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Abstract: A D-strings is a degenerate string representing similar and aligned strings by collapsing common fragments
and highlighting variants. D-strings can represent a MSA or a pan-genome. In this paper we propose a new,
fast and exact method to align a string to a D-string. In recent years, aligning a sequence to a pangenome has
become a central problem in computational genomics and pangenomics. A fast and accurate solution to this
problem can serve as a toolkit to many crucial tasks such as read-correction, Multiple Sequences Alignment
(MSA), genome assemblies, and variant calling, just to name a few. An implementation of our tool is publicly
available on github at https://github.com/urbanslug/dsa.

1 Introduction

In recent years, aligning a sequence to a pangenome
has become a central problem in computational ge-
nomics and pangenomics (CPC, 2018). This problem
has often been addressed with the purpose of aligning
sequencing reads to a complex structure such as a
degenerate string or a more general graph structure
(E.Garrison et al., 2018; J.M.Eizenga et al., 2021;
C.A.Darby et al., 2020; M.Rautiainen et al., 2019;
M.Rautiainen and T.Marschall, 2020; H.Li et al.,
2020; E.Birmelé et al., 2012), and possibly assuming
the query string to be considerably shorter than the
pangenome (E.Garrison et al., 2018; J.M.Eizenga
et al., 2021; A.Cisłak et al., 2018; C.A.Darby et al.,
2020). As sequencing data is now offering longer se-
quences with high accuracy, the attention has recently
been moved towards the problem of aligning to a
graph-like structure a string which is approximately
as long. A fast and accurate solution to this problem
would serve as a toolkit to many crucial tasks such
as Multiple Sequences Alignment (MSA), genome
assembly, and variant calling, just to name a few. The
requirement of an alignment being at the same time
exact and accurate raises computational challenges:
current exact methods that perform alignments to
long strings would have a time complexity quadratic

a https://orcid.org/0000-0002-4858-2375
b https://orcid.org/0000-0003-3821-631X
c https://orcid.org/0000-0003-3915-7665

in the strings size.

Consider the following MSA of three closely-

related sequences
GCAATCGGGTATT
GCAATCGGGAATT
GCACGCTGGATTT

and its degenerate string (D-string) compact rep-
resentation T̂ = GCA[AT/CG]C [G/T]GG[TA/AA/AT]TT

A D-string (or D-text) T̂ contains both determinis-
tic (shown in bold) and non-deterministic (alternative
variants) segments. Formally, T̂ is a sequence of n
sets of strings where the ith set contains strings of the
same length ℓi (possibly = 1 in the deterministic case)
but this length can vary between different sets.
A great deal of research has been conducted in the
bioinformatics literature on a special case of D-strings
where all the alternative variants are single letters.
These are equivalent to a sequence written in the
IUPAC notation (IUPAC-IUB Commission on Bio-
chemical Nomenclature, 1970) to represent a posi-
tion in a DNA sequence that can possibly have mul-
tiple alternatives (H.Soldano et al., 1995; N.Pisanti
et al., 2005; N.Pisanti et al., 2009; K.Abrahamson,
1987; M.Crochemore et al., 2017; C.S.Iliopoulos and
J.Radoszewski, 2016). These are commonly used to
encode the consensus of a population of sequences
in a MSA (P.Peterlongo et al., 2008; CPC, 2018;
M.Alzamel et al., 2018; M.Alzamel et al., 2020;
P.Gawrychowski et al., 2020).

The more general notion of ED-strings (Elastic D-
string, where variants can have different sizes within



a degenerate position), and over them the short read
matching problem Elastic-Degenerate String Match-
ing (EDSM) problem has attracted some attention in
the combinatorial pattern matching community. Since
its introduction in 2017 (C.S.Iliopoulos et al., 2017),
a series of results have been published both for the ex-
act (R.Grossi et al., 2017; G.Bernardini et al., 2019;
K.Aoyama et al., 2018; G.Bernardini et al., 2022)
as well as for the approximate (G.Bernardini et al.,
2020; G.Bernardini et al., 2017; N.M.Mwaniki and
N.Pisanti, 2022) version of the problem. Even if they
are designed and optimised for short read matching,
some of the algorithms above would also work for
long reads, but failing to be efficient. In particular,
when rather than matching the task is finding an opti-
mal alignment (that is, computing the edit distance)
of a query sequence and the pangenome, then the
heuristic-free method of (G.Bernardini et al., 2020;
G.Bernardini et al., 2017) would require O(d2WG+
dN) time, where d is the computed edit distance, W
is the length of the query string, and N and G are the
total size and the total number of strings of the degen-
erate string.
In this paper we propose a new, fast and exact method
to align a string to a D-string, the latter possibly
representing an MSA or a pan-genome. Ours is a
base-level heuristic-free alignment method that al-
lows affine gap penalty score functions and the use
of arbitrary scores as well as weights. D-strings are
one out of many others possible pan-genome repre-
sentation (V.Carletti et al., 2019). Our algorithm ex-
ploits the assumption that the similarity the alignment
must detect is high enough to suitably adapt the sem-
inal idea of (E.W.Myers, 1986) to D-strings, combin-
ing at the same time partial order alignments (C.Lee
et al., 2002) and the wavefront paradigm (S.Marco-
Sola et al., 2021) managing to work with affine gap
penalty function to score gaps, which is a desirable
property when the target of the alignment is to ac-
count for INDELs variant events.

This paper is organised as follows: Section 2 gives
some preliminary definitions on D-strings and notions
of partial order and wavefront alignment, Section 3
describes our algorithm, and Section 4 the experimen-
tal validation of the resulting tool we realized.
The implementation of DSA is publicly avail-
able at https://github.com/urbanslug/dsa, and our
D-strings random generator can be found at
https://github.com/urbanslug/simed/.

2 Preliminary Notions

2.1 D-strings

A string X is a sequence of elements on an alphabet
Σ, where Σ is a non-empty finite set (of size |Σ|) of
letters. The set of all finite strings over an alphabet
Σ, including the empty string ε of length 0, is denoted
by Σ∗, while Σ+ denotes the set Σ∗ \ {ε}. The set of
all strings of length k > 0 over Σ is denoted by Σk.
For any string X , we denote by X [i, j] the substring
of X that starts at position i and ends at position j.
In particular, X [0, j] is the prefix1 of X that ends at
position j, and X [i, |X |] is the suffix of X that starts at
position i, where |X | denotes the length of X .

We define a Degenerate String (D-string) Ŝ =
Ŝ{1}Ŝ{2} . . . Ŝ{n} of length n over an alphabet Σ as
a finite sequence of n degenerate letters Ŝ{i}. Each
degenerate letter Ŝ{i} has width ℓi >0 and is a finite
non-empty set of |Ŝ{i}| strings of the same length ℓi
(i.e. Ŝ{i}[1], . . . , Ŝ{i}[|Ŝ{i}|] ∈ Σℓi ).

For any 1 ≤ i ≤ n, we remark that a degenerate
letter Ŝ{i} with |Ŝ{i}| = ℓi = 1 is just a simple letter
of Σ. Whenever this happens, we will say that i is a
solid position of Ŝ. We now define some parameters
that measure the degeneracy of a D-string.

The total size N and total width w(T̂ ) =W of a D-
string Ŝ are respectively defined as N = ∑

n
i=1 |Ŝ{i}| ·ℓi

and W = ∑
n
i=1 ℓi.

In our running example of D-string T̂ =
GCA[AT/CG]C[G/T]GG[TA/AA/AT]TT, ℓ4 = ℓ9 = 2
while all other ℓi’s are 1, and |Ŝ{4}| = |Ŝ{6}| = 2,
|Ŝ{9}| = 3 while all the other |Ŝ{i}|’s are 1; finally,
the solid positions of T̂ are 1,2,3,5,7,8,10,11.

A D-string of width W actually represents a set of
linear strings of length W , corresponding to all the
strings that can be read by making any choice at a
degenerate positions. Formally, given a D-string T̂
of width W , and a string T with |T | = W being any
string in such set, we say that T belongs to T̂ (T ∈ T̂ ).

For example, the strings GCACGCTGGAATT
and GCAATCTGGTATT are two of the twelve
strings that belong to the D-string T̂ =
GCA[AT/CG]C[G/T]GG[TA/AA/AT]TT.

The ith position Ŝ{i} (1≤ i≤n) of Ŝ should not be
confused with its ith width Ŝ[i] (1≤ i≤W ):

For any D-string Ŝ, its ith width (for 1 ≤ i ≤ W )
Ŝ[i] is the letter, or the set of alternative letters,
that can appear in T [i] for string T ∈ T̂ . For any
D-string Ŝ, we denote by Ŝ[i1, i2] the D-substring of

1We start from position 0 as we will need to consider
the empty prefix X [0,0] for the dynamic programming.



Ŝ that starts at width i1 and ends at width i2 with
1 ≤ i1 ≤ i2 ≤ W . We will also use the notation si for
both |Ŝ{i}| and |Ŝ[i]|.

For example, the D-string T̂ =
GCA[AT/CG]C[G/T]GG[TA/AA/AT]TT has length
n=11, size N= 20, and width W=13. We have that
at width, say, 3 there is a solid position A= Ŝ[3], and
at width 4 there is [A/C]=Ŝ[4]. The D-substring
Ŝ[3,7] is A[AT/CG]C[G/T]. We show below positions
and widths for the D-string C[AT/CG]C[G/T] having
length 4, width 5, and size 8.

D-string C [A T / C G] C [G / T]
width 1 2 3 2 3 4 5 5

position 1 2 3 4

2.2 Partial Order Alignment

The use of Partial Order (graphs) for sequence Align-
ments (POA) was introduced in (C.Lee et al., 2002)
with the purpose of improving the iterative step of
progressive (D.-F.Feng and Doolittle, 1987) multiple
sequence alignments (MSA), that is the step where
a new sequence is added to an MSA (starting MSA).
Traditionally, this was performed by first reducing the
starting MSA to a linear profile, and then aligning it
to the new sequence in order to obtain a new MSA
(resulting MSA), with the downside that the reduction
of the starting MSA to a linear profile might carry and
propagate alignment errors. The idea behind POA is
to perform a direct pairwise dynamic programming
alignment between the new sequence and a suitable
graph representation of the starting MSA (thus re-
placing the somewhat lossy linear profile representa-
tion), with the outcome of maintaining, in the result-
ing MSA, the optimal alignment of the new sequence
with respect to each one of those of the starting MSA.

Such graph representation, the partial order
graph, basically replaces the linear MSA profile with
a DAG whose edges represent a partial order between
the letters of the MSA to be used as an alternative to
the traditional total order of the rows of an alignment.

2.3 WFA with affine gap penalty

In (E.W.Myers, 1986), Gene Myers introduced the
linear time and space dynamic programming (DP)
alignment for similar strings: when aligning two
strings of size N whose distance is known to be upper-
bounded by D, rather than computing the whole ta-
ble of size N2, only a stripe of O(D) diagonals are
computed, as their similarity guarantees their optimal
alignment to lay therein. The result is a O(DN) algo-
rithm replacing the quadratic one, and an algorithm

that, rather than filling in a matrix row by row, pro-
ceeds with wave-fronts along diagonals (WFA: Wave
Front Alignment).
The Affine Gap Penalty function to score the cost of
gaps in alignments evaluates a series of k consecutive
gaps as w(k) = o+k ·e (where o is the cost of opening
the gap, and e that of extending it), rather than the sum
of k single gap’s costs. Using such gap penalty score
is almost mandatory in genomic sequences analysis as
this forces the optimal alignment to detect and high-
light INDELs variations that typically involve several
consecutive nucleotides. In order to restore the opti-
mal substructure of the alignment problem when us-
ing affine gap penalty score funcion, the DP algorithm
requires three alignment tables instead of one: matri-
ces I,D,M that store the score of the best alignments
ending - respectively - with an Insertions, a Deletions,
or a (Mis)Match.
In (S.Marco-Sola et al., 2021), the linear time and
space optimization of Myers was extended to the ex-
act computation of an optimal pairwise alignment of
strings using the affine gap penalty score function.
Roughly, for the alignment of two strings of size N
and M, the three matrices I,D,M of size N×M are re-
placed by wave front records Id,k,Dd,k,Md,k that store,
for each score/distance d and diagonal k, the furthest-
reaching offset in k that scores d. The dynamic pro-
gramming recurrence is then operated on increasing
values of d and adjacent diagonals k, up to the final
distance: the one whose wave front reaches the end of
both input strings.

3 The DSA Algorithm

Let us first formally state the problem we solve:
[StoDS] Given a D-string T̂ of width W and size

N, a pattern P of length m, and penalty scores a,x,o,e,
find an optimal alignment between P and T̂ using
scores a for match, x for mismatch, o for gap open-
ing, and e for gap extension.

In the problem statement above, by optimal align-
ment we mean the alignment between P and a string
T ∈ T̂ (see Section 2.1) that minimizes the distance
computed by scoring a for a match, x for a mismatch,
and gap affine penalty function with o for gap opening
and e for gap extension.

In this section we describe our algorithm DSA that
optimally solves STODS. We start with Section 3.1
where we show how we adapted the Partial Order
Alignment (POA) framework to work with alignment
to D-strings. Then, in Section 3.2 we describe our ex-
tension of Wave Front Alignment (WFA) to D-strings
and show how we merge the two techniques into our



Figure 1: Dynamic Programming table for the POA of the
string ACGTA against the D-string AC[GC/AT]A partially or-
dered as shown by oriented edges, and using scores: 0 for
match, 1 for mismatch, and 2 for gap.

algorithm DSA and analyse its complexity.

3.1 POA with D-strings

In this section, we show how to use partial order align-
ment to be able to perform base level alignments with
D-strings. Without loss of generality, for the sake of
simplifying the notation, within this section we will
not use the gap affine penalty score (whose imple-
mentation with D-strings will be described in the next
section), but rather account a cost g to any gap.

Given a D-string T̂ of width W and pattern P of
length m, we build a (W + 1)× (m+ 1) DP table M
having a row i for each ith width of T̂ , and a column
for each letter of P (plus the usual first row and first
column for their empty prefixes), and that will store
in M[i, j] the best score of aligning P[1, j] to T̂ [1, i]
(an example is shown in Figure 1). When a row falls
within a non-solid position having s strings of length
ℓ, then that row is not associated with a simple let-
ter, but rather with s variants. The entries of these
rows will thus contain a tuple of size s: if row i has
letters ai,1, . . . ,ai,h, . . . ,ai,s, then M[i, j] is a tuple of
s values < M[i, j]1, . . . ,M[i, j]h, . . . ,M[i, j]s > where,
for each 1 ≤ h ≤ s, a match is accounted if and only
if ai,h = P[ j].
On top of this tuple representation, a partial order
is assumed for the N letters of the D-string: within
solid positions, the usual order of sequences applies;
in a degenerate position, instead, distinct letters in the
same tuple are not comparable, and nor is letter ai,h of
tuple ai,1, . . . ,ai,h, . . . ,ai,si at row i comparable with
the other letters of all the ℓ adjacent rows composing
the same degenerate position, except for the ℓ other
letters ai′,h that are also the hth letter in their tuples.
Within all comparable letters, the order corresponds

to that of the rows of M.
We use this partial order to drive the alignment

along the D-string: wherever the traditional dynamic
programming alignment algorithm refers to the previ-
ous row and/or previous column, here we refer only to
entries that - instead - are preceding according to the
partial order defined above. For example, the partial
order of AC[GC/AT]A is defined by the graph shown
on the letters at the rows of the DP table of Figure 1.

We now formalize with dynamic programming
recurrence relations the way we apply the ideas
sketched above. For any two letters σ1,σ2 ∈ Σ, we
define a function m(σ1,σ2) as equal to a if σ1 = σ2,
and equal to x otherwise. Denoting with si the size of
the tuple at row i, we compute M[i, j] for all 1≤ j ≤m
distinguishing the following cases:

si−1 = si = 1. In this case no degeneracy is encoun-
tered and the traditional dynamic programming
alignment framework applies.

si−1 = 1 and si = s > 1. In this case, row i corre-
sponds to the opening of a degenerate position of
si strings of length ℓ, this row (like the next ℓ−1
rows) represents si alternative letters ai,1, . . . ,ai,si
and each entry M[i, j] will contain tuples of size si
computed as follows for 1 ≤ h ≤ si:

M[i, j]h = min

{ M[i−1, j−1]+m(P[ j],ai,h)
M[i−1, j]+g
M[i, j−1]h +g

(1)

si−1 = si = s > 1 and rows i−1, i fall within the
same degenerate position. In this case, this row
still represents s alternative letters ai,1, . . . ,ai,si
and each entry M[i, j] will contain tuples of size
si computed as follows for 1 ≤ h ≤ si:

M[i, j]h = min

{ M[i−1, j−1]h +m(P[ j],ai,h)
M[i−1, j]h +g
M[i, j−1]h +g

(2)

si−1 = s > 1 and si = 1. In this case, row i− 1 was
the last letter of a degenerate position, and row i
is a solid position representing a single letter T̂ [i].
The entry M[i, j] will contain a value computed as
follows:

M[i, j] =min



M[i−1, j−1]1 +m(P[ j], T̂ [i])
. . . . . . . . .
M[i−1, j−1]si−1 +m(P[ j], T̂ [i])
M[i−1, j]1 +g
. . . . . .
M[i−1, j]si−1 +g
M[i, j−1]+g

(3)



si−1 > 1 and si = s > 1 and rows i−1, i fall within
the same degenerate position. In this case, row
i− 1 was the last letter of a degenerate position
and row i is the first of a new different degenerate
position. This row represents s alternative letters
ai,1, . . . ,ai,si and each entry M[i, j] will contain tu-
ples of size si computed as follows for 1 ≤ h ≤ si:

M[i, j]h =min



M[i−1, j−1]1 +m(P[ j],ai,h)
. . . . . . . . .
M[i−1, j−1]si−1 +m(P[ j],ai,h)
M[i−1, j]1 +g
. . . . . .
M[i−1, j]si−1 +g
M[i, j−1]h +g

(4)

For example, Figure 1 shows the DP table for the
alignment of the D-string AC[GC/AT]A against ACGTA.

3.2 WFA with D-strings

In this section we show how to perform Wave Front
Alignment of Partially Ordered D-Strings with affine
gap penalty score in almost linear time using a D-
strings customization of Wave Front Alignment.

Similarly to (S.Marco-Sola et al., 2021), we
replace the three affine gap penalty dynamic pro-
gramming matrices I,D,M of size W × m each (W
being the width of T̂ and m the length of P) with as
many wave front records Ĩd , D̃d , M̃d starting with
an initial distance d = 0. The value of d can thus
only increase along the computation, and for each
partial score d, the records Ĩd (resp. D̃d , M̃d) store the
following values:
(i) the values lod and hid that define the range of
diagonals that allow to reach alignment score d;
(ii) for each diagonal k in such range: tuple o f fd,k for
offsets, and tuple abdd,k for abandoned.
Indeed, the values lod ,hid define the span of WFd .
Initially, lod = hid = 0 and the only single starting
diagonal is the main diagonal k =W −m. For each
partial distance d and diagonal k, o f fd,k stores the
furthest-reaching offset in diagonal k that scores d,
while the boolean tuple abdd,k tells us whether, for
having that distance d along that diagonal k, we
should abandon a specific variant of the tuple. We
will use the generic notation o f fd,k as well as the
more specific notation o f f D

d,k (resp. o f f I
d,k, o f f M

d,k) to
specifically mean the offsets in D̃d (resp. Ĩd , M̃d).

With the wave-front, there is no need to spend a
quadratic W ×m space to store the matrices, nor to
spend a quadratic time to fill them in. Observe, how-
ever, that d, k, and o f fd,k, actually identify a specific

diagonal and how far you can go down along it while
keeping score d, and therefore k and o f fd,k actually
define a cell in what would have been the matrices
D, I and M. Let us name u the row and v the col-
umn of the entry defined by o f fd,k. Now, if T̂ [u] is a
single/solid letter, then the offset o f f D

d,k, o f f I
d,k, and

o f f M
d,k are a single value, and else they are a tuple of

size su: a wave front for each variant in T̂ [u].
Starting with initial distance d = 0 and the sole cen-
tral diagonal, we compute the wavefront for grow-
ing values of d until the bottom right cell has been
reached by the wavefront. The value of d is in-
creased, and new offsets are computed, when the bor-
ders of the wave front have been reached: no fur-
ther match is possible, and either a mismatch score
x must be accounted (and new offset computed along
the same diagonal k for distance d+x), or a gap must
be accounted and therefore new diagonals must be ex-
plored (and new offset computed for distance that has
increased according to the gap penalty function). This
is done according to the formulae (5),(6), and (7) be-
low that formalize the recurrence relations that show
how to update the offsets information; these are ba-
sically those of (S.Marco-Sola et al., 2021) with the
tuple information added.

Formula (5) computes the new offsets for Ĩd,k, as-
suming the general case in which the entry on which
we do the recurrence contains a tuple.

o f f I
d,k =1+max

{
1+max in tuple o f f M

d−o−e,k−1 (Open)
1+max in tuple o f f I

d−e,k−1 (Extend)
(5)

When computing Ĩd,k we are assuming that the last
event has been an insertion, in which case the previ-
ous event could either have been (i) a (mis)match, in
which case a new gap is being opened, or (ii) another
insertion, in which case an existing gap is being ex-
tended. In case (i) the new offset is that of M̃d−o−e
because the distance is increased by o+ e, while in
case (ii) the new offset is that of Ĩd−e because the dis-
tance is only increased by the gap extension e. In both
cases, the new offset has to be picked from the preced-
ing diagonal k−1.

Dually, the following formula computes the new
offsets for D̃d,k assuming the general case in which
the entry on which we do the recurrence contains a
tuple:

o f f D
d,k =max

{
1+max in tuple o f f M

d−o−e,k+1 (Open)
1+max in tuple o f f D

d−e,k+1 (Extend)
(6)

Since D̃d,k is computed assuming that the last
event has been a deletion, the previous event could ei-
ther have been a (mis)match, in which case a new gap



is being opened, or another deletion, in which case an
existing gap is being extended. The new offset is then
either in M̃d−o−e or in D̃d−e, and in both cases the new
offset has to be picked from the next diagonal k−1.

Finally, we show how to compute the new offsets
for M̃d,k:

o f f M
d,k =max

{o f f I
d,k (Insertion)

o f f D
d,k (Deletion)

1+max in tuple o f f M
d−x,k (Mismatch)

(7)
The wavefront boundaries for M̃d,k are computed

assuming that the last event has been a (mis)match,
in which case we stay in the same diagonal k, and
the previous event could either have been another
(mis)match, or an insertion or deletion. The new off-
set is then either in M̃d−x or in D̃d or Ĩd . In the lat-
ter formula, the case of a match is not taken into ac-
count because these offsets are recomputed only when
a match is not available.

Notice that, among possible values, the maximum
is always sought here because the distance is a fixed
parameter d in M̃d,k, Ĩd,k, D̃d,k, and we want to go as
far as possible along k keeping that distance (that can
only increase otherwise), whatever alignment event
must be assumed. In this way, we eventually min-
imize the final d whose WFd will reach the bottom
right final entry of the matrix. In all formulae above,
whenever incurring in a gap and increasing or de-
creasing the diagonal number, then this has to be in-
tended as updating lod or hid .

The pseudocode of our algorithm is shown in
Appendix A. The main function, DWF ALIGN,
calls DWF EXTEND to extend the wavefront for
all diagonals k between lod and hid by means of the
function DWF ROLL, which is the core of DSA
as this is where the offsets of M̃d,k are actually
increased because at least one match in the tuple
takes place, making WFd roll along diagonal k. When
this happens, then the function DWF ROLL:
(i) Possibly updates the width of the offset tuple
with that of the current row and resets its content to
account for the case in which we extend a wavefront
from row i to row i+ 1 such that |T̂ [i]| ̸= |T̂ [i+ 1]|
(the size of the tuple changes) or we are anyhow
stepping into a different degenerate letter.
(ii) It checks, for each possible variant, whether there
is a match and it has not been abandoned, in which
case the offset is incremented. Else, it sets the variant
as abandoned.

When DWF ROLL cannot extend further the WFd
by means of matches, then the lead gets back to
DWF ALIGN which increases d and calls the func-

tion DWF NEXT that sets the offsets according to
formulae (5),(6), and (7) to update the borders of the
wavefront.

The final result we have obtained is an exact algo-
rithm that computes the edit distance (or any distance
accounting for insertions, deletions, and substitutions
with any desired score, including affine gap penalty
score), between a string and a D-string in time and
space proportional to D·N, where N is the size of the
D-string, and D is the final edit distance. This is re-
gardless of the alphabet size.

We remark that both the dynamic programming
solution we suggested can naturally make use of
weights associated to single letters or positions to be
included in the optimization distance function.

We implemented our algorithm in a prototype tool
DSA that computes the edit distance and an optimal
alignment (thus keeping all the information needed
for tracing back the optimal path).

4 Preliminar experimental
validation

To the best of our knowledge, there is no published
software tool implementing an algorithm specifically
designed for a global alignment of a linear string and
a D-text. Some algorithm are designed for semiglobal
alignment, that is with the pattern being (substan-
tially) shorter than the D-string (E.Garrison et al.,
2018; J.M.Eizenga et al., 2021; A.Cisłak et al., 2018;
A.Cisłak and S.Grabowski, 2020; M.Federico and
N.Pisanti, 2009; C.A.Darby et al., 2020); some are
designed for more general purposes, such as aligning
a linear string to a graph structure that generalizes
D-strings (E.Garrison et al., 2018; J.M.Eizenga et al.,
2021; C.A.Darby et al., 2020; M.Rautiainen et al.,
2019; M.Rautiainen and T.Marschall, 2020; H.Li
et al., 2020). Some of these and other tools are
not exact and hence do not guarantee to find the
optimal alignment or solution (e.g (M.Rautiainen
and T.Marschall, 2020; M.Rautiainen et al., 2019;
H.Li et al., 2020; H.Li, 2016; H.Li, 2018; H.Li,
2021). Finally, some algorithms that basically solve
a very similar problem, actually do not compute any
distance or alignment, but rather output a consensus
string that suitably merges the input strings (Y.Gao
et al., 2021; P.Ivanov et al., 2020; P.Ivanov et al.,
2022b; P.Ivanov et al., 2022a).

The Variation Graph Toolkit VG suite (E.Garrison
et al., 2018; J.M.Eizenga et al., 2021) contains a tool
that can solve STODS aligning a string to a more gen-
eral data structure than D-strings (Variation Graphs



indeed), but this is specifically designed to map reads
that are shorter than the graph/text, rather than making
a global alignment, and therefore a comparison would
not be fair. The same holds for VARGAS (C.A.Darby
et al., 2020) as well as for SOPANG and SOPANG2
(A.Cisłak et al., 2018; A.Cisłak and S.Grabowski,
2020) that, moreover, only detect exact matches with-
out allowing gaps nor mismatches. We thus consid-
ered the tool abPOA (Y.Gao et al., 2021), a C library
tool to align a sequence to a directed acyclic graph
that also uses partial order alignment and supports
global alignment, and which is the state of the art as
of base-level exact alignments, but it cannot handle
sequences as long as 100,000b. The same holds for
the tool Astarix (P.Ivanov et al., 2020; P.Ivanov et al.,
2022b; P.Ivanov et al., 2022a).

We therefore compared our DSA with
GRAPHALIGNER (M.Rautiainen and T.Marschall,
2020; M.Rautiainen et al., 2019) and MINIGRAPH
(H.Li et al., 2020; H.Li, 2016; H.Li, 2018; H.Li,
2021) on solving STODS. Both of them are designed
to align strings on a more general graph structure
than D-strings and therefore the comparison we
show below should be viewed as a validation of
the performance of DSA in solving STODS, and
not as claiming that DSA is in general a better
tool than any of the other two. GRAPHALIGNER
uses a seed and extend method and the bitvector
alignment extension algorithm of (M.Rautiainen
et al., 2019). MINIGRAPH is a well maintained and
highly optimized software tool that uses minimizers
to find strong colinear chains as starting point to
build the alignment (H.Li et al., 2020; H.Li, 2016;
H.Li, 2018; H.Li, 2021). Therefore, out of DSA,
GRAPHALIGNER, and MINIGRAPH, our DSA is the
only one which does base-level exact alignments.

D-strings generation. We randomly generated
a D-string of width W = 100,000b by first generat-
ing a random string of length W on {A,C,G,T}, and
then inserting2 therein deg (input parameter given as
a percentage of W ) degenerate non-solid positions as
follows: for each such position we pick at random
a value for its size between 1 and S (another input
parameter), and a randomly chosen length between
1 and L (input parameter again). We generated D-
strings using width W =100,000b in all tests, degen-
eracy frequencies values deg = 1%,10%, maximum
variance values S= 2,5, and maximum variant lengths
L = 1,4. As a consequence the width of tested D-
strings will always be W = 100,000b, while its total
size N will depend from input parameters deg,S,L.

Pattern generation. From the obtained synthetic

2The insertion was done forcing the width to remain W .

D-string T̂ , we extracted a ground truth exact pattern
P0 of size W (that is, a string P ∈ T̂ that thus matches
T̂ with distance 0), and we (possibly) modified P0 into
the actual input query P with different possible di-
vergences using real .vcf files3. The divergences we
tested were to insert (i) no divergence at all, (ii) 0,1%
SNPs, (iii) 1% SNPs, (iv) 0,1% INDELs; (percent-
ages are on W ). Hence, the size m = |P| of the query
string will be in Θ(W ) and so will the distance d be-
tween P and T̂ .

We have run experiments for all values deg,S,L
mentioned above in D-string generation paragraph,
resulting in D-strings of size ranging from N =
101,000 (for deg = 1,S = 2,L = 1) to N = 160,327
(for deg = 10,S = 5,L = 4). All tests were ran on
a laptop (single threaded) Intel® Core™ i7-11800H
× 16 with 16.0 GiB RAM. Space and time was mea-
sured using /usr/bin/time -f"%S\t%M" to extract
system time (seconds) and maximum resident set size
(kbytes). Time was reported 0 when < 0.001s. In
all tests we used alignment scores a = 0,x = 1,o =
2,e = 1. For space reasons, we only report results for
two parameters’ sets that sample the comparative re-
sults. Table 1 shows results with a D-string of size
N = 106,147 generated with deg = 1% of degener-
ate positions with up to S = 5 variants of length up
to L = 4 (little frequency of highly degenerated posi-
tions). Table 2 shows results with a D-string of size
N = 110,000 generated with deg= 10% of degener-
ate positions with up to S = 2 variants of length up to
L = 1 (high frequency of little degenerated positions).

We report time and memory peak, as well as
the number of detected events on optimal alignment:
number = for matches, X for mismatches, I for inser-
tions, and D for deletions. With no pattern divergence,
then for a correct alignment it must be I=D= X =0
and 100,000 matches. When the pattern divergence is
only SNPs, then it must be I =D= 0, and X should
be approximately equal to the number of SNPs (as
by chance the divergence may not change the DNA
base). For the experiments involving INDELs diver-
gence in the pattern, we also report the number G of
gaps that are opened: with W = 100,000b and 0.1%
INDELs, in a correct alignment it must be G = 100.
For accuracy evaluation, for each experiment the last
line shows the ground truth.

In all experiments, and for all tools, time was
below 0.2 seconds. For both data sets (Tables 1, 2),
in the first experiment (no pattern divergence) for an
exact match, DSA always finds (also in those not
shown here) the exact solution with 100000 matches,

3The .vcf file format is the standard in bioinformatics
to encode variants such as SNPs (letter substitutions) and
INDELs.



Table 1: D-string of size N=106,147 with degeneracy deg=1%,S = 5,L = 4.

Tool Pattern Peak memory Time Alignment
divergence (kbytes) (seconds) events

DSA none 3188 0 100,000= 0X 0I 0D
GRAPHALIGNER ” 7418 0 100,000= 0X 0I 0D
MINIGRAPH ” 5585 0 99989= 0X 0I 0D

Ground truth’s Optimal Alignment events —> —> 100000= 0X 0I 0D
DSA 0.1 % SNPs 44096 0.005 99900= 100X 0I 0D
GRAPHALIGNER ” 26799 0.004 99901= 99X 0I 0D
MINIGRAPH ” 8038 0 99889= 100X 0I 0D

Ground truth’s Optimal Alignment events —> —> 99900= 100X 0I 0D
DSA 1 % SNPs 475668 0.120 99007= 993X 0I 0D
GRAPHALIGNER ” 26682 0.005 99005= 993X 2I 2D
MINIGRAPH ” 7910 0.001 98989= 1000X 0I 0D

Ground truth’s Optimal Alignment events —> —> 99007= 993X 0I 0D
DSA 0.1 % INDELs 131311 0.018 99813= 0X 135I 174D 100G
GRAPHALIGNER ” 26816 0.003 99717= 109X 135I 174D 145G
MINIGRAPH ” 8213 0.001 99813= 1X 136I 175D 100G

Ground truth’s Optimal Alignment events —> —> 99813= 0X 135I 174D 100G

0 mismatches, and 0 gaps (like GRAPHALIGNER
does) taking less memory than MINIGRAPH and
much less than GRAPHALIGNER. In the second
and third experiments we introduced SNPs (in 0.1%
and 1% of the positions, respectively): DSA is
the only one which is exact at a cost of higher
memory consumption. Finally, with INDELs, our
prototype is always exact (and MINIGRAPH almost
is). GRAPHALIGNER is not accurate as it is not
designed for affine gap penalty function.
Summing up, DSA (I) outperforms both MINI-
GRAPH and GRAPHALIGNER on exact match, (II)
outperforms accuracy of MINIGRAPH with SNPs,
and (III) outperforms accuracy of GRAPHALIGNER
with INDELs.

Conclusions and further work

As mentioned above, at the moment our implementa-
tion of DSA is just a promising prototype. We plan
to improve its memory consumption using the ideas of
(J.M.Eizenga and B.Paten, 2022). Also, we are work-
ing on improve its speed (as well as consequent mem-
ory use) by removing hopeless diagonals suffixes that
are currently being kept in the range.
Finally, we remark that with our dynamic program-
ming method, it is very natural to add weights to let-
ters and to use a sum of weights modification of the
actual score as objective function, in order to account
for possible useful metadata such as confidence level
in the query string or D-strings bases, or abundance in

the MSA represented by the D-string.
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M.T.Vechev (2020). Astarix: Fast and optimal
sequence-to-graph alignment. In 24th Annual Inter-
national Conference on Research in Computational
Molecular Biology (RECOMB), volume 12074 of
Springer LNCS, pages 104–119.

P.Ivanov, B.Bichsel, and M.T.Vechev (2022a). Fast and op-
timal sequence-to-graph alignment guided by seeds.
In 26th Annual International Conference on Research
in Computational Molecular Biology (RECOMB),
Springer LNCS In Press.

P.Ivanov, B.Bichsel, and M.Vechev (2022b). Fast and op-
timal sequence-to-graph alignment guided by seeds.
bioRxiv.

P.Peterlongo, N.Pisanti, F.Boyer, do Lago, A., and M.-
F.Sagot (2008). Lossless filter for multiple repetitions
with hamming distance. Journal of Discrete Algo-
rithms, 6(3):497–509.

R.Grossi, C.S.Iliopoulos, C.Liu, N.Pisanti, S.P.Pissis,
A.Retha, G.Rosone, F.Vayani, and L.Versari (2017).
On-Line Pattern Matching on Similar Texts. In 28th
Annual Symposium on Combinatorial Pattern Match-
ing (CPM), volume 78 of LIPIcs, pages 9:1–9:14.

S.Marco-Sola, J.C.Moure, M.Moreto, and A.Espinosa
(2021). Fast Gap-Affine Pairwise Alignment Using
the Wavefront Algorithm. Bioinformatics, 37(4):456–
463.

V.Carletti, P.Foggia, E.Garrison, L.Greco, P.Ritrovato, and
M.Vento (2019). Graph-based representations for
supporting genome data analysis and visualization:
Opportunities and challenges. In 12th International
Workshop on Graph-Based Representations in Pat-
tern Recognition (GbRPR), volume 11510 of Springer
LNCS, pages 237–246.

Y.Gao, Y.Liu, Y.Ma, B.Liu, Y.Wang, and Y.Xing (2021).
abPOA: an SIMD-based C library for fast partial or-
der alignment using adaptive band. Bioinformatics,
37(15):2209–2211.


