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In function as a service (FaaS), an application is decomposed 

into functions. We propose to generalize FaaS by allowing 

functions to alternate between remote-state and 

local-state phases, depending on internal and external 

conditions, and dedicating a container with persistent 

memory to functions when in a local-state phase.

Monolithic application design has shown its 
downsides in terms of scalability, maintain-
ability, and agility. The current trend is 
to decompose complex applications into 

small pieces of code called microservices, each focusing 
on a specific aspect of the overall application. Micros-
ervices are typically instantiated within lightweight 
environments, for example, containers. Function as a 
service (FaaS) leverages microservices (which in FaaS 
are called functions) as a starting point to build enhanced 
cloud-computing systems.1 FaaS, indeed, abstracts the 
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operational logic away from function 
developers, such that they do not need to 
care about function deployment, scaling, 
and lifecycle management. Besides, func-
tions run according to an event-based 
pattern, and users only pay for what they 
actually use, with fine granularity.

In this context, consecutive invoca-
tions of a function from the same client 
can be independent from one another 
or, more often, can form a session with 
an associated state that must persist 
across multiple invocations until the 
session ends.2 With traditional FaaS 
for cloud-computing systems, func-
tions typically need to remotely access 
this state at each invocation, via an 
external service such as a database: 
we refer to these functions as remote-
state functions. This is depicted in 
the top-left image of Figure 1, whose 
notation will be explained in the next 
section. Following this approach, dif-
ferent instances of the same remote- 
state function are equivalent to one 
another, as they do not retain any 
state locally (state is download at each 
invocation, updated, and uploaded 
again to the external service). There-
fore, FaaS providers can optimize their 
infrastructure, transparently to the 
users, as 1) different users can share 
the same function instance, 2) consec-
utive invocations from the same user 
can be forwarded to different function 
instances, and 3) resources allocated 
to inactive instances can be freed 
after a short period of idle time. The 
first company to propose a FaaS plat-
form was Amazon, with AWS Lambda. 
Since then, all of the top cloud vendors 
announced their FaaS solutions, for 
example Microsoft Azure Functions, 
Google Cloud Run, IBM Cloud Func-
tions, and Cloudflare Workers. Open 
source platforms, to be executed on 
private compute infrastructures, are 

also available, such as Apache Open-
Whisk, OpenFaaS, Kubeless, and Kna-
tive. Further information on the most 
prom i nent FaaS plat for ms ca n be 
found in Yussupov et al.3

Although it was initially designed 
for cloud environments, FaaS is gradu-
ally drawing interest as a viable option 
for edge computing as well.4 Edge com-
puting extends the cloud toward the 
edge of the network, hosting cloud-
like services in close proximity to the 
end users, for example, on cellular 
base stations.5 This proximity leads 
to many advantages, the most import-
ant of which is the reduced latency, 
which is essential to a vast number of 
emerging applications, such as real-
time Internet of Things (IoT), mobile 
virtual reality/augmented reality, and 
connected vehicle applications.6,7 Big 
IT companies have started investing 
in FaaS for edge computing, extending 
their FaaS platforms toward the edge 
of the network, for example Amazon 
IoT Greengrass, Microsoft Azure IoT 
Edge, and IBM Edge Functions.

Notwithstanding these recent efforts 
toward FaaS for edge computing, 
there is still hesitation to widely 
adopt this novel paradigm. This is 
due to the cloud-oriented design of 
FaaS, which does not always suit the 
distinguishing characteristics of 
edge applications. The most import-
ant design assumption of FaaS that is 
violated by its expansion toward the 
edge is that functions access a remote 
state. In cloud-only environments, 
this approach affects performance 
only slightly because both function 
instances and session state are hosted 
by servers that are physically located 
in the same data center. However, 
when function instances run at the 
edge (as shown in the center-left image 
of Figure 1), accessing a remote state 

may cause significant service latency 
and network traffic, at risk of nullify-
ing edge computing advantages.

To overcome this limitation, local- 
state functions are coming into the 
picture.8 As depicted in the bottom-left 
image of Figure 1, these functions keep 
the state locally. On the one hand, local- 
state functions avoid the delays and 
traffic caused by accessing state from 
an external storage service. However, 
on the other hand, they do not experi-
ence the same cost-efficiency and flexi-
bility of remote-state functions. Local- 
state instances are indeed not equiva-
lent to one another, as each is dedicated 
to a specific user or application ses-
sion, for which it provides data access 
in a private and persistent manner. 
Besides, local-state function instances 
are not triggered on demand; instead, 
they are long-running to retain state 
across invocations. The following are 
examples of local-state functions in 
commercial FaaS platforms: 1) Micro-
soft entity functions,9 2) Cloudflare 
durable objects,10 and 3) Amazon long-
lived functions.11

Today, the choice on whether a given 
function should follow a remote-state  
versus local-state pattern is made at 
design time and migrating from one 
pattern to another in production can 
be very expensive, since it involves 
changing the set of employed services 
[adapting to new application program-
ming interfaces (APIs), switching 
contracts, and using a different soft-
ware development kit (SDK)]. What is 
worse, during development the pro-
grammer may not even know whether 
the logic of the code they are imple-
menting will be executed at the edge 
or in the cloud, so making an informed 
choice could be just impossible.

In this work, we advocate that such 
a dichotomy between remote state and 
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local state should not exist but rather 
function in a FaaS environment and 
should be able to adapt dynamically, 
that is, changing its behavior from 
remote state to local state and vice 
versa, depending on both internal and 
external factors. This approach would 
relieve the developer from the risk 
of making an uninformed decision. 
Besides, it would let the FaaS pro-
vider carry out runtime optimizations, 
for example, to increase resource 
efficiency. Finally, it would benefit 
applications with requirements that 
dynamically change over time.

We first present our proposal at 
a high level. Then, we report initial 
results exploring the main tradeoffs 
involved in this approach. Next, we 

describe two practical use cases of 
business interest that can benefit from 
our idea. We then report the essential 
related work in the field. Finally, we 
conclude the article and outline the 
further research directions originat-
ing from our proposition.

STATEFUL FaaS AT  
THE EDGE
We illustrate our proposal within a 
system model that abstracts the spe-
cific and technical details of a real 
edge system, which consists of the fol-
lowing elements:

 › clients, wishing to invoke 
functions λi of a given type 
(or application) i: consecutive 

invocations of a function from 
the same client are called a 
session, which has an associated 
state that is expected to persist 
until the session ends

 › brokers, representing entry 
points of the system for the 
clients, that is, the latter invoke 
their functions on the bro-
ker, which then delegates the 
actual execution of the function 
to a worker (that is, a con-
tainer) in the edge network of 
matching type

 › workers, handling function 
invocations and hosted by con-
tainers: remote-state containers 
are instances of remote-state 
functions, and therefore rely 

FIGURE 1. Remote-state versus local-state FaaS invocations at the edge.
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on an external service, possibly 
located in the cloud, to access 
the session state. On the other 
hand, local-state functions get 
instantiated in local-state con-
tainers, which are associated to 
a specific session and keep any 
state required locally.

Edge nodes may host any com-
bination of workers and brokers. In 
this work, we indicate the remote-
state function of type k as λk, whereas 
local-state function of type k is kλ  The 
considered system works in mixed 
remote-state + local-state conditions. 
This can be true both from the point 
of view of different functions of type 
h k≠  and for the same function k. 
The right image of Figure 1 depicts an 
example of such a mixed behavior. 
Function λk is invoked by four differ-
ent clients c c, ,1 4… . For clients c1 and 
c2, λk is instantiated in remote-state 
containers. These instances of λk are 
indistinguishable from one another, 
and in fact can be scaled up and down 
(also to zero instances) by the under-
lying container orchestration mecha-
nism. The brokers need only to know 
the locations of all (or a subset) of the 
containers and can then implement all 
sorts of decentralized load balancing 
as discussed in Cicconetti et al.12 For 
instance, the invocation from c1 is for-
warded to the λk instance hosted on e1. 
However, the next invocation could be 
equally forwarded to the instance on 
e2. This gives the system flexibility in 
resource scheduling. Yet, this solution 
has two main disadvantages: 1) the 
response time also includes the time 
required for the function instance to 
synchronize the state on the exter-
nal service and 2) network traffic is 
generated as a consequence of state 
synchronization.

On the other hand, clients c3 and c4 
use local-state containers k

c3λ  and k
c4λ ,  

respectively. Local-state containers 
are more bandwidth-efficient and do 
not incur in the same latency asso-
ciated to remote-state containers, as 
explained earlier. However, they do 
not enjoy the same orchestration flexi-
bility, either. Rather than maintaining 
a pool of shared containers sufficient 
to serve the current number of active 
clients, one local-state instance must 
exist in the edge network for each 
session. For illustration purposes, in 
the example we assume without loss 
of generality that every client has 
exactly one session. Therefore, when a 
broker receives a function invocation, 
it must forward it to the container spe-
cific to that client. Also, if the platform 
wants to move a local-state container 
to another edge node, a live migration 
is required to transfer the state as well 
as the image: this has a cost in terms 
of network traffic and creates a period 
while the container is unavailable 
(that is, downtime).

The example shows the limitations 
of a system where functions are stati-
cally instantiated as either remote state 
or local state. Any of the two patterns 
presents some drawbacks, indeed. The 
main contribution of this work is pro-
posing a paradigm where functions are 
able to adapt dynamically to unpredict-
ably changing conditions, by chang-
ing behavior from remote state to local 
state and vice versa.

To support this paradigm, the most 
natural way would be that the devel-
oper of a function λk provides two ver-
sions (that is, container images) with 
the same application logic: a remote- 
state version λk and a local-state ver-
sion kλ . Besides, the developer of the 
function is expected to implement 
some means to download the state 

locally from the external service in use 
and to upload a local state to the exter-
nal service intended to be used (which 
is true also in traditional FaaS sys-
tems). The details on the application 
internals, such as the programming 
language it uses or which external ser-
vices are used (and how), do not need to 
be disclosed to the FaaS platform.

We believe that this dynamic tran-
sition from remote state to local state, 
and vice versa, may be useful (and 
therefore be triggered) for two main 
purposes. One is to allow the service 
provider to perform runtime optimi-
zations, for example, increase resource 
efficiency. We refer to this type of tran-
sition as network-triggered transition, as 
it is activated by the platform. Alterna-
tively, another purpose is to accommo-
date applications having requirements 
that dynamically change over time. In 
this case, we talk about application-trig-
gered transition, as it is the application 
to request it.

Fig u re 2 present s t he possible 
sequence diagrams of the transitions 
of a worker. Specifically, transitions 
to local state are shown on the left, 
whereas transitions to remote state are 
depicted on the right. In a similar way, 
application-triggered transitions are 
at the top in figure, while network-trig-
gered transitions are at the bottom. As 
shown, application-triggered and net-
work-triggered transitions work in the 
same way, apart from the initial trig-
gering event, which is different in the 
two cases.

Let us start with a transition from 
remote state to local-state behavior. 
Initially, client c uses remote-state 
instances of function λk. Then, after 
checking available resources, the sys-
tem orchestrator sets up a local-state 
container k

cλ  and assigns it to client 
c. When k

cλ  starts, it first downloads 
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the session state of client c from the 
external service (where it has been 
previously uploaded by the remote-
state instance, as per its normal work-
ing) and stores it locally. It then noti-
fies the system orchestrator, which 
therefore informs the broker to update 
the record for client c. As a result, any 
future function invocation of client c 
is forwarded to k

cλ  by the broker. The 
remote-state instance of function λk 
that was used by c in its last invocation 
can be either deleted or remains active 
for other clients.

For what concerns transition to 
remote state (see Figure 2; right), the 
starting point is that any invoca-
tion from client c is forwarded by the 
broker to the dedicated instance k

cλ . 
When the triggering event for the tran-
sition is fired, the system orchestra-
tor requires k

cλ  to upload the session 
state to the external service. When 
this is done, the system orchestrator 
might decide to create a new instance 
of remote-state function λk or use the 
ones that already exist, if any. The sys-
tem orchestrator then tears down k

cλ   
and notifies the broker to update the 
record for client c. Any future invoca-
tion from c can be forwarded by the 
broker to any remote-state instance 
of function λk. In the next section we 
show, with the help of a simple analyt-
ical model, that the benefits of break-
ing the dichotomy remote state/local 
state can be significant.

EVALUATION
In this section, we report the results 
obtained with a simple analytical 
model, with the purpose of showing 
the significant advantages that can 
be expected by applying the proposed 
approach and highlighting key open 
research directions accordingly. We 
consider two scenarios. In the first 

scenario, a number of independent 
clients, with same characteristics, 
issue function invocations toward 
a pool of identical containers at the 
edge. To keep the model simple, both 
the intertime between consecutive 
invocations and the function execu-
tion time are distributed exponen-
tially: when a function is treated as 
local state, then its dedicated con-
tainer takes on average 1 s to exe-
cute the function; on the other hand, 
remote-state functions require on 
average 3 s to be dispatched by the 
container, because of the overhead to 
copy back and forth the application 
state as discussed previously.

We assume that the number of con-
tainers provisioned is fixed and equal 
to 40 and that clients perform 4.5 func-
tion calls per min. Even in this simple 
scenario, the service provider has one 
degree of freedom that it can use to 
optimize the system performance: 
by employing the network-triggered 
transition pattern (as in the bottom of 
Figure 2) it can force some of the func-
tions to be treated as either remote 
state or local state. A question the  
service provider might ask is, “How 
many containers should be dedicated 
to local-state functions at any time, 
provided that there are not enough for 
all of the active ones?”

Intuitively, there is the following 
tradeoff: the higher the number of 
local-state functions, which enjoy a 
smaller delay due to 1) lack of competi-
tion at container level and 2) the local 
availability of the state, the lower the 
containers available for shared used 
by the remote-state clients, which 
will suffer from increasing scarcity of 
resources. The tradeoff is shown in a 
quantitative manner in Figure 3, which 
plots the average latency (considering 
both the local-state and the remote- 

state functions, weighted on their 
respective cardinalities) as the num-
ber of local-state containers increases: 
after an initial period where dedicat-
ing containers to local-state functions 
is beneficial, a minimum is reached 
after which the average delay increases 
again sharply until the system be -
comes quickly unstable, that is, the 
service queues grow indefinitely. Such 
a behavior happens irrespective of 
the number of clients but is more pro-
nounced with a higher population. The 
results strongly suggest two key prop-
erties. First, a dynamic management 
allowing to switch between local- and 
remote-state functions can lead to very 
significant performance advantages 
over static configurations and config-
uring the system at the optimal oper-
ating point is fundamental. Second, 
the optimal operating point varies sig-
nificantly as a function of the involved 
parameters (number of clients, in this 
specific example), and thus trivial opti-
mization approaches may not be suf-
ficient. Both properties indicate that 
the role of an orchestrator taking non-
trivial runtime decisions is crucial to 
achieving optimal performance.

In the second scenario, we consider 
the case of application-triggered transi-
tions (as in the top of Figure 2): the cli-
ent applications decide by themselves 
whether they would prefer their func-
tions to be served local state or they 
can accept being treated as remote 
state with no penalty for the user. We 
model the transitions between the 
need of being served in a local- versus 
remote-state manner as a two-state 
Markov chain, with different combi-
nations of the transition probabilities 
such that the percentage of time a cli-
ent application requests its function 
to be served as local state is 20%, 30%, 
and 40%. We then asked ourselves the 



DIGITAL TWINS

60 C O M P U T E R    W W W . C O M P U T E R . O R G / C O M P U T E R

following question, again from the 
point of view of the service provider, 
“Given a number of clients, how many 
containers should be provisioned to 
make sure that the system is stable 
(that is, buffers do not grow indefi-
nitely) and the probability that a given 
client requesting its function to be 
local state is treated as remote state 

instead (due to a shortage of contain-
ers) is small enough (for example, less 
than 1%)?”

The answer is plotted in Figure 4 for 
a variable number of clients. The plot 
shows the minimum number of con-
tainers that are required to match the 
service provider conditions per client. 
For instance, with 10 clients and for 

client applications requesting local 
state 20% of the time, the plot tells us 
that we need at least 0.7 containers/cli-
ent, that is, 7 containers. These results 
can thus be used to provision the num-
ber of containers, in accordance with 
the service level agreements and other 
system constraints. It is interesting 
to note that, as the number of clients 
increases, all of the curves stabilize 
around constant values (20%: 0.47; 
30%: 0.55; 40%: 0.64), which depend 
on the transition rates of the applica-
tions between local and remote states 
as well as the other load character-
istics. Therefore, such an analysis, 
extended to take into account more 
realistic conditions and the real char-
acteristics of the target deployment, 
could provide simple but precious 
rules for the provisioning of a state-
ful FaaS system at the edge (in this 
scenario, for example with 20% local 
state, the rule would be: make sure 
that the number of containers is at 
least half the number of clients).

USE CASES
Our vision of FaaS for edge computing 
can empower emerging use cases in 
a resource-efficient and performing 
way. The applications that most bene-
fit from our solution are stateful ones 
having requirements that dynamically 
change over time. When the appli-
cation has strict requirements (for 
example, latency), maintaining the 
state locally should be preferred. How-
ever, this requires the container to be a 
dedicated and long-running resource, 
resulting in a nonnegligible cost. As 
a result, when application require-
ments are looser, it may be more con-
venient to access a remote (for exam-
ple, cloud-hosted) state and let more 
users share the same container. This 
second approach is more resource- and 

FIGURE 4. The minimum number of containers per client required to guarantee that no 
more than 1% of the functions requesting to be served as local state are served instead as 
remote state, with increasing number of clients. We also varied the percentage of time a 
function requests to be served as local state (20%, 30%, and 40%).
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cost-efficient but degrades perfor-
mance due to high latency, queuing, 
and increased network traffic. In what 
follows, we briefly describe some use 
cases that present these dynamic char-
acteristics and may therefore take 
advantage of our idea.

Smart vehicles
Autonomous vehicles and advanced 
driver-assistance systems (ADAS) are 
gaining momentum as a way to enhance 
safety and reduce traffic congestion. 
Our use case takes inspiration from 
Wachenfeld et al.13 and is depicted in 
Figure 5. Let us suppose that a driver 
takes her blue car to travel back home 
from the office, and that the car uses 
FaaS with a function that is in charge 
of assisting the driver. During regu-
lar driving, ADAS limits to speed con-
trol and steering of the vehicle, which 

have loose latency and throughput 
requirements—1,000 ms and 0.2 Mb/s, 
respectively14—and the function runs as 
remote-state λk. As shown in Figure 5(a),  
the first invocation of the function 
is forwarded to a container running 
on edge node 1 (step 1). The invocation 
is queued because the container has 
been previously invoked by the yel-
low car (step 2). When the blue car can 
be served, the λk container retrieves 
the session state from a remote storage 
(steps 3 and 4), computes the response 
(step 5), forwards it to the user’s car (step 
6), and updates the remote storage with 
the new session state (step 7). In step 8, 
λk is again invoked. However, this time, 
a container running on edge node 2 is 
invoked. As illustrated, the λk container 
has to access the remote storage again to 
read and write the session state. When 
the user reaches home, as illustrated 

in Figure 5(b), the function enters the 
autonomous parking routines, which 
have tighter requirements—10 ms and 
100 Mb/s, respectively.14 As a result, the 
function changes from remote state to 
local state: as the logic is invoked in step 
1, the session state is retrieved from the 
remote storage to instantiate the func-
tion as a local-state container k

ciλ , and all 
of the next invocations of the function 
are forwarded to the same instance and 
do not need any access to the remote 
storage (for example, steps 6–8).

Smart factory
This use case is based on Kohler15 
and Cesen et al.16 In a smart factory, a 
robotic arm periodically sends infor-
mation on its operation (for example, 
positioning, temperature of the CPU, 
temperature of the case) to a monitor-
ing service. Under normal conditions, 

FIGURE 5. (a) Remote-state containers run a regular driving logic. (b) A local-state container runs an autonomous parking logic.
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the monitoring service can be a remote-
state function invoked on demand. 
This allows more robotic arms in the 
manufacturing plant to share the same 
container, thus saving resources. How-
ever, when the monitoring service pre-
dicts an abnormal functioning, the 
sampling frequency at the robotic arm 
increases, and the monitoring service is 
deployed as a local-state container ded-
icated to the malfunctioning arm. This 
is indeed necessary for prompt reac-
tions, for example, emergency stops, 
that avoid damages to the arm and 
people in the vicinity. We nonetheless 

highlight that the remaining (faultless) 
robotic arms can continue to invoke 
the monitoring service using (shared) 
remote- state containers. This use case 
as well as the previous one shows how 
our approach could meet dynamically 
changing requirements of applications, 
while providing resource efficiency. For 
instance, recalling insights from the 
previous section, the service provider 
can provision a total number of con-
tainers that is lower than the number of 
robotic arms and still meet the dynamic 
requirements of each of them.

RELATED WORK
Some scientific papers have addressed 
already the problem of state handling 

in FaaS. In Baresi and Mendonça,17 
the authors present a prototype im -
plementation of a FaaS platform for 
edge computing based on Apache 
OpenWhisk. They propose local-state 
functions, such that each instance 
keeps its state locally and is associ-
ated with a unique session token that 
distinguishes it from other instances. 
In Rausch et al.,18 authors propose 
Skippy, a container scheduling sys-
tem that optimizes the placement of 
remote-state functions in the cloud-
edge continuum based on (poten-
tially) conflicting aspects such as 1) 

location of edge storage nodes that 
are accessed by functions; 2) location 
of container base image registries; 3) 
hardware capabilities of edge nodes; 
and 4) location of node (either edge 
or cloud). Cloudburst19 is a solution 
designed for cloud data centers, with 
the main goal of improving perfor-
mance of storage access by remote- 
state functions. Authors assume a 
composition of functions that share 
a state and make up a complex appli-
cation. A centralized key-value store 
is shared among the functions. How-
ever, accessing this store involves 
high latency. Therefore, Cloudburst 
introduces a data cache on each com-
pute node, which is accessible by all 

and only the function instances run-
ning on that node. These works show 
that there is a growing interest on the 
topic of stateful functions in FaaS, but 
none of them have considered that 
a single function could dynamically 
adapt its nature, remote state or local 
state, depending on the environment, 
which is our key-value proposition.

In this article, we have considered 
the execution of stateful functions 
at the edge, which is an emerg-

ing necessity especially for real-time 
IoT applications. We have defined a 
generic model where functions can 
execute either in a stateful container 
dedicated to the given application 
instance (local-state functions), or in 
a pool of stateless containers with the 
need to access the state of the appli-
cation instance in a remote facil-
ity (remote-state functions). We have 
illustrated two example use cases, that 
is, smart vehicles and smart factory, 
to show that the system under study 
has potential impact on applications 
of high economic and social impact. 
Using a simple model, we have then 
shown that there are interesting per-
formance tradeoffs, in terms of, for 
example, the application latency and 
the amount of resources used.

Our contribution is merely intended 
to raise awareness on the potential 
of unleashing dependence from the 
state at the design/development stage. 
Such an approach shows significant 
potential in terms of performance 
improvements over static designs and 
opens several research challenges on 
how to optimize the system operation 
(maximizing clients’ revenue under 
constrained resources or minimiz-
ing the system costs under minimum 
target application performance?) by 

OUR CONTRIBUTION IS MERELY 
INTENDED TO RAISE AWARENESS 

ON THE POTENTIAL OF UNLEASHING 
DEPENDENCE FROM THE STATE AT THE 

DESIGN/DEVELOPMENT STAGE.
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executing the remote-state  local-
state transition depending on the 
internal status of the application (tra-
ining versus inference for a continual 
learning machine learning applica-
tion, regular operation versus alarm 
condition for a monitoring system, 
and so on) and the edge runtime envi-
ronment (load of edge nodes and their 
amount of memory/storage available; 
instantaneous network traffic in the 
edge; amount of outbound traffic; 
function response times; and so on).  
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