process to address the
issues of data imbalance and overfitting. In addition, the discordance rate is calculated to enhance the accuracy
of ensemble learning performances. The proposed model is trained and tested using two datasets: CCF (Credit
Card Fraud) and CCDP (Credit Card Default Payment). Experimental results demonstrate that our approach
outperforms existing approaches, particularly in detecting anomalies from the minority class instances of these
datasets.
. Introduction

Credit cards have become very common in the modern day for car-
ying out routine financial activities including commercial dealings and
eal-time services. Consumers make purchases using Internet-connected
lectronic devices, such as tablets, PCs, and smartphones. However,
he potential of fraudulent transactions resulting in significant financial
osses equal to billions of dollars every year has increased due to
he increasing use of various online payment systems and electronic
anking [1,2].

A report from [3] reveals a global loss of 28.58 USD billion in
020 due to credit card fraud, affecting cardholders, consumers, and
erchants worldwide. Furthermore, [4] found that fraudulent credit

ard transactions alone caused an 11 USD billion loss in the United
tates in 2020. The situation is alarming as a recent report [5] indicates
tripling of global credit card fraud over the last decade, with losses

oaring from 9.84 USD billion in 2011 to 32.39 USD billion in 2021.
he report predicts that enterprises worldwide could suffer cumulative
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losses of approximately 408.50 billion over the next ten years. Notably,
the Malaysian banking sector faced substantial losses, recording a
total loss of RM 51.3 million in fraudulent credit card transactions
in 2016 [6,7]. Furthermore, 12.8% of credit cardholders in Malaysia
struggled to meet the minimum balance payment, raising concerns for
the Malaysian government.

Financial organizations need to address several issues related to
credit cards, including (i) the issue of card owners neglecting refunds
leading to default payments, and (ii) the presence of unauthorized third
parties causing frauds. An automated anomaly detection system can
significantly contribute to the resolution of this issue.

Over the years, researchers have actively sought solutions to the
challenges posed by banking data, such as credit card fraud and default
payment. Data mining has emerged as a promising approach in han-
dling these issues. However, banking data presents unique challenges
for data mining experts due to the following properties commonly
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observed in the data: (i) overlapping of class samples (ii) imbalanced
class distribution.

In credit card datasets, important categories, like fraud and default
payments, are typically underrepresented. Learning algorithms can ef-
fectively identify and learn patterns from these classes when they have
a sufficient number of records. However, the task becomes more chal-
lenging when the number of samples in these classes is small, making it
difficult to generalize and define their decision boundaries accurately
using traditional learning algorithms [1,2]. The situation becomes more
complex when there is a significant overlap in attribute values among
many normal transactions. In cases where the minority classes are
linearly separable, the performance of the learning algorithm may not
be significantly affected, even if the dataset is highly imbalanced [8,9].

Various research works have explored supervised machine learning
approaches to deal with the issues of detecting fraud credit card.
Most popular algorithms include SVM (Support Vector Machine) [10],
DT (Decision Tree) [11], ANN (Artificial Neural Network) [12], LR
(Logistic Regression) [10], LSTM (Long Short Term Memory) [13], and
CNN (Convolutional Neural Network) [14]. Some researchers employed
ensemble model to address the low rate of anomaly detection rate. The
most used current ensemble approaches in this domain are bagging
classifiers based on the decision tree [15], majority voting, AdaBoost
with standard machine learning algorithms [16], and deep learning
models [17]. However, the effectiveness of supervised learning is con-
tingent on a sufficient number of instances from all classes, including
normal and abnormal data. In the case of credit card datasets, there are
still insufficient fraud data to train supervised models.

Further, the accuracy rate of anomaly detection in credit card trans-
actions is often lower due to the complex and dynamic nature of the
dataset. As a result, single supervised machine learning classifiers fre-
quently struggle to learn the intricate characteristics inherent in credit
card transactions. Most existing approaches predicts anomaly solely
using single classifier, which did not become effective for anomaly de-
tection in credit card transactions with higher accuracy. Alternatively,
ensemble techniques have the potential to outperform individual mod-
els. Recognizing the advantages of this technique, we have developed
a stacked ensemble model called the ‘‘Credit Card Anomaly Detection
(CCAD)’’ model. This model aims to address the issue of low anomaly
detection rates in the datasets utilized in this study.

In real-life scenarios, the occurrence of normal credit card trans-
actions is higher compared to abnormal transactions. Therefore, a
semi-supervised model, such as outlier detection, is more suitable for
building an effective anomaly detection system. In a semi-supervised
approach, we only need legitimate credit card transactions for training.
The model identifies fraudulent transactions by recognizing deviations
from the usual patterns of legitimate activities. This method addresses
the issue of data imbalance and is more apt for real-world scenarios
where gathering a substantial number of anomalous credit card trans-
actions is difficult. Taking this into consideration, we have employed
four outlier detection algorithms and combined them in an ensemble
approach to develop a robust anomaly detection system.

To evaluate the effectiveness of our proposed approach, we utilized
stratified cross-validation and compared it with state-of-the-art ensem-
ble and individual models. The results demonstrated that our suggested
model outperforms the existing models in the field of credit card
anomaly detection. Our contributions to this work can be summarized
as follows:

i. To propose a stack ensemble learning model to detect anomalies
in credit card transactions. The model integrates semi-supervised
outlier techniques and supervised machine learning algorithms.
Our approach detects the credit card transaction as genuine or
anomalous.

ii. To implement the model using stratified cross validation to
tackle the issues of the imbalanced dataset and overfitting. Grid
search hyper parameter tuning is applied to improve anomaly
2

detection performance. We analyze the performance of the pro-
posed model in terms of accuracy, precision, recall, F1-score, and
AUC.

iii. To ensure the integrity of the ensemble model, we computed
the discordance rate among the base learner models. This step
aimed to ensure that the ensemble model is trained on distinct
meta-features rather than relying solely on the predictions of
different base-level models. By doing so, we minimized the risk
of creating a biased model and ensured a more reliable and
unbiased ensemble model.

Paper Outline. The remaining part of this research paper is structured
as follows. In Section 2, related works is reviewed and proposed ap-
proach discussed in Section 3. Section 4 discusses the simulation results
of proposed approach and comparisons with existing works. Finally, the
conclusion and future research directions are summarized in Section 5.

2. Related work

Researchers and stakeholders have been exploring for effective
strategies to address credit card fraud as the use of electronic payment
systems, especially credit cards, continues to expand around the world.
There needs to enhance existing fraud detection techniques and estab-
lish a more secure payment system as the characteristics of credit card
attacks evolve. In this section, we describe recent state-of-the-art works
to effectively mitigate electronic credit card fraud.

Alfaiz et al. [18] utilized a real-world credit card fraud dataset col-
lected from a European bank to identify the fraud. The dataset is highly
imbalanced with 31 features and contains only 492 frauds (0.173%)
out of 284,807 online transactions. First, the authors trained nine
ML algorithms and selected the top three performing ML algorithms.
Next, resampling techniques was used for the selected ML algorithms.
They showed that K-Nearest Neighbors (KNN) outperformed CatBoost
method while detecting fraudulent transactions.

Malik et al. [19] presented a new hybrid machine learning architec-
ture to detect frauds from the electronic credit card dataset. They used
the IEEE Computational Intelligence Society (IEEE-CIS) [20] dataset,
which was provided by Vesta Corporation. The dataset has 432 features
and half a million credit card transactions, but the data are highly
imbalanced, and the imbalance rate is 0.035. The authors trained and
tested seven hybrid machine-learning models using the datasets to
identify fraud. In their model, they first measured the performance of
individual model and then hybrid methods were constructed based on
the performance of single algorithm. They found that Adabost+LGBM is
the best hybrid model to detect fraud. The authors did not measure the
performance using the cross-validation process. As a result, their per-
formance might vary significantly as the training and testing samples
are changed.

Zhang et al. [21] presented an optimized anomaly detection model
by dealing with an imbalanced issue in the credit card fraud dataset.
The authors compared the experimental results of their data balancing
techniques with synthetic minority oversampling technique (SMOTE).
They claimed that their approach perform better than SMOTE to de-
tect fraud. First, the authors used Isolation Forest (IForest) to detect
fraud behavior accurately. Next, AdaBoost and one-class support vector
machine (OCSVM) were utilized to improve the accuracy in detecting
the outliers. Cross validation approach to evaluate the result was not
employed in this work too.

Carcillo et al. [22] developed a hybrid model by combining super-
vised & unsupervised techniques to enhance the performance of the
fraud detection system. The authors tested their model using real and
annotated datasets of fraudulent identification. The limitation of this
work is that data imbalanced issue was not handled.

Zhang et al. [23] employed an advanced feature engineering process
and Homogeneity-Oriented Behavior Analysis (HOBA) for an electronic
credit card fraudulent transaction detection system. The authors trained
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and tested their model using a dataset collected from a bank in China.
Imbalanced issue of dataset was not addressed in their works.

Karthik et al. [24] combined bagging and boosting ensemble learn-
ing techniques to accurately detect fraud credit cards. The research
used UCSD-FICO competition credit card dataset & Brazilian bank
dataset. The authors used a hybrid-level approach to tackle the imbal-
anced problem of these two datasets.

Forough et al. [25] used deep recurrent neural networks and novel
voting techniques to construct an ensemble system to detect credit card
fraud. They used two real-world datasets: 2013 European credit cards
and Brazilian credit card datasets to train and test their model.

Asha et al. [26] used artificial neural network (ANN), support vector
machine (SVM), and k-nearest neighbors (KNN) algorithms to detect
and predict fraudulent transactions. They did not address the issue of
imbalanced data and did not compare their models with other single
classifiers.

Seera et al. [27] used an actual credit card fraud dataset obtained
from a Australian bank to detect the payment card fraud. The dataset
is highly imbalanced with 16 features. The authors applied 13 statis-
tical machine-learning techniques to identify fraudulent transactions.
They conducted a statistical hypothesis test to determine if aggregated
features were distinguishable and if the genetic algorithm performed
better than the original features at detecting fraudulent transactions.

Itoo et al. [28] utilized a skewed dataset to compare and analyze
three ML algorithms: Naïve Bayes, KNN, and Logistic Regression (LR).
The authors found that the LR model had achieved better results.
However, the authors did not handle the imbalanced data. Olowookere
et al. [29] utilized the same dataset utilized as [18]. The authors com-
bined cost-sensitive meta-learning and ensemble learning paradigms to
increase the fraud detection rate from an imbalanced dataset in their
proposed framework. For the base classifiers, they used MLP, KNN, and
DT machine learning algorithms.

Khatri et al. [30] utilized the European credit card fraud dataset
(ECCFD) to compare some established supervised algorithms to dis-
tinguish among fraud and non-fraud. This dataset was made by ULB
(Université Libre de Bruxelles) machine learning group & Worldline and
contained 28 features. The authors found that the DT and KNN model
performed better than other established models.

Kalid et al. [31] used Multiple Classifier Systems (MCS) to clas-
sify the fraud and non-fraud transactions because data inconsistencies
reduced the fraud detection rate. The authors employed a sequential
decision technique with MCS to increase the delectation rate of fraud.
They used two datasets to justify their proposed model: Credit card
fraud (CCF) and Credit card default payment (CCDP).

Dornadula et al. [32] used various kinds of ML classifiers to detect
fraud and utilized the same dataset utilized as [18]. The authors
successfully presented that RF classifiers had gained better results than
other models.

Sohony et al. [33] utilized the AdaBoost classifier as a meta clas-
sifier and Na’́ıve Bayes as a base classifier on the highly imbalanced
credit card dataset with only 0.173% transactions of fraud to detect
the anomaly. Data imbalanced issue was not handled.

Randhawa et al. [34] proposed a hybrid model by combining ma-
jority voting and AdaBoost, and they utilized the same dataset utilized
as in [18]. The authors first utilized NB and ANN as the base classifier
for the AdaBoost and parallel used majority voting to obtain the exper-
iment’s final results. Although authors demonstrated higher accuracy,
recall and TN of their model, they did not show precision which might
be impacted by the data imbalanced issue.

Ram et al. [35] utilized a deep Convolutional Neural Network
(CNN) model to detect fraud.

Xenopoulos et al. [36] presented an ensemble learning model to
detect fraud and utilized the same dataset utilized as [18]. Firstly
authors used bootstrapped on the imbalance dataset such that every
3

generated dataset has a balanced class distribution. After that, the
authors applied a Deep Belief Network ensemble to each bootstrapped
data.

Tiwarekar et al. [37] presented a hybrid model that utilized the
Decision Tree (DT) model to aggregate Luhin’s and Hunt’s algorithms.
Luhn’s algorithm validates the credit card number, and address-matching
rules are used to check the correct billing and shipping address. If
billing and shipping addresses are matched, then its a high chance of
being non-fraud; otherwise, it will be a fraud. However, the authors
were not concerned about the performance evaluation of the model.

Xia et al. [38] utilized XGBoost, also known as fine-tuned boosting
ensemble method, to resolve the classification issues. In their experi-
ment, they used the Taiwan credit card default payment dataset and
gained an accuracy of 69.36% and an AUC of 87.90%. However, the
authors did not address the problem of oversampling class samples and
unbalanced data, but the authors recommend that MCS be integrated
with the XGBoost to improve the performance of the classification
problem.

Singh et al. [39] presented an ensemble learning model of classifi-
cation for credit scoring. In their work, they used the same dataset as
in [38]. For the base classifier, they utilized bagging with a random
forest classifier, and the dataset is imbalanced with 72% non-default
payment and 28% default payment.

Charleonnan et al. [40] also presented a hybrid model that merged
RUS and MRN algorithms to identify credit card fraud. In addition,
the authors used three ML classifiers as base classifiers of the proposed
model: Multilayer Perceptron (MLP), Radial Basis Function (RBF), and
Naïve Bayes (NB). The performance evaluation was done on the Taiwan
credit card default payment dataset and achieved an accuracy of 77.8%,
sensitivity of 53.36%, and specificity of 88.13%.

Venkatesh et al. [41] presented an ensemble learning approach to
predict the credit card defaulter. The authors used NB, RF, and bagging
techniques in their model and used the same dataset utilized as in [38]
for conducting the experiment. Moreover, they applied the CFS method
to minimize the dataset’s dimension to enhance classification accuracy.
However, the authors did not conduct robust performance analysis and
did not present the result of many important metrics except TPR or
recall.

Table 1 summarizes recent studies with limitations for credit card
anomaly detection. We provide the performance of the existing works
in Table 1.

By observing and analyzing all the recent works mentioned above,
we have found that most literature did not address the imbalanced issue
of credit card datasets used in their works. There needs to develop a
model which performance is not affected by the imbalanced issue of
the datasets. Collecting enough number of abnormal credit card trans-
actions is challenging. Using statistical methods like SMOTE, balancing
malicious credit card data is not practical solution and the model built
on such data balancing techniques fail to detect malicious credit card
transactions in real life. Further, most current works are complex and
are not enough time efficient in identifying anomalies. We require to
develop a model that might be both space and time efficient through
addressing class imbalanced issue. We also noticed that few researchers
attempted to build an ensemble learning model of one class classifiers
as base learner and supervised learning as meta learning for detecting
credit card anomaly. We aim to explore such hybrid model of one class
classifier and supervised classifier in detecting malicious credit card
transaction where OCC can handle the scarcity of malicious credit card
transactions.

3. Proposed architecture for credit card fraud identification

Anomaly identification in the context of credit card transactions
involves modeling past transactions and learning to identify anomalies.
The target of our work is to detect if a new credit card transaction might
be fraudulent. In this work, we develop a model that can accurately
detect fraudulent or anomalous transactions to prevent financial losses.
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Table 1
Related literature reviews on ensemble learning and anomaly detection.

Ref. Year Method Contribution Transaction data Evaluation metric Metric value Limitation

[18] 2022 K-Nearest
Neighbors (KNN),
KNN-CatBoost

Enhanced credit
card fraud
detection model

2013 European credit
card fraud data [42]

AUC, Recall,
F1-score

96.94%, 95.91%,
87.40%

Not enough validation
and performances
metrics.

[19] 2022 AdaBoost, Light
Gradient Boosting
Machine (LGBM)

Fraud detection in
credit card data

IEEE-CIS [20] Precision,
ROC, Recall,
F-Measure

97.00%, 82.00%,
64.00%, 77.00%

Did not handle the
imbalanced data and
did not focus on
cross-validation.

[21] 2022 AdaBoost,
One-class support
vector machine
(OCSVM)

Anomaly detection
in credit card data

Credit card fraud
dataset

Accuracy,
Precision,
Recall,
F1-score

96.00%, 97.00%,
96.00%, 98.00%

Cross validation metric
is not implemented
and performances are
not enough.

[22] 2021 Hybrid approach Credit card fraud
detection

Annotated and real
datasets

Accuracy,
Precision,
Recall

97.20%, 98.30%,
95.00%

Did not handle
imbalanced data and
Cross validation metric
is not implemented.

[23] 2021 Homogeneity-
oriented behavior
analysis (HOBA)

Credit card fraud
detection

Extensive dataset of a
bank in China

Precision,
Recall,
F1-score, AUC

96.00%, 94.50%,
96.02%, 97.10%

Performances are not
enough and cross
validation metric is not
implemented.

[24] 2021 Adaboost, Random
Forest, and Extra
Trees

Credit card fraud
detection

Brazilian bank data and
UCSD-FICO competition
credit card data

Accuracy,
Recall, AUC

99.18%, 99.50%,
97.08%

Did not concern about
precision metric and
cross validation metric
is not implemented.

[25] 2021 Sequential
modeling-based
ensemble model

Credit card fraud
detection

European cards and
Brazilian credit cards
dataset

Precision,
Recall,
F1-score,
AUC-ROC,
AUC-PR

95.69%, 66.74%,
78.13%, 83.37%,
63.53%

Not enough
performance and did
not focus to overcome
the imbalanced data.

[26] 2021 Artificial neural
network (ANN),
k-nearest neighbors
(KNN), and a
support vector
machine (SVM)

Fraud detection
from credit cards
data

Kaggle dataset Accuracy,
Precision,
Recall

93.49%, 97.43%,
89.76%

Did not focus to
overcome the
imbalanced data and
performances are not
enough.

[27] 2021 13 Statistical and
machine learning
models

Payment card
fraud detection

Australian dataset Accuracy,
AUC, MCC

96.49%, 93.70%,
96.40%

Did not tackle
imbalanced data and
performances are not
enough.

[28] 2021 K-nearest neighbor
(KNN), Naive
Bayes (NB),
Logistic regression
(LR)

Classify the fraud
and non-fraud
transactions of the
credit card dataset

Skewed dataset Accuracy,
Precision,
Sensitivity,
F1-score

95.00%, 97.00%,
89.00%, 91.00%

Did not focus to tackle
imbalanced data and
performance is not
enough.

[29] 2020 K-Nearest
Neighbors (KNN),
Decision Tree (DT)
and Multilayer
Perceptron (MLP)

Detection of credit
card fraud

2013 European bank
data [42]

ROC curve
(AUC)

97.40% Not enough validation
metrics.

[30] 2020 Decision Tree (DT),
K-Nearest
Neighbors (KNN)

Credit card fraud
detection

European credit card
fraud dataset (ECCFD)

Precision,
Recall

79.21%, 85.11%
and 81.19%,
91.11%

Cross-validation metric
is not implemented,
and did not consider
using any resampling
techniques to
overcome the
imbalanced issues

[31] 2020 Multiple Classifier Anomaly detection
in credit card data

Credit card fraud (CCF)
[42] and Credit card
default payment
(CCDP)[43]

Accuracy,
Precision,
Recall, AUC

99.90%, 83.45%,
87.20%, 87.90%
and 93.00%,
95.5%, 84.08%,
70.30%

Not enough
performance metrics
are measured and did
not implement
cross-validation
metrics.

[32] 2019 Multiple Classifier Fraud detection
from credit card
dataset

2013 European credit
card dataset [42]

Accuracy,
Precision,
MCC

97.08%, 98.14%,
94.20%

Not enough
performance metrics
are measured and did
not implement
validation metrics.

(continued on next page)
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Table 1 (continued).
Ref. Year Method Contribution Transaction data Evaluation metric Metric value Limitation

[33] 2018 Multiple Classifier Credit card fraud
detection

Credit card dataset Accuracy,
Precision,
Recall

99.90%, 85.85%,
86.70%

Not enough
performance metrics
are measured and did
not tackle the
imbalanced data.

[34] 2018 AdaBoost, and
Majority Voting

Credit card fraud
detection

2013 European bank
data [42]

Accuracy,
Recall, TNR

99.90%, 78.90%,
99.9%

Not enough
performance metrics
are measured.

[35] 2018 Conventional
Neural Network
(CNN)

Fraud detection in
credit card
transactions

Credit card fraud data
(Real-time)

Accuracy 96.5% Cross validation
metrics are not
enough.

[36] 2017 Ensemble Learning Imbalance class
address

2013 European bank
data [42]

Accuracy,
Recall, TNR,
AUC

90.60%, 81.80%,
99.5%, 97.76%

Not enough
performance metrics
are measured and did
not tackle the
imbalanced data.

[37] 2017 Decision tree (DT)
model

Fraud detection in
credit card
transactions

Single credit card data NA NA Did not focus on
performance
evaluation.

[38] 2017 Decision tree (DT)
model

Credit card default
payment detection

Taiwan credit card
default payment data

Accuracy,
AUC

69.36%, 87.90% Cross validation is not
implemented and did
not tackle the
imbalanced data.

[39] 2017 Random Forest
(RF)

Credit card default
payment detection

Taiwan credit card
default payment data

Accuracy,
AUC, TPR

81.60%, 76.40%,
37.10

Did not tackle the
imbalanced data.

[40] 2016 Multilayer
Perceptron (MLP),
Radial Basis
Function (RBF),
and Naïve Bayes
(NB)

Credit card default
payment detection

2005 Taiwan credit
card default payment
data

Accuracy,
Sensitivity,
Specificity

77.8%, 53.36%,
88.13%

Cross validation is not
implemented and did
not tackle the
imbalanced data.

[41] 2016 Naïve Bayes (NB)
and Random Forest
(RF)

Credit card default
payment detection

Taiwan credit card
default payment data

TPR 81.60% Not enough
performance metrics
are measured and did
not tackle the
imbalanced data.
Fig. 1. Block diagram of CCAD architecture.
In this model, we utilize an ensemble learning approach to classify
a credit card instance as non-fraud, fraud, non-default payment, or
default payment. The overall architecture of credit card transaction
anomaly identification is presented in Fig. 1. The proposed model
consists of the following steps: (1) Data pre-processing (2) Sampling
(3) Model development (apply stacking ensemble method) (4) Model
evaluation and anomaly detection.
5

In the following sections, we describe all steps of the proposed
model.

3.1. Data pre-processing and feature selection

Before feeding dataset to the model, we require to examine data
integrity and identify missing values. In this study, dataset used to
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train our model does not have any missing or null values. We used
two publicly available datasets, and a description of these two dataset
has been provided in Section 4.1. The number of target classes in both
datasets is two. In the CCF dataset: One is genuine or non-fraudulent
transactions, and the other is fraudulent transactions. In the CCDP
dataset: One is non-default payment transactions, and the other is
default transactions. Fraudulent transactions are 0.1727% on the CCF
dataset. In contrast, default payments account for 22.12% of the CCDP
dataset. Given the relatively small proportion of fraudulent transactions
in the dataset, to focus on fraud identification is more appropriate.

We require to remove repetitious or duplicate information from
the dataset to improve the machine learning model performances. In
this work, an XGBoost model is fitted to obtain the features’ impor-
tance [44]. Upon analyzing the feature importance for model estima-
tion, we observed that features with an importance level below 0.014
do not significantly contribute to the model estimation.

Therefore, in this research, we set the minimum importance level
to 0.014 in order to identify the features for further investigation. This
resulted in a reduction of the number of features from 29 to 22 in the
CCF dataset and from 25 to 22 in the CCDP dataset.

The feature selection algorithm, shown in Algorithm 1, involves stor-
ng the importance levels of all features in an array called 𝑓𝑒𝑎𝑡𝑖, which
re generated using XGBoost. The column numbers and importance
alues are denoted by 𝑘𝑒𝑦 and 𝐹𝑙, respectively. Then, we iterate through
ach number in 𝑓𝑒𝑎𝑡𝑖 and check if the importance level 𝐹𝑙 is greater
han 0.014. If the condition is met, we select these features for further
nalysis and store them in 𝑖𝑐𝑜𝑙𝑠.
Algorithm 1: Features Selection.

Input : Feature importance (𝑓𝑒𝑎𝑡𝑖) learned by XGBoost [44]
Output: Selected features

1 𝑖𝑐𝑜𝑙𝑠[∅], 𝑘 = 0
2 foreach 𝐹𝑙 ∈ 𝑓𝑒𝑎𝑡𝑖: do
3 if 𝐹𝑙 > 0.014 then
4 𝑖𝑐𝑜𝑙𝑠.𝑎𝑝𝑝𝑒𝑛𝑑(𝑘𝑒𝑦)
5 𝑘 = 𝑘 + 𝐹𝑙
6 end
7 end

In this step, we have plotted a histogram for all features to inspect
heir behavior, as illustrated in Figs. 2 and 3 for the CCF dataset

and CCDP dataset. The Fig. 2 shows that almost all features follow a
Gaussian distribution, except V5, V6, V7. Despite the abnormal behavior
observed in features V2 and V3, the remaining features exhibit a bell-
shaped curve, indicating that this dataset is suitable for training and
testing machine learning algorithms. As shown in Fig. 3, features X1
and X12 to X17 display abnormal behavior, highlighting the need to
apply machine learning algorithms to address the issue of anomalies.

After picking the important features, we need to inspect whether
he data has duplicate information. Therefore, we plotted a correlation
atrix of important features to detect and get off inputting repetitive
ata on the proposed models, as illustrated in Figs. 4 and 5. This two
igures indicates that almost all features are not correlated, and the data
s currently prepared to train a learning model.

Following data pre-processing and feature selection tasks, the dataset
as been split into the training set and testing set in the 70:30 ratio.
he training data has been further split by utilizing stratified k-fold
ross-validation to train the proposed model, which is discussed in
ection 4.2. This research includes four semi supervised learning algo-
ithms in the base learner of the model. The following section describes
ll the algorithms.

.2. Semi supervised learning algorithms

In this article, a two-level stacked ensemble learning technique
as been assessed and implemented for the CCF and CCDP dataset.
6

he proposed model has two layers, the first layer is called a base d
learner, and the second layer is called a meta learner. Four semi
supervised learner models comprise the base learner: (i) Elliptic Envelope
(eEnvelope), (ii) Isolation Forest (iForest), (iii) Local Outlier Factor (LOF),
and (iv) One-Class SVM (OCSVM). These learning models are mostly
used for fraud or anomaly detection.

We have picked these four models for the first-level learner to detect
fraud or anomaly detection from credit card transactions. The XGBoost
classifier is selected as the second level model also called meta learner.
The python programming language utilizes the scikit-learn machine-
learning package [45] to analyze data for this study. We describe these
models in the following section briefly.

3.2.1. Elliptical envelope (eEnvelope)
The Elliptical Envelope model also known as eEnvelope model is used

for outlier or anomaly detection. This model works better if the data has
a Gaussian distribution, and this research data also shows a Gaussian
distribution. The algorithm-Elliptical Envelope-produces an imaginary
elliptic region around a provided CCF dataset and CCDP dataset. The
llipse’s shape and size are determined using the fast-minimum covari-
ance determinant (FastMCD) algorithm and repeatedly measuring the
Mahalanobis distance before deciding the data covariance matrix [46].
This Mahalanobis distance is actually calculated as the number of
tandard deviations of a data point from the mean. In our research
ork, two important parameters are used: one is 𝑠𝑢𝑝𝑝𝑜𝑟𝑡_𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 and

another one is contamination. We set the 𝑠𝑢𝑝𝑝𝑜𝑟𝑡_𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 value as 0.7
in the algorithm by following this: [𝑛_𝑠𝑎𝑚𝑝𝑙𝑒+ 𝑛_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠+1]∕2 and its
range is (0, 1). On the other hand, the contamination rate defines the
ratio of values that are recognized as outliers. Its rage is (0, 0.5). In
our research, we set the contamination value as 0.1 in the algorithm. If
data falls inside the envelope, then it is called genuine data; otherwise,
it is considered an anomaly or fraud by the algorithm.

3.2.2. Isolation forest (iForest)
The iForest is another popular and well-known algorithm used to

identify ensemble-based unsupervised outliers from the dataset with
high precision and linear time complexity, proposed in [47]. This
algorithm uses a random forest algorithm (ensemble decision trees)
under the hood to identify the outliers in the CCF dataset and CCDP
dataset. The iForest algorithm splits the anomalies rather than con-
structing or profiling regular regions and points by allocating a score
to each data point. This performs by adopting the benefit of the fact
that anomalies or fraud transactions are the minority data points and
values of attributes that are quite distinct from the regular instance.
The statistics show that the algorithm works better and can identify
inconsistencies effectively when the dataset is a high-level dataset. The
dataset CCF and CCDP are high level data. The method has only two
variables, the first is the number of binary trees to create, and the
second is the sub-sample size. The binary trees are created from the
random property of the dataset. Then, travel to every tree in the forest
and generate anomaly or inconsistency scores for every data point in
every tree [48]. In our research study, the iForest algorithm computes
an inconsistency score based on the path length needed to isolate a
data point in binary trees consisting of all data points. This path length
averaged over a forest of random trees measures our decision function
and normality. Random partitioning generated noticeably shorter or
smaller paths for fraud or anomalies. This forest of random trees
collectively produces smaller path lengths for particular samples, which
are marked as anomalies or inconsistencies.

3.2.3. Local outlier factor (LOF)
This is a semi-supervised and unsupervised machine learning algo-

ithm. In 2000, Breunig et al. first introduced the LOF algorithm
o identify abnormal data points by calculating the local deviation
f shared data points concerning its neighbors [49]. This LOF is a

ensity-based outlier identification method that discovers outliers by
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Fig. 2. Distributions of features on CCF dataset.
computing the local deviation of a given data point, which is appropri-
ate for the outlier identification of an inconsistent distribution dataset.
The outlier’s appraisal is evaluated based on the density among its
neighbor points and every data point. The better possibility it is to be
recognized as the outlier when the lower the point’s density [48]. For
the abnormal data points, the ratio of the LOF will be higher because
outliers come from low-density regions. For example, if the local outlier
factor of the p point is three, it means that the joint density of p’s
neighbors is three times bigger than its neighbor density. This research
observed that the normal data point has a LOF value of 1 to 1.5, the
abnormal data point’s LOF value is much higher than the normal data
point’s LOF value, and the LOF rating denotes a point-wide degree.
Therefore, we initially calculated the threshold value based on the user-
defined contamination rate. A point is represented as an outlier if its
local outlier (LOF ) rating overcomes the threshold value.

3.2.4. One-class svm (OCSVM)
The most popular SVM [50,51] algorithm is used to discover a

hyperplane that isolates the two classes of data points. Another semi-
supervised variant is the One-ClassSVM [52], which attempts to learn
a decision boundary that acquires the highest split among the origin
and the points [53]. For training, only normal data is required to
detect the anomalies from the dataset. This algorithm has only one class
of data points, and the job is to estimate a hyperplane that isolates
the cluster of data points from the anomalies. It uses the kernel’s
7

implicit transformation function 𝜎(⋅) to project the data into a higher
dimensional space, then learns a hyperplane or decision boundary that
isolates most of the data from the origin. Only a tiny portion of data
points are got permits to lie on the other side of the hyperplane or
decision boundary, and those data points are recognized as outliers. The
Gaussian kernel guarantees the presence of a hyperplane or decision
boundary [53]. However, we observed that all kernel entrances are
positive or zero means all data in the kernel space lies in the same
quadrant. As a result, the Gaussian kernel nicely fits to negotiate with
any arbitrary or random dataset. The function 𝑘(⋅) be defined in Eq. (1).
Here, 𝑣 is the perpendicular vector of the hyperplane and 𝛾 is the bias
term.

𝑘(𝑦) = 𝑣𝑇 𝜎(𝑦) − 𝛾 (1)

To detect the normal points, the One-ClassSVM is use the decision
function shown in Eq. (2). This 𝑔(𝑦) function always returns a positive
value for the normal points and generates a negative value for the other
case. The algorithm’s output is a binary level determining whether the
data point is abnormal or normal.

𝑔(𝑦) = 𝑠𝑔𝑛(𝑘(𝑦)) (2)

3.2.5. XGBoost
In 2016, Chen et al. [54] first proposed the scalable end-to-end tree

boosting-based ensemble machine learning algorithm called XGBoost.
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Fig. 3. Distributions of features on CCDP dataset.
Fig. 4. Correlation Matrix of important features on CCF dataset.
This XGBoost algorithm is also known as eXtreme Gradient Boosting.
According to [54], it optimizes the loss function by assembling regular-
ization to address the weighted quantile sketch and sparse data for tree
learning. Furthermore, they supply some insights that help to construct
a fast and tree-boosting method. These insights hold data sharding,
8

compression, and cache access patterns. This XGBoost algorithm beats
the other machine-learning algorithms for these tactics and insights
in both accuracy and speed. It is also suitable for data engineers
or scientists to use the XGBoost algorithm in the GPU machine or
distributed system. Regarding the benefits of this algorithm, we utilized
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Fig. 5. Correlation Matrix of important features on CCDP dataset.
-

this model as a meta learner in our research work. It adopts an add-
on learning scheme with 2𝑛𝑑-order estimation, 1𝑠𝑡-order derivative
anointed gradient, and 2𝑛𝑑-order derivative anointed hessian of loss
function. The gradient and hessian of loss function are shown in Eqs. (3),
(4) and described in the [55].

𝐺(𝑝) =
𝑛
∑

𝑗=1
𝑙(𝑦𝑗 , 𝑞

(𝑝−1)
𝑗 + 𝑓𝑝(𝑥𝑗 )) + 𝜇(𝑓𝑝) (3)

𝐺(𝑝) =
𝑛
∑

𝑗=1

[

𝑔𝑗𝑓𝑝(𝑥𝑗 ) +
1
2
ℎ𝑗 (𝑓𝑝(𝑥𝑗 ))2

]

+ 𝜇(𝑓𝑝) (4)

Meanwhile, Wang et al. proposed imbalanced XGBoost where binary
cross entropy is replaced by the focal loss and weighted binary cross
entropy to solve the imbalance problem [56], shown in Eqs. (5), (6).

𝐿𝑓 = −
𝑚
∑

𝑗=1
𝑦𝑗 (1 − �̂�𝑙)𝛽 𝑙𝑜𝑔(�̂�) + (1 − 𝑦𝑗 )(�̂�𝑙)𝛽 𝑙𝑜𝑔(1 − �̂�) (5)

𝐿𝑤𝑐 = −
𝑚
∑

𝑗=1
𝛾𝑦𝑗 𝑙𝑜𝑔(�̂�𝑙) + (1 − 𝑦𝑗 )𝑙𝑜𝑔(1 − �̂�𝑙) (6)

For tuning the class weight, the 𝛾 imbalanced parameter is used, while
the 𝛽 parameter manages the shape of the curve. The higher the value
of 𝛽, the lower the loss and vice-versa.

3.3. Ensemble learning

In the research paper [57], the authors’ defined ensemble learning
as the mixture of various learning algorithms. It integrates multiple sets
of supervised learners to obtain an improved powerful model [33]. For
example, two machine learning algorithms will be the same if their
contribution or output is averaged out of all possible problems. No
single machine learning algorithm can perform other strategies well for
all possible data types. For these reasons, it is necessary to combine
multiple algorithms. Different kinds of ensemble techniques are avail-
able such as bagging, boosting, and stacking. In this research work, we
used the stacking technique to improve the estimation of our proposal
to detect the anomaly or frauds from credit card transactions. The
simultaneously used bagging, boosting, and stacking ensemble learning
techniques are briefly described below.

Bagging is a parallel ensemble learning method appropriate for
complex systems, especially high-variance and low-bias systems. This
can reduce the variance but not minimize bias by combining the weak
learners. The ensemble technique refers to adding various base estima-
tors to improve one single estimator [58]. Usually, a bagging classifier
has been utilized to fit the base classifiers on every randomized subset
of the dataset, then aggregate each of the particular estimations. A
bagging classifier can be utilized to reduce the variance of the BlackBox
classifier, like a decision tree. Reason for introducing randomization in
the expansion procedure and expanding the ensemble out of it.
9

Boosting is a sequential ensemble learning approach based on the
frame of PAC and applies to reduce variance, not bias [59]. Our
primary research goal is to identify anomaly in credit card transactions
and minimize the classification error rate. Boosting technique performs
relatively better than the other methods. But there are various basic
classifiers and algorithms in the boosting methods, such as AdaBoost,
Gradient Boosting Decision Tree, XGBoost, etc. In this research, we used
XGBoost as a meta-classifier to detect anomaly. The training dataset of
this work mainly focuses on the anomaly or fraud identification issue
and has the label to identify whether the data is an anomaly or not.
Initially, we assigned the weight for each sample in the dataset and
basic classifiers to get the probability distribution and then combined
them to get a robust classifier.

Stacking is comparable to boosting method and is called a meta-
learning method which produces a symmetric solution to a prob-
lem [60]. More formally, stacking is an ensemble learning strategy
that integrates numerous regression or classification models through
metaregression or meta-classifier. In this method, the properties are
reformed operating ensemble, and other layers have used these prop-
erties. Stacking is generally utilized in competitions where various
algorithms are hired for data training, and results are averaged. Over-
fitting is a widespread and continually created problem in a model and
reduces the functionality of an estimating model in the test set. Stacking
used the cross-validation technique rather than splitting the data into
two groups, where datasets are divided into k-fold [61] to conquer this
problem. In this work, we applied a stacking ensemble to develop our
proposed model. During the base learner training, the k-1 fold is used
for training every base learner, and the isolated fold is employed for
forecasting. The outputs are eventually the average for all folds. The
entire model is made out by stacking ensembles which is called super
learner.

3.4. Proposed credit card anomaly detection model

The ensemble learning technique is one of the most effective machine
learning methods, which is formed by combining a super learner
and some base learners. We might achieve better accuracy from this
ensemble learner. In our proposed approach, we have used four outlier
learners as a base learner. We come up with a better precision and
accuracy value by combining several learners. Since fraudulent or
default payment transactions are less representative in the dataset,
selecting the correct base learner is crucial to identify anomaly trans-
actions. In this article, we have developed a two-layer stacking method
for this dataset. The first layer has used four unsupervised learning
models: eEnvelope, iForest, LOF, and OneClassSVM. The XGBoost as a
meta classifier is utilized in the second layer. All learning algorithms are
briefly described in Section 3.2. The proposed architecture is shown in
Fig. 6.
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Fig. 6. Proposed stacked ensemble model.
We have also developed a stacked ensemble learning model, as
demonstrated in Algorithm 2. After completing the pre-processing step
on the datasets: CCF and CCDP, as described in Section 3.1, we used
these two datasets 𝐷𝑡 as input on the proposed algorithm, and the
expected final prediction is 𝑠𝑐𝑜𝑟𝑒𝑓 . Dataset 𝐷𝑡 is divided into five folds,
trained with four folds, and the rest of one fold is used to testify the
model. The test set is verified for every data, and 𝑁𝑑 is created for every
model, denoting the base layers models outputs as 𝑠𝑐𝑜𝑟𝑒𝑒𝐸 , 𝑠𝑐𝑜𝑟𝑒𝑖𝐹 ,
𝑠𝑐𝑜𝑟𝑒𝐿𝑂𝐹 , and 𝑠𝑐𝑜𝑟𝑒𝑂𝐶𝑆𝑉𝑀 . Then, we calculated the discordance rate
to construct the meta-feature 𝐹𝑁𝑑 to fed at the second learning level,
as described in Section 4.3.

If 𝐷𝑣 > 𝑦, we keep this estimation value in the final dataset
𝐹𝑁𝑑 . Otherwise, go back to step 7 and continue the other transactions
procedure. The 0.4 value is set for the 𝑦 because this value is suitable
for this proposed model. 𝐹𝑁𝑑 data are fed into the meta-learner or
second-level learner, and 𝑀𝑙 is input, a stacked ensemble learner. This
level generates the final prediction 𝑠𝑐𝑜𝑟𝑒𝑓 of the credit card anomaly
detection.

Algorithm 4 described the overall process of our proposed CCAD
model. There are three steps: step 1 is Preparation of Data, step 2 is
Process of Model Training, and step 3 is Model Testing.

4. Experimental settings and CCAD framework

This section explains the precision, accuracy, and robustness of our
suggested CCAD framework and comparison it with the state-of-the-
art strategies in this research area. In this study, our prime aim is to
10
Algorithm 2: Stacked Ensemble Learning.
Input : Dataset 𝐷𝑡 after pre-process
Output: Final prediction 𝑠𝑐𝑜𝑟𝑒𝐹

1 𝑆𝑡𝑒𝑝 1 ∶ 𝑙𝑒𝑎𝑟𝑛 𝑏𝑎𝑠𝑒 − 𝑙𝑒𝑣𝑒𝑙 𝑐𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑒𝑟𝑠
2 for 𝑖 = 1 to 𝐼 do
3 Learn 𝐵𝐿𝑖 based on 𝐷𝑡 //here, 𝐵𝐿𝑖 is Base-label

classifier
4 𝑁𝑑 ← 𝑂𝑢𝑡𝑝𝑢𝑡 𝑜𝑓 𝐵𝐿𝑖
5 end
6 𝑆𝑡𝑒𝑝 2 ∶ 𝑝𝑟𝑜𝑑𝑢𝑐𝑒 𝑛𝑒𝑤 𝑑𝑎𝑡𝑎 𝑓𝑜𝑟 𝑚𝑒𝑡𝑎𝑙𝑒𝑎𝑟𝑛𝑒𝑟
7 for 𝑁𝑑 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 do
8 if 𝐷𝑣 > 𝑦 //𝑦 ← 0.40 (Calculated 𝐷𝑣 using 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 4)
9 then
10 𝐹𝑁𝑑 ← 𝑁𝑑 //𝐹𝑁𝑑 𝑖𝑠 𝑓 𝑖𝑛𝑎𝑙 𝑑𝑎𝑡𝑎 𝑓𝑜𝑟 𝑚𝑒𝑡𝑎𝑙𝑒𝑎𝑟𝑛𝑒𝑟
11 else
12 Go to step 7
13 end
14 end
15 𝑆𝑡𝑒𝑝 3 ∶ 𝑙𝑒𝑎𝑟𝑛 𝑎 𝑚𝑒𝑡𝑎 𝑐𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑒𝑟
16 Learn 𝑀𝑙 using 𝐹𝑁𝑑 data
17 return 𝑠𝑐𝑜𝑟𝑒𝑓

enhance the fraud identification effectiveness of the architecture. To

acquire our aim, more in-depth acuteness into the data is needed.



Journal of Information Security and Applications 78 (2023) 103618M.A. Islam et al.
Fig. 7. Tackle imbalanced data on CCF dataset.
Algorithm 3: Proposed CCAD Algorithm.
Input : Datasets CCF [62] and CCDP [40].
Output: Prediction of Anomaly Transactions.
Step 1. Preparation of Data: Dataset is split into the following parts

• Take 70% for training data;
• Keep 30% data for test case;
• Perform Stratified K-Fold Cross Validation on training data;

Step 2. Process of Model Training: Model training is described into
following parts

• Tackle imbalanced and over-fitting issues using stratified K-Fold Cross
Validation during training model; // Using Algorithm 4

• Trains and validated eEnvelope, iForest, LOF, and OCSVM on the entire
training data;

• Train a XGBoost classifier on the entire training data;
• Calculate discordance rate before ensemble the models; // Using
Algorithm 2

• Train the meta classifier using the base learners predictions;

Step 3. Model Testing:

• Apply test data on the proposed model to evaluate the model
performances;

4.1. Description of dataset

In this research, we have utilized two imbalanced datasets to solve
the problem of imbalanced class distribution and oversampling or over-
fitting class samples; and enhanced the detection rate of the fraudulent
transaction. To the best of our knowledge, general learning algorithms
have faced difficulties in tackling those problems and pushed lower
identification rates for minority classes.

Dataset one is Credit Card Fraud (CCF) dataset is collected from this
research works [42,62]. Credit card fraud is a criminal act of unfair
profit by making different unauthorized trades using a sufferer’s credit
card account [42]. As shown in Table 2, the dataset contains 2,84,807
transactions that occurred in two days, and European credit cardholders
made these transactions. But it has only 492 fraudulent transactions,
which means 0.173% fraud of all transactions and 99.827% non-fraud.
The collected dataset was highly unbalanced because the positive class
(frauds) accounts for 0.172% of all transactions. It has only numerical
input variables, which are the output of the principal components
analysis (PCA). The dataset has 31 features (V1 to V28, Time, Amount,
Class), but the Time and Amount features are not transformed with
PCA, as depicted in Table 3. Due to loyalty matters, the dataset lacks
original features and more background information about the data.
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Dataset two is Credit card default payment (CCDP) is collected from
the research works [40,41,43]. Within the agreed period, if any card-
holder fails to repay the minimum amount, it is a default payment [63].
As shown in Table 4, the dataset contains 30,000 payment transactions
that occurred from April 2005 to September 2005, and Taiwan bank
credit cardholders made these transactions. But it has only 6,636
default payment transactions, which means 22.12% default payment
of all transactions and 77.88% non-default payment. The collected
dataset was also highly unbalanced because the positive class (default
payments) accounts for 22.12% of all transactions. The ratio is al-
most 1:3 (default payment: non-default payment). The dataset has 25
features (ID, LIMIT_BAL, SEX, EDUCATION, MARRIAGE, AGE, PAY0,
PAY2...PAY6, BILL_AMT1, . . . .BILL_AMT6, PAY_AMT1, . . . .PAY_AMT6,
and default.payment.next.month), as depicted in Table 5.

Table 6 delivers a quick summary of the formal notation utilized for
this research article and described by the authors of [64,65] .

4.2. Data imbalance and overfitting

In the case of binary classification, most of the real-life datasets
are highly imbalanced. However, the researchers have recently pro-
posed different approaches, such as [66,67], to handle the imbalanced
problem in the dataset. We observe that datasets CCF and CCDP are
imbalanced, and most of the transactions are non-fraud and non-default
payments as shown in Figs. 7(a), and 8(a). If we utilize this dataset
as a base of our proposed model, this reduces recall and precision.
Further, the proposed algorithms suffer from overfitting problem because
most transactions are non-fraudulent or non-default transactions regard-
ing two datasets. For this reason, we implement a stratified sampling
technique to handle an imbalanced dataset, as shown in Fig. 7(b),
and apply the k-fold cross-validation to address the overfitting problem.
As we work with a very narrow or biased class, guaranteeing that
the number of anomalies is almost the same for all divisions is good.
To accomplish this, we apply a stratified k-fold cross-validation [61]
process that resembles not only k-fold cross-validation but also makes
a stratified sample instead of a random sample. In stratified k-fold cross-
validation, the dataset is split so that the data of all classes are allocated
evenly in the training set and the test set, depicting the whole dataset
in equivalent proportions.

However, after utilizing this technique, the entire dataset is divided
into 𝑘 folds, trained with 𝑘 − 1 folds, and then the model is testified
by the rest of 1 fold. So, 𝑘 = 5 is the determined value for this
research work and goes through 5 left-out folds. Finally, a testset is
used to verify all data, and a renewed 𝑁𝑑 is created for every model,
denoting the base layers models outputs as 𝑠𝑐𝑜𝑟𝑒𝑒𝐸 , 𝑠𝑐𝑜𝑟𝑒𝑖𝐹 , 𝑠𝑐𝑜𝑟𝑒𝐿𝑂𝐹
and 𝑠𝑐𝑜𝑟𝑒𝑂𝐶𝑆𝑉𝑀 shown in Fig. 6. Then, we calculate the discordance
rate to construct the meta-feature 𝐹𝑁𝑑 , which is fed at the second
learning level.
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Fig. 8. Tackle imbalanced data on CCDP dataset.
Table 2
Details of CCF dataset.

Total transaction |𝐿| Legitimate |𝐿+| Fraudulent transactions |𝐿−| Classes Features

2,84,807 2,84,315 492 2 31
-

Table 3
CCF dataset attributes.

Attributes Statement

V1, V2, . . . ,V28 Principal components obtained with PCA

Time The seconds elapsed between the first transaction
and each transaction in the dataset

Amount Total amount of transaction and can be utilized for
dependent cost-sensitive learning

Class The response variable;
Value 1 is for fraud and 0 otherwise

4.3. Discordance value calculation

If the outputs of the respective classifiers are very dissimilar from
the data, then the stacking technique is particularly relevant. For exam-
ple, discordance value can quickly identify whether all the base-level
classifiers have similar estimation outputs or not. If the discordance
value is high, this means the base classifier estimations are highly
dissimilar from each other. For this reason, it is required to know
the base-level classifier’s outputs and inspect their outcome is almost
distinct. Therefore, we have computed the discordance rate between the
base levels models. This discordance value ensures that the ensemble is
trained on a distinct meta feature instead of being fed with different
base-level model predictions, thus guaranteeing not to make a biased
model.

The 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 4 displays the procedure of discordance value compu-
tation. Firstly, we check the four base layer model estimations depicted
as 𝑠𝑐𝑜𝑟𝑒𝑒𝐸 , 𝑠𝑐𝑜𝑟𝑒𝑖𝐹 , 𝑠𝑐𝑜𝑟𝑒𝐿𝑂𝐹 , and 𝑠𝑐𝑜𝑟𝑒𝑂𝐶𝑆𝑉𝑀 . If the model estimates
the fraudulent transaction, the set −1 and otherwise set 1 for the actual
transaction. Secondly, sum up four predictions in 𝑆𝑜𝑃 and check 𝑆𝑜𝑃
is equal to 4 or −4. If the 𝑆𝑜𝑃 = 4, then all base layers models indicate
transactions were genuine, and in the same way, if 𝑆𝑜𝑃 = −4, models
agree that transactions are fraudulent. Thirdly, assign value 𝑆𝑆𝑜𝑃 =
0, when the 𝑆𝑜𝑃 value is 4 or −4; otherwise, set 𝑆𝑆𝑜𝑃 = 1. Finally,
we sum up all 𝑆𝑆𝑜𝑃 values for all the estimation fold transaction
data, divide it with the total 𝑆𝑜𝑃 for that fold, and calculate the
discordance value, 𝐷𝑣. This study found that the discordance value
is 0.8430232558139535 and 1 for CCF, CCDP, respectively, which
means the first-level model’s outputs are almost different. So, stacking
approach is suitable and applicable to this dataset for the algorithms.
12
Algorithm 4: Discordance Value (𝐷𝑣) Computation.
Input : 𝑠𝑐𝑜𝑟𝑒𝑠 = {𝑠𝑐𝑜𝑟𝑒𝑒𝐸 , 𝑠𝑐𝑜𝑟𝑒𝑖𝐹 , 𝑠𝑐𝑜𝑟𝑒𝐿𝑂𝐹 , 𝑠𝑐𝑜𝑟𝑒𝑂𝐶𝑆𝑉𝑀}

//Set of base layers
Output: 𝐷𝑣 //Discordance

1 𝑆𝑆𝑜𝑃 = 0, 𝑆𝑜𝑃 = 0
2 foreach 𝑆 in 𝑠𝑐𝑜𝑟𝑒𝑠 do
3 if 𝑆 == 𝐴𝑛𝑜𝑚𝑎𝑙𝑦 then
4 𝑆𝑒𝑡 𝑆 = −1
5 else
6 𝑆𝑒𝑡 𝑆 = 1
7 end
8 𝑆𝑜𝑃 + = 𝑆
9 𝑆𝑆𝑜𝑃 + = (𝑆𝑜𝑃 == 4 || 𝑆𝑜𝑃 == −4) ? 0 ∶ 1
10 end
11 𝐷𝑣 = 𝑆𝑆𝑜𝑃∕𝑆𝑜𝑃
12 return 𝐷𝑣

4.4. Performance evaluation metrics

The learning algorithm performance measurement showed a transver
sal behavior in the imbalanced allocation of the classes. So, it is
necessary to determine the perfect metrics to evaluate the performance
of the classification algorithms and also needs to handle imbalanced
datasets. The learning algorithm shows an accuracy paradox for the
imbalanced scenario. Moreover, in this study of intrusion detection,
accuracy is not the best performance metric; even a model with ex-
treme accuracy might miss-classify the majority of illegal transactions.
Therefore, assessing such algorithms for 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 and 𝑟𝑒𝑐𝑎𝑙𝑙 is critical:
correctly classifying fraudulent transactions as fraud. In our research,
some performance evaluation metrics have been selected: precision,
recall, F1-score, accuracy, true positive rate, false positive rate, mathews
correlation coefficients (MCC), and area under the receiver operating
characteristic curve (AUC) [18,19,64,65,68]. Those performance metrics
can be measured in the following ways:

Precision is defined as, ‘‘From all the fraudulent transactions which
model estimated as fraud, number of the fraudulent transaction actually
are fraud divided by the total number of frauds estimated by the model
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Table 4
Details of CCDP dataset.

Total transaction |𝐿| Legitimate |𝐿+| Default-Payment transactions |𝐿−| Classes Features

30,000 23,364 6,636 2 25
Table 5
CCDP dataset attributes.

Attributes Statement

ID Every client id

LIMIT_BAL Amount of given credit in NT dollars

SEX Gender (male = 1, female = 2)

EDUCATION Status of education (graduate school = 1, university = 2,
high school = 3, others = 4, unknown = 5, unknown = 6)

MARRIAGE Status of marital (married = 1, single = 2, others = 3)

AGE Age in years

PAY0, PAY2, . . . .PAY6 Status of repayment in September, August, July, June, May, April,
2005, respectively
(pay duly = −1, one month delay = 1, . . . .nine months and above delay = 9)

BILL_AMT1, . . . .BILL_AMT6 Amount of bill statement in September, August, July, June, May, April,
2005, respectively (NT dollar)

PAY_AMT1, . . . .PAY_AMT6 Amount of previous payment in September, August, July, June, May, April,
2005, respectively (NT dollar)

default.payment.next.month Default payment variables (yes = 1, no = 0)
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Table 6
Notation utilized for metrics definitions.

Metrics Symbols

True Positive 𝑇11
False Positive 𝑇01
True Negative 𝑇00
False Negative 𝑇10

as frauds’’. This metric is employed to identify actual frauds from the
fraudulent transactions and calculated by Eq. (7) [19,69].

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇11

(𝑇11 + 𝑇01)
(7)

Recall is defined as, ‘‘From all the fraudulent transactions which
model estimated as fraud, number of the fraudulent transaction actually
are fraud divided by the total number of transactions labeled as fraudu-
lent’’. This metric helps to answer the question about what proportion
of the fraud transaction is detected from fraudulent transactions and
measured by Eq. (8) [18,19].

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇11

(𝑇11 + 𝑇10)
(8)

F1-score is defined as, ‘‘harmonic average of the recall and precision
from the fraudulent transactions dataset, where an F1-score reaches its
worst value at 0 and best at 1 (perfect recall and precision) and worst
at 0’’. This metric is used to measure the overall performance of the
model and calculated by Eq. (9) [18,19,23].

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

(9)

Accuracy is defined as, ‘‘the ratio of number of fraudulent transac-
ions accurately identified to total number of fraudulent transactions in
est dataset’’. This metric is calculated by using Eq. (10) [18,70].

𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇11 + 𝑇00)

(𝑇00 + 𝑇01 + 𝑇11 + 𝑇10)
(10)

True positive rate (TPR) is defined as, ‘‘From all the fraudulent
transactions which model estimated as fraud, number of the fraudulent
transaction actually are fraud divided by total number of transactions
labeled as fraudulent’’. TPR, also known as Recall and Sensitivity. TRP
metric helps to answer the question about what proportion of the fraud
13
transaction was detected from fraudulent transactions and measured by
Eq. (11) [18,19,64].

𝑇𝑃𝑅 =
𝑇11

(𝑇11 + 𝑇10)
(11)

False positive rate (FPR) is defined as, ‘‘From all the fraudulent
transactions, counts the number of transactions is wrongly identified’’.
FRP metric is also known as Type-I error and measured by Eq. (12) [18,
19,23].

𝐹𝑃𝑅 =
𝑇01

(𝑇01 + 𝑇00)
(12)

Area under the ROC curve (AUC) is defined as, ‘‘From subsets
of the fraudulent and non-fraud or legitimate transactions, Where 𝛼
exhibit the possibility of all comparisons among these two subsets
(i.e., |𝐿+|&|𝐿−|). It lies within the interval [0;1], and outputs will
e provided by averaging all comparisons, where 1 indicates the best
erformance’’ [71,72]. This metric is calculated by Eq. (13). In another
ay, we can say that the TPR and FPR are plotted on the 𝑦-axis and
-axis in the ROC space, respectively. The entire two-dimensional area
nderneath the ROC curve is calculated by AUC and can be gained by
easuring the collaborative performance of all possible classification

hresholds [18,25].

𝑈𝐶 = 1
|𝑙+| ∗ |𝑙−|

|𝑙+|
∑

1

|𝑙−|
∑

1
𝛼(𝑙+, 𝑙−); 𝑊 ℎ𝑒𝑟𝑒, 𝛼(𝑙+, 𝑙−) =

⎧

⎪

⎨

⎪

⎩

1, for 𝑙+ > 𝑙−
0.5, for 𝑙+ = 𝑙−
0, for 𝑙+ < 𝑙−

(13)

Matthews correlation coefficient (MCC) MCC calculates the degree
f association between the estimation and genuine class labels. It
akes 1 if and only if the estimated and genuine class labels are the
ame. Otherwise, it takes −1 when the estimated class label and the
enuine class complement entirely to each other. Its calculated by using
q. (14) [68].

𝐶𝐶 =
(𝑇11 ∗ 𝑇00) − (𝑇01 ∗ 𝑇10)

√

(𝑇11 + 𝑇01)(𝑇11 + 𝑇00)(𝑇00 + 𝑇01)(𝑇00 + 𝑇10)
(14)

Detection rate is defined as, ‘‘how correctly the model is estimating
the true positive cases or how precisely the model is tackling the
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Table 7
Performance metrics of various individual classifiers on CCF dataset.

Classifiers Accuracy Precision Recall F1 score AUC

Fraud Non-fraud Overall Fraud Non-fraud Overall Fraud Non-fraud Overall Fraud Non-fraud Overall Fraud Non-fraud Overall

LR 73.13% 96.06% 95.11% 73.21% 96.88% 95.16% 71.07% 93.75% 95.06% 70.30% 92.08% 95.11% 73.30% 96.08% 95.11%
RF 63.23% 96.57% 93.60% 61.35% 97.55% 96.47% 57.70% 99.13% 98.52% 62.30% 96.35% 93.60% 70.30% 96.80% 93.60%
DT 84.25% 95.80% 92.59% 83.25% 97.17% 95.64% 82.51% 98.17% 89.24% 83.21% 97.31% 92.33% 85.20% 95.05% 92.59%
KNN 67.23% 96.31% 94.17% 51.37% 89.23% 92.32% 61.23% 96.25% 96.17% 61.47% 95.47% 94.17% 68.50% 95.08% 95.16%
SVM 80.21% 95.36% 94.59% 81.17% 97.35% 98.43% 77.31% 94.47% 86.11% 81.45% 97.68% 93.31% 80.30% 95.45% 97.64%
OneClassSVM 84.45% 97.31% 98.47% 85.51% 99.09% 99.16% 75.54% 93.60% 94.21% 82.11% 98.24% 97.59% 84.50% 97.61% 98.47%
eEnvelope 93.14% 96.17% 95.73% 91.51% 98.09% 97.60% 92.47% 96.15% 94.87% 92.18% 97.16% 95.61% 93.16% 96.03% 96.30%
iForest 96.34% 98.70% 98.65% 96.32% 98.09% 98.20% 97.31% 98.47% 98.64% 95.06% 98.21% 98.52% 96.60% 98.08% 98.75%
LOF 97.45% 99.36% 98.70% 96.32% 98.62% 99.09% 96.25% 96.03% 96.11% 97.31% 98.80% 98.25% 97.71% 98.80% 98.89%
XGBoost 86.34% 98.50% 98.09% 90.32% 98.09% 98.94% 92.31% 98.57% 97.23% 93.06% 98.51% 98.08% 86.34% 98.60% 98.09%
GBC 67.56% 83.36% 85.73% 72.32% 88.62% 86.74% 76.25% 86.03% 84.35% 77.31% 86.80% 85.53% 67.57% 83.36% 85.73%
Table 8
Performance metrics of various individual classifiers on CCDP dataset.

Classifiers Accuracy Precision Recall F1 score AUC

Default Non-default Overall Default Non-default Overall Default Non-default Overall Default Non-default Overall Default Non-default Overall

LR 54.09% 75.35% 79.19% 47.32% 78.15% 76.25% 45.14% 87.48% 86.75% 51.21% 74.56% 78.90% 54.23% 75.60% 79.39%
RF 67.16% 81.60% 80.70% 72.25% 82.15% 81.09% 58.14% 84.36% 83.30% 68.16% 82.35% 84.25% 67.36% 81.57% 80.70%
DT 61.78% 75.36% 75.69% 57.58% 82.34% 78.90% 55.16% 85.19% 82.27% 62.35% 78.69% 79.26% 60.47% 75.66% 75.29%
KNN 48.14% 77.25% 76.89% 43.35% 80.21% 77.86% 45.25% 84.69% 81.35% 49.16% 78.16% 77.35% 48.25% 77.36% 76.92%
SVM 64.35% 80.32% 78.33% 67.45% 81.18% 79.32% 65.16% 82.14% 77.62% 65.19% 84.09% 80.21% 64.16% 81.11% 78.75%
OneClassSVM 79.25% 92.06% 91.11% 73.23% 90.16% 90.14% 78.25% 86.17% 89.72% 80.09% 92.31% 91.75% 79.00% 92.15% 91.15%
eEnvelope 63.16% 85.14% 82.78% 62.09% 86.11% 83.39% 64.77% 87.24% 89.09% 63.70% 85.50% 82.90% 63.25% 85.30% 82.80%
iForest 66.22% 90.05% 88.15% 64.10% 91.04% 90.12% 66.21% 91.17% 89.08% 66.70% 91.10% 89.21% 66.25% 91.08% 88.17%
LOF 76.80% 87.25% 85.59% 74.48% 88.64% 86.47% 70.15% 91.00% 84.80% 77.09% 88.55% 85.90% 77.11% 87.90% 86.00%
XGBoost 73.34% 88.50% 91.09% 70.32% 88.09 90.94% 72.31% 85.57% 89.23% 73.06% 89.51% 91.18% 73.34% 88.60% 92.14%
GBC 63.16% 79.06% 81.33% 71.22% 84.12% 81.24% 72.25% 80.03% 80.35% 67.31% 80.08% 81.53% 67.57% 82.25% 82.93%
r
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fraudulent cases in the fraudulent transactions’’. This metrics can be
measured by Eq. (15) [24].

𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 =
𝑇11

(𝑇11 + 𝑇10)
(15)

4.5. Experimentation results and discussion

This section presents the simulation results of our proposed model
CCAD and comparisons between existing works. In Section 4.5.1, we
discuss the experimental results performed for the single classifiers,
and then we discuss the performance results of the proposed ensemble
model in Section 4.5.2. In Section 4.5.3, we compare the results be-
tween single classifiers and the proposed framework. Also, we compare
and present the framework results with existing works.

4.5.1. Results discussion of single classifiers
In our study, we first use several classifiers to identify the accuracy,

precision, recall, F1-score, and AUC value based on frauds and non-
rauds according to the CCF dataset, as shown in Table 7. The precision
alue is relatively high, and the average is 96.159%. For the fraud
lass, the precision value changes from 51% to 96% with respect to KNN

and LOF classifiers, but the non-fraud class precision values are pretty
similar, which means non-fraud class precision values are dominant to
the overall precision results.

The same procedure has been followed for the CCDP dataset to
dentify the accuracy, precision, recall, F1-score, and AUC values based
n default and non-default payments as shown in Table 8. The precision
alue is relatively not so high, and its average value is 64.00%. For
he default-payment class, the precision value is changed from 47%
o 73%, but for the non-default payment class, precision values are
retty similar, which means non-default payment class precision values
ominate the overall precision results.

After analyzing all outcomes of the several classifiers, we found that
ingle classifiers are weaker to classify from the dataset when it includes
mbalanced distribution, but at the same time, ensemble multiple clas-
ifiers provide us better outcomes. From this motivation, we propose
new stacked ensemble learning framework that performs better than

ther ensemble learning approaches. To create a new framework, we
irst choose the best five single classifiers models, and they are SVM,
14

neClassSVM, eEnvelope, iForest, and LOF, with their overall predicted
esults from the CCF dataset and CCDP dataset, as shown in Table 9,
Table 10 in term of accuracy, precision, recall, f1-score, and AUC.

Consequently, the best five single classifiers’ performance over CCF
dataset and CCDP dataset as shown in Fig. 9(a), Fig. 9(b), respectively.
In our proposed framework, the first layer is the base learner. We
selected four learners from this Table 9 as a base learner in our
framework. However, we did not choose the SVM classifier as a learner
in our model because the OneClassSVM classifier provides us better
outcomes when we ensemble with other single classifiers.

Our analysis shows that for the case of CCF dataset, the OneClassSVM
and iForest classifiers performs better for all-most all evaluation criteria
ompared to others classifiers except the recall value of OneClassSVM.
he OneClassSVM classifiers outcomes are 98.47% accuracy, 99.16%
recision, 97.59% F1-score, and 98.47% AUC and iForest classifiers
chieved 98.65% accuracy, 98.20% precision, 98.64% recall, 98.52%
F1-score, and 98.75% AUC. Moreover, LOF classifier achieved 98.70%
accuracy, 99.09% precision, 96.11% recall, 98.25% F1-score, and 98.89%
AUC. The eEnvelope classifier outcomes are less than other classifiers’
outcomes, but it performs better when we ensemble it with different
classifiers in our model.

For the case of CCDP dataset, the OneClassSVM classifier demon-
strates excellent outcome for all-most all evaluation criteria compared
to other classifiers except the recall value. This classifier gained an
accuracy of 91.11%, a precision of 90.14%, a recall of 89.72%, a F1-
score value of 91.75%, a AUC value of 91.15% and a specificity of
92.13%. The eEnvelope classifier performance results are less than other
classifiers’ outcomes, but it performs better when we ensemble it with
different classifiers in our proposed model.

4.5.2. Results discussion of proposed ensemble method
In the previous Section 4.5.1, we already have discussed that we

choose the best four single classifier models from the nine models
to utilize in our proposed framework as a base learner. This section
describes the results performance of the first layer or base layer and
then the overall performance of the stacked ensemble model.

Upon computing the experiment on CCF dataset, the performance
of the first layer or base learner of the model is promising, and we
found that the performance of precision is 0.9992, 0.9995, 0.9984,
and 0.9988 for eEnvelope, iForest, LOF, and OneClassSVM, respec-

tively. But the iForest classifier achieves better accuracy compared to



Journal of Information Security and Applications 78 (2023) 103618M.A. Islam et al.
Table 9
Overall predicted results of OneClassSVM, eEnvelope, iForest, and LOF on CCF dataset.

Name of classifiers Performance evaluation

Accuracy Precision Recall F1-score AUC Specificity

SVM 94.59% 98.43% 86.11% 93.11% 97.64% 94.78%
OneClassSVM 98.47% 99.16% 94.21% 97.59% 98.47% 98.62%
eEnvelope 95.73% 97.60% 94.87% 95.61% 96.30% 98.77%
iForest 98.65% 98.20% 98.64% 98.52% 98.75% 98.61%
LOF 98.70% 99.09% 96.11% 98.25% 98.89% 98.73%
Table 10
Overall predicted results of OneClassSVM, eEnvelope, iForest, and LOF on CCDP.

Name of classifiers Performance evaluation

Accuracy Precision Recall F1-score AUC Specificity

SVM 78.33% 79.32% 77.62% 80.21% 78.75% 77.83%
OneClassSVM 91.11% 90.14% 89.72% 91.75% 91.15% 92.13%
eEnvelope 82.78% 83.39% 89.09% 82.90% 82.80% 81.57%
iForest 88.15% 90.12% 89.08% 89.21% 88.17% 89.06%
LOF 85.59% 86.47% 84.80% 85.90% 86.00% 84.91%
Fig. 9. Performances of the single classifiers on CCF & CCDP dataset.
Fig. 10. First layer performance of proposed CCAD model on CCF & CCDP dataset.
other classifiers. The first layer performance of the model is shown in
Fig. 10(a).

In the experiment on the CCDP dataset, the base learner achieved a
precision of 1, 1, 1, and 1 for eEnvelope, iForest, LOF, and OneClassSVM
15

,

respectively. Moreover, iForset classifier gains better accuracy, recall,
and F1-score results than other classifiers. The iForset classifier obtains
an accuracy of 0.9627, recall of 0.9280, and F1-score of 0.9627 as
shown in Fig. 10(b).
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Fig. 11. Performance of the proposed CCAD model on CCF & CCDP dataset.
Every newish column will have been built using only the test folds
after the K-Fold Cross-Validation process ends, as explained in Sec-
tion 4.2. Then accuracy, precision, recall, and f1-score are measured for
every newish column created for the base classifiers. Finally, the pro-
posed framework performance has been measured and contrasted with
the last layer outputs with the actual labels on CCF dataset, as shown in
Fig. 11(a). From Fig. 11(a), we see that the proposed framework gained
99.96% precision or PPV, 100% recall or TPR, 99.95% F1-score, 99.98%
accuracy and it stunning nicely performative for fraud identification,
getting almost 100% score for all the performance metrics.

The same procedure has been followed for the CCDP dataset, and
stacked ensemble performance has been shown in Fig. 11(b). The
proposed model achieves a precision value of 100%, a recall of 98.09%,
a F1-score of 98.83%, and an accuracy of 99%. The results show that
the proposed model performs better in detecting default payments or
anomalies.

Moreover, we have used another appropriate metric called the
ROC analysis with AUC to evaluate the proposed model performance
with the imbalance dataset due to the vulnerability of classifiers to
imbalanced datasets. Firstly, we generate the ROC curve concerning
the AUC metric regarding the anomalous data to ensure the proposed
approach can split the non-fraud and fraud transactions. Then we plot
the true positive rate (TRP) against the false positive rate (FPR) to
create the receiver operating characteristics curve, and the graph under
the ROC curve is measured as the AUC. The ROC curve illustration is
shown in Fig. 12(a). This ROC curve show that the presented approach
gains a promising AUC of 98% on CCF dataset for both the non-fraud
and fraud classes. For the CCDP dataset, the ROC curve illustration is
shown in Fig. 12(b), and the proposed model achieves a better AUC of
99% for both the non-default payment and default payment classes.

4.5.3. Comparative assessment
In this section, we have depicted some comparisons of the proposed

framework results among the existing frameworks, which they use to
classify the CCF dataset and CCDP dataset using a single classifier.

From Table 11, we see that the proposed model achieves 97.86%
of precision value for the fraud classes, which is better than the other
single classifiers’ precision values. It improves the precision values for the
fraud classes by about 14.44%, 6.94%, 1.60%, and 1.39% than the best
single classifiers precision gaining models of OneClassSVM, eEnvelope,
iForest, and LOF, respectively. Compared to other existing works, this
model can be better performed and enhanced in the fraudulent cases
detection from the CCF dataset, which is, on average 10.41% and also
shows better performance in the non-fraud class (99.99%). However,
other researchers’ works are also suitable for real transaction detection.
Moreover, the presented model can achieve a better precision value,
which is 99.96% in the overall cases.

For the case of CCDP dataset, the proposed model gains a precision
of 93.53% on default payment classes, which is better than the other
16
single classifiers precision values. It enhances the precision values for
the default payments by about 38.67%, 27.72%, 50.63%, 45.91%, and
25.58% than the best single classifiers precision gaining models of SVM,
OneClassSVM, eEnvelope, iForest, and LOF, respectively. Compared to
other existing works, this presented model can be better performed
and enhanced in the default payment cases detection from the CCDP
dataset, which is, on average 41.82% and also shows better perfor-
mance in the non-default payment class (99.52%). Moreover, the model
can achieve a better precision value, which is 100% in the overall cases
(see Table 12).

After comparing the proposed works with the single classifiers, we
compare our works’ performance with other existing works in terms
of the ROC curve (AUC). From Tables 13 and 14, we clearly see that
our model obtains an AUC of 98.94% from the CCF dataset and 99.00%
from the CCDP dataset, which is the best regarding the other works, and
it ultimately outperforms existing works technique to detect anomalies.

As shown in Table 15, the proposed model achieves the best pre-
cision of 99.96% in the overall cases. Moreover, it gains 97.86%
precision from fraud cases and 99.99% precision from non-fraud cases.
Compared to other existing works, this proposed model can enhance
the performance to detect fraud from the CCF dataset.

From Table 16, we see that the proposed model achieves 100%
of precision from the overall cases, 93.53% of precision from default
cases, and 99.52% precision from non-default cases. Compared to other
existing works, this proposed model can enhance the performance to
detect anomalies from the CCDP dataset.

Tables 17, 18 shows the overall comparison between the presented
approach and existing state-of-the-art using ensemble approaches in
handling the imbalanced class distribution on the CCF dataset and
CCDP datasets, respectively.

From the CCF dataset, we exceed by acquiring the maximum TPR for
the minority class, which is 0.96. The presented proposed approach also
gains an accuracy of 99.98%, and provides an excellent TPR or recall
of 100%, a precision of 99.96%, an f1-score of 99.95%, which is better
than the state-of-the-art approach. Thus, considering all performance
metrics, the proposed technique outperforms the other state-of-the-art
fraud detection from the CCF dataset. The proposed CCAD model can
show higher performances by tackling the unbalanced class distribution
problem of the CCF dataset.

From the CCDP dataset, the proposed model gains maximum TPR
of 0.98 for the minority class, an accuracy of 99.00%, an excellent
TPR or recall of 98.09%, a precision of 100%, an f1-score of 99.00%,
which is compared to better than other state-of-the-art approaches. Af-
ter considering all performance metrics, the proposed ensemble CCAD
model beats the other state-of-the-art anomaly detection from the CCDP
dataset. This model can show higher performances by tackling the
unbalanced class distribution problem of the CCDP dataset.
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Fig. 12. ROC curves of proposed model on CCF & CCDP dataset.
Table 11
Comparison between the proposed model and single classifiers performances in terms of accuracy, precision, recall, F1-score, and AUC on CCF dataset.

Classifiers Accuracy Precision Recall F1-score AUC

Fraud Non-fraud Overall Fraud Non-fraud Overall Fraud Non-fraud Overall Fraud Non-fraud Overall Fraud Non-fraud Overall

DT 84.25% 95.80% 92.59% 83.25% 97.17% 95.64% 82.51% 98.17% 89.24% 83.21% 97.31% 92.33% 85.20% 95.05% 92.59%
KNN 67.23% 96.31% 94.17% 51.37% 89.23% 92.32% 61.23% 96.25% 96.17% 61.47% 95.47% 94.17% 68.50% 95.08% 95.16%
SVM 80.21% 95.36% 94.59% 81.17% 97.35% 98.43% 77.31% 94.47% 86.11% 81.45% 97.68% 93.31% 80.30% 95.45% 97.64%
OneClassSVM 84.45% 97.31% 98.47% 85.51% 99.09% 99.16% 75.54% 93.60% 94.21% 82.11% 98.24% 97.59% 84.50% 97.61% 98.47%
eEnvelope 93.14% 96.17% 95.73% 91.51% 98.09% 97.60% 92.47% 96.15% 94.87% 92.18% 97.16% 95.61% 93.16% 96.03% 96.30%
iForest 96.34% 98.70% 98.65% 96.32% 98.09% 98.20% 97.31% 98.47% 98.64% 95.06% 98.21% 98.52% 96.60% 98.08% 98.75%
LOF 97.45% 99.36% 98.70% 96.52% 98.62% 99.09% 96.25% 96.03% 96.11% 97.31% 98.80% 98.25% 97.71% 98.80% 98.89%

Proposed Approach 98.83% 99.99% 99.98% 97.86% 99.99% 99.96% 99.83% 99.99% 100.00% 99.87% 99.93% 99.95% 98.73% 99.86% 98.94%
Table 12
Comparison between the proposed model and single classifiers performances in terms of accuracy, precision, recall, F1-score, and AUC on CCDP dataset.

Classifiers Accuracy Precision Recall F1-score AUC

Default Non-default Overall Default Non-default Overall Default Non-default Overall Default Non-default Overall Default Non-default Overall

DT 61.78% 75.36% 75.69% 57.58% 82.34% 78.90% 55.16% 85.19% 82.27% 62.35% 78.69% 79.26% 60.47% 75.66% 75.29%
KNN 48.14% 77.25% 76.89% 43.35% 80.21% 77.86% 45.25% 84.69% 81.35% 49.16% 78.16% 77.35% 48.25% 77.36% 76.92%
SVM 64.35% 80.32% 78.33% 67.45% 81.18% 79.32% 65.16% 82.14% 77.62% 65.19% 84.09% 80.21% 64.16% 81.11% 78.75%
OneClassSVM 79.25% 92.06% 91.11% 73.23% 90.16% 90.14% 78.25% 86.17% 89.72% 80.09% 92.31% 91.75% 79.00% 92.15% 91.15%
eEnvelope 63.16% 85.14% 82.78% 62.09% 86.11% 83.39% 64.77% 87.24% 89.09% 63.70% 85.50% 82.90% 63.25% 85.30% 82.80%
iForest 66.22% 90.05% 88.15% 64.10% 91.04% 90.12% 66.21% 91.17% 89.08% 66.70% 91.10% 89.21% 66.25% 91.08% 88.17%
LOF 76.80% 87.25% 85.59% 74.48% 88.64% 86.47% 70.15% 91.00% 84.80% 77.09% 88.55% 85.90% 77.11% 87.90% 86.00%

Proposed Approach 93.64% 99.63% 99.00% 93.53% 99.52% 100% 96.21% 98.00% 98.09% 93.35% 99.06% 98.83% 93.21% 99.72% 99.00%
Table 13
Performance of AUC comparison between existing works and proposed approach on CCF.

Ref. Approach Base learners Performance of AUC

[18] Boosting (CatBoost) KNN + CatBoost 96.94%
[24] Bagging + Boosting (AdaBoost) AdaBoost + RandomForest 97.08%
[25] Ensemble Learning RNN + FFNN 83.37%
[29] Ensemble Learning KNN + DT + MLP 97.40%
[31] Multiple Classifier C4.5 + NB 87.90%
[36] Ensemble Learning Deep Belief Network 97.76%

Proposed Approach Multiple Classifier + Ensemble Learning eEnvelope + iForest + LOF + OneClassSVM 98.94%
4.5.4. Complexity analysis

This section briefly presented the proposed CCADmodel complexity.
In our research work, we have used well-known outlier detection
algorithms to identify the anomalies in credit card transactions. Pro-
posed Algorithm 3 has three steps and in every step we calculated the
complexity: 𝑂(𝑠) + 𝑂(𝑘⋅𝑛), 𝑂(4⋅𝑛⋅𝑡) + 𝑂(𝑛) + 𝑂(𝑝⋅𝑞), and 𝑂(𝑟). Table 19
summarizes the time complexity. The complexity of the proposed model
is presented in Table 19.
17
5. Conclusion

The electronic credit card serves as an alternative to cash pay-
ments. However, some cardholders may not honor their repayment
obligations or may misuse their cards. In addition, transactions can be
deemed fraudulent when unauthorized individuals or groups illicitly
use these electronic credit cards. In the credit card dataset, features
like imbalanced class distribution and overlapping class issues have
posed challenges for researchers. We proposed the CCADmodel to solve
the issues as discussed above, and also detection rate of anomalies is
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Table 14
Performance of AUC comparison between existing works and proposed approach on CCDP dataset.

Ref. Approach Base learners Performance of AUC

[19] Boosting (AdaBoost, LGBM) AdaBoost + LGBM 82.00%
[23] Ensemble Learning BPNN + SVM + RF 97.10%
[27] Multiple Classifier ANN + SVM 93.70%
[28] Multiple Classifier NB + KNN + LR 91.00%
[31] Multiple Classifier C4.5 + NB 70.30%
[38] Boosting (XGBoost) CART 87.90%
[39] Bagging RF 76.40%

Proposed Approach Multiple Classifier + Ensemble Learning eEnvelope + iForest + LOF + OneClassSVM 99.00%
Table 15
Overall precision comparison between existing works and proposed approach on CCF dataset.

Ref. Approach Base learners Precision evaluation

Fraud Non-Fraud Overall

[21] Boosting (AdaBoost) AdaBoost + OCSVM 79.50% 95.00% 97.00%
[22] Ensemble Learning iForest + RandomForest 85.80% 94.38% 98.30%
[25] Ensemble Learning RNN + FFNN 80.73% 99.20% 95.69%
[26] Multiple Classifier ANN + KNN + SVM 80.56% 98.35% 97.43%
[30] Multiple Classifier KNN + DT 75.40% 91.30% 85.11%
[31] Multiple Classifier C4.5 + NB 74.32% 88.53% 86.45%
[32] Multiple Classifier RandomForest 79.80% 96.48% 98.14%
[33] Multiple Classifier RF + FFNN 56.20% 98.70% 85.85%

Proposed Approach Multiple Classifier + Ensemble Learning eEnvelope + iForest + LOF + OneClassSVM 97.86% 99.99% 99.96%
Table 16
Overall precision comparison between existing works and proposed approach on CCDP dataset.

Ref. Approach Base learners Precision evaluation

Default Non-default Overall

[19] Boosting (AdaBoost, LGBM) AdaBoost + LGBM 82.00% 99.00% 97.00%
[28] Multiple Classifier NB + KNN + LR 78.38% 97.56% 97.00%
[31] Multiple Classifier C4.5 + NB 71.95% 89.93% 83.45%

Proposed Approach Multiple Classifier + Ensemble Learning eEnvelope + iForest + LOF + OneClassSVM 93.53% 99.52% 100%
Table 17
Comparing the proposed approach with other researchers’ works regarding the accuracy, precision, recall, and f1-score on CCF dataset.

Authors & Ref. Approach Base learners Performance evaluation

Accuracy Precision Recall F1-Score

N. S. Alfaiz et al. [18] Boosting (CatBoost) KNN + CatBoost NA NA 95.91% 87.40%
Y. F. Zhang et al. [21] Boosting (AdaBoost) AdaBoost + OCSVM 96.00% 97.00% 96.00% 98.00%
F. Carcillo et al. [22] Ensemble Learning iForest + RandomForest 97.20% 98.30% 95.00% NA
V. Karthik et al. [24] Bagging + Boosting (AdaBoost) AdaBoost + RandomForest 99.18% NA 99.5% NA
J. Forough et al. [25] Ensemble Learning RNN + FFNN NA 95.69% 66.74% 78.13%
R. Asha et al. [26] Multiple Classifier ANN + KNN + SVM 93.49% 97.43% 89.76% NA
T. A. Olowookere et al. [29] Ensemble Learning KNN + DT + MLP NA NA NA 97.40%
S. Khatri et al. [30] Multiple Classifier KNN + DT NA 85.11% 91.11% NA
S. N. Kalid et al. [31] Multiple Classifier C4.5 + NB 99.90% 83.45% 87.20% NA
V. N. Dornadula et al. [32] Multiple Classifier RandomForest 97.08% 98.14% NA NA
I. Sohony et al. [33] Multiple Classifier RF + FFNN 99.90% 85.85% 86.70% NA
K. Randhawa et al. [34] AdaBoost + Majority Voting ANN + NB 99.90% NA 78.90% NA
S. Ram et al. [35] Ensemble Learning CNN 96.50% NA NA NA
P. Xenopoulos [36] Ensemble Learning Deep Belief Network 90.60% NA 81.80% NA

Proposed Approach Multiple Classifier + Ensemble Learning eEnvelope + iForest + LOF + OneClassSVM 99.98% 99.96% 100% 99.95%
Table 18
Comparing the proposed approach with other researchers’ works regarding the accuracy, precision, recall, and f1-score on CCDP dataset.

Authors & Ref. Approach Base learners Performance evaluation

Accuracy Precision Recall F1-Score

E. F. Malik et al. [19] Boosting (AdaBoost, LGBM) AdaBoost + LGBM NA 97.00% 64.00% 77.00%
X. Zhang et al. [23] Ensemble Learning BPNN + SVM + RF NA 96.00% 94.50% 96.02%
M. Seera al. [27] Multiple Classifier ANN + SVM 96.49% NA NA NA
F. Itto et al. [28] Multiple Classifier NB + KNN + LR 95.00% 97.00% NA NA
P. Save et al. [37] Hunt’s and Luhins Algorithms DT NA NA NA NA
Xia et al. [38] Bossting (XGBoost) DT 69.36% NA NA NA
Pradeep Singh [39] Bagging RF 81.60% NA 37.10% NA
A. Charleonnan et al. [40] Multiple Classifier MLP + RBF + NB 77.80% NA NA NA
Venkatesh et al. [41] Bagging RF + NB NA NA 81.60% NA

Proposed Approach Multiple Classifier + Ensemble Learning eEnvelope + iForest + LOF + OneClassSVM 99.00% 100% 98.09% 99.00%
18
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Table 19
Complexity analysis.

Algorithms Time complexity Statement

Elliptic Envelope [46] 𝑂(𝑛 ⋅ 𝑚2) n = Number of samples & m = Number of features

Isolation Forest [47] 𝑂(𝑛 ⋅ 𝑑) n = Number of samples & d = Max depth

Local Outlier Factor [49] 𝑂(𝑛2 ⋅ 𝑚) n = Number of samples & m = Number of features

One-ClassSVM [52] 𝑂(𝑛2 ⋅ 𝑣) n = Number of samples & v = Number of support vectors

XGBoost [54] 𝑂(𝑛 ⋅ 𝑚 ⋅ 𝑡) n = Number of samples, m = Number of features,
& t = Number of trees

Algorithm 1 𝑂(𝑛) n = Feature importance score

Algorithm 2 𝑂(4 ⋅ 𝑛 ⋅ 𝑡) + 𝑂(𝑛) + 𝑂(𝑝 ⋅ 𝑞) n = Number of samples, t = Train classifier complexity,
p = Number of trees & q = Train meta classifier complexity

Algorithm 3 Step 1: 𝑂(𝑠) + 𝑂(𝑘 ⋅ 𝑛);
Step 2: 𝑂(4 ⋅ 𝑛 ⋅ 𝑡) + 𝑂(𝑛) + 𝑂(𝑝 ⋅ 𝑞);
Step 3: 𝑂(𝑟)

s = Number of data points, k = Number of folds, n = Number of samples
t = Train classifier complexity, p = Number of trees, q = Train meta classifier complexity
r = Number of test samples

Algorithm 4 𝑂(𝑛) n = Number of elements
better than the existing works, particularly anomaly detection from
the minority class of credit card datasets. In our experimental studies,
we found that some single classifiers or outlier detection algorithms,
i.e., OneClassSVM, eEnvelope, iForest, and LOF are suitable for clas-
ifying minority and majority class samples. For this reason, in our
roposed CCAD model, we employ them as base learners, and then

we utilize XGBoost as a meta-learner through ensemble to identify
anomalies. Besides that, the discordance value calculation assist in
constructing the ensemble algorithm more accurate and effective for
fraud prediction. This proposed CCAD model was assessed utilizing
two datasets: (i) CCF & (ii) CCDP. Moreover, our proposed work
has been compared with existing research works, and experimental
results show the capability and performance are better than the existing
state-of-the-art approaches.

In principle, this CCAD model presents its excellence in tackling the
issues of imbalanced class distribution, overfitting, and overlapping classes.
However, there is still some space to increase the precision value for
minority classes, and we are glancing at other ensemble techniques
and hybrid architecture for future works. Nowadays, some researchers
had tried deep learning methods, i.e., DBN and LSTM, to identify
the anomalies in the transaction data of credit cards. So, to detect
promising outcomes, we are also thinking about deep learning methods
for our future work. Moreover, we intend to apply our CCAD model to
other credit card datasets to determine our model’s robustness.

Acronym

The full form of the acronym used in paper is presented in Table 20.
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Table 20
Explanation of notations.

Notation Definition

ANN Artificial Neural Networks
AdaBoost Adaptive Boosting
AUC Area Under the Curve
CCAD Credit Card Anomaly Detection
CCF Credit Card Fraud
CCDP Credit Card Default Payment
CART Classification and Regression Tree
CNN Convectional Neural Network
DBN Deep Belief Networks
DL Deep Learning
eEnvelope Elliptic Envelope
FPR False Positive Rate
FP False Positive
FN False Negative
FFNN Feed-Forward Neural Network
GBC Gradient Boosting
HOBA Homogeneity-oriented Behavior Analysis
iForest Isolation Forest
IEEE-CIS IEEE Computational Intelligence Society
KNN K-Nearest Neighbors
LR Logistic Regression
LOF Local Outlier Factor
LSTM Long Short-term Memory
MCS Multiple Classifier Systems
ML Machine Learning
MLP Multilayer Perceptron
MCC Matthews Correlation Coefficient
NB Naïve Bayes
OCC One-class classification
OCSVM One-class Support Vector Machine
CatBoost Categorical Boosting
PAC Probably Approximately Correct
PPV Precision or Positive Predictive Value
RBF Radial Basis Function
RF Random Forest
ROC Receiver Operating Characteristic Curve
RNN Recurrent Neural Network
SVM Support Vector Machines
SMOTE Synthetic Minority Oversampling Technique
TN True Negative
TNR True Negative Rate
TPR True Positive Rate
TP True Positive
ULB University Library de Brussels
XGBoost eXtreme Gradient Boosting
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