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This paper provides a variational treatment of
the effect of external charges on the free charges
in an infinite free-standing graphene sheet within
the Thomas–Fermi theory. We establish existence,
uniqueness and regularity of the energy minimizers
corresponding to the free charge densities that screen
the effect of an external electrostatic potential at the
neutrality point. For the potential due to one or several
off-layer point charges, we also prove positivity and
a precise universal asymptotic decay rate for the
screening charge density, as well as an exact charge
cancellation by the graphene sheet. We also treat
a simpler case of the non-zero background charge
density and establish similar results in that case.

1. Introduction
Graphene is a classical example of a two-dimensional
material whose electronic properties give rise to a
number of unusual characteristics that make it a prime
target for both fundamental research and multiple
applications [1–5]. A key feature of the electrons in
single-layer graphene sheets is the presence of the
Dirac cone in their dispersion relation that makes
the elementary excitations (electrons and holes) of the
ground state behave as massless relativistic fermions
[6,7]. This presents challenges in the theoretical treatment
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of those excitations, as their kinetic energy, which is of the order of EK ∼ h̄vF/r, where
vF � 1 × 108 cm s−1 is the Fermi velocity and r is the radius of the wave packet containing a single
charge, remains comparable to the Coulombic interaction energy EC ∼ e2/(εdr) of two charges at
distance r independently of the scale r (here e is the elementary charge, in the CGS units, εd ∼ 1
is the effective dielectric constant, and it is noted that e2/(h̄vF) � 2.2). As a result, many-body
effects need to be taken into consideration in the studies of electronic properties of graphene.
In particular, these effects are significant in determining the way the massless ultrarelativistic
fermions screen the electric field of supercritical charged impurities [6].

The problem of characterizing the charged impurity screening by the graphene sheet has
been studied, using a number of theoretical approaches [8–14] (this list is not intended to be
exhaustive). Note that a similar question arises in the studies of graphene-based devices in the
proximity of a conducting electrode, or when a scanning tunnelling microscope tip approaches a
graphene sheet [15]. In particular, in this situation, the electric charge the layer is exposed to may
exceed the elementary charge e by many orders of magnitude. Under such conditions, a fully
nonlinear treatment of the screening problem is, therefore, necessary.

In conventional quantum systems, a good starting point for the analysis of electric field
screening is the Thomas–Fermi (TF) theory, as it yields an asymptotically exact response of
a system of interacting electrons to a large external charge [16]. Such a theory for massless
relativistic fermions was developed by DiVincenzo and Mele in the context of charged impurity
screening in graphite intercalated compounds [8]. They conducted numerical studies of the
resulting equations for the screening charge density and noted a highly non-local character of
the response. More recently, Katsnelson carried out a formal analysis of the asymptotic behaviour
of the screening charge density away from a single impurity ion in a graphene monolayer [11].
His results were further clarified an extended by Fogler et al., who also confirmed the predictions
about the decay of the screening charge density by numerical simulations [17]. The non-local
character of the response and its dependence on the level of doping have been confirmed by
the direct experimental observations of the screening charge density [18–20]. Note that these
observations are at variance with the prediction of a purely local dielectric response at the Dirac
point from the linear response theory for massless relativistic fermions within the random phase
approximation [12].

This paper is a mathematical counterpart of the studies in [8,11,17] that provides a suitable
variational framework for the study of the charge screening problem described by the TF theory
of graphene (for a closely related TF–von Weizsäcker model and some further discussion, see
[14]). The setting turns out to be rather delicate, as the presence of a bare Coulombic potential
from an impurity leads to heavy tails in the potential term that are precisely balanced with the
Coulombic interaction term. Within our setting, we prove existence, uniqueness, radial symmetry
and monotonicity of the minimizer of the graphene TF energy for an off-layer external point
charge in a free-standing graphene sheet. More generally, we provide existence, uniqueness, the
Euler–Lagrange equation that is understood in a suitable sense, and regularity of the minimizer
for a general class of external potentials arising as Coulombic potentials of appropriate collections
of external charges. Back to a single off-layer charge in a free-standing graphene sheet, we
establish the precise asymptotic decay of the screening charge density at infinity, which agrees
with the one obtained by Katsnelson using formal arguments.

The decay of the screening charge density turns out to be a borderline power law decay
modulated by a logarithmic factor that makes it barely integrable. The latter presents a significant
technical difficulty in the handling of the appropriate barrier functions that control the decay of
the solution at infinity. In particular, we prove that the decay indeed turns out to be universal,
independently of the strength of the external charge and remains the same for a finite collection
of charges of the same sign.

As a by-product of our analysis, we also demonstrate the existence of sign-changing
minimizers in the case of positive fast decaying potentials for the closely related TF–von
Weizsäcker model studied in [14] in the regime when the latter is well approximated by the
TF model. This gives a partial answer to the question raised in [14]. Finally, we present the
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corresponding results for the biased layer. The treatment of the latter is significantly simpler due
to the expected fast power law decay of the screening charge density.

Our paper is organized as follows. In §2, we introduce the TF energy functional for a free-
standing graphene sheet and then discuss several issues associated with its definition in the
context of the associated variational problem for charge screening that requires a modified
formulation compared with the classical TF theory. Within these modifications, we then state the
main results of our paper in theorems 2.1 and 2.2, and corollary 2.6. In §3, we give the precise
variational setting for the modified TF energy of the free-standing graphene sheet and establish
general existence and regularity results for the minimizers.

Then, in §4, we focus on the case of the potential from a single off-layer external point charge.
In particular, in §4a, we reformulate the Euler–Lagrange equation for the minimizers in terms
of a convenient auxiliary variable and establish several properties of the solutions associated
with a comparison principle that we establish for this equation, and in §4b we establish further
implications of the comparison principle on the positivity of solutions. This leads us, in §4c, to
establish existence of sign-changing solutions to the closely related TF–von Weizsäcker model
considered by us in [14].

The key computation of the paper is carried out in §4d, where a logarithmic barrier is
established, which is then used in §4e to prove the asymptotic decay rate of the solution at
infinity for the external potential of a point charge. Furthermore, in §4f, we show the complete
charge screening and in §4g, we establish the universality of the decay. We conclude this section
by showing how the statements of our main results in §2 follow from the various technical results
obtained in §§3 and 4.

Finally, in §5, we outline the analogous treatment of the case of a doped graphene sheet
characterized by the presence of a uniform background charge, where the main results are
contained in theorems 5.2 and 5.4.

(a) Notation
Throughout the paper, for f (t), g(t) ≥ 0, we use the asymptotic notation as t → +∞

— f (t) � g(t) if there exists C> 0 independent of t such that f (t) ≤ Cg(t) for all t sufficiently
large;

— f (t) ∼ g(t) if f (t) � g(t) and g(t) � f (t);
— f (t) � g(t) if f (t) ∼ g(t) and limt→+∞(f (t)/g(t)) = 1.

As usual, BR(x) := {y ∈ R
N : |y − x|<R}, BR := BR(0), and C, c, c1 etc., denote generic positive

constants. By Cα(R2), we denote the space of all locally Hölder continuous functions of order
α ∈ (0, 1] on R

2, and Ck,α(R2) denotes higher order Hölder spaces for k = 1, 2, . . . . For an open
set Ω ⊆ R

2, by C∞
c (Ω), we denote the space of all compactly supported infinitely differentiable

function with the support in Ω , while D′(Ω) is the space of distributions on Ω , i.e. the dual
space of C∞

c (Ω). For a function f ∈ L1
loc(Ω), unless specified otherwise, the inequality f ≥ 0 in Ω

is always understood in the distributional sense, i.e. that
∫

R2 f (x)ϕ(x)dx ≥ 0 for all 0 ≤ ϕ ∈ C∞
c (Ω).

We similarly define f ≤ 0. When we want to emphasize a pointwise (in)equality, we always write
explicitly f (x).

2. Model and main results
TF energy for massless relativistic fermions in a free-standing graphene layer in the presence
of the external electrostatic potential V takes the following form, after a suitable non-
dimensionalization [11]:

ETF
0 (ρ) = 2

3

∫
R2

|ρ|3/2 d2x −
∫
R2
ρ(x)V(x) d2x + 1

4π

∫∫
R2×R2

ρ(x)ρ(y)
|x − y| d2x d2y. (2.1)
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Here, ρ : R
2 → R is the charge density of charge carrying fermionic quasi-particles (electrons and

holes). The density ρ is a sign-changing function with ρ > 0 corresponding to electrons and ρ <
0 to holes. The first, TF term, is an approximation of the kinetic energy of the uniform gas of
non-interacting particles. The exponent 3/2 can be deduced from scaling considerations. The last,
non-local Coulomb term

D(ρ, ρ) := 1
4π

∫∫
R2×R2

ρ(x)ρ(y)
|x − y| d2x d2y, (2.2)

is the like-charged inter-particle repulsion energy which is inherited from R
3. The middle term

is the potential energy due to the interaction with the external potential V : R
2 → R. In the case of

a single external point charge of magnitude Z ∈ R located in R
3 at distance d ≥ 0 away from the

graphene layer the external potential is

VZ,d(x) := Z

2π
√

d2 + |x|2
, (2.3)

but more general potentials V(x) could be considered, e.g. those involving multiple point charge
configurations,

VN(x) :=
N∑

i=1

VZi,di (x − xi), (2.4)

for some Zi ∈ R, di ≥ 0 and xi ∈ R
2. Importantly, for an unscreened system of uncompensated

external charges (i.e. when
∑

i Zi �= 0 in (2.4)), one has VN(x) ∼ 1/|x| as |x| → ∞, since the quasi-
particle–charge interaction is according to Coulomb’s Law in R

3. For a more detailed discussion
of various terms in the energy and the non-dimensionalization, see [14, section 2]. Note that the
energy in (2.1) is invariant with respect to the transformation

ρ→ −ρ and V → −V, (2.5)

hence when dealing with the potential VZ,d it is sufficient to restrict attention to the case Z> 0.
Our principal goal is to prove the existence of global minimizers of ETF

0 and establish their
fundamental properties, such as regularity and decay estimates. At first glance, the TF energy
ETF

0 looks similar to its classical three-dimensional atomic counterpart [16,21,22]. However, there
are fundamental differences within the variational framework for graphene modelling

— Unlike in the classical TF theory for atoms and molecules where ρ ≥ 0, the density ρ

in graphene is a sign-changing function. As a consequence, D(|ρ|, |ρ|) ≥D(ρ, ρ), which
means that oscillating profiles could be energetically more favourable.

— All three terms in ETF
0 with V = VZ,0 scale at the same rate under the charge-preserving

rescaling ρλ(x) = λ2ρ(λx). Hence, ETF
0 (ρλ) = cλ when d = 0 for some c ∈ R. Physically, this

is a manifestation of the non-perturbative role of the Coulomb interaction in graphene.
Mathematically, this reveals the critical tuning of the three different terms in the energy.

— The non-local term D(ρ, ρ) is formally identical to the usual Coulomb term in R
3.

However, the integral kernel |x − y|−1 in R
2 is associated with the Green function

of the fractional Laplacian operator (−	)1/2. As a consequence, the Euler–Lagrange
equation for ETF

0 transforms into a fractional semilinear partial differential equation
(PDE) involving (−	)1/2, instead of the usual Laplace operator −	 of the classical
three-dimensional TF theory.

Note that the total number of electrons and holes in the graphene sheet is neither fixed nor
bounded a priori. As a consequence, unlike in the atomic and molecular three-dimensional
models, it is unclear if the minimizers of ETF

0 should have a finite total charge, i.e. if they are
L1-functions. This implies that regular distributions should be included as admissible densities.
Indeed, even if the density ρ is a sign-changing continuous function, it is not a priori clear if ρ can
be interpreted as a charge density in the sense of potential theory (i.e. whether dμ= ρ dx can be
associated with a signed measure μ on R

2, making the Coulomb energy D(ρ, ρ) meaningful in
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the sense of the Lebesgue integration, see [14, example 4.1] and further references therein. This
makes the analysis of the minimizers of ETF

0 mathematically challenging.
We avoid these issues by identifying the Coulomb term D(ρ, ρ) with one-half of the square of

the
◦

H
−1/2

(R2) norm of ρ. The energy we consider is then

E0(ρ) := 2
3

∫
R2

|ρ|3/2 d2x − 〈ρ, V〉 + 1
2
||ρ||2◦

H
−1/2

(R2)
, (2.6)

where 〈·, ·〉 is a duality pairing between the function V ∈ L1
loc(R2) and the linear functional

generated by ρ, to be specified shortly. Sometimes, we also write EV
0 to emphasize the dependence

on V. It is easy to see that the definition of E0 in (2.6) agrees with that of ETF
0 when ρ ∈ C∞

c (R2)
and 〈ρ, V〉 = ∫

R2 Vρ d2x.
The natural domain of definition of E0 is the class

H0 := ◦
H

−1/2
(R2) ∩ L3/2(R2). (2.7)

Clearly, H0 is a Banach space with the norm || · ||H0 = || · ||L3/2(R2) + || · || ◦
H

−1/2
(R2)

. Its dual space

H′
0 can be identified with the Banach space

◦
H

1/2
(R2) + L3(R2).1 Therefore, one may define 〈·, ·〉 as

the duality pairing between H′
0 and H0. More precisely, for every ρ ∈H0 and every V = V1 + V2,

where V1 ∈ ◦
H

1/2
(R2) and V2 ∈ L3(R2), we may define

〈ρ, V〉 := ◦
H

−1/2
(R2)

〈ρ, V1〉 ◦
H

1/2
(R2)

+
∫
R2
ρ(x)V2(x) d2x. (2.8)

See §3 for further details and precise definitions.
Our first result establishes the existence of a unique minimizer for E0.

Theorem 2.1. For every V ∈ ◦
H

1/2
(R2) + L3(R2), there exists a unique minimizer ρV ∈H0 such that

E0(ρV) = infρ∈H0 E0(ρ). The minimizer ρV satisfies the Euler–Lagrange equation
∫
R2

sgn(ρV)|ρV|1/2ϕ d2x − 〈ϕ, V〉 + 〈ρV ,ϕ〉 ◦
H

−1/2
(R2)

= 0, ∀ϕ ∈H0. (2.9)

Furthermore,

(i) if (−	)1/2V ≥ 0 then ρV ≥ 0,

(ii) if V ∈ ◦
H

1/2
(R2) ∩ Cα(R2) for some α ∈ (0, 1] then ρV ∈H0 ∩ Cα(R2) and ρV(x) → 0 as |x| → ∞.

Note that the statements of this theorem, including the ones about the positivity and Hölder
continuity of the minimizer apply to V = VZ,d for all Z> 0 and d> 0. The positivity of the
minimizer follows from the well-known formula

(−	)1/2VZ,d(x) = − d
dt

VZ,t+d(x)
∣∣∣∣
t=0

= Zd
2π (d2 + |x|2)3/2 x ∈ R

2, (2.10)

that is obtained from the interpretation of the half-Laplacian in R
2 via harmonic extension

to R
2 × (0, ∞) (see also the direct calculations in [23, p. 258 and (6.5)]). From this formula, it

also follows that V = VZ,d ∈ ◦
H

1/2
(R2) for all Z> 0 and d> 0, due to the fact that (−	)1/2VZ,d ∈

L4/3(R2) ⊂ ◦
H

−1/2
(R2) in this case.

1Recall that
◦
H

1/2
(R2) + L3(R2) = {f ∈ L1

loc(R2) : f = f1 + f2, f1 ∈ ◦
H

1/2
(R2), f2 ∈ L3(R2)}

is a Banach space with the norm ||f || ◦
H

1/2
(R2)+L3(R2)

:= inf(||f1|| ◦
H

1/2
(R2)

+ ||f2||L3(R2)), where the infimum is taken over all

admissible pairs (f1, f2).
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If e.g. ρV ∈ L4/3(R2), then (2.9) implies that

sgn(ρV(x))|ρV(x)|1/2 − V(x) + 1
2π

∫
R2

ρV(y)
|x − y| d2y = 0 for a.e. x ∈ R

2. (2.11)

However, (2.11) is not valid for a general V ∈H0, since the non-local term may not be well defined

as the Lebesgue integral. Nevertheless, we show that for any V ∈ ◦
H

1/2
(R2) the Euler–Lagrange

equation (2.9) is equivalent to the fractional semilinear PDE

(−	)1/2u + |u|u = (−	)1/2V in
◦

H
1/2

(R2), (2.12)

and

uV := sgn(ρV)|ρV|1/2 ∈ ◦
H

1/2
(R2) (2.13)

is the unique solution of (2.12). We further show that (2.12) satisfies suitable weak maximum
and comparison principles. This allows us to employ barrier techniques to study the decay of
the solution uV . With the aid of explicit log-barrier functions constructed in §4d, we establish the
main result of this work.

Theorem 2.2. Let Z> 0, d> 0 and let VZ,d be defined in (2.3). Then the minimizer ρVZ,d ∈H0 of E0
with V = VZ,d is Hölder continuous, radially symmetric non-increasing and satisfies

0<ρVZ,d (x) ≤ VZ,d(x) for all x ∈ R
2 (2.14)

and

ρVZ,d (x) � 1

|x|2 log2 |x| as |x| → ∞. (2.15)

In particular, ρVZ,d ∈ L1(R2) and ||ρVZ,d ||L1(R2) = Z.

Note that the asymptotic decay rate in (2.15) is universal, i.e. it does not depend on either the
value of the charge Z or d for large |x|. Such ‘universality of decay’ is well known in the standard
atomic TF theory, going back to Sommerfeld [24], cf. [25, section 5] for a discussion. In TF theory
for graphene, a similar universality was observed by Katsnelson [11] (see also [17]).

Remark 2.3. The order of the estimate in (2.15) remains valid for a more general class of
external potentials V with sufficiently fast decay at infinity, see proposition 4.10. The significance
of the log-decay becomes clear if we note that p = 2 plays a role of the Serrin’s critical exponent
[26, (1.7)] for the equation

(−	)1/2u + |u|p−1u = f in
◦

H
1/2

(R2), (2.16)

with p> 1 and (for simplicity) non-negative f ∈ C∞
c (R2). If p> 2, the linear part in (2.16)

dominates, and solutions must decay as the Green function of (−	)1/2, i.e. |x|−1. For 3/2< p< 2,
the nonlinear part in (2.16) dominates, and the solutions should have ‘nonlinear’ decay rate
|x|−1/(p−1). In the Serrin’s critical regime p = 2, the linear and nonlinear parts balance each other,
which leads to the log-correction in the decay asymptotics, correctly captured by Katsnelson [11].
Such log-correction is well known for the local Laplacian −	 [27, theorem 3.1]. We are not aware
of similar results in the fractional Laplacian case.

Remark 2.4. If d = 0 then VZ,0(x) = Z/(2π |x|) �∈ (
◦

H
1/2

(R2) + L3(R2)) and E0 with V = VZ,0 is
unbounded below, for any Z �= 0. In fact, by scaling, VZ,d(x) = d−1VZ,1(x/d) and ρVZ,d (x) =
d−2ρVZ,1 (x/d). Then

EVZ,d
0 (ρVZ,d ) = d−1EVZ,1

0 (ρVZ,1 ) → −∞, (2.17)

as d → 0. Note also that by scaling, ||ρVZ,d ||L1(R2) = ||ρVZ,1 ||L1(R2).
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Remark 2.5. Observe that by (2.10), we have (−	)1/2VZ,d → Zδ0 in D′(R2) as d → 0, so in the
case V = VZ,0 equation (2.12) formally becomes

(−	)1/2u + u2 = Zδ0 in D′(R2). (2.18)

Such an equation has no positive distributional solutions, see [26, theorem 4.2].

Lastly, as a corollary to theorem 2.2, we have the following result that is relevant to the
experiments on ion cluster screening in single graphene sheets [19]. This result is a direct
consequence of the universal decay estimate in (2.15) and the comparison principle for (2.12).

Corollary 2.6. Let N ≥ 2 be an integer, let xi ∈ R
2 and let Zi > 0 and di > 0 for all i = 1, . . . , N. Then

the minimizer ρVN ∈H0 of E0 with V = VN, where VN is given by (2.4), satisfies the conclusions of
theorem 2.2.

In physical terms, this result implies that a cluster of out-of-plane charges of the same sign
exhibits the same universal decay at infinity of the induced charge density in a graphene layer
as a single point charge and is independent of the charge magnitude. Therefore, surprisingly,
measuring the behaviour of the induced charge density far from the cluster does not provide any
information about the cluster itself.

3. Variational setting at the neutrality point

(a) Space
◦
H
1/2
(R2)

Recall that the homogeneous Sobolev space
◦

H
1/2

(R2) can be defined as the completion of C∞
c (R2)

with respect to the Gagliardo norm

||u||2◦
H

1/2
(R2)

:= 1
4π

∫∫
R2×R2

|u(x) − u(y)|2
|x − y|3 d2x d2y. (3.1)

By the fractional Sobolev inequality [28, theorem 8.4], [29, theorem 6.5],

||u||2◦
H

1/2
(R2)

≥ √
π ||u||2L4(R2), ∀ u ∈ C∞

c (R2). (3.2)

In particular, the space
◦

H
1/2

(R2) is a well-defined space of functions and

◦
H

1/2
(R2) ⊂ L4(R2). (3.3)

The space
◦

H
1/2

(R2) is also a Hilbert space, with the scalar product associated with (3.1) given by

〈u, v〉 ◦
H

1/2
(R2)

:= 1
4π

∫∫
R2×R2

(u(x) − u(y))(v(x) − v(y))
|x − y|3 d2x d2y. (3.4)

Recall (cf. [30]) that if u ∈ ◦
H

1/2
(R2) then u+, u− ∈ ◦

H
1/2

(R2) and ||u±|| ◦
H

1/2
(R2)

≤ ||u|| ◦
H

1/2
(R2)

.

Moreover, 〈u+, u−〉 ◦
H

1/2
(R2)

≤ 0.

The dual space to
◦

H
1/2

(R2) is denoted
◦

H
−1/2

(R2). According to the Riesz representation

theorem, for every F ∈ ◦
H

−1/2
(R2), there exists a uniquely defined potential UF ∈ ◦

H
1/2

(R2) such that

〈UF,ϕ〉 ◦
H

1/2
(R2)

= 〈F,ϕ〉 ∀ϕ ∈ ◦
H

1/2
(R2), (3.5)

where 〈F, ·〉 :
◦

H
1/2

(R2) → R denotes the bounded linear functional generated by F, 〈·, ·〉 ◦
H

1/2
(R2)

is

the inner product in
◦

H
1/2

(R2), and 〈·, ·〉 ◦
H

−1/2
(R2)

will be similarly defined as the inner product in
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◦
H

−1/2
(R2). Moreover,

||UF|| ◦
H

1/2
(R2)

= ||F|| ◦
H

−1/2
(R2)

, (3.6)

so the duality (3.5) is an isometry.

The potential UF ∈ ◦
H

1/2
(R2) satisfying (3.5) is interpreted as the weak solution of the linear

equation
(−	)1/2UF = F in R

2, (3.7)

and we recall that for functions u ∈ C∞
c (R2), the fractional Laplacian (−	)1/2 can be defined as

(−	)1/2u(x) = 1
4π

∫
R2

2u(x) − u(x + y) − u(x − y)
|y|3 d2y (x ∈ R

2), (3.8)

cf. [29, proposition 3.3].

(b) Regular distributions in
◦
H
−1/2

(R2) and potentials

Recall that ρ ∈ ◦
H

−1/2
(R2) ∩ L1

loc(R2) means that ρ is a regular distribution in D′(R2), i.e.

〈ρ,ϕ〉 :=
∫
R2
ρ(x)ϕ(x) d2x ∀ϕ ∈ C∞

c (R2), (3.9)

and 〈ρ,ϕ〉 is bounded by a multiple of ||ϕ|| ◦
H

1/2
(R2)

. Then 〈ρ, ·〉 is understood as the unique

continuous extension of (3.9) to
◦

H
1/2

(R2). Caution, however, is needed as not every regular

distribution ρ ∈ ◦
H

−1/2
(R2) ∩ L1

loc(R2) admits an integral representation (3.9) on all of
◦

H
1/2

(R2).

In other words, ρ ∈ ◦
H

−1/2
(R2) ∩ L1

loc(R2) does not necessarily imply that ρw ∈ L1(R2) for every

w ∈ ◦
H

1/2
(R2). Examples of this type go back to H. Cartan (cf. [31,32], or [14, remark 5.1] for

an example from
◦

H
−1/2

(R2) ∩ C∞(R2) and further references). As a consequence, the Coulomb
energy term in ETF may not be defined in the sense of Lebesgue’s integration for all ρ ∈H0 and
should be interpreted in the distributional sense, i.e. in the definition of ETF

0 one should replace
D(ρ, ρ) with ||ρ||2◦

H
−1/2

(R2)
. Recall, however, that every non-negative distribution is a measure [28,

theorem 6.22].
An alternative reinterpretation of D(ρ, ρ) can be given in terms of potentials. Given

ρ ∈ ◦
H

−1/2
(R2) ∩ L1

loc(R2), let Uρ ∈ ◦
H

1/2
(R2) be the uniquely defined potential of ρ, defined as in

(3.9) by Riesz’s representation theorem. If ρ ∈ L1(R2, (1 + |x|)−1 d2x) then the potential Uρ could
be identified with the Riesz potential of the function ρ, so that

Uρ (x) = 1
2π

∫
R2

ρ(y)
|x − y| d2y a.e. in R

2 (3.10)

(see [31, (1.3.10)]). Furthermore, according to the Hardy–Littlewood–Sobolev (HLS) inequality (cf.
[33, section 5.1, theorem 1]), if ρ ∈ Ls(R2) with s ∈ (1, 2) then Uρ ∈ Lt(R2) with 1/t = (1/s) − (1/2),
and

||Uρ ||Lt(R2) ≤ C||ρ||Ls(R2). (3.11)

Even if (3.10) is valid, ρUρ �∈ L1(R2) in general. However, if ϕ ∈ ◦
H

−1/2
(R2) ∩ L4/3(R2), then

ϕUρ ∈ L1(R2) by the HLS inequality and

1
2π

∫∫
R2×R2

ρ(x)ϕ(y)
|x − y| d2x d2y =

∫
R2

Uρ (x)ϕ(x) d2x = 〈Uρ , Uϕ〉 ◦
H

1/2
(R2)

= 〈ρ,ϕ〉 ◦
H

−1/2
(R2)

. (3.12)

In particular,

D(ρ, ρ) =
∫
R2

Uρ (x)ρ(x) d2x = ||Uρ ||2◦
H

1/2
(R2)

= ||ρ||2◦
H

−1/2
(R2)

, (3.13)
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which means that L4/3(R2) ⊂ ◦
H

−1/2
(R2) and the Coulomb energy is well defined on L4/3(R2) in

the sense of Lebesgue’s integration.

(c) Existence, uniqueness and regularity of the minimizers
Consider the unconstrained minimization problem

E0 := inf
ρ∈H0

E0(ρ). (3.14)

It is easy to prove the following.

Proposition 3.1 (Existence). For every V ∈ ◦
H

1/2
(R2) + L3(R2), the TF-energy E0 admits a unique

minimizer ρV ∈H0 such that E0(ρV) = E0. The minimizer ρV satisfies the Euler–Lagrange equation
∫
R2

sgn(ρV)|ρV|1/2ϕ d2x − 〈ϕ, V〉 + 〈ρV ,ϕ〉 ◦
H

−1/2
(R2)

= 0 ∀ϕ ∈H0. (3.15)

Proof. It is standard to conclude from V ∈ ◦
H

1/2
(R2) + L3(R2) that E0 is bounded below on H0,

i.e. that E0 >−∞.
Consider a minimizing sequence (ρn) ⊂H0. Clearly,

sup
n

||ρn||L3/2(R2) ≤ C and sup
n

||ρn|| ◦
H

−1/2
(R2)

≤ C. (3.16)

Using weak-∗ compactness of the closed unit ball in
◦

H
−1/2

(R2), we may extract a subsequence,
still denoted by (ρn), such that

ρn ⇀ρV in L3/2(R2) (3.17)

and

ρn
∗
⇀ F in

◦
H

−1/2
(R2), (3.18)

for some ρV ∈ L3/2(R2) and F ∈ ◦
H

−1/2
(R2). By the definition, (3.17) and (3.18) mean that

∫
R2
ρn(x)ϕ(x) d2x →

∫
R2
ρV(x)ϕ(x) d2x ∀ϕ ∈ L3(R2) (3.19)

and

〈ρn,ϕ〉 =
∫
R2
ρn(x)ϕ(x) d2x → 〈F,ϕ〉 ∀ϕ ∈ ◦

H
1/2

(R2). (3.20)

Therefore, passing to the limit, we obtain
∫
R2
ρV(x)ϕ(x) d2x = 〈F,ϕ〉 ∀ϕ ∈ L3(R2) ∩ ◦

H
1/2

(R2). (3.21)

In particular, ρV ∈ ◦
H

−1/2
(R2) defines a regular distribution in D′(R2) and we may identify F = ρV .

This implies that

E0(ρV) ≤ lim inf
n→∞ E0(ρn) = E0, (3.22)

which follows from the weak lower semicontinuity of the || · ||L3/2(R2) and || · || ◦
H

−1/2
(R2)

norms, and

the weak continuity of the linear functionals 〈·, V〉 on H0.
The uniqueness of the minimizer ρV ∈H0 is a consequence of the strict convexity of the energy

E0, which is the sum of the strictly convex kinetic energy, linear external potential energy and
positive definite quadratic Coulomb energy.

The derivation of the Euler–Lagrange equation (3.15) is standard, we omit the details. �

Remark 3.2. As was already mentioned, if ρV ∈H0 ∩ L4/3(R2) then (3.15) can be interpreted
pointwise as the integral equation (2.11). However, in general, the Euler–Lagrange equation (3.15)
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for E0 should be interpreted as

sgn(ρV)|ρV(x)|1/2 + UρV = V in D′(R2), (3.23)

where UρV ∈ ◦
H

1/2
(R2) is the potential of ρV defined via (3.5). In particular, if ρV ≥ 0 then UρV ≥ 0

(see [34, theorem 3.14]) which implies V ≥ 0 and

0 ≤ ρV ≤ V2 in D′(R2). (3.24)

Remark 3.3. The mapping V �→ ρV is a bijection between H′
0 = ◦

H
1/2

(R2) + L3(R2) and H0.
Indeed, the uniqueness of the minimizer implies that ρV is injective. Further, it is clear that for
any ρ ∈H0,

V := Uρ + sgn(ρ)|ρ(x)|1/2 ∈ ◦
H

1/2
(R2) + L3(R2), (3.25)

which means that the mapping ρV is also surjective. In particular, this shows that non-regular at

infinity distributions in
◦

H
−1/2

(R2) could occur among the minimizers. Simply choose a regular

distribution ρ ∈H0 such that ρϕ �∈ L1(R2) for some ϕ ∈ ◦
H

1/2
(R2) (e.g. [14, example 4.1.] for an

explicit example) and generate the corresponding potential V via (3.25).

While for a generic V ∈ ◦
H

1/2
(R2) + L3(R2), the information ρV ∈H0 is optimal, under

additional restrictions on the potential V, the regularity of the minimizer can be improved up
to the regularity of V.

Lemma 3.4 (Hölder regularity). Assume that V ∈ ◦
H

1/2
(R2) ∩ Cα(R2) for some α ∈ (0, 1]. Then the

minimizer ρV ∈H0 additionally satisfies ρV ∈H0 ∩ Cα(R2), and ρV(x) → 0 as |x| → ∞. Furthermore,
the potential Uρ could be identified with the Riesz potential of ρ as in (3.10) and UρV ∈ C1/3(R2).

Proof. According to (3.23), the minimizer ρV ∈H0 satisfies

sgn(ρV)|ρV|1/2 = V − UρV in D′(R2). (3.26)

Since ρV ∈H0 ⊂ L3/2(R2), by the HLS-inequality (3.11) with s = 3/2, we have

UρV ∈ L6(R2), (3.27)

and in particular, the potential Uρ could be identified with the Riesz potential of ρ as in (3.10).
Also, by the Sobolev inequality (3.2),

V ∈ ◦
H

1/2
(R2) ∩ Cα(R2) ⊂ L4(R2) ∩ Cα(R2). (3.28)

This implies
V2 ∈ L2(R2) ∩ Cα(R2). (3.29)

In particular, both V and V2 are bounded and decay to zero as |x| → ∞. Note also that U2
ρV

∈ L3(R2). Hence,

|ρV| = (V − UρV )2 = V2 − 2VUρV + U2
ρV

∈ L3/2(R2) ∩ L3(R2). (3.30)

Furthermore, by Hölder estimates on Riesz potentials, we conclude that UρV ∈ C1/3(R2), see
[14, lemma 4.1] or [34, theorem 2]. Then,

|ρV| = (V − UρV )2 ∈ Cβ (R2), (3.31)

where β = min{α, 1/3} and ρV(x) → 0 as |x| → ∞. If α ≤ 1/3, we are done. If α > 1/3 then (3.31)
implies UρV ∈ C1,1/3(R2), see [35, proposition 2.8]. Therefore, ρV has at least the same Hölder
regularity as V. �

Remark 3.5. Similarly, one can establish higher Hölder regularity of ρV assuming higher
regularity of V. For instance, using [35, proposition 2.8], we can conclude that if V ∈ C1,α(R2)
then ρV ∈ C1,β (R2), where β = min{α, 1/3}. However, in general, the Hölder regularity of ρV can
not be improved beyond the Hölder regularity of V.
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4. Positivity and decay

(a) Half-Laplacian representation, positivity and comparison
Let ρV ∈H0 be the minimizer of E0. Introduce the substitution

uV := sgn(ρV)|ρV|1/2. (4.1)

Then ρV = |uV|uV and (3.15) transforms into
∫
R2

uV(x)ϕ(x) d2x − 〈ϕ, V〉 + 〈U|uV |uV ,ϕ〉 ◦
H

1/2
(R2)

= 0 ∀ϕ ∈H0. (4.2)

Proposition 4.1 (Equivalent fractional PDE). Let V ∈ ◦
H

1/2
(R2) and uV be defined by (4.1).

Then uV ∈ ◦
H

1/2
(R2) and is the unique solution of the problem

(−	)1/2u + |u|u = (−	)1/2V in
◦

H
1/2

(R2). (4.3)

Proof. Let ψ ∈ C∞
c (R2). Then (−	)1/2ψ ∈ C∞(R2) ∩ L1(R2) ⊂ L4/3 ∩ L1(R2) ⊂H0 [35, section 2.1].

Test (4.2) with ϕ = (−	)1/2ψ and take into account that in view of (3.12),

〈|uV|uV ,ϕ〉 ◦
H

−1/2
(R2)

=〈U|uV |uV , (−	)1/2ψ〉 ◦
H

1/2
(R2)

(4.4)

=
∫
R2

|uV|uV(x)ψ(x) d2x ∀ψ ∈ C∞
c (R2). (4.5)

Then (4.2) yields
∫
R2

uV(−	)1/2ψ d2x − 〈(−	)1/2ψ , V〉 +
∫
R2

|uV|uV(x)ψ(x) d2x = 0 ∀ψ ∈ C∞
c (R2), (4.6)

or equivalently,

(−	)1/2uV − (−	)1/2V + |uV|uV = 0 in D′(R2), (4.7)

where (−	)1/2V ∈ ◦
H

−1/2
(R2), |uV|uV = ρV ∈ ◦

H
−1/2

(R2). Hence uV ∈ ◦
H

1/2
(R2), and (4.7) also holds

weakly in
◦

H
1/2

(R2) by density.
The uniqueness for (4.3) follows from the comparison principle of lemma 4.3 below. �

Proposition 4.2 (Positivity). Let V ∈ ◦
H

1/2
(R2). Assume that (−	)1/2V ≥ 0 in R

2. Then uV ≥ 0 in
R

2. If, in addition, V �= 0 then uV �= 0.

Proof. Decompose uV = u+
V − u−

V and recall that u+
V , u−

V ∈ ◦
H

1/2
(R2) and 〈u+

V , u−
V〉 ◦

H
1/2

(R2)
≤ 0.

Testing (4.3) by u−
V ≥ 0 and taking into account that uV|uV|u−

V ≤ 0, we obtain

0 ≤ 〈V, u−
V〉 ◦

H
1/2

(R2)
= 〈uV , u−

V〉 ◦
H

1/2
(R2)

+
∫
R2

uV|uV| u−
V d2x ≤ −〈u−

V , u−
V〉 ◦

H
1/2

(R2)
≤ 0. (4.8)

We conclude that u−
V = 0.

Further, if V �= 0 then u = 0 is not a solution of (4.3) and hence uV �= 0. �

Lemma 4.3 (Comparison principle). Let V ∈ ◦
H

1/2
(R2). Assume that u, v ∈ ◦

H
1/2

(R2) ∩ L3(R2) are
a super and a subsolution to (4.3) in a smooth domain Ω ⊆ R

2, respectively, i.e.

(−	)1/2u + u|u| ≥ (−	)1/2V in D′(Ω) (4.9)

and

(−	)1/2v + v|v| ≤ (−	)1/2V in D′(Ω). (4.10)

If R
2 \Ω �= ∅, we also assume u ≥ v in R

2 \ Ω̄ . Then u ≥ v in R
2.
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Proof. Subtracting one inequality from another, we obtain

(−	)1/2(v − u) + v|v| − u|u| ≤ 0 in D′(Ω). (4.11)

Let H1/2
0 (Ω) denotes the completion of C∞

c (Ω) with respect to the Gagliardo’s norm || · ||2◦
H

1/2
(R2)

,

defined in (3.1). With this definition, H1/2
0 (Ω) is automatically a closed subspace of H1/2

0 (R2). By

density, (4.11) is also valid in H1/2
0 (Ω), in the sense that

〈v − u,ϕ〉 ◦
H

1/2
(R2)

+
∫
R2

(v|v| − u|u|)ϕ d2x ≤ 0 ∀ 0 ≤ ϕ ∈ H1/2
0 (Ω). (4.12)

Note that (v − u)+ ∈ ◦
H

1/2
(R2). If R

2 \Ω �= ∅ then u ≥ v in R
2 \ Ω̄ and hence (v − u)+ = 0 in R

2 \ Ω̄ .
This implies (v − u)+ ∈ H1/2

0 (Ω) (e.g. [36, theorem 10.1.1]). Testing (4.12) by (v − u)+, taking into
account 〈(v − u)−, (v − u)+〉 ◦

H
1/2

(R2)
≤ 0 and monotone increase of the nonlinearity, we obtain

0 ≥ 〈v − u, (v − u)+〉 ◦
H

1/2
(R2)

+
∫
R2

(v|v| − u|u|)(v − u)+ d2x

≥ 〈(v − u)+, (v − u)+〉 ◦
H

1/2
(R2)

= ||(v − u)+||2◦
H

1/2
(R2)

. (4.13)

We conclude that (v − u)+ = 0. �

The comparison principle immediately implies that (4.3) can have at most one solution in
◦

H
1/2

(R2). Hence, the solution uV constructed from the minimizer ρV via (4.1) is the unique
solution of (4.3). A consequence of the uniqueness is the following.

Corollary 4.4. Assume that V ∈ ◦
H

1/2
(R2) and (−	)1/2V ≥ 0 in R

2. If (−	)1/2V ∈ L4/3(R2) is a
radially symmetric non-increasing function, then uV is also radially symmetric and non-increasing.

Proof. Note that uV is the unique global minimizer of the convex energy

JV(u) = 1
2
||u||2◦

H
1/2

(R2)
+ 1

3
||u||3L3(R2) − 〈u, V〉 ◦

H
1/2

(R2)

on
◦

H
1/2

(R2) ∩ L3(R2). Since (−	)1/2V ∈ L4/3(R2),

〈uV , V〉 ◦
H

1/2
(R2)

=
∫
R2

uV(−	)1/2V d2x,

where the latter integral is finite by the HLS inequality. Then the symmetric-decreasing
rearrangement u∗

V is also a minimizer of JV , by [28, theorem 3.4 and lemma 7.17]. Hence, the
assertion follows from the uniqueness of the minimizer. �

Another straightforward, but important consequence of the comparison principle is the
following upper bound on uV .

Corollary 4.5. Assume that V ∈ ◦
H

1/2
(R2) and V ≥ 0. Then

uV ≤ V inR
2. (4.14)

Proof. We simply note that V is a supersolution to (4.3) in R
2, i.e.

(−	)1/2V + V2 ≥ (−	)1/2V in D′(R2). (4.15)

Hence, (4.14) follows from the comparison principle in R
2. �

The comparison principle can be used as an alternative tool to prove the existence of the
solution uV of (4.3), via construction of appropriate sub- and super-solutions. In the next section,
we construct an explicit barrier which later will be used to obtain lower and upper solution with
matching sharp asymptotics at infinity. This will lead to the sharp decay estimates on uV and ρV .
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(b) Super-harmonicity of the potential is essential
We are going to show that the assumptions (−	)1/2V ≥ 0 is in a certain sense necessary for the
positivity of the minimizer ρV .

Proposition 4.6. Let V ∈ ◦
H

1/2
(R2) ∩ Cα(R2) for some α ∈ (0, 1]. Assume that V �= 0 and

lim
|x|→∞

|x|V(x) = 0. (4.16)

Then ρV changes sign in R
2.

Remark 4.7. The assumption (4.16) implicitly necessitates that (−	)1/2V cannot be non-
negative. Indeed, if (−	)1/2V ≥ 0 then lim|x|→∞ |x|V(x)> 0 (cf. (4.18) below), which is
incompatible with (4.16).

Proof. According to (3.23) and lemma 3.4, we know that ρV ∈H0 ∩ Cα(R2), Uρ could be
identified with the Riesz potential of the function ρ as in (3.10), UρV ∈ C1/3(R2), and

sign(ρV)|ρV|1/2(x) = V(x) − UρV (x) for all x ∈ R
2. (4.17)

Assume that ρV ≥ 0 in R
2. Then, for each x ∈ R

2,

Uρ (x) ≥ 1
2π

∫
B2|x|(x)

ρ(y)
|x − y| d2y ≥ 1

4π |x|
∫

B2|x|(x)
ρ(y) d2y. (4.18)

In particular,
lim inf
|x|→∞

|x|UρV (x)> 0, (4.19)

and hence, in view of (4.16),

lim sup
|x|→∞

|x|sign(ρV)|ρV|1/2(x) = lim sup
|x|→∞

|x|(V(x) − UρV (x))< 0, (4.20)

a contradiction. A symmetric argument shows that ρV ≤ 0 is also impossible. �

Remark 4.8. For example, we can consider the dipole potential

WZ(x) = Z
2π (1 + |x|2)3/2 .

Note that WZ(x) = −(d/dtVZ,t(x)|t=1. While WZ > 0, it is not difficult to see, using the harmonic
extension of WZ, that

(−	)1/2WZ(|x|) = Z(2 − |x|2)
2π (1 + |x|2)5/2 ,

which is a sign-changing function. Clearly, WZ satisfies the assumptions of proposition 4.6, so the
minimizer ρWZ changes sign for any Z> 0.

(c) Sign-changing minimizer in Thomas–Fermi–Dirac–von Weizsäcker model
A density functional theory of Thomas–Fermi–Dirac–von Weizsäcker (TFW) type to describe the
response of a single layer of graphene to a charge V was developed in [14]. For ε > 0, and in the
notation of the present paper, the TFW energy studied in [14] has the form

E0,ε(ρ) := ε‖|ρ|−1/2ρ||2◦
H

1/2
(R2)

+ E0(ρ) : H0 → R ∪ {+∞}. (4.21)

The existence of a minimizer for E0,ε with V ∈ ◦
H

1/2
(R2) was established in [14, theorem 3.1].

We are going to show that if V ≥ 0 satisfies the assumptions of proposition 4.6 then for sufficiently
small ε > 0 the TFW energy E0,ε admits a sign-changing minimizer. This gives a partial answer to one
of the questions left open in [14] (see discussions in [14, section 3]).
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To show the existence of a sign-changing minimizer for E0,ε , assume that V ≥ 0 and the
assumptions of proposition 4.6 holds. Then the minimizer ρV of E0 changes sign. Let

E0 := inf
H0

E0 = E0(ρV).

Similarly to proposition 3.1, we can also minimize convex energy E0 on the weakly closed set
H+

0 of non-negative functions in H0. Let ρ+
V ∈H+

0 be the minimizer of E0 on H+
0 and set

E+
0 := inf

H+
0

E0 = E0(ρ+
V ).

It is clear that E+
0 < 0 and hence ρ+

V �= 0 (just take trial functions 0 ≤ ϕ ∈D′(R2) such that 〈V,ϕ〉> 0).
By an adaptation of arguments in [28, theorem 11.13], the minimizer ρ+

V satisfies the TF equation

(ρ+
V )3/2 = (

V − Uρ+
V

)+ in D′(R2). (4.22)

Observe that supp(ρ+
V ) �= R

2. Indeed, assume that ρ+
V > 0 in R

2. Then ρ+
V > 0 satisfies the Euler–

Lagrange equation
(ρ+

V )3/2 = V − Uρ+
V

in D′(R2), (4.23)

which contradicts to the uniqueness, since (4.23) has a sign-changing solution ρV by proposition
4.6. Crucially, by the strict convexity of E0, we can also conclude that

E0 < E+
0 . (4.24)

Next, for ε > 0 consider the TFW energy E0,ε . Set

E0,ε := inf
H0

E0,ε .

The existence of a minimizer for E0,ε was established in [14, theorem 3.1]. Without loss of a

generality, we may assume that ρV is regular enough and |ρV|−1/2ρ ∈ ◦
H

1/2
(R2) (otherwise we

may approximate ρV by smooths functions). Then

E0,ε ≤ ε‖|ρV|−1/2ρV||2◦
H

1/2
(R2)

+ E0 → E0 as ε→ 0.

Similarly,
E+

0 ≤ E+
0,ε := inf

H+
0

E0,ε .

Taking into account the strict inequality (4.24), for sufficiently small ε > 0, we have

E0 < E0,ε < E+
0 ≤ E+

0,ε .

In particular, E0,ε < E+
0,ε and we conclude that a minimizer for E0,ε must change sign. For example,

a dipole, or any compactly supported non-negative potential should give rise to a sign-changing
global minimizer in the TFW model.

(d) Logarithmic barrier
Recall (cf. [23, theorem 1.1]) that for a radial function u ∈ C2(R+) such that∫∞

0

|u(r)|
(1 + r)3 r dr<∞, (4.25)

the following representation of the fractional Laplacian (−	)1/2 in R
2 is valid:

(−	)1/2u(r) = 1
2πr

∫∞

1

(
u(r) − u(rτ ) + u(r) − u(r/τ )

τ

)
K(τ ) dτ , (4.26)

where

K(τ ) := 2πτ−2
2F1

(
3
2

,
3
2

, 1, τ−2
)

, (4.27)
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see [23, p. 246]. Note that K(τ )> 0,

K(τ ) ∼ (τ − 1)−2 as τ → 1+ (4.28)

and
K(τ ) ∼ τ−2 as τ → +∞, (4.29)

so the kernel K(τ ) is integrable as τ → +∞, but it is singular as τ → 1+.
Denote

Φu(r, τ ) := u(r) − u(rτ ) + u(r) − u(r/τ )
τ

. (4.30)

Clearly, Φu(r, 1) = 0. A direct computation shows that

∂τΦu(r, 1) = 0, ∂2
τ Φu(r, 1) = −2r2L u(r), (4.31)

where the differential expression

L u(r) := u′′(r) + 2
r

u′(r), (4.32)

acts on u(r) as the radial Laplacian in three dimensions. In particular, the integral in (4.26)
converges as τ → 1+.

We now define a barrier function U ∈ C2(R+) such that U(r) is monotone decreasing and

U(r) = 1
r log(er)

∀ r> 1. (4.33)

Clearly, if u(x) := U(|x|) then u ∈ H1(R2). By interpolation between L2(R2) and H1(R2) (cf.
[37, proposition 1.52]), we also conclude that u ∈ H1/2(R2).

Lemma 4.9. There exists R> 2 such that

(−	)1/2U(r) ∼ − 1
r2(log(r))2 for all r>R. (4.34)

Proof. Our strategy is to split the representation in (4.26) into three parts
∫2

1 + ∫r
2 + ∫∞

r and then
either estimate each part from above and below or compute the integrals explicitly, see (4.46) and
(4.47).

For r> 2, we compute

L U(r) = log(e3r)
(r log(er))3 > 0. (4.35)

Next, we claim that for all r> 2 the following inequalities hold:

ΦU(r, τ )<U(r) ∀ τ ∈ [r, +∞), (4.36)

ΦU(r, τ ) ≤ 0 ∀ τ ∈ [1, r] (4.37)

and ΦU(r, τ ) ≥ −4r2L U(r)(τ − 1)2 ∀ τ ∈ [1, 2]. (4.38)

We begin by noting that by monotonicity and positivity of U, we have

ΦU(r, τ )<U(r), (4.39)

which yields (4.36). To deduce (4.37), observe that for r> 2 and 1 ≤ τ ≤ r, we have

ΦU(r, τ ) = 1
r

{
1

log(er)
− 1

log(er/τ )
+ 1
τ

(
1

log(er)
− 1

log(erτ )

)}
. (4.40)

It is elementary to see that (4.37) is equivalent to

log(erτ )
log(er/τ )

≥ 1
τ

, (4.41)

the latter is true for any r> 1 and τ ∈ [1, r] (since in this range the left-hand side is bigger than
one).
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To derive (4.38), let A := log(er) and observe that for r> 2 and τ ∈ [1, 2], we have A> 1 and

r {ΦU(r, τ ) + 4L U(r)r2(τ − 1)2}

= 1
log(er)

− 1
log(er) − log(τ )

+ 1
τ

(
1

log(er)
− 1

log(er) + log(τ )

)
+ 4 log(e3r)

(log(er))3 (τ − 1)2

= 1
A

(
1 + 1

τ

)
−
(

1
A − log(τ )

+ 1
τ (A + log(τ ))

)
+ 4(2 + A)

A3 (τ − 1)2

≥ 1
A

(
1 + 1

τ

)
−
(

1
A − log(τ )

+ 1
τ (A + log(τ ))

)
+ 4

A2 (log(τ ))2, (4.42)

where we used the fact that log(τ )< τ − 1 for τ ≥ 1. It is convenient to substitute τ = ex, where
x ∈ [0, log(2)]. Then, taking into account that A ≥ log(2e)> 2x, we rewrite the right-hand side of
(4.42) as

1
A

− 1
A − x

+ e−x
(

1
A

− 1
A + x

)
+ 4x2

A2 = x
A

{
− 1

A − x
+ e−x

A + x
+ 4x

A

}

≥ x
A2

{
−1 − 2x

A
+ (1 − x)

(
1 − x

A

)
+ 4x

}

≥ 3x2

A2

{
1 − 1

A

}
≥ 0 for all x ∈ [0, log(2)]. (4.43)

Now, for r> 2, we compute explicitly, using again the substitution τ = ex and a standard
asymptotic expansion of the integral,

∫ r

2
rΦU(r, τ )τ−2 dτ =

∫ z−1

log(2)

(
xz2e−x

(z + 1)(xz + z + 1)
+ z

(x − 1)z − 1
+ z

z + 1

)
e−x dx

= −7 + 6 log(2)
16

z2 + O(z3) as z → 0+, (4.44)

where we defined z := 1/ log(r). Similarly, we have∣∣∣∣
∫∞

r
rΦU(r, τ )τ−2 dτ

∣∣∣∣≤
∫∞

z−1

ze−x

z + 1
dx + U(0)ez−1

∫∞

z−1
e−2x dx ≤ (1 + 1

2 U(0))e−z−1
. (4.45)

Therefore, taking into account (4.29) and using (4.36), (4.37) and (4.44), for r> 2, we estimate

(−	)1/2U(r) � r−1
∫ r

2
ΦU(r, τ )τ−2 dτ + r−1U(r)

∫∞

r
τ−2 dτ ,

∼ − 1
r2(log(r))2 + 1

r3 log(r)
∼ − 1

r2(log(r))2 as r → ∞. (4.46)

To deduce a lower estimate, we use (4.38), (4.45) and (4.44) to obtain

(−	)1/2U(r) � −rL U(r) + r−1
(∫ r

2
+

∫∞

r

)
ΦU(r, τ )τ−2 dτ ,

� − 1
r2(log(r))2 − 1

r2(log(r))2 − 1
r3 ∼ − 1

r2(log(r))2 as r → ∞, (4.47)

which completes the proof. �

(e) Decay estimate

Proposition 4.10. Let V ∈ ◦
H

1/2
(R2) ∩ Cα(R2) for some α ∈ (0, 1]. Assume that (−	)1/2V ≥ 0, V �= 0,

and for some R> 0 and C> 0,

(−	)1/2V ≤ C
|x|2(log |x|)2 for |x| ≥ R. (4.48)
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Then the unique solution uV ∈ H1/2(R2) ∩ Cα(R2) of (4.3) satisfies

0< uV(x) ≤ V(x) for all x ∈ R
2 (4.49)

and

uV(x) ∼ 1
|x| log |x| as |x| → ∞. (4.50)

In particular, uV ∈ L2(R2).

Remark 4.11. We do not assume radial symmetry of V or uV . The assumptions (−	)1/2V ≥ 0
and V �= 0 ensure the positivity of uV , while the upper bound (4.48) controls the logarithmic decay
rate (4.50). The bound (4.48) together with (−	)1/2V ≥ 0 implicitly necessitates that V is positive
in R

2, (−	)1/2V ∈ L1(R2) and

lim
|x|→∞

2π |x|V(x) = ||(−	)1/2V||L1(R2), (4.51)

see lemma 4.12 below.

Proof. Note that (−	)1/2V ≥ 0 implies that V ≥ 0 (this could be seen similarly to the argument
in the proof of proposition 4.2 but without the nonlinear term). Then the upper bound in (4.49)
follows by corollary 4.5. Next, recall that uV ∈ Cα(R2) by lemma 3.4 and uV �= 0 by proposition 4.2.
Therefore, with c := ||uV||L∞(R2), we get

((−	)1/2 + c)uV = (c − uV)uV + (−	)1/2V ≥ 0 in R
2.

This implies that uV(x)> 0 for all x ∈ R
2, cf. [14, lemma 7.1].

To derive (4.50), set Uλ := λU, where U is the logarithmic barrier function defined in (4.33).

Recall that U ∈ H1/2(R2) ⊂ ◦
H

1/2
(R2). Using (4.34) to estimate (−	)1/2Uλ, we conclude that there

exist positive constants c1, c2, C such that for some R′ >R and all sufficiently large λ> 0,

(−	)1/2Uλ + bU2
λ − (−	)1/2V

≥ − c1λ

|x|2(log(|x|))2 + λ2

|x|2(log(e|x|))2 − C
|x|2(log |x|)2 ≥ 0 for |x| ≥ R′. (4.52)

Similarly, for some R′ >R and all sufficiently small λ> 0,

(−	)1/2Uλ + bU2
λ − (−	)1/2V ≤ − c2λ

|x|2(log(|x|))2 + λ2

|x|2(log(e|x|))2 ≤ 0 for |x| ≥ R′. (4.53)

Therefore, for suitable values of λ, we can use Uλ as a sub- or super-solution in the comparison
principle of lemma 4.3 with Ω = Bc

R.
To construct a lower barrier for the solution uV , set λ0 := minB̄R

uV > 0. Then

uV ≥ Uλ0 in B̄R. (4.54)

Taking into account (4.53), we conclude by lemma 4.3 that

uV ≥ Uλ in R
2, (4.55)

for a sufficiently small λ≤ λ0.
To construct an upper barrier for uV , choose μ> 0 such that

uV ≤ Uμ in B̄R. (4.56)

Using (4.52), we conclude by lemma 4.3 that

uV ≤ Uλ in R
2, (4.57)

for a sufficiently large λ≥μ. �
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(f) Charge estimate
In the case of the standard Newtonian kernel |x|−1 on R

3 it is well known that for a non-negative
f ∈ L1

rad(R3), |x|−1 ∗ f = ||f ||L1(R3)|x|−1 + o(|x|−1) as |x| → ∞ (cf. [38] for a discussion). The result
becomes non-trivial when we consider the convolution kernel |x|−1 on R

2, or more generally the
Riesz kernel |x|−(N−α) on R

N with α ∈ (0, N). It is known that if α ∈ (1, N) and f ∈ L1(RN) is positive
radially symmetric then |x|−(N−α) ∗ f = O(|x|−(N−α)) (see [38, theorem 5(i)]). The same remains
valid if α ∈ (0, 1] and f is in addition monotone decreasing (see [39, lemma 2.2 (4)]). However,
without assuming monotonicity of f , |x|−(N−α) ∗ f with α ∈ (0, 1] could have arbitrary fast growth
at infinity [38, theorem 5].

We are going to show that if f is monotone non-increasing and decays faster than |x|−2, then
the sharp asymptotics of |x|−1 ∗ f on R

2 is recovered. The proof is easily extended to Riesz kernels
with N ≥ 2 and α ∈ (0, N).

Lemma 4.12 (Asymptotic Newton’s type theorem). Let 0 ≤ f ∈ L1(R2) be a function dominated by
a radially symmetric non-increasing function ϕ : R+ → R+ that satisfies

lim
|x|→∞

ϕ(x)|x|2 = 0. (4.58)

Then ∫
R2

f (y)
|x − y| d2y = ||f ||L1(R2)

|x| + o(|x|−1) as|x| → ∞. (4.59)

Proof. Fix 0 �= x ∈ R
2 and decompose R

2 as the union of B = {y : |y − x|< |x|/2}, A = {y �∈ B : |y| ≤
|x|}, C = {y �∈ B : |y|> |x|}.

We want to estimate the quantity∣∣∣∣
∫

A∪C
f (y)

(
1

|x − y| − 1
|x|
)

d2y
∣∣∣∣≤

∫
A∪C

f (y)
∣∣∣∣ 1
|x − y| − 1

|x|
∣∣∣∣ d2y. (4.60)

Since |x|/2 ≤ |x − y| ≤ 2|x| for all y ∈ A, by the mean value theorem, we have∣∣∣∣ 1
|x − y| − 1

|x|
∣∣∣∣≤ 4|y|

|x|2 (y ∈ A). (4.61)

Thus ∣∣∣∣
∫

A
f (y)

(
1

|x − y| − 1
|x|
)

d2y
∣∣∣∣≤ 4

|x|2
∫

A
f (y)|y| d2y. (4.62)

On the other hand, since |x − y|> |x|/2, for all y ∈ C then∣∣∣∣ 1
|x| − 1

|x − y|
∣∣∣∣≤ 1

|x| (y ∈ C), (4.63)

from which we compute that∣∣∣∣
∫

C
f (y)

(
1

|x − y| − 1
|x|
)

d2y
∣∣∣∣≤ 1

|x|
∫

C
f (y) d2y. (4.64)

Then ∣∣∣∣
∫
R2

f (y)
|x − y| d2y − ||f ||L1(R2)

|x|
∣∣∣∣

≤ 4
|x|2

∫
A

f (y)|y| d2y +
∫

B

f (y)
|x − y| d2y + 1

|x|
∫

B∪C
f (y) d2y =: I1 + I2 + I3. (4.65)

Using (4.58), for |x| � 2, we estimate

I1 = 4
|x|2

∫
|y|≤|x|

f (y)|y| d2y ≤ 8π
|x|2

∫ |x|

0
ϕ(t)t2 dt︸ ︷︷ ︸
o(|x|)

= o(|x|−1) (|x| → ∞). (4.66)
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Also, using the monotonicity of f and (4.58), for |x| � 2, we obtain

I2 =
∫
|y−x|≤|x|/2

f (y)
|x − y| dy ≤ ϕ(|x|/2)

∫
|z|≤|x|/2

dz
|z| = πϕ(|x|/2)|x| = o(|x|−1). (4.67)

Finally, I3 = o(|x|−1) as |x| → ∞ since f ∈ L1(R2), so the assertion follows. �

Proposition 4.13. Assume that the assumptions of proposition 4.10 hold and

lim
|x|→∞

2π |x|V(x) = Z> 0. (4.68)

Then ||ρV||L1(R2) = Z.

Proof. According to (3.23), the minimizer ρV ∈H0 ∩ Cα(R2) satisfies

ρ
1/2
V (x) = V(x) − UρV (x) for all x ∈ R

2. (4.69)

Taking into account (2.15), by lemma 4.12 above, we conclude that

lim
|x|→∞

2π |x|UρV (x) = ||ρV||L1(R2). (4.70)

Then the assertion follows since lim|x|→∞ |x|ρ1/2
V (x) = 0. �

(g) Universality of decay
We next prove that in the case V = VZ,d the behaviour of ρVZ,d for large |x| does not depend on the
values of Z and d.

Proposition 4.14. Let Z> 0, d> 0 and let V = VZ,d as defined in (2.3). Then

uV(x) � 1
|x| log |x| as |x| → ∞. (4.71)

Proof. We start by noting that proposition 4.10 applies to VZ,d (see (2.10)). To prove the sharp
asymptotic decay of the minimizer when V = VZ,d, we use the idea in the computation of
Katsnelson [11], also giving the latter a precise mathematical meaning. To this end, we first note
that since ρV ∈ L1(R2) ∩ L∞(R2), we have that (2.11) holds. In terms of uV > 0 defined in (2.13),
this equation reads

uV(x) = V(x) − 1
2π

∫
R2

u2
V(y)

|x − y| d2y for all x ∈ R
2, (4.72)

where we used the regularity of uV and V. In turn, since uV(x) = u(|x|), applying Fubini’s theorem,
we obtain after an explicit integration

u(r) = Z

2π
√

d2 + r2
− 1

2π

∫∞

0

∫ 2π

0

u2(r′) r′ dr′ dθ√
r2 + r′2 − 2rr′ cos θ

(4.73)

= Z

2π
√

d2 + r2
− 2
π

∫∞

0

r′u2(r′)
r + r′ K

(
2
√

rr′
r + r′

)
dr′, (4.74)

where K(k) is the complete elliptic integral of the first kind [40].
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Proceeding as in [11], we introduce a smooth bounded function

F(t) := etu(et), t ∈ R, (4.75)

which satisfies F(ln r) = ru(r). From (4.50) and the boundedness of u, we conclude that

F(t) ∼ t−1 as t → +∞, (4.76)

and F(t) decays exponentially as t → −∞. In particular, F ∈ L2(R). Then, with the substitution
r = et, (4.73) written in terms of F(t) becomes

F(t) = Z

2π
√

1 + d2e−2t
− 2
π

∫∞

−∞
F2(t′)

1 + et′−t K

(
1

cosh t′−t
2

)
dt′. (4.77)

We further introduce (with the opposite sign convention to that in [11])

φ(t) := 2K(1/cosh(t2))
π (1 + e−t)

− θ (t), (4.78)

where θ (t) is the Heaviside step function, and note that φ(t) is a positive, exponentially decaying
function as t → ±∞, which is smooth, except for a logarithmic singularity at t = 0. Then, since
F(t) → 0 as t → +∞ by (4.76), passing to the limit using the weak convergence of φ(t − ·)⇀ 0 in
L2(R) as t → +∞ and monotone convergence, we conclude that

∫+∞

−∞
F2(t) dt = Z

2π
. (4.79)

With this (4.77) becomes

F(t) =
Z
(

1 −
√

1 + d2e−2t
)

2π
√

1 + d2e−2t
+

∫∞

t
F2(t′) dt′ −

∫∞

−∞
φ(t − t′)F2(t′) dt′. (4.80)

To conclude, we observe that in view of (4.76), we can estimate the last term in (4.80) to be
O(t−2) as t → +∞. Similarly, the first term gives an exponentially small contribution for t → +∞
and can, therefore, be absorbed into the O(t−2) term as well. Thus, we have

F(t) = G(t) + O(t−2) and G(t) :=
∫∞

t
F2(t′) dt′, (4.81)

and it follows that G(t) satisfies for all t sufficiently large

dG(t)
dt

= −(G(t) + O(t−2))2. (4.82)

In particular, using (4.76), we can further estimate for t � 1

dG(t)
dt

= −G2(t)(1 + O(t−1))2. (4.83)

Integrating this expression from some sufficiently large t0 then gives

1
G(t)

− 1
G(t0)

= t − t0 + O
(

ln
(

t
t0

))
, t> t0. (4.84)

Finally, solving for G(t) and inserting it into (4.81) results in

F(t) = 1
t + O(ln t)

as t → +∞, (4.85)

which yields the claim after converting back into the original variables. �

(h) Proof of the main results
We finish this section by concluding the proofs of the results in §2.
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Proof of theorem 2.1. The statement of the theorem follows by combining the statements of
proposition 3.1, lemma 3.4 and proposition 4.2. �

Proof of theorem 2.2. The conclusion of this theorem is the consequence of theorem 2.1, together
with corollary 4.4 and propositions 4.10, 4.13 and 4.14, taking into account (2.10) and performing
a change of variables from uV to ρV . �

Proof of corollary 2.6. Now that we established proposition 4.14 for the potential VZ,d with Z> 0
and d> 0, we may proceed to use the comparison principle in lemma 4.3 to establish the sharp
estimate in (4.71) for a potential given by (2.4) with all Zi > 0 and di > 0. In this case by (2.10), we
have

(−	)1/2VN(x) =
N∑

i=1

Zidi

2π (d2
i + |x − xi|2)3/2

. (4.86)

In particular, VN satisfies the assumptions of proposition 4.10. Hence, the conclusions of
propositions 4.10 and 4.13 are still valid for V = VN .

It remains to establish the sharp decay estimate in (4.71). For that, simply observe that there
exist constants Z2 >Z1 > 0 such that

(−	)1/2VZ1,1(x) ≤ (−	)1/2VN(x) ≤ (−	)1/2VZ2,1(x) ∀ x ∈ R
2. (4.87)

Therefore, by lemma 4.3, we have that uVZ1,1 ≤ uVN ≤ uVZ2,1 , and the conclusion follows from
proposition 4.14 and a change of variables from uVN to ρVN . �

Remark 4.15. From the proof above, it is clear that the universal decay estimate (4.71) on the

minimizer ρV remains valid for any potential V ∈ ◦
H

1/2
(R2) such that (−	)1/2V is non-negative

and bounded, and (−	)1/2V � |x|−3 as |x| → ∞.

5. Non-zero background charge
We now turn to the situation in which a net background charge density ρ̄ ∈ R is present, which is
achieved in graphene via back-gating. This leads to the modified TF energy [14]

ETF
ρ̄ (ρ) = 2

3

∫
R2

(|ρ(x)|3/2 − |ρ̄|3/2) d2x − sgn(ρ̄)|ρ̄|1/2
∫
R2

(ρ(x) − ρ̄) d2x

−
∫
R2

(ρ(x) − ρ̄)V(x) d2x + 1
4π

∫∫
R2×R2

(ρ(x) − ρ̄)(ρ(y) − ρ̄)
|x − y| d2x d2y,

where ρ(x) → ρ̄ sufficiently fast as |x| → ∞. Since this energy is invariant with respect to

ρ→ −ρ, ρ̄→ −ρ̄, V → −V,

in the sequel, we assume, without loss of generality, that ρ̄ > 0.

(a) A representation of the energy functional
For a given charge density ρ(x) and ρ̄ > 0, we define

φ := ρ − ρ̄. (5.1)
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Figure 1. Plot ofΨρ̄ (φ) andΨ ′
ρ̄ (φ) for ρ̄ = 1.

Then, for φ ∈ C∞
c (R2), the energy ETF

ρ̄ (φ) can be written as (with a slight abuse of notation, in what
follows, we use the same letter to denote both the energy as a function of ρ and that as a function
of φ)

ETF
ρ̄ (φ) =

∫
R2
Ψρ̄ (φ(x)) d2x −

∫
R2

V(x)φ(x) d2x + 1
4π

∫∫
R2×R2

φ(x)φ(y)
|x − y| d2x d2y, (5.2)

where

Ψρ̄ (φ) := 2
3 |ρ̄ + φ|3/2 − 2

3 ρ̄
3/2 − ρ̄1/2φ. (5.3)

Clearly, Ψρ̄ : R → R is a convex C1-function of φ with

Ψ ′
ρ̄ (φ) = |ρ̄ + φ|1/2sgn(ρ̄ + φ) − ρ̄1/2, (5.4)

and Ψρ̄ ∈ C∞(R \ {−ρ̄}). The graphs of Ψρ̄ (φ) and Ψ ′
ρ̄ (φ) for ρ̄ = 1 are presented in figure 1.

Using elementary calculus, one can see that

c|φ|2√
ρ̄ + |φ| ≤Ψρ̄ (φ) ≤ C|φ|2√

ρ̄ + |φ| (φ ∈ R), (5.5)

for some universal C> c> 0. This implies that for ρ̄ > 0,

{φ ∈ L1
loc(R2) : ||Ψρ̄ (φ)||L1(R2) <+∞} = L3/2(R2) + L2(R2). (5.6)

Lemma 5.1. Let ρ̄ > 0. Then ||Ψρ̄ (·)||L1(R2) : L3/2(R2) + L2(R2) → R is a strictly convex and weakly
lower semi-continuous functional, i.e.

〈φn,ϕ〉 → 〈φ,ϕ〉 ∀ϕ ∈ L3(R2) ∩ L2(R2) �⇒ ||Ψρ̄ (φ)||L1(R2) ≤ lim inf
n

||Ψρ̄ (φn)||L1(R2). (5.7)

Proof. The strict convexity of ||Ψρ̄ (·)||L1(R2) follows from the strict convexity of the function Ψρ̄ :
R → R.

Let (φn) ⊂ L3/2(R2) + L2(R2) be a sequence that converges strongly to φ, i.e. there exist
representations φn = fn + gn and φ = f + g such that ||fn − f ||L3/2(R2) → 0 and ||gn − g||L2(R2) → 0.
Then, up to a subsequence Ψρ̄ (φn) →Ψρ̄ (φ) a.e. in R

2. By Fatou’s lemma,

||Ψρ̄ (φ)||L1(R2) ≤ lim inf
n

||Ψρ̄ (φn)||L1(R2), (5.8)

i.e. the sublevel sets of ||Ψρ̄ (·)||L1(R2) are closed in the norm of L3/2(R2) + L2(R2). Using the
convexity of ||Ψρ̄ (φ)||L1(R2), by Mazur’s theorem, we conclude that all sublevels sets are also
weakly closed in L3/2(R2) + L2(R2), i.e. (5.7) holds. �

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

31
 J

ul
y 

20
24

 



23

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A480:20230570

..........................................................

(b) Variational set-up and the main result
In view of lemma 5.1, the natural domain of the total TF energy ETF

ρ̄ is

Hρ̄ := ◦
H

−1/2
(R2) ∩ (L3/2(R2) + L2(R2)), (5.9)

and the TF energy is correctly defined on Hρ̄ in the form

Eρ̄ (φ) :=
∫
R2
Ψρ̄ (φ(x)) d2x − 〈φ, V〉 + 1

2
||φ||2◦

H
−1/2

(R2)
, (5.10)

where 〈·, ·〉 denotes the duality pairing between H′
ρ̄ and Hρ̄ . Having in mind the definition of Hρ̄

in (5.9), we have

H′
ρ̄ = ◦

H
1/2

(R2) + (L3(R2) ∩ L2(R2)). (5.11)

Our main result concerning minimizers of Eρ̄ is the following.

Theorem 5.2. Let ρ̄ > 0 and V ∈H′
ρ̄ . Then, Eρ̄ admits a unique minimizer φρ̄ ∈Hρ̄ such that Eρ̄ (φρ̄ ) =

infHρ̄
Eρ̄ . The minimizer φρ̄ satisfies the Euler–Lagrange equation

∫
R2
Ψ ′
ρ̄ (φρ̄ (x))ϕ(x) d2x − 〈ϕ, V〉 + 〈φρ̄ ,ϕ〉 ◦

H
−1/2

(R2)
= 0 ∀ϕ ∈Hρ̄ . (5.12)

Proof. The proofs of the existence and uniqueness of the minimizer (employing lemma 5.1),
as well as the derivation of the Euler–Lagrange equations (5.12) are small modifications of the
arguments in the proof of proposition 3.1, so we omit the details. For the differentiability of the
map Ψρ̄ , see [14, lemma 6.2]. �

Remark 5.3. If, for instance, φρ̄ ∈Hρ̄ ∩ L4/3(R2) then (5.12) can be interpreted pointwise as

Ψ ′
ρ̄ (φρ̄ (x)) + 1

2π

∫
R2

φρ̄ (y)
|x − y| d2y = V(x) a.e. in R

2. (5.13)

However, in general, the Euler–Lagrange equation for Eρ̄ should be understood as

Ψ ′
ρ̄ (φρ̄ ) + Uφρ̄ = V in D′(R2), (5.14)

where φρ̄ ∈Hρ̄ ⊂ L2(R2) + L3/2(R2) and Uφρ̄ ∈ ◦
H

1/2
(R2) is the potential of φρ̄ defined via (3.5).

In the rest of the section, under some additional assumptions on V we will use the equivalent
half-Laplacian representation of (5.12) to establish further regularity and decay properties of the
minimizer φρ̄ when ρ̄ > 0. Our crucial observation is that unlike in the case ρ̄ = 0, for ρ̄ > 0 the
minimizer φρ̄ has the same fast polynomial decay as the Green function of (−	)1/2 + 1 in R

2, for
all reasonably fast decaying potentials V.

Theorem 5.4. Let ρ̄ > 0, V ∈ ◦
H

1/2
(R2) and φρ̄ be the minimizer of Eρ̄ from theorem 5.2.

(i) If (−	)1/2V ∈ L∞(R2) then φρ̄ ∈ H1/2(R2) ∩ C1/2(R2).
(ii) If additionally, (−	)1/2V ≥ 0, V �= 0, and for some C> 0, we have

(−	)1/2V ≤ C
(1 + |x|2)3/2 in R

2, (5.15)

then φρ̄ > 0 in R
2 and

φρ̄ (x) ∼ 1
|x|3 as |x| → ∞. (5.16)

In particular, φρ̄ ∈ L1(R2).

In the rest of this section, we are going to sketch the proof of theorem 5.4. We only emphasize
the difference in the asymptotic behaviour, other arguments that are similar to the case ρ̄ = 0 will
be omitted.
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Figure 2. Plot of Sρ̄ (u) for ρ̄ = 1.

(c) Half-Laplacian representation, regularity and decay
Let ρ̄ > 0 and φρ̄ ∈Hρ̄ be the minimizer of Eρ̄ . Introduce the substitution

uρ̄ :=Ψ ′
ρ̄ (φρ̄ ). (5.17)

Then (5.12) transforms into
∫
R2

uρ̄ (x)ϕ(x) d2x − 〈ϕ, V〉 + 〈USρ̄ (uρ̄ ),ϕ〉 ◦
H

1/2
(R2)

= 0 ∀ϕ ∈Hρ̄ , (5.18)

where

Sρ̄ (u) := |ρ̄1/2 + u|(ρ̄1/2 + u) − ρ̄ (u ∈ R), (5.19)

is the inverse function of Ψ ′
ρ̄ , so that Sρ̄ (Ψ ′

ρ̄ (φ)) = φ, for all φ ∈ R. The graph of Sρ̄ (u) is shown
in figure 2.

Proposition 5.5 (Equivalent PDE). Let ρ̄ > 0, V ∈ ◦
H

1/2
(R2) and uρ̄ be defined by (5.17). Then uρ̄ ∈

◦
H

1/2
(R2) and uρ̄ is the unique solution of the equation

(−	)1/2u + Sρ̄ (u) = (−	)1/2V in
◦

H
1/2

(R2). (5.20)

Moreover,

− v− ≤ uρ̄ ≤ v+, (5.21)

where v± ≥ 0 are solutions of (−	)1/2v± = ((−	)1/2V)± in
◦

H
1/2

(R2).

Proof. Similar to the proof of propositions 4.1 and 4.2. The uniqueness of the solution and the
bound (5.21) follows from an extension of the comparison principle of lemma 4.3 to the case of a
monotone increasing function Sρ̄ (u). �

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

31
 J

ul
y 

20
24

 



25

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A480:20230570

..........................................................

Proposition 5.6. Let ρ̄ > 0 and V ∈ ◦
H

1/2
(R2). Assume that (−	)1/2V ∈ L∞(R2), (−	)1/2V ≥ 0 and

V �= 0. Then, uρ̄ ∈ H1/2(R2) ∩ C1/2(R2), uρ̄ > 0 in R
2 and

uρ̄ (x) � 1
|x|3 as |x| → ∞. (5.22)

If, in addition, for some C> 0,

(−	)1/2V ≤ C
(1 + |x|2)3/2 in R

2, (5.23)

then

uρ̄ (x) ∼ 1
|x|3 as |x| → ∞. (5.24)

In particular, uρ̄ ∈ L1(R2).

Proof. Represent (5.20) as(
(−	)1/2 + 2ρ̄1/2)uρ̄ + sρ̄ (uρ̄ ) = (−	)1/2V in D′(R2), (5.25)

where sρ̄ (t) = Sρ̄ (t) − 2ρ̄1/2t and observe that sρ̄ (t) = t2 for |t|< ρ̄1/2 small, while sρ̄ (t) ∼ |t|t for t
large. In particular, in view of (5.21), we have uρ̄ ≥ 0 and uρ̄ ∈ L∞(R2). Then, for a sufficiently
large c> 0,

((−	)1/2 + 2ρ̄1/2 + c)uρ̄ = c − sρ̄ (uρ̄ ) + (−	)1/2V ≥ 0 in R
2. (5.26)

This implies uρ̄ ∈ H1/2(R2) ∩ C1/2(R2), uρ̄ > 0 in R
2 and additionally,

uρ̄ (x) � 1
|x|3 as |x| → ∞, (5.27)

cf. [14, lemma 7.1] for a similar argument.
To derive the upper bound on uρ̄ , consider the dipole-type family of barriers

WZ,λ(|x|) := Z
2π (1 + |λx|2)3/2 ,

and note that using (4.21), scaling, sρ̄ (WZ,λ) ≥ 0 and (5.24), we obtain

((−	)1/2 + 2ρ̄1/2)WZ,λ + sρ̄ (WZ,λ) − (−	)1/2V

≥ Zλ(2 − |λx|2)
2π (1 + |λx|2)5/2 + 2Zρ̄1/2(1 + |λx|2)

2π (1 + |λx|2)5/2 − C
(1 + |x|2)3/2 ≥ 0 in R

2, (5.28)

provided that we choose λ= 2ρ̄1/2 and Z � 1 sufficiently large. Then uρ̄ ≤ WZ,2ρ̄1/2 in R
2 by an

extension of the comparison principle of lemma 4.3 to equation (5.25). �

Proof of theorem 5.4. Follows from proposition 5.6 using the explicit representation φρ̄ =
Sρ̄ (uρ̄ ) = 2ρ̄1/2uρ̄ + u2

ρ̄ in (5.19), which is valid since uρ̄ > 0. �
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