
COVER FEATURE DIGITAL TWINS

54 C O M P U T E R P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y

Carlo Puliafito, University of Pisa

Claudio Cicconetti and Marco Conti, IIT-CNR

Enzo Mingozzi, University of Pisa

Andrea Passarella, IIT-CNR

In function as a service (FaaS), an application is decomposed

into functions. We propose to generalize FaaS by allowing

functions to alternate between remote-state and

local-state phases, depending on internal and external

conditions, and dedicating a container with persistent

memory to functions when in a local-state phase.

Monolithic application design has shown its
downsides in terms of scalability, maintain-
ability, and agility. The current trend is
to decompose complex applications into

small pieces of code called microservices, each focusing
on a specific aspect of the overall application. Micros-
ervices are typically instantiated within lightweight
environments, for example, containers. Function as a
service (FaaS) leverages microservices (which in FaaS
are called functions) as a starting point to build enhanced
cloud-computing systems.1 FaaS, indeed, abstracts the

Stateful Function as a
Service at the Edge

Digital Object Identifier 10.1109/MC.2021.3138690
Date of current version: 29 August 2022

This work is l icensed under a
Creative Commons At tribution 4.0 License. For more information,

see ht tps://creativecommons.org/licenses/by/4.0/

 S E P T E M B E R 2 0 2 2 55

operational logic away from function
developers, such that they do not need to
care about function deployment, scaling,
and lifecycle management. Besides, func-
tions run according to an event-based
pattern, and users only pay for what they
actually use, with fine granularity.

In this context, consecutive invoca-
tions of a function from the same client
can be independent from one another
or, more often, can form a session with
an associated state that must persist
across multiple invocations until the
session ends.2 With traditional FaaS
for cloud-computing systems, func-
tions typically need to remotely access
this state at each invocation, via an
external service such as a database:
we refer to these functions as remote-
state functions. This is depicted in
the top-left image of Figure 1, whose
notation will be explained in the next
section. Following this approach, dif-
ferent instances of the same remote-
state function are equivalent to one
another, as they do not retain any
state locally (state is download at each
invocation, updated, and uploaded
again to the external service). There-
fore, FaaS providers can optimize their
infrastructure, transparently to the
users, as 1) different users can share
the same function instance, 2) consec-
utive invocations from the same user
can be forwarded to different function
instances, and 3) resources allocated
to inactive instances can be freed
after a short period of idle time. The
first company to propose a FaaS plat-
form was Amazon, with AWS Lambda.
Since then, all of the top cloud vendors
announced their FaaS solutions, for
example Microsoft Azure Functions,
Google Cloud Run, IBM Cloud Func-
tions, and Cloudflare Workers. Open
source platforms, to be executed on
private compute infrastructures, are

also available, such as Apache Open-
Whisk, OpenFaaS, Kubeless, and Kna-
tive. Further information on the most
prom i nent FaaS plat for ms ca n be
found in Yussupov et al.3

Although it was initially designed
for cloud environments, FaaS is gradu-
ally drawing interest as a viable option
for edge computing as well.4 Edge com-
puting extends the cloud toward the
edge of the network, hosting cloud-
like services in close proximity to the
end users, for example, on cellular
base stations.5 This proximity leads
to many advantages, the most import-
ant of which is the reduced latency,
which is essential to a vast number of
emerging applications, such as real-
time Internet of Things (IoT), mobile
virtual reality/augmented reality, and
connected vehicle applications.6,7 Big
IT companies have started investing
in FaaS for edge computing, extending
their FaaS platforms toward the edge
of the network, for example Amazon
IoT Greengrass, Microsoft Azure IoT
Edge, and IBM Edge Functions.

Notwithstanding these recent efforts
toward FaaS for edge computing,
there is still hesitation to widely
adopt this novel paradigm. This is
due to the cloud-oriented design of
FaaS, which does not always suit the
distinguishing characteristics of
edge applications. The most import-
ant design assumption of FaaS that is
violated by its expansion toward the
edge is that functions access a remote
state. In cloud-only environments,
this approach affects performance
only slightly because both function
instances and session state are hosted
by servers that are physically located
in the same data center. However,
when function instances run at the
edge (as shown in the center-left image
of Figure 1), accessing a remote state

may cause significant service latency
and network traffic, at risk of nullify-
ing edge computing advantages.

To overcome this limitation, local-
state functions are coming into the
picture.8 As depicted in the bottom-left
image of Figure 1, these functions keep
the state locally. On the one hand, local-
state functions avoid the delays and
traffic caused by accessing state from
an external storage service. However,
on the other hand, they do not experi-
ence the same cost-efficiency and flexi-
bility of remote-state functions. Local-
state instances are indeed not equiva-
lent to one another, as each is dedicated
to a specific user or application ses-
sion, for which it provides data access
in a private and persistent manner.
Besides, local-state function instances
are not triggered on demand; instead,
they are long-running to retain state
across invocations. The following are
examples of local-state functions in
commercial FaaS platforms: 1) Micro-
soft entity functions,9 2) Cloudflare
durable objects,10 and 3) Amazon long-
lived functions.11

Today, the choice on whether a given
function should follow a remote-state
versus local-state pattern is made at
design time and migrating from one
pattern to another in production can
be very expensive, since it involves
changing the set of employed services
[adapting to new application program-
ming interfaces (APIs), switching
contracts, and using a different soft-
ware development kit (SDK)]. What is
worse, during development the pro-
grammer may not even know whether
the logic of the code they are imple-
menting will be executed at the edge
or in the cloud, so making an informed
choice could be just impossible.

In this work, we advocate that such
a dichotomy between remote state and

DIGITAL TWINS

56 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

local state should not exist but rather
function in a FaaS environment and
should be able to adapt dynamically,
that is, changing its behavior from
remote state to local state and vice
versa, depending on both internal and
external factors. This approach would
relieve the developer from the risk
of making an uninformed decision.
Besides, it would let the FaaS pro-
vider carry out runtime optimizations,
for example, to increase resource
efficiency. Finally, it would benefit
applications with requirements that
dynamically change over time.

We first present our proposal at
a high level. Then, we report initial
results exploring the main tradeoffs
involved in this approach. Next, we

describe two practical use cases of
business interest that can benefit from
our idea. We then report the essential
related work in the field. Finally, we
conclude the article and outline the
further research directions originat-
ing from our proposition.

STATEFUL FaaS AT
THE EDGE
We illustrate our proposal within a
system model that abstracts the spe-
cific and technical details of a real
edge system, which consists of the fol-
lowing elements:

 › clients, wishing to invoke
functions λi of a given type
(or application) i: consecutive

invocations of a function from
the same client are called a
session, which has an associated
state that is expected to persist
until the session ends

 › brokers, representing entry
points of the system for the
clients, that is, the latter invoke
their functions on the bro-
ker, which then delegates the
actual execution of the function
to a worker (that is, a con-
tainer) in the edge network of
matching type

 › workers, handling function
invocations and hosted by con-
tainers: remote-state containers
are instances of remote-state
functions, and therefore rely

FIGURE 1. Remote-state versus local-state FaaS invocations at the edge.

Cloud Remote State

Edge Remote State

Edge Local State

Client

Client

Client

λk

λk

λk

λk

Cloud
Node

Edge
Node

Edge
Node

Data Center

Data Center

λk

e1

e2

e3

b2

b1 b3

c1

c2 c3
c4

λk
c4

λk
c3

Remote-State
FaaS Invocation

Local-State
FaaS Invocation

Point of Access bi ejBroker i Edge Node j
Remote-State
Container

Remote State Local-State
Container

 S E P T E M B E R 2 0 2 2 57

on an external service, possibly
located in the cloud, to access
the session state. On the other
hand, local-state functions get
instantiated in local-state con-
tainers, which are associated to
a specific session and keep any
state required locally.

Edge nodes may host any com-
bination of workers and brokers. In
this work, we indicate the remote-
state function of type k as λk, whereas
local-state function of type k is kλ The
considered system works in mixed
remote-state + local-state conditions.
This can be true both from the point
of view of different functions of type
h k≠ and for the same function k.
The right image of Figure 1 depicts an
example of such a mixed behavior.
Function λk is invoked by four differ-
ent clients c c, ,1 4… . For clients c1 and
c2, λk is instantiated in remote-state
containers. These instances of λk are
indistinguishable from one another,
and in fact can be scaled up and down
(also to zero instances) by the under-
lying container orchestration mecha-
nism. The brokers need only to know
the locations of all (or a subset) of the
containers and can then implement all
sorts of decentralized load balancing
as discussed in Cicconetti et al.12 For
instance, the invocation from c1 is for-
warded to the λk instance hosted on e1.
However, the next invocation could be
equally forwarded to the instance on
e2. This gives the system flexibility in
resource scheduling. Yet, this solution
has two main disadvantages: 1) the
response time also includes the time
required for the function instance to
synchronize the state on the exter-
nal service and 2) network traffic is
generated as a consequence of state
synchronization.

On the other hand, clients c3 and c4
use local-state containers k

c3λ and k
c4λ ,

respectively. Local-state containers
are more bandwidth-efficient and do
not incur in the same latency asso-
ciated to remote-state containers, as
explained earlier. However, they do
not enjoy the same orchestration flexi-
bility, either. Rather than maintaining
a pool of shared containers sufficient
to serve the current number of active
clients, one local-state instance must
exist in the edge network for each
session. For illustration purposes, in
the example we assume without loss
of generality that every client has
exactly one session. Therefore, when a
broker receives a function invocation,
it must forward it to the container spe-
cific to that client. Also, if the platform
wants to move a local-state container
to another edge node, a live migration
is required to transfer the state as well
as the image: this has a cost in terms
of network traffic and creates a period
while the container is unavailable
(that is, downtime).

The example shows the limitations
of a system where functions are stati-
cally instantiated as either remote state
or local state. Any of the two patterns
presents some drawbacks, indeed. The
main contribution of this work is pro-
posing a paradigm where functions are
able to adapt dynamically to unpredict-
ably changing conditions, by chang-
ing behavior from remote state to local
state and vice versa.

To support this paradigm, the most
natural way would be that the devel-
oper of a function λk provides two ver-
sions (that is, container images) with
the same application logic: a remote-
state version λk and a local-state ver-
sion kλ . Besides, the developer of the
function is expected to implement
some means to download the state

locally from the external service in use
and to upload a local state to the exter-
nal service intended to be used (which
is true also in traditional FaaS sys-
tems). The details on the application
internals, such as the programming
language it uses or which external ser-
vices are used (and how), do not need to
be disclosed to the FaaS platform.

We believe that this dynamic tran-
sition from remote state to local state,
and vice versa, may be useful (and
therefore be triggered) for two main
purposes. One is to allow the service
provider to perform runtime optimi-
zations, for example, increase resource
efficiency. We refer to this type of tran-
sition as network-triggered transition, as
it is activated by the platform. Alterna-
tively, another purpose is to accommo-
date applications having requirements
that dynamically change over time. In
this case, we talk about application-trig-
gered transition, as it is the application
to request it.

Fig u re 2 present s t he possible
sequence diagrams of the transitions
of a worker. Specifically, transitions
to local state are shown on the left,
whereas transitions to remote state are
depicted on the right. In a similar way,
application-triggered transitions are
at the top in figure, while network-trig-
gered transitions are at the bottom. As
shown, application-triggered and net-
work-triggered transitions work in the
same way, apart from the initial trig-
gering event, which is different in the
two cases.

Let us start with a transition from
remote state to local-state behavior.
Initially, client c uses remote-state
instances of function λk. Then, after
checking available resources, the sys-
tem orchestrator sets up a local-state
container k

cλ and assigns it to client
c. When k

cλ starts, it first downloads

DIGITAL TWINS

58 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

FI
G

U
RE

 2
. A

 s
eq

ue
nc

e
di

ag
ra

m
 o

f t
ra

ns
iti

on
 o

f a
 w

or
ke

r f
ro

m
 re

m
ot

e
st

at
e

to
 lo

ca
l s

ta
te

 (l
ef

t)
 o

r l
oc

al
 s

ta
te

 to
 re

m
ot

e
st

at
e

(r
ig

ht
),

as
 tr

ig
ge

re
d

by
 th

e
ap

pl
ic

at
io

n
(t

op
) o

r b
y

th
e

ne
t-

w
or

k
(b

ot
to

m
).

Te
ar

 D
ow

n
[O

pt
io

na
l]

D
on

e

no
tif

y

T
he

 s
ta

te
 is

do
w

nl
oa

de
d

fro
m

 a
 re

m
ot

e
lo

ca
tio

n.

A
p

p
lic

at
io

n
 r

eq
u

es
t:

T
he

 s
ta

te
 o

f c
lie

nt
 c

 fo
r

th
e

in
vo

ca
tio

n
of

fu
nc

tio
n
k

is
 r

eq
ue

st
ed

to
 b

ec
om

e
lo

ca
l:

If
th

er
e

ar
e

av
ai

la
bl

e
re

so
ur

ce
s,

cl
ie

nt
 c

 is
 a

ss
ig

ne
d

a
ne

w
 d

ed
ic

at
ed

co
nt

ai
ne

r
to

 e
xe

cu
te

fu
nc

tio
n
k

(t
he

 p
re

vi
ou

s
on

e
ca

n
be

 d
ea

llo
ca

te
d

or
 r

em
ai

n
fo

r
ot

he
r

cl
ie

nt
s)

.

U
pd

at
e

D
es

tin
at

io
ns

S
et

 U
p

D
on

e

N
ot

ify

Sy
st

em
-w

id
e

op
tim

iz
at

io
n:

Th
e

st
at

e
of

 c
lie

nt
 c

 fo
r t

he
in

vo
ca

tio
n

of
 fu

nc
tio

n
k

be
co

m
es

 lo
ca

l,
ev

en
th

ou
gh

 n
ot

 re
qu

ire
d

by
 th

e
ap

pl
ic

at
io

n:
 C

ie
nt

 c
 is

as
si

gn
ed

 a
 n

ew
 d

ed
ic

at
ed

co
nt

ai
ne

r
to

 e
xe

cu
te

fu
nc

tio
n

k
(t

he
 p

re
vi

ou
s

on
e

ca
n

be
 d

ea
llo

ca
te

d
or

 r
em

ai
n

fo
r

ot
he

r
cl

ie
nt

s)
.

U
pd

at
e

D
es

tin
at

io
ns

T
he

 a
pp

lic
at

io
n

lo
gi

c
re

qu
es

ts
th

at
 th

e
st

at
e

be
co

m
es

 lo
ca

l.

Application-Triggered Network-Triggered

O
rc

he
st

ra
to

r
B

ro
ke

r
E

dg
e

N
od

e

U
pl

oa
d

S
ta

te

N
ot

ify

T
he

 s
ta

te
 is

up
lo

ad
ed

 to
a

re
m

ot
e

lo
ca

tio
n.

S
et

 u
p

a
ne

w
 c

on
ta

in
er

to
 h

an
dl

e
th

e
in

vo
ca

tio
n

of
 fu

nc
tio

n
k

fr
om

 a
ny

cl
ie

nt
 (

th
e

co
nt

ai
ne

r
pr

ev
io

us
ly

 r
es

er
ve

d
fo

r
cl

ie
nt

 c
 is

 d
ea

llo
ca

te
d)

O

P
T

IO
N

A
L

 if
 th

er
e

is
al

re
ad

y
at

 le
as

t a
no

th
er

co
nt

ai
ne

r
th

at
 h

an
dl

es
fu

nc
tio

n
k.

U
pd

at
e

D
es

tin
at

io
ns

S
et

 U
p

D
on

e

N
ot

ify

S
et

 u
p

a
ne

w
 c

on
ta

in
er

 to
ha

nd
le

 th
e

in
vo

ca
tio

n
of

fu
nc

tio
n

k
fro

m
 a

ny
 c

lie
nt

(th
e

co
nt

ai
ne

r p
re

vi
ou

sl
y

re
se

rv
ed

 fo
r

cl
ie

nt
 c

 is
de

al
lo

ca
te

d)
 O

P
T

IO
N

A
L

if
th

er
e

is
 a

lre
ad

y
at

 le
as

t
an

ot
he

r
co

nt
ai

ne
r

th
at

ha
nd

le
s

fu
nc

tio
n

k.

U
pd

at
e

D
es

tin
at

io
ns

A
pp

lic
at

io
n

lo
gi

c
re

qu
es

ts
th

at
 th

e
st

at
e

be
co

m
es

re
m

ot
e.

O
rc

he
st

ra
to

r
B

ro
ke

r
E

dg
e

N
od

e

T
he

 s
ta

te
 is

up
lo

ad
ed

 to
a

re
m

ot
e

lo
ca

tio
n.

E
dg

e
N

od
e

S
et

 U
p

Th
e

st
at

e
is

do
w

nl
oa

de
d

fro
m

 a
 re

m
ot

e
lo

ca
tio

n.

Te
ar

 D
ow

n
[O

pt
io

na
l]

E
dg

e
N

od
e

D
on

e

S
et

 U
p

Te
ar

D
ow

n

Te
ar

D
ow

n

D
on

e

A
p

p
lic

at
io

n
 R

eq
u

es
t:

T

he
 s

ta
te

 o
f c

lie
nt

 c
 fo

r
th

e
in

vo
ca

tio
n

of
fu

nc
tio

n
k

is
 r

eq
ue

st
ed

to
 b

ec
om

e
re

m
o

te
.

Sy
st

em
-w

id
e

op
tim

iz
at

io
n:

T
he

 s
ta

te
 o

f c
lie

nt
 c

 fo
r

th
e

in
vo

ca
tio

n
of

 fu
nc

tio
n

k
m

us
t b

ec
om

e
re

m
ot

e
ev

en
th

ou
gh

 th
e

ap
pl

ic
at

io
n

ha
s

re
qu

es
te

d
it

to
 b

e
lo

ca
l.

U
pl

oa
d

S
ta

te

D
on

e

λ k

λ k
λ k

λ k λ k

λ kλ k

λ kc

λ kc λ kc

λ kc λ kc

λ kc
λ kc

λ k
λ kc

 S E P T E M B E R 2 0 2 2 59

the session state of client c from the
external service (where it has been
previously uploaded by the remote-
state instance, as per its normal work-
ing) and stores it locally. It then noti-
fies the system orchestrator, which
therefore informs the broker to update
the record for client c. As a result, any
future function invocation of client c
is forwarded to k

cλ by the broker. The
remote-state instance of function λk
that was used by c in its last invocation
can be either deleted or remains active
for other clients.

For what concerns transition to
remote state (see Figure 2; right), the
starting point is that any invoca-
tion from client c is forwarded by the
broker to the dedicated instance k

cλ .
When the triggering event for the tran-
sition is fired, the system orchestra-
tor requires k

cλ to upload the session
state to the external service. When
this is done, the system orchestrator
might decide to create a new instance
of remote-state function λk or use the
ones that already exist, if any. The sys-
tem orchestrator then tears down k

cλ
and notifies the broker to update the
record for client c. Any future invoca-
tion from c can be forwarded by the
broker to any remote-state instance
of function λk. In the next section we
show, with the help of a simple analyt-
ical model, that the benefits of break-
ing the dichotomy remote state/local
state can be significant.

EVALUATION
In this section, we report the results
obtained with a simple analytical
model, with the purpose of showing
the significant advantages that can
be expected by applying the proposed
approach and highlighting key open
research directions accordingly. We
consider two scenarios. In the first

scenario, a number of independent
clients, with same characteristics,
issue function invocations toward
a pool of identical containers at the
edge. To keep the model simple, both
the intertime between consecutive
invocations and the function execu-
tion time are distributed exponen-
tially: when a function is treated as
local state, then its dedicated con-
tainer takes on average 1 s to exe-
cute the function; on the other hand,
remote-state functions require on
average 3 s to be dispatched by the
container, because of the overhead to
copy back and forth the application
state as discussed previously.

We assume that the number of con-
tainers provisioned is fixed and equal
to 40 and that clients perform 4.5 func-
tion calls per min. Even in this simple
scenario, the service provider has one
degree of freedom that it can use to
optimize the system performance:
by employing the network-triggered
transition pattern (as in the bottom of
Figure 2) it can force some of the func-
tions to be treated as either remote
state or local state. A question the
service provider might ask is, “How
many containers should be dedicated
to local-state functions at any time,
provided that there are not enough for
all of the active ones?”

Intuitively, there is the following
tradeoff: the higher the number of
local-state functions, which enjoy a
smaller delay due to 1) lack of competi-
tion at container level and 2) the local
availability of the state, the lower the
containers available for shared used
by the remote-state clients, which
will suffer from increasing scarcity of
resources. The tradeoff is shown in a
quantitative manner in Figure 3, which
plots the average latency (considering
both the local-state and the remote-

state functions, weighted on their
respective cardinalities) as the num-
ber of local-state containers increases:
after an initial period where dedicat-
ing containers to local-state functions
is beneficial, a minimum is reached
after which the average delay increases
again sharply until the system be -
comes quickly unstable, that is, the
service queues grow indefinitely. Such
a behavior happens irrespective of
the number of clients but is more pro-
nounced with a higher population. The
results strongly suggest two key prop-
erties. First, a dynamic management
allowing to switch between local- and
remote-state functions can lead to very
significant performance advantages
over static configurations and config-
uring the system at the optimal oper-
ating point is fundamental. Second,
the optimal operating point varies sig-
nificantly as a function of the involved
parameters (number of clients, in this
specific example), and thus trivial opti-
mization approaches may not be suf-
ficient. Both properties indicate that
the role of an orchestrator taking non-
trivial runtime decisions is crucial to
achieving optimal performance.

In the second scenario, we consider
the case of application-triggered transi-
tions (as in the top of Figure 2): the cli-
ent applications decide by themselves
whether they would prefer their func-
tions to be served local state or they
can accept being treated as remote
state with no penalty for the user. We
model the transitions between the
need of being served in a local- versus
remote-state manner as a two-state
Markov chain, with different combi-
nations of the transition probabilities
such that the percentage of time a cli-
ent application requests its function
to be served as local state is 20%, 30%,
and 40%. We then asked ourselves the

DIGITAL TWINS

60 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

following question, again from the
point of view of the service provider,
“Given a number of clients, how many
containers should be provisioned to
make sure that the system is stable
(that is, buffers do not grow indefi-
nitely) and the probability that a given
client requesting its function to be
local state is treated as remote state

instead (due to a shortage of contain-
ers) is small enough (for example, less
than 1%)?”

The answer is plotted in Figure 4 for
a variable number of clients. The plot
shows the minimum number of con-
tainers that are required to match the
service provider conditions per client.
For instance, with 10 clients and for

client applications requesting local
state 20% of the time, the plot tells us
that we need at least 0.7 containers/cli-
ent, that is, 7 containers. These results
can thus be used to provision the num-
ber of containers, in accordance with
the service level agreements and other
system constraints. It is interesting
to note that, as the number of clients
increases, all of the curves stabilize
around constant values (20%: 0.47;
30%: 0.55; 40%: 0.64), which depend
on the transition rates of the applica-
tions between local and remote states
as well as the other load character-
istics. Therefore, such an analysis,
extended to take into account more
realistic conditions and the real char-
acteristics of the target deployment,
could provide simple but precious
rules for the provisioning of a state-
ful FaaS system at the edge (in this
scenario, for example with 20% local
state, the rule would be: make sure
that the number of containers is at
least half the number of clients).

USE CASES
Our vision of FaaS for edge computing
can empower emerging use cases in
a resource-efficient and performing
way. The applications that most bene-
fit from our solution are stateful ones
having requirements that dynamically
change over time. When the appli-
cation has strict requirements (for
example, latency), maintaining the
state locally should be preferred. How-
ever, this requires the container to be a
dedicated and long-running resource,
resulting in a nonnegligible cost. As
a result, when application require-
ments are looser, it may be more con-
venient to access a remote (for exam-
ple, cloud-hosted) state and let more
users share the same container. This
second approach is more resource- and

FIGURE 4. The minimum number of containers per client required to guarantee that no
more than 1% of the functions requesting to be served as local state are served instead as
remote state, with increasing number of clients. We also varied the percentage of time a
function requests to be served as local state (20%, 30%, and 40%).

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

M
in

im
um

 N
um

be
r

of
C

on
ta

in
er

s
N

ee
de

d
P

er
 C

lie
nt

Number of Clients

Local State 20%
Local State 30%
Local State 40%

FIGURE 3. The average latency versus number of containers assigned to local-state func-
tions, for 50, 70, 90, and 110 clients. The arrows point to the minimum of each curve.

 1.5

 2

 2.5

 3

 3.5

 4

 0 5 10 15 20 25 30 35 40

A
ve

ra
ge

 L
at

en
cy

 (
s)

Number of Local-State Containers

50 Clients
70 Clients
90 Clients
110 Clients

 S E P T E M B E R 2 0 2 2 61

cost-efficient but degrades perfor-
mance due to high latency, queuing,
and increased network traffic. In what
follows, we briefly describe some use
cases that present these dynamic char-
acteristics and may therefore take
advantage of our idea.

Smart vehicles
Autonomous vehicles and advanced
driver-assistance systems (ADAS) are
gaining momentum as a way to enhance
safety and reduce traffic congestion.
Our use case takes inspiration from
Wachenfeld et al.13 and is depicted in
Figure 5. Let us suppose that a driver
takes her blue car to travel back home
from the office, and that the car uses
FaaS with a function that is in charge
of assisting the driver. During regu-
lar driving, ADAS limits to speed con-
trol and steering of the vehicle, which

have loose latency and throughput
requirements—1,000 ms and 0.2 Mb/s,
respectively14—and the function runs as
remote-state λk. As shown in Figure 5(a),
the first invocation of the function
is forwarded to a container running
on edge node 1 (step 1). The invocation
is queued because the container has
been previously invoked by the yel-
low car (step 2). When the blue car can
be served, the λk container retrieves
the session state from a remote storage
(steps 3 and 4), computes the response
(step 5), forwards it to the user’s car (step
6), and updates the remote storage with
the new session state (step 7). In step 8,
λk is again invoked. However, this time,
a container running on edge node 2 is
invoked. As illustrated, the λk container
has to access the remote storage again to
read and write the session state. When
the user reaches home, as illustrated

in Figure 5(b), the function enters the
autonomous parking routines, which
have tighter requirements—10 ms and
100 Mb/s, respectively.14 As a result, the
function changes from remote state to
local state: as the logic is invoked in step
1, the session state is retrieved from the
remote storage to instantiate the func-
tion as a local-state container k

ciλ , and all
of the next invocations of the function
are forwarded to the same instance and
do not need any access to the remote
storage (for example, steps 6–8).

Smart factory
This use case is based on Kohler15
and Cesen et al.16 In a smart factory, a
robotic arm periodically sends infor-
mation on its operation (for example,
positioning, temperature of the CPU,
temperature of the case) to a monitor-
ing service. Under normal conditions,

FIGURE 5. (a) Remote-state containers run a regular driving logic. (b) A local-state container runs an autonomous parking logic.

C
lo

ud
E

dg
e

D
ev

ic
e

C
lo

ud
E

dg
e

D
ev

ic
e1

2

3 4

5

6

7

8

9

10

11

Edge Node 1 Edge Node 2 Edge Node 3

12

13

1, 6

2 3

4, 7

5, 8

λk

λk λk
ci

(a) (b)

DIGITAL TWINS

62 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

the monitoring service can be a remote-
state function invoked on demand.
This allows more robotic arms in the
manufacturing plant to share the same
container, thus saving resources. How-
ever, when the monitoring service pre-
dicts an abnormal functioning, the
sampling frequency at the robotic arm
increases, and the monitoring service is
deployed as a local-state container ded-
icated to the malfunctioning arm. This
is indeed necessary for prompt reac-
tions, for example, emergency stops,
that avoid damages to the arm and
people in the vicinity. We nonetheless

highlight that the remaining (faultless)
robotic arms can continue to invoke
the monitoring service using (shared)
remote- state containers. This use case
as well as the previous one shows how
our approach could meet dynamically
changing requirements of applications,
while providing resource efficiency. For
instance, recalling insights from the
previous section, the service provider
can provision a total number of con-
tainers that is lower than the number of
robotic arms and still meet the dynamic
requirements of each of them.

RELATED WORK
Some scientific papers have addressed
already the problem of state handling

in FaaS. In Baresi and Mendonça,17
the authors present a prototype im -
plementation of a FaaS platform for
edge computing based on Apache
OpenWhisk. They propose local-state
functions, such that each instance
keeps its state locally and is associ-
ated with a unique session token that
distinguishes it from other instances.
In Rausch et al.,18 authors propose
Skippy, a container scheduling sys-
tem that optimizes the placement of
remote-state functions in the cloud-
edge continuum based on (poten-
tially) conflicting aspects such as 1)

location of edge storage nodes that
are accessed by functions; 2) location
of container base image registries; 3)
hardware capabilities of edge nodes;
and 4) location of node (either edge
or cloud). Cloudburst19 is a solution
designed for cloud data centers, with
the main goal of improving perfor-
mance of storage access by remote-
state functions. Authors assume a
composition of functions that share
a state and make up a complex appli-
cation. A centralized key-value store
is shared among the functions. How-
ever, accessing this store involves
high latency. Therefore, Cloudburst
introduces a data cache on each com-
pute node, which is accessible by all

and only the function instances run-
ning on that node. These works show
that there is a growing interest on the
topic of stateful functions in FaaS, but
none of them have considered that
a single function could dynamically
adapt its nature, remote state or local
state, depending on the environment,
which is our key-value proposition.

In this article, we have considered
the execution of stateful functions
at the edge, which is an emerg-

ing necessity especially for real-time
IoT applications. We have defined a
generic model where functions can
execute either in a stateful container
dedicated to the given application
instance (local-state functions), or in
a pool of stateless containers with the
need to access the state of the appli-
cation instance in a remote facil-
ity (remote-state functions). We have
illustrated two example use cases, that
is, smart vehicles and smart factory,
to show that the system under study
has potential impact on applications
of high economic and social impact.
Using a simple model, we have then
shown that there are interesting per-
formance tradeoffs, in terms of, for
example, the application latency and
the amount of resources used.

Our contribution is merely intended
to raise awareness on the potential
of unleashing dependence from the
state at the design/development stage.
Such an approach shows significant
potential in terms of performance
improvements over static designs and
opens several research challenges on
how to optimize the system operation
(maximizing clients’ revenue under
constrained resources or minimiz-
ing the system costs under minimum
target application performance?) by

OUR CONTRIBUTION IS MERELY
INTENDED TO RAISE AWARENESS

ON THE POTENTIAL OF UNLEASHING
DEPENDENCE FROM THE STATE AT THE

DESIGN/DEVELOPMENT STAGE.

 S E P T E M B E R 2 0 2 2 63

executing the remote-state local-
state transition depending on the
internal status of the application (tra-
ining versus inference for a continual
learning machine learning applica-
tion, regular operation versus alarm
condition for a monitoring system,
and so on) and the edge runtime envi-
ronment (load of edge nodes and their
amount of memory/storage available;
instantaneous network traffic in the
edge; amount of outbound traffic;
function response times; and so on).

ACKNOWLEDGMENTS
This work was partially supported by
the European Commission (Horizon
2020) in the framework of the project
“Multimodal Extreme Scale Data Ana-
lytics for Smart Cities Environments
(MARVEL)” under Grant Agreement
no. 957337, and by the Italian Ministry
of Education and Research (MIUR) in
the framework of the CrossLab project
(Departments of Excellence).

REFERENCES
1. E. van Eyk et al., “The SPEC-RG ref-

erence architecture for FaaS: From
microservices and containers to
serverless platforms,” IEEE Internet
Comput., vol. 23, no. 6, pp. 7–18, Nov.
2019, doi: 10.1109/MIC.2019.2952061.

2. S. Eismann et al., “The state of
serverless applications: Collection,
characterization, and community
consensus,” IEEE Trans. Softw. Eng.,
early access, 2021, doi: 10.1109/
TSE.2021.3113940.

3. V. Yussupov, J. Soldani, U. Breiten-
bücher, A. Brogi, and F. Leymann,
“FaaSten your decisions: A classi-
fication framework and technol-
ogy review of function-as-a-service
platforms,” J. Syst. Softw., vol. 175,
p. 110906, May 2021, doi: 10.1016/j.
jss.2021.110906.

4. R. Xie, Q. Tang, S. Qiao, H. Zhu, F. R.
Yu, and T. Huang, “When serverless
computing meets edge computing:
Architecture, challenges, and open
issues,” IEEE Wireless Commun., vol.
28, no. 5, pp. 126–133, Jul. 2021, doi:
10.1109/MWC.001.2000466.

5. W. Z. Khan, E. Ahmed, S. Hakak,
I. Yaqoob, and A. Ahmed, “Edge
computing: A survey,” Future
Generation Comput. Syst., vol. 97,
pp. 219–235, Aug. 2019, doi: 10.1016/j.
future.2019.02.050.

6. S. Misra and S. Bera, “Soft-VAN:
Mobility-aware task offloading in
software-defined vehicular net-
work,” IEEE Trans. Veh. Technol., vol.
69, no. 2, pp. 2071–2078, Feb. 2020,
doi: 10.1109/TVT.2019.2958740.

7. M. S. Aslanpour et al., “Server-
less edge computing: Vision
and challenges,” in Proc. Aus-
tralasian Symp. Parallel Distrib.

Comput. (AusPDC 2021), 2021, doi:
10.1145/3437378.3444367.

8. P. G. Lopez, A. Slominski, M. Beh-
rendt, and B. Metzler, “Serverless
predictions: 2021–2030,” 2021.
[Online]. Available: http://arxiv.org/
abs/2104.03075

9. “Entity functions,” Microsoft, Dec.
2019. Accessed: Jun. 24, 2021. [Online].
Available: https://docs.microsoft.
com/en-us/azure/azure-functions/
durable/durable-functions-entities?
tabs=csharp

10. “Durable objects,” Cloudfare, Sep.
2020. Accessed: Jun. 24, 2021. [Online].
Available: https://developers.
cloudflare.com/workers/
runtime-apis/durable-objects

11. “Run Lambda functions on the AWS
IoT Greengrass core,” Amazon,
Mar. 2019. Accessed: Jun. 24, 2021.
[Online]. Available: https://docs.
aws.amazon.com/greengrass/v1/

ABOUT THE AUTHORS

CARLO PULIAFITO is a research fellow at the University of Pisa, Pisa, 56122,
Italy. His research interests include edge computing and the Internet of Things.
Puliafito received a Ph.D. in smart computing jointly from the University of Flor-
ence and the University of Pisa. Contact him at carlo.puliafito@ing.unipi.it.

CLAUDIO CICCONETTI is a researcher at IIT-CNR, Pisa, 56124, Italy. His
research interests include serverless edge computing and Quantum Internet
architecture and protocols. Cicconetti received a Ph.D. in information engineer-
ing from the University of Pisa. Contact him at c.cicconetti@iit.cnr.it.

MARCO CONTI is the director of IIT-CNR, Pisa, 56124, Italy. His research inter-
ests include design, modeling, and performance evaluation of computer and
communications systems, and their use for decentralized solutions for self-or-
ganizing networks. Contact him at m.conti@iit.cnr.it.

ENZO MINGOZZI is a full professor at the University of Pisa, Pisa, 56122, Italy. His
research interests include resource optimization in wireless and wired networks,
mobile edge/fog computing and the Internet of Things. Mingozzi received a Ph.D.
in computer systems engineering from the University of Pisa. Contact him at enzo.
mingozzi@unipi.it.

ANDREA PASSARELLA is a research director at IIT-CNR, Pisa, 56124, Italy. His
research interests include content-centric networks, the Internet of People,
and explainable artificial intelligence. Passarella received a Ph.D. in information
engineering from the University of Pisa. Contact him at a.passarella@iit.cnr.it.

DIGITAL TWINS

64 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

developerguide/lambda-functions.
html#lambda-lifecycle

12. C. Cicconetti, M. Conti, and A. Pas-
sarella, “A decentralized framework
for serverless edge computing in
the Internet of Things,” IEEE Trans.
Netw. Service Manage., vol. 18, no. 2,
pp. 2166–2180, 2020, doi: 10.1109/
TNSM.2020.3023305.

13. W. Wachenfeld et al., “Use cases for
autonomous driving,” in Autono-
mous Driving, M. Maurer, J. C. Jerdes,
B. Lenz, and H. Winner, Eds. Berlin,
Germany: Springer-Verlag, May 2016,
ch. 2, pp. 9–37.

14. “5G – Opening up new business
opportunities,” Huawei, Tech.
Rep., Aug. 2016. Accessed: Jun. 3,

2021. [Online]. Available: https://
www.huawei.com/minisite/
hwmbbf 16/insights/5g _opening
_up_new_business_opportuni
ties_en.pdf

15. M. Kohler, “Industry 4.0: Predictive
maintenance use cases in detail,”
Bosch, Sep. 2020. Accessed: Jun. 3,
2021. [Online]. Available: https://
blog.bosch-si.com/industry40/
industry-4-0-predictive-maintenance
-use-cases-in-detail/

16. F. E. R. Cesen, L. Csikor, C. Recalde,
C. E. Rothenberg, and G. Pongracz,
“Towards low latency industrial
robot control in programmable data
planes,” in Proc. IEEE 6th Conf. Netw.
Softw. (NetSoft), Jul. 2020, pp. 165–169.

17. L. Baresi and D. Filgueira Mendonça,
“Towards a serverless platform for
edge computing,” in Proc. IEEE Int.
Conf. Fog Comput. (ICFC), Jun. 2019,
pp. 1–10.

18. T. Rausch, A. Rashed, and
S. Dustdar, “Optimized container
scheduling for data-intensive
 serverless edge computing,”
Future Generation Comput. Syst.,
vol. 114, pp. 259–271, Jan. 2021,
doi: 10.1016/j.future.2020.
07.017.

19. V. Sreekanti et al., “Cloudburst:
Stateful functions-as-a-service,”
in Proc. ACM VLDB Endow., Jul.
2020, pp. 2438–2452, doi: 10.14778/
3407790.3407836.

Computing in Science
& Engineering
The computational and data-centric problems faced
by scientists and engineers transcend disciplines.
There is a need to share knowledge of algorithms,
software, and architectures, and to transmit lessons-
learned to a broad scientific audience. Computing in
Science & Engineering (CiSE) is a cross-disciplinary,
international publication that meets this need
by presenting contributions of high interest and
educational value from a variety of fields, including
physics, biology, chemistry, and astronomy. CiSE
emphasizes innovative applications in cutting-edge
techniques. CiSE publishes peer-reviewed research
articles, as well as departments spanning news and
analyses, topical reviews, tutorials, case studies, and
more.

Read CiSE today! www.computer.org/cise

Digital Object Identifier 10.1109/MC.2022.3195415

Open Access funding provided by ‘Universita degli Studi di Pisa’ within the CRUI CARE Agreement

