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Abstract— Sinusoidal frequency estimation in the presence of
white Gaussian noise plays a major role in many engineering
fields. Significant research in this area has been devoted to the
fine tuning stage, where the discrete Fourier transform (DFT)
coefficients of the observation data are interpolated to acquire the
residual frequency error ε. Iterative interpolation schemes have
recently been designed by employing two q-shifted spectral lines
symmetrically placed around the DFT peak, and the impact of q
on the estimation accuracy has been theoretically assessed. Such
analysis, however, is available only for some specific algorithms
and is mostly conducted under the assumption of a vanishingly
small frequency error, which makes it inappropriate for the first
stage of any iterative process. In this work, further investigation
on DFT interpolation is carried out to examine some issues that
are still open. We start by evaluating the Cramér-Rao bound
(CRB) for frequency recovery by interpolation of two q-shifted
spectral lines and assess its dependence on ε and q. Such a bound
is of primary importance to check whether existing schemes
can provide efficient estimates at any iteration or not. After
determining the optimum value of q for a given ε, we eventually
derive the maximum likelihood (ML) DFT interpolator. Since the
latter exhibits the best performance at any step of the iteration
process, it might attain the desired accuracy just at the end of
the first iteration, which is especially advantageous in terms of
computational load and processing time.

Index Terms— Frequency estimation, DFT interpolation,
Cramér-Rao bound, parameter estimation.

I. INTRODUCTION

ESTIMATING the frequency of a complex sinusoid cor-
rupted by white Gaussian noise (WGN) is a fundamental

problem that appears in many areas of science and technology,
such as wireless communications [1], biomedical applications,
power grid systems [2] and radar signal processing [3]. The
maximum likelihood (ML) solution, along with the relevant
Cramér-Rao bound (CRB), was originally derived in [4] and
is given by the argument of the periodogram maximizer. Since
the numerical maximization of the periodogram is compu-
tationally demanding, one common approach for frequency
recovery relies on a two-step procedure consisting of a coarse
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search followed by a fine tuning step. The coarse estimation
stage evaluates the DFT of the input data sequence and
provides an estimate of the integer frequency offset (IFO)
by locating the index of the bin with the highest magnitude.
Interpolation techniques are subsequently used in the fine
tuning stage in order to determine the residual fractional
frequency offset (FFO) through a local search conducted in the
neighborhood of the maximum bin. The total computational
cost of this approach is mainly involved in the DFT evaluation
and amounts to O(N log2 N), where N is the length of
the data record. Alternative schemes for frequency recovery
employ the sample autocorrelation function of the observed
data [5], [6], [7]. Compared to DFT-based methods, they
dispense from any grid-search at the price of an increased
processing load, which is in the order of O(N2). Another
class of popular estimation techniques employed in spectral
analysis is represented by subspace-based methods, includ-
ing MUSIC (MUltiple SIgnal Classification) [8] or ESPRIT
(Estimation of Signal Parameters via Rotational Invariance
Techniques) [9]. These algorithms are typically used to resolve
closely separated spectral lines through an eigenvalue or a
singular value decomposition. However, since the required
computational cost is as high as O(N3), their adoption is not
recommended in the presence of a single sinusoidal signal.
As an alternative to MUSIC or ESPRIT, the atomic norm
minimization principle has recently been suggested for super
resolution spectral line estimation [10]. Theoretical analysis
indicates that the accuracy of this approach matches the CRB
up to a logarithmic factor. Due to their reduced complexity,
in this work we concentrate on the class of DFT-based
frequency estimators, which represent the preferred choice for
estimating the parameters of a single sinusoid embedded in
WGN. In particular, we assume that the initial coarse search
has been successfully completed and turn our attention to the
DFT interpolation stage.

Numerous efforts have been made in the past to achieve fast
and accurate frequency recovery through DFT interpolation.
Existing solutions can be roughly divided into two categories:
direct methods [11], [12], [13], [14], [15], [16], [17], [18]
and iterative schemes [19], [20], [21], [22], [23], [24]. The
former operate by reprocessing the maximum DFT coefficient
and its neighbours that are available from the coarse search
stage. Hence, they provide the FFO estimate with negligi-
ble additional cost, which makes them particularly attrac-
tive in many situations. In particular, the methods suggested
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in [11], [12], [13], [14], and [15] employ three DFT samples,
while Macleod in [16] modified the interpolator of [12] and
also proposed a five-sample interpolator. Schemes that can
utilize an arbitrary number of DFT coefficients are presented
in [17] and [18]. A common drawback of direct interpo-
lation methods is that their accuracy is non-uniform over
the FFO search range and cannot attain the classical CRB
(CCRB) reported in [4]. Indeed, theoretical analysis conducted
in [18] indicates that the ultimate accuracy achievable by direct
schemes is largely influenced by the FFO value and the worst
case occurs for a signal frequency coinciding with one of the
DFT bins. In such a case, the loss incurred with respect to the
CCRB amounts to π2/6 ≈ 1.645 when three DFT samples
are used in the fine tuning stage.

In order to achieve close to uniform performance, the con-
cept of iterative interpolation must be resorted to. Estimators
obeying to such a criterion operate in a recursive fashion,
where the residual FFO obtained at an earlier iteration is
removed from the input signal and the interpolation procedure
is subsequently reapplied to the compensated data. This way,
the FFO is progressively reduced until convergence. Com-
pared to direct interpolation methods, iterative schemes exhibit
improved accuracy at the price of an increased computational
load. The reason is that, at each new iteration, they need the
evaluation of two auxiliary spectral lines symmetrically shifted
around the peak DFT coefficient. The shift value depends on
the specific algorithm. For example, the frequency estima-
tors presented by Aboutanios and Mulgrew (named AME1
and AME2) in [19] apply a shift of ±0.5Δf , where Δf is
the distance between two adjacent DFT bins. Using the fixed-
point theorem, it is shown that both schemes converge after
two iterations, thereby requiring four auxiliary DFT samples
to complete the fine tuning stage. Methods to reduce the
processing load without sacrificing the system performance are
reported in [20], [21], and [22]. More recently, Fan and Qi [23]
have proposed an iterative scheme (denoted as FQE) based
on interpolation of three DFT coefficients, namely the central
DFT peak and two auxiliary spectral lines with arbitrary shifts
of ±qΔf . They also assess the impact of q on the estimation
accuracy and the best performance is found to occur when
q approaches zero. A similar investigation is executed in [24],
where two iterative estimators named QSE and HAQSE are
derived using only two q-shifted DFT coefficients, thereby
excluding the central DFT peak from the estimation process.
In such a case, the optimum value of q is found to depend
on the number N of observed data, and approaches zero as
N grows large. A refined region for q is derived in [25] to
ensure convergence of QSE even in the presence of small data
records.

Theoretical investigation reported in [23] and [24] indi-
cates that, upon convergence, the accuracy of FQE, QSE
and HAQSE asymptotically attains the CCRB when the DFT
shift q is properly designed. Since these algorithms are iter-
ative in nature, the residual FFO is expected to become
very small after a few iterations. Hence, in order to predict
the system performance at the end of the iterative process,
theoretical analysis is conducted in [24] under the assumption
that the residual frequency error is close to zero. Clearly, such

analysis cannot be applied at the beginning of the iterative
process, when the initial FFO value can in principle be as
large as ±0.5Δf . This means that the estimation accuracy
after the first iteration might substantially deviate from the
CCRB and might be non uniform over the entire frequency
range. We also emphasize that, so far, the optimum value
of q has been devised only for the specific algorithms presented
in [23] and [24], while a more general criterion for the design
of this parameter is still unavailable. Hence, assuming that
two auxiliary DFT coefficients with arbitrary shifts ±qΔf are
involved in the fine tuning stage, the following issues remain
open to question and deserve further investigation:

1) What is the best accuracy that can be achieved in the
estimation of the residual frequency error for given
values of q and ε?

2) What is the optimum value of q leading to the minimum
estimation variance for a given ε?

3) What is the optimum estimator based on two q-shifted
interpolated DFT coefficients that exhibits the best accu-
racy at any iteration?

This work provides answers to all the aforementioned
issues. The framework is the same adopted in [24], where two
spectral lines symmetrically placed around the DFT central
peak are employed for fine frequency tuning. In particular,
the first issue is examined by evaluating the Cramér-Rao
bound for the considered estimation problem. As we shall
see, such a bound is a function of q and is generally higher
than the CCRB, meaning that the latter cannot be attained
at the first iteration. Based on the results reported in [23]
and [24], the optimum value of q that minimizes the bound,
say qopt, is likely to approach zero when the residual frequency
error is vanishingly small. However, higher values of qopt can
reasonably be expected when the FFO deviates from zero, as in
such a case the suspicion arises that optimum interpolation
requires the FFO to lay between the auxiliary spectral lines.
The second issue of our study aims at checking whether such
a conjecture is true or not. The answer is found by looking
for the minimum of the novel bound with respect to q and
assessing its dependence on the residual frequency error. The
third issue is eventually explored by deriving the ML inter-
polator that operates on two q-shifted DFT coefficients. As is
known, the ML rule provides a scheme that is asymptotically
efficient so that, at any iteration, it exhibits the best accuracy
over the class of unbiased estimators. This results into some
potential advantages with respect to competing schemes, such
as increased robustness and a reduced number of iterations
to achieve the desired estimation accuracy. For example, the
ML solution could provide satisfactory performance just at
the end of the first iteration, thereby dispensing from further
iterations as requested by FQE, QSE and HAQSE. In such a
case, the fine tuning stage would benefit from some computa-
tional saving and reduced processing time, which are highly
desirable in fast real-time applications.

The remainder of the paper is organized as follows. Next
section provides the system model and some basic notation.
In Sect III, we present CRB analysis for q-shifted DFT
interpolation and determine the value of q that minimizes the
bound for a specified frequency error. The ML interpolator is
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derived in Sect. IV, where an efficient method to maximize the
ML metric is also introduced. Simulation results are illustrated
in Sect. V, while some conclusions are drawn in Sect VI.

Notation: Matrices and vectors are denoted by boldface
letters, with A−1 being the inverse of a matrix A. We use
E{·}, (·)∗, (·)T and (·)H for expectation, complex conjuga-
tion, transposition and Hermitian transposition, respectively.
The notation Re{·} stands for the real part of a complex-
valued quantity, Im{·} for the imaginary part and | · | for its
modulus. Finally, we denote by λ̃ a trial value of an unknown
parameter λ, while λ̂ is the corresponding estimate.

II. SYSTEM MODEL

The mathematical model of a discrete-time complex expo-
nential signal embedded in additive noise is given by

x(n) = Aej(2πnν+θ) + w(n) n = 0, 1, . . . , N − 1 (1)

where N is the length of the data record, while {A, ν, θ}
specify the amplitude, the frequency and the initial phase
of the signal component, respectively. The noise contribution
is represented by {w(n)}, which is modeled as a circu-
larly symmetric additive white Gaussian process with power
σ2 =E{|w(n)|2}. Accordingly, the signal-to-noise ratio (SNR)
is defined as A2/σ2. Without any loss of generality, we can
rewrite the incoming data as

x(n)=Aej2π[n−(N−1)/2]νejϕ + w(n) n=0, 1, . . . , N − 1
(2)

where ϕ = θ + π(N − 1)ν is the phase value at the centre of
the observation window. Such a reformulation turns out to be
useful to simplify the subsequent analysis.

The ML estimate of ν in the presence of the nuisance
parameters {A, ϕ} was originally derived in [4] and is given
by the value ν̂ML that maximizes the periodogram of the
input data. Such a maximization is computationally demanding
as it requires a grid-search over the set spanned by the
continuous variable ν. A more practical approach is based on
a two-stage procedure, according to which the frequency ν
is divided into an integer part kp plus a residual FFO ε,
yielding

ν =
kp + ε

N
(3)

with kp = 0, 1, . . . , N−1 and ε ∈ [−0.5, 0.5). In the first stage
(coarse search), an estimate of kp is found by computing the
N−point DFT of the incoming data and picking the coefficient
with the highest magnitude, i.e.,

k̂p = argmax
k

|X(k)| (4)

with

X(k) =
N−1∑
n=0

x(n)e−j2πnk/N k = 0, 1, . . . , N − 1. (5)

In the second stage (fine search), the residual error ε is recov-
ered by interpolating between the DFT peak sample X(k̂p) and
a few neighboring spectral lines. While direct interpolation
methods employ a subset of the DFT coefficients {X(k)}

already available from the coarse search, iterative schemes
make use of two additional spectral lines with fractional
shifts ±q from the central DFT peak. For example, the value
q = 0.5 is chosen in [19], while the impact of q on the system
performance is investigated in [23] and [24]. In the latter
works, the authors derive the optimum value of q for FQE
and QSE and show that, after some iterations, the estimation
accuracy attains the classical CRB for FFO recovery, which is
expressed by [4]

CCRB =
3σ2N

2π2A2(N2 − 1)
. (6)

Their analysis, however, only applies to FQE and QSE,
so that there is no guarantee that the values of q found
in [23] and [24] can provide the best accuracy within the
class of q-shifted DFT interpolators. Furthermore, the per-
formance of QSE is theoretically assessed in [24] under the
assumption that the residual frequency error is close to zero,
which occurs only after completing at least one iteration.
Hence, the question arises as to whether some performance
improvement is possible or not during the first step of the
iterative process, when the FFO can take any value in the
interval [−0.5, 0.5). Our study provides a convincing answer to
such a question. Specifically, we use CRB analysis to evaluate
the ultimate accuracy achievable in the estimation of ε when
two q-shifted spectral lines are available as observation data.
The impact of q and ε on the bound is also investigated in
order to check whether values of q other than those suggested
in [23] and [24] can provide improved accuracy at the first
iteration. We eventually derive the optimum ML scheme for
q-shifted DFT interpolation, and assess its performance in
terms of estimation accuracy and processing load.

III. CRAMÉR-RAO BOUND FOR q-SHIFTED

DFT INTERPOLATION

A. Analytical Model of the Auxiliary Spectral Lines

We assume that the coarse search stage has been success-
fully completed, which amounts to putting k̂p = kp. Hence,
the q-shifted DFT coefficients employed for FFO recovery are
computed as

Xr =
N−1∑
n=0

x(n)e−j2π[n−(N−1)/2](kp+r)/N (7)

with r = ±q. It is worth recalling that the assumption
k̂p = kp is reasonable only in the medium or high SNR
regime. Indeed, at low SNR values the periodogram may be
so distorted by noise that its maximum is occasionally placed
far removed from kp. In such a case, the frequency estimate is
affected by large errors, known as outliers [4]. The SNR below
which outliers start to occur is known as the threshold of the
estimator and depends on the length of the data record. In [26],
it is found that the SNR threshold is close to 0 dB when
N = 64 and approximately reduces by 2.75 dB whenever
N is doubled. These results provide useful guidelines for the
selection of N , given that in a correctly designed system the
estimator should operate well above its SNR threshold.
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Substituting (2) into (7) and bearing in mind (3), yields

Xr = (CR + jCI)NSr + Wr (8)

where CR and CI are the real and imaginary parts of Aejϕ,
respectively, and we have defined the quantities

Sr =
1
N

N−1∑
n=0

ej2π[n−(N−1)/2](ε−r)/N (9)

and

Wr =
N−1∑
n=0

w(n)e−j2π[n−(N−1)/2](kp+r)/N . (10)

Letting

fN (x) =
sin(πx)

N sin(πx/N)
(11)

we can rewrite Sr as

Sr = fN(ε − r) (12)

while Wr is a zero-mean Gaussian random variable. We col-
lect the two auxiliary DFT coefficients into a vector X =
[X−q, Xq]T and rewrite (8) as

X = (CR + jCI)NS + W (13)

where S = [S−q, Sq]T and W = [W−q, Wq]T . In Appendix A,
we show that the noise terms W±q have equal power
E{|W±q|2} = Nσ2 and covariance E{W−qW

∗
q } =

Nσ2fN (2q). Hence, letting γ = fN(2q), it turns out that W
is Gaussian distributed with zero mean and covariance matrix

CW = Nσ2

[
1 γ
γ 1

]
. (14)

B. CRB Evaluation

Our goal is to find the CRB for the estimation of ε based
on the observation vector X. The presence of the nuisance
parameters {CR, CI} requires the evaluation of the Fisher
information matrix (FIM) for the set ξ = {CR, CI , ε}.
Observing that X is Gaussian distributed with mean

μ = (CR + jCI)N
[

fN (ε + q)
fN (ε − q)

]
(15)

and covariance matrix CW , the entries of the FIM are given
by [27]

[F]i,j = 2Re
{

∂μH

∂ξi
C−1

W

∂μ

∂ξj

}
1 ≤ i, j ≤ 3 (16)

where we have used the notation ξ1 = CR, ξ2 = CI and
ξ3 = ε. The derivatives of μ with respect to the unknown
parameters are easily computed from (15) as

∂μ

∂ξ1
= NS,

∂μ

∂ξ2
= jNS,

∂μ

∂ξ3
= NCα (17)

where α = [α−q, αq]T has entries

αr = f ′
N (ε − r) r = ±q (18)

and f ′
N (x) is the derivative of fN(x) with respect to x.

Substituting the results (17) into (16) yields the FIM

F =
2N

σ2(1 − γ2)

⎡
⎣ ST DS 0 CRST Dα

0 ST DS CIST Dα

CRST Dα CIST Dα |C|2 αT Dα

⎤
⎦
(19)

with

D =
[

1 −γ
−γ 1

]
(20)

and

ST DS = [fN (ε + q) − fN (ε − q)]2

+ 2(1 − γ)fN (ε + q)fN (ε − q) (21)

αT Dα = [f ′
N (ε + q) − f ′

N (ε − q)]2

+ 2(1 − γ)f ′
N (ε + q)f ′

N (ε − q) (22)

ST Dα = [fN (ε + q) − fN (ε − q)][f ′
N (ε + q) − f ′

N (ε − q)]
+ (1 − γ)[fN(ε − q)f ′

N (ε + q)
+fN(ε + q)f ′

N (ε − q)]. (23)

The CRB for the estimation of ε is [F−1]3,3. This is obtained
from (19) as

CRB(ε, q) =
σ2(1 − γ2)

2NA2
· ST DS
(STDS)(αT Dα) − (ST Dα)2

(24)

where the notation CRB(ε, q) is used to explicitly indicate the
dependence of the bound on ε and q. It is interesting to assess
the loss incurred in the estimation of ε when the samples X±q

are used as observation variables instead of the entire set of N
DFT coefficients. The loss is quantified by the ratio between
CRB(ε, q) and the CCRB reported in (6)

L(ε, q) =
CRB(ε, q)

CCRB
(25)

and is expressed by

L(ε, q) =
(1 − γ2)(N2 − 1)π2

3N2

· ST DS
(STDS)(αT Dα) − (ST Dα)2

. (26)

Fig. 1 illustrates L(ε, q) as a function of q for some values
of ε and N = 64. As is seen, the loss monotonically increases
with q and attains its global minimum when q approaches
zero, irrespective of the FFO value. This means that, for
any value of ε, the best accuracy is achieved when the
q-shifted spectral lines tend to collapse onto the central DFT
peak X(k̂p). Such a result is very surprising and somewhat
unexpected. Indeed, in the extreme case in which q is exactly
set to zero, only X(k̂p) would remain available for the fine
tuning stage, which precludes the possibility of executing any
interpolation procedure. In such a situation, the FFO can no
longer be retrieved and the bound is expected to diverge to
infinity, in contrast to what is observed in Fig. 1. The fact
that the best accuracy is achieved when q approaches zero
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Fig. 1. L(ε, q) vs. q for some values of ε and N = 64.

was also found in [24] in the specific case ε = 0. What
makes the curves in Fig. 1 counter-intuitive is that they predict
the same behaviour even when ε is close to ±0.5, while
in the latter scenario one might reasonably suspect that the
best interpolation accuracy is obtained when ε lies in the
interval [−q, q].

C. CRB Analysis for q → 0

In light of the results shown in Fig. 1, it is useful to find
an expression of CRB(ε, q) when q approaches zero. This
quantity is denoted by

CRB0(ε) = lim
q→0

CRB(ε, q) (27)

and is evaluated in Appendix B using standard Taylor series
analysis, yielding

CRB0(ε) =
σ2

6N3A2
· 3N2f ′2

N (ε) + π2(N2 − 1)f2
N (ε)

[fN (ε)f ′′
N (ε) − f ′2

N (ε)]2
. (28)

After computing the first and second derivatives of fN(x)
in (11), we can rewrite (28) as

CRB0(ε) =
σ2

6π2A2
· N3 sin4(πε/N)pN (ε)[

sin2(πε) − N2 sin2(πε/N)
]2 (29)

where pN (ε) is given by

pN (ε) = 3 [N cos(πε) sin(πε/N) − sin(πε) cos(πε/N)]2

+ (N2 − 1) sin2(πε) sin2(πε/N). (30)

The result (29) is an important theoretical outcome, as it
provides the best accuracy that any unbiased interpolator of
two q-shifted spectral lines can attain for a given value of ε.
Observing that fN(0) = 1, f ′

N (0) = 0 and

f ′′
N(0) = − π2

3N2
(N2 − 1) (31)

the bound (28) for ε = 0 reduces to

CRB0(ε)|ε=0 =
3σ2N

2π2A2(N2 − 1)
(32)

Fig. 2. L0(ε) vs. ε for N = 64.

and coincides with the classical CRB shown in (6). This means
that choosing q → 0 allows the CCRB to be reached as long
as the FFO is zero. For values of ε different from zero, the
loss with respect to the CCRB is defined as

L0(ε) =
CRB0(ε)

CCRB
(33)

and is found to be

L0(ε) =
N2(N2 − 1) sin4(πε/N)pN (ε)

9
[
sin2(πε) − N2 sin2(πε/N)

]2 . (34)

Fig. 2 illustrates L0(ε) versus ε ∈ [0, 0.5] for N = 64.
It can be seen that the loss monotonically increases with ε and,
as predicted by (32), it totally disappears when ε approaches
zero. We may thus conclude that the best accuracy achievable
during the first iteration by any unbiased iterative DFT inter-
polator employing two auxiliary spectral lines is non-uniform
over the FFO uncertainty range. In particular, a maximum loss
of approximately 1.7 with respect to the CCRB is incurred
when ε = 0.5. Results obtained with N ranging from 32 to
1024 are practically the same as those reported in Fig. 2. This
means that, in practice, the dependence of L0(ε) on N is weak.

D. CRB Analysis for ε = 0

When an iterative DFT interpolator is used for fine fre-
quency tuning, the residual FFO decreases at each iteration,
such that at the end of the procedure is expected to approach
zero. For this reason, it is interesting to evaluate the bound (24)
for ε = 0. Such a bound is plotted in Fig. 1 (normalized to
the CCRB) and its analytical expression is now derived as
a function of q ∈ [0, 0.5]. Letting ε = 0 into (21)-(23) and
observing that function fN(x) is even, while its derivative
f ′

N(q) is odd, produces

ST DS = 2(1 − γ)f2
N(q) (35)

αT Dα = 2(1 + γ)f ′2
N (q) (36)
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and, finally, ST Dα = 0. Substituting these results into (24),
we get

CRB(ε, q)|ε=0 =
σ2(1 − γ)

4NA2f ′2
N (q)

(37)

which can also be rewritten as

CRB(ε, q)|ε=0

=
σ2N2

8π2A2

[N sin(2πq/N) csc2(πq)−2 cot(πq)] tan3(πq/N)
[N tan(πq/N) cot(πq) − 1]2

.

(38)

Such a bound is useful as it provides the best accuracy that
any unbiased interpolator of two q-shifted spectral lines can
achieve upon convergence. For large data sets, its expression
can be simplified by letting N sin(2πq/N) → 2πq and
N tan(πq/N) → πq into (38). The resulting asymptotic bound
(aCRB) is given by

aCRB(ε, q)|ε=0 =
σ2πq3[πq csc2(πq) − cot(πq)]

4NA2[πq cot(πq) − 1]2
(39)

and coincides with the asymptotic variance of the QSE
reported in [24]. Hence, our CRB analysis demonstrates that,
at least for ε = 0, the QSE is asymptotically efficient as it
attains the bound (39) for any value of q. At the first iteration,
however, the FFO is likely to be different from zero and the
QSE efficiency is not guaranteed anymore as in such a specific
situation no theoretical analysis is provided in [24].

It is also interesting to evaluate the bound (38) for the
fractional shift q = 1/2 employed by AME1 and AME2
in [19]. This produces

CRB(ε, q)|ε=0,q=1/2 =
σ2N3

4π2A2

sin4(π/2N)
cos2(π/2N)

(40)

and the corresponding loss with respect to the CCRB is found
to be

L(ε, q)|ε=0,q=1/2 =
N2(N2 − 1) sin4(π/2N)

6 cos2(π/2N)
. (41)

For large data sets, the loss is asymptotically expressed by

lim
N→∞

L(ε, q)|ε=0,q=1/2 =
π4

96
(42)

which is exactly the same reported in [19]. This means that,
for ε = 0 and conditioned to the selected value q = 0.5,
both AME1 and AME2 are asymptotically efficient as they
attain the relevant CRB. Similarly to the QSE, however, their
efficiency cannot be validated for other FFO values because
theoretical analysis is conducted in [19] only for ε = 0.

IV. MAXIMUM-LIKELIHOOD DFT INTERPOLATION

Available interpolation methods for iterative frequency tun-
ing are based on heuristic reasoning and do not obey to any
specific optimality criterion. Hence, there is no guarantee that
they can operate efficiently at each step of the iterative process.
This motivates the search for the ML estimator (MLE) of
ε using the observation vector X expressed in (13). Due to
its asymptotic efficiency, for large data records the MLE is
expected to provide unbiased FFO estimates with a variance
that approaches the bound (24) at any iteration.

A. Derivation of the Concentrated Likelihood Function

In order to derive the MLE, we start from the log-likelihood
function (LLF) for the unknown parameters {CR, CI , ε}. For
conciseness, we let C = CR+jCI and observe that vector X is
Gaussian distributed with covariance matrix CW given in (14)
and mean

μ = CNS(ε) (43)

where S(ε) = [S−q(ε), Sq(ε)]T is a real-valued vector with
entries

S∓q(ε) = fN (ε ± q). (44)

The LLF for the joint estimation of ξ = {C, ε} is thus
expressed by

Γ1(ξ̃) = − ln(π2 detCW ) − [X−C̃NS(ε̃)]HC−1
W

× [X−C̃NS(ε̃)]. (45)

Recalling that C−1
W = 1/(Nσ2)D, after skipping irrelevant

additive and multiplicative terms independent of ξ̃, we can
equivalently replace Γ1(ξ̃) in (45) by

Γ2(ξ̃) = 2Re{C̃∗a(ε̃)} − N |C̃|2b(ε̃) (46)

where we have defined a(ε̃) = ST (ε̃)DX and b(ε̃) =
ST (ε̃)DS(ε̃). Our goal is to find the global maximum of
Γ2(ξ̃) with respect to ξ̃. For this purpose, we first compute
the derivatives of Γ2(ξ̃) with respect to C̃R and C̃I . Putting
such derivatives to zero produces the set of equations{

2Re{a(ε̃)} − 2NC̃Rb(ε̃) = 0
2Im{a(ε̃)} − 2NC̃Ib(ε̃) = 0

(47)

which is solved by

Ĉ(ε̃) =
1
N

a(ε̃)
b(ε̃)

(48)

where we have borne in mind that b(ε̃) is real-valued. The
solution Ĉ(ε̃) is next substituted back into (46) to replace C̃,
yielding the concentrated LLF for the estimation of ε in the
form

Γ3(ε̃) =
1
N

|a(ε̃)|2
b(ε̃)

. (49)

Recalling (20) and (44), we can write a(ε̃) and b(ε̃) as

a(ε̃) = fN(ε̃ + q)(X−q − γXq) + fN(ε̃ − q)(Xq − γX−q)
(50)

b(ε̃) = f2
N(ε̃ + q) − 2γfN(ε̃ + q)fN (ε̃ − q) + f2

N(ε̃ − q)
(51)

from which it follows that

|a(ε̃)|2 = r0f
2
N(ε̃ + q) + 2r1fN(ε̃ + q)fN (ε̃ − q)

+ r2f
2
N (ε̃ − q) (52)

where the coefficients

r0 = |X−q − γXq|2 (53)

r1 = Re
{
(X−q − γXq)(X∗

q − γX∗
−q)

}
(54)

r2 = |Xq − γX−q|2 (55)
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are independent of ε̃. Finally, putting (51) and (52) into (49)
and skipping an irrelevant factor 1/N , yields the equivalent
concentrated likelihood function

Γ(ε̃) =
r0 + 2r1hN (ε̃, q) + r2h

2
N (ε̃, q)

1 − 2γhN(ε̃, q) + h2
N (ε̃, q)

(56)

where hN (ε̃, q) is defined as

hN (ε̃, q) =
fN(ε̃ − q)
fN(ε̃ + q)

. (57)

B. Maximization of the Concentrated Likelihood Function

The ML estimate of ε is the value of ε̃ where Γ(ε̃) achieves
its global maximum, i.e.,

ε̂ML = argmax
ε̃

Γ(ε̃). (58)

Observing that Γ(ε̃) depends on ε̃ only through hN (ε̃, q), the
maximization in (58) can be performed by letting

z = hN(ε̃, q) (59)

and looking for the value of z that maximizes the function

Λ(z) =
r0 + 2r1z + r2z

2

1 − 2γz + z2
. (60)

The estimate ε̂ML is eventually obtained by inverting (59).
Such a procedure requires the computation of the first deriv-
ative of Λ(z) with respect to z, which is given by

Λ′(z) = 2
−(r1 + γr2)z2 + (r2 − r0)z + r1 + γr0

(1 − 2γz + z2)2
. (61)

The roots of Λ′(z) are next found by putting the numerator
of Λ′(z) to zero. Bearing in mind (53)-(55), this leads to the
following quadratic equation in z

a0z
2 + a1z + a2 = 0 (62)

where the coefficients {a0, a1, a2} are given by

a0 = γ |X−q|2 − Re{XqX
∗
−q} (63)

a1 = |Xq|2 − |X−q|2 (64)

a2 = Re{XqX
∗
−q} − γ |Xq|2 (65)

and obey to the following relation

a1 = −a0 + a2

γ
. (66)

Hence, we can rewrite the quadratic equation (62) as

γa0z
2 − (a0 + a2)z + γa2 = 0 (67)

and observe that its discriminant Δ = γ2(a0 − a2)2 + (1 −
γ2)(a0 + a2)2 is positive for |γ| < 1. It follows that the roots

{z1, z2} =
1

2γa0
(a0 + a2 ±

√
Δ) (68)

are always real-valued. The study of the sign of Λ′(z) indicates
that the maximum of Λ(z) occurs at

ẑ =
1

2γa0
(a0 + a2 −

√
Δ) (69)

Fig. 3. Function hN (ε̃, q) vs. ε̃ for N = 64 and three different values of q.

irrespective of the sign of a0. Once ẑ has been computed, the
ML estimate of ε is found by looking for the value ε̂ML that
satisfies the following relation

ẑ = hN (ε̂ML, q). (70)

Since function hN (ε̃, q) cannot be inverted in closed-form with
respect to ε̃, a practical method is now illustrated to get an
approximate value of ε̂ML.

C. Computation of the FFO Estimate

Fig. 3 shows the shape of z = hN(ε̃, q) vs. ε̃ for three
different values of q and N = 64. As is seen, this function
grows monotonically with ε̃, at least over the considered
interval ε̃ ∈ [−0.7, 0.7]. This fact ensures that equation (70)
has a unique solution ε̂ML. The monotonicity of hN(ε̃, q) can
be analitically checked by evaluating its derivative with respect
to ε̃. For small values of q, such a derivative is found to be

h′
N(ε̃, q) � 2π2q

N2 sin2(πε̃/N)
1 − f2

N(ε̃)
f2

N(ε̃ + q)
(71)

from which it follows that h′
N(ε̃, q) ≥ 0 because f2

N (ε̃) ≤ 1
for any ε̃. We also observe that, for N ≥ 16 and |ε̃| 	 N ,
the following approximation holds true

hN (ε̃, q) � sinc(ε̃ − q)
sinc(ε̃ + q)

(72)

where sinc(x) = sin(πx)/(πx). We may thus conclude that
hN (ε̃, q) is nearly independent of N . The computation of
ε̂ML in (70) can be performed efficiently through a look-up
table (LUT), whose entries are the values Z = {zk|zk =
hN (ε̃k, q)} taken by hN (ε̃, q) over an M -point uniform grid
{ε̃k; k = 0, 1, . . . , M − 1}. The grid is chosen so as to
cover the interval [−ε̄, ε̄], where ε̄ is a parameter that must
be designed as described shortly. It follows that

ε̃k = −ε̄ + kΔM (73)

where ΔM = 2ε̄/(M − 1) is the quantization step for the
variable ε̃. Hence, letting zk̂ and zk̂+1 be two consecutive
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Fig. 4. pε̂(x) vs. x with N = 64 and ε uniformly distributed in [0.49, 0.5].

entries of Z such that zk̂ ≤ ẑ < zk̂+1, a good approximation
of ε̂ML can be obtained through the following first-order
interpolation rule

ε̂MLE = ε̃k̂ +
ẑ − zk̂

zk̂+1 − zk̂

ΔM (74)

which represents the final FFO estimate provided by MLE.
To avoid large interpolation errors, special care must be

taken in the design of ε̄. Recalling that the FFO ε is always less
than 0.5 in magnitude, it might seem logical to set ε̄ = 0.5.
This choice, however, is not recommended. To explain why
this is so, we observe that the residual frequency error after
running the coarse search is expressed by Δν = ν − k̂p/N .
Hence, the task of the DFT interpolation stage is to recover
the quantity εres = NΔν = Nν− k̂p rather than the true FFO
value ε = Nν − kp. It is worth noting that, as a consequence
of possible errors occurring in the IFO estimation process,
εres may occasionally differ from ε. This event is likely to
occur whenever the frequency ν is close to the midpoint
between two DFT bins, as in this specific situation we may
have k̂p 
= kp with non-negligible probability. As an example,
assume that kp = 10 and ε = 0.45. Then, in the low
SNR regime, the IFO estimate may be either k̂p = 10
(corresponding to εres = 0.45) or k̂p = 11 (corresponding
to εres = −0.55). In the latter case, εres falls outside the
interval [−0.5, 0.5] and the same is expected to occur for
its estimate ε̂MLE � εres. This fact is substantiated by the
results shown in Fig. 4, which illustrates the quantity pε̂(x) =
Pr{|ε̂MLE| > x} as a function of x ∈ [0.5, 0.7] for N = 64
and three different SNR values. Here, kp is fixed to 10,
while ε is uniformly distributed within the interval [0.49, 0.5].
Furthermore, the LUT cardinality M and the interpolation
interval [−ε̄, ε̄] are chosen large enough so as to obtain an
exact computation of ε̂ML from (70), i.e., ε̂MLE � ε̂ML.
As is seen, the probability pε̂(x) rapidly decreases with x and
becomes very small for x = 0.7, even at SNR values as low

TABLE I

COMPUTATIONAL REQUIREMENTS OF DIFFERENT ESTIMATORS

as 0 dB. Accordingly, no performance degradation is expected
from the interpolation rule (74) by fixing ε̄ = 0.7.

D. Complexity Analysis

In assessing the processing requirement of MLE, we observe
that the N -point DFT operation employed during the initial
coarse search needs (N/2) log2 N complex products plus
N log2 N complex additions, while computing the auxiliary
DFT coefficients X±q requires 2N complex products plus
2(N − 1) complex additions. After evaluating the coefficients
a0 and a2 through 10 real multiplications plus 6 real additions,
additional 5 real products and 3 real additions are required to
compute ẑ in (69). Finally, we obtain ε̂MLE in (74) with 3 real
products and 2 real additions. The overall number of floating
point operations (flops) required by MLE is summarized in
the first row of Tab. I for a general value of N (first column)
and for N = 64 (second column). In writing these quantities,
we have borne in mind that a complex product amounts to
four real products plus two real additions, while a complex
addition is equivalent to two real additions. For comparison,
in Tab. I we also report the complexity of FQE, QSE, AME1
and AME2, which provide FFO estimates expressed by

ε̂FQE = N

π
arctan

�
(|Xq | − |X−q |) sin(πq/N)

(|Xq |+|X−q|)cos(πq/N)−2|X(k̂p)|cos(πq)

�

(75)

ε̂QSE =
q cos2(πq)

1 − πq cot(πq)
Re

{
Xq − X−q

Xq + X−q

}
(76)

ε̂AME1 =
1
2
Re

{
X0.5 + X−0.5

X0.5 − X−0.5

}
(77)

ε̂AME2 =
1
2
|X0.5| − |X−0.5|
|X0.5| + |X−0.5| . (78)

The results of Tab. I indicate that the processing load of
DFT-based interpolation schemes is mostly involved in the
computation of the q -shifted spectral lines and in the initial
DFT operation, while the final FFO estimate is obtained with
negligible additional cost. Consequently, all the considered
schemes have practically the same complexity.

V. SIMULATION RESULTS

Computer simulations have been run to assess the perfor-
mance of MLE and make comparisons with other competing
schemes. For the sake of clarity, a description of the main
system parameters is provided in Tab. II.

Unless otherwise stated, the number of input data is
N = 64, while the IFO is fixed to kp = 10. In a first
set of simulations, the LUT cardinality M is chosen large
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TABLE II

SYSTEM PARAMETERS

enough such that an exact computation of h−1
N (ẑ, q) can be

assumed in (70), yielding ε̂MLE � ε̂ML. This allows one
to measure the ultimate accuracy achievable by MLE in the
absence of any additional error arising from the interpolation
rule (74). The impact of M on the system performance
is investigated later through a set of dedicated simulations.
In any case, parameter ε̄ is fixed to 0.7. We denote by
f = kp + ε the unknown frequency ν normalized to the
distance Δf between two adjacent DFT bins. In all the sub-
sequent experiments, an estimate k̂p of the IFO is preliminary
found through an initial coarse search so as to highlight
the threshold effect characterizing the frequency estimation
problem. After obtaining ε̂ from the fine interpolation stage,
an estimate of f is evaluated as

f̂ = k̂p + ε̂. (79)

The accuracy of the investigated FFO estimators is assessed
in terms of their mean square error MSE= E{(f − f̂)2}
or, alternatively, using the normalized MSE. The latter is a
measure of the loss incurred with respect to the CCRB and is
expressed by

J(ε, q) =
E{(f − f̂)2}

CCRB
(80)

where we have explicitly indicated the dependence of J
on (ε, q).

Fig. 5 illustrates JMLE(ε, q) as a function of ε ∈ [0, 0.5] for
three different values of q and SNR = 10 dB. The normalized
CRB L(ε, q) given in (25) is also shown as a benchmark.
As can be seen, MLE attains L(ε, q) for all values of ε and q
as a consequence of its asymptotic efficiency. Although the
loss with respect to the CCRB increases with q, letting
q = 0.01 can provide near optimal performance. This result
is in line to the CRB curves shown in Fig. 1, which exhibit a
flat profile as long as q is kept small. Accordingly, the value
q = 0.01 is used in all subsequent simulations.

The impact of the observation length on the performance
of MLE is assessed in Fig. 6, where JMLE(ε, q) is shown as
a function of ε ∈ [0, 0.5] for SNR = 10 dB and N = 16, 64
and 128. It turns out that JMLE(ε, q) is almost independent
of N , at least for N ≥ 16. In particular, as N increases the
normalized MSE approaches the asymptotic value L∞

0 (ε) =
lim

N→∞
L0(ε), with L0(ε) as given in (34). Using straightforward

calculations, it is found that

L∞
0 (ε) =

3[πε cos(πε) − sin(πε)]2 + [πε sin(πε)]2

9[sinc2(ε) − 1]2
. (81)

Fig. 5. JMLE(ε, q) vs. ε for three different values of q.

Fig. 6. JMLE(ε, q) vs. ε for three different values of N and q = 0.01.

Fig. 7 compares MLE with other popular competing
schemes (FQE, QSE, AME1 and AME2) in terms of nor-
malized MSE vs. ε, measured at SNR = 10 dB. Although
all the considered estimators are amenable to iterative imple-
mentation, these results have been obtained by performing
one single iteration. For small values of ε, the estimators
perform satisfactorily and their accuracy is close to the CCRB.
As ε increases, however, the estimation accuracy deteriorates
and the curves progressively depart from the bound. It is worth
noting that, although the loss of MLE with respect to the
CCRB is about 1.7 for ε = 0.5, this scheme is still efficient
as it attains the bound CRB(ε, q) reported in (24) for any
value of ε and q. As is seen, FQE and AME1 have similar
performance over the entire FFO range and exhibit a maximum
loss of 3.2 with respect to the CCRB, which is approximately
twice that incurred by MLE. Larger degradations are observed
with QSE and AME2. The fact that MLE outperforms the
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Fig. 7. J(ε, q) vs. ε for all the considered schemes.

Fig. 8. MSE vs. SNR for all the considered schemes.

other schemes suggests that the latter cannot provide efficient
estimates over the full FFO range at their first iteration.

The superiority of MLE over the other estimators is also
observed in Fig. 8, where the MSE obtained at the end of the
first iteration is plotted as a function of the SNR, with the FFO
being uniformly distributed over the range [−0.5, 0.5). In the
low SNR regime, the MSE curves are far from the CCRB
as a consequence of the threshold phenomenon, which is a
manifestation of the occurrence of outliers during the coarse
search stage. Since this preliminary stage is common to every
DFT interpolation algorithm, the SNR threshold is the same
for all the considered schemes. When operating above the
threshold, the loss of MLE with respect to the CCRB is less
than 1 dB, while it increases to nearly 2.5 dB with FQE, AME1
and AME2, which have comparable performance. At high
SNR values, the QSE curve exhibits an irreducible floor, which
can be ascribed to a bias affecting the FFO estimate. Such a
conjecture is validated by the results shown in Fig. 9, where
the bias of all the investigated methods is reported as a function

Fig. 9. Bias vs. ε for all the considered schemes.

of ε in a noiseless scenario. As is seen, while the other esti-
mators are virtually unbiased, QSE shows a remarkable bias
whose absolute value increases with |ε|. The poor performance
of QSE after the first iteration is also documented in [24] and
has inspired the proposal of the alternative HAQSE method.
Indeed, the only difference between HAQSE and QSE is that
the former applies the bias-free AME1 before running the
QSE iterations in order to get a preliminary reduction of the
residual FFO.

In the previous simulations, we showed that the accuracy
of the q-shifted DFT interpolators is non uniform over the
FFO range [−0.5, 0.5). In order to reduce the impact of ε on
the system performance, iterative DFT interpolation can be
implemented by repeatedly running MLE or other competing
methods. This approach results into a recursive scheme in
which, at the ith iteration, two new spectral lines denoted by
X

(i)
−q and X

(i)
q are computed by applying a shift of ±q/N

to the frequency estimate obtained from the previous step.
The residual FFO is then updated by means of the MLE,
after replacing X±q in (63)-(65) by X

(i)
±q . Fig. 10 illustrates

the MSE performance of MLE after two iterations and for
three different values of N . The FFO is uniformly distributed
over [−0.5, 0.5) and the CCRB relative to any considered
observation length is also reported for comparison. As can be
seen, two iterations are sufficient for MLE to attain the CCRB
at SNR values above the threshold. A similar result was also
found in [19], [23], and [24] for AME1, AME2, FQE and
HAQSE, while at least three iterations are needed with QSE,
provided that N is sufficiently large. Indeed, in the presence
of short data records, the convergence properties of QSE can
be seriously compromized as illustrated in [25].

It is interesting to compare the performance of frequency
estimation schemes based on DFT interpolation with alterna-
tive approaches that use the sample autocorrelation function of
the input data or a subspace decomposition of the observation
space. Fig. 11 depicts the MSE vs. SNR obtained with MLE,
ESPRIT and the Mengali & Morelli estimator (MME) reported
in [7]. The observation length is N = 64 and two itera-
tions are performed with MLE. When using the ESPRIT, the
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Fig. 10. MSE vs. SNR after two iterations of MLE, for three different values
of N.

Fig. 11. MSE vs. SNR obtained with MLE, MME and ESPRIT for N = 64.

time-domain samples {x(n)} are organized into the following
snapshot array

Y =

⎡
⎢⎢⎢⎣

x(0) x(1) · · · x(N − L)
x(1) x(2) . . . x(N − L + 1)

...
...

. . .
...

x(L − 1) x(L) · · · x(N − 1)

⎤
⎥⎥⎥⎦ (82)

with L being a suitably designed integer parameter. The
frequency estimate is eventually obtained as

f̂ESPRIT =
N

2π
arg

{
L−2∑
�=0

û()û( + 1)

}
(83)

where û = [û(0), û(1), . . . , û(L − 1)]T is the eigenvector
associated with the largest eigenvalue of the sample correlation
matrix R̂ = YYH . In our simulations we use L = �N/3�,
as this value was found to provide the best MSE performance.
The results shown in Fig. 11 indicate that all the considered

Fig. 12. MSE vs. SNR obtained with MLE for some values of the LUT
dimension.

schemes exhibit the same SNR threshold, which is approxi-
mately −2 dB. This corroborates the idea that the threshold
phenomenon is not a peculiar feature of the coarse search
stage that precedes every DFT interpolation algorithm, but it
is rather an unavoidable consequence of the nonlinear nature
of the frequency estimation problem. At SNR values above
the threshold, MME and MLE perform similarly and attain
the CCRB. However, recalling that their complexity is in the
order of O(N2) and O(N log2 N), respectively, MME is more
computationally demanding then MLE. As for the ESPRIT,
it requires a complexity as high as O(N3), while exhibiting a
loss of nearly 0.5 dB with respect to the CCRB. This explains
why subspace-based methods are normally employed in the
context of multitone parameter estimation, while they are not
recommended in the presence of a single sinusoidal signal.
It is worth observing that, in principle, DFT-based estimators
can be generalized to operate in a multi-component scenario
as well. An example is found in [28], where the QSE is used
to resolve multiple sinusoids through an estimate-and-subtract
strategy.

The simulation results illustrated so far have been obtained
by employing a LUT of large cardinality M, which corresponds
to assuming an exact computation of ε̂ML from (70). This way,
any degradation arising from the use of the interpolation rule
described in (74) has been discarded. At this stage, it is useful
to assess the impact of parameter M on the MLE performance.
In Fig. 12 we plot the MSE vs. SNR obtained after two
iterations of MLE with either N = 64 or 256. Three different
values of M are used, namely M = 5, 11 and 21. The FFO
is uniformly distributed over the interval [−0.5, 0.5) and ε̄ is
still fixed to 0.7. As can be seen, for M = 21 the estimation
accuracy attains the CCRB over the full SNR range [0, 50] dB.
A marginal degradation is observed with M = 11 in the high
SNR region, while an irreducible floor appears in the MSE
curves for M = 5. The fact that the floor is the same irre-
spective of the value of N can be explained by recalling that,
in all practical situations, the interpolated function hN (ε̃, q)
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depends weakly on N as specified in (72). Hence, the accuracy
of the interpolation rule (74) is only determined by parame-
ter M , while it is virtually independent of N . The results of
Fig. 12 indicate that a LUT of cardinality 21 can provide ideal
performance at any SNR value of practical interest. We may
thus conclude that, in terms of memory requirement, the LUT
is typically much less demanding than the coarse search stage,
which needs to store the N− dimensional data record {x(n)}
before running the DFT operation.

VI. CONCLUSION

We have investigated the problem of fine frequency esti-
mation for a complex exponential signal embedded in white
Gaussian noise. The focus was on DFT interpolation schemes
amenable to iterative implementation that employ two auxil-
iary spectral lines symmetrically shifted by a quantity q with
respect to the DFT peak. A first contribution of this work is the
formulation of the CRB for the considered estimation problem.
The bound is found to depend on both the frequency shift q and
the FFO ε. Surprisingly, the best accuracy is achieved when q
approaches zero, irrespective of the FFO value. We used the
CRB to check whether existing frequency recovery methods
that operate with two q-shifted spectral lines are efficient or
not at their first iteration. Our results indicate that the loss
of these schemes with respect to the bound is negligible
when ε is small, but becomes substantial when the FFO is
close to ±0.5. This fact prompted us to investigate the ML
estimation of ε based on two auxiliary spectral lines, which
represents the second contribution of our work. As expected,
the resulting ML estimator (MLE) attains the relevant CRB for
any value of ε by virtue of its asymptotic efficiency. Compared
to alternative DFT interpolators, it performs better without
requiring any increase of the computational burden. When
implemented recursively, MLE achieves convergence after two
iterations as most other competing methods. However, thanks
to its improved performance, in some situations the estimation
accuracy can be satisfactory just at the end of the first iteration,
thereby dispensing from any further iteration. This results
into a remarkable advantage whenever frequency estimation
must be accomplished fastly and efficiently, in compliance
with the time constraints of the system. Examples in this
sense are found in voice communications, noise cancellation,
tracking of moving radar targets and Doppler shift compensa-
tion in medium and low earth orbit satellite communications.
In all these applications, performing more iterations may be
impractical due to the increased latency arising from the need
of recalculating the q-shifted DFT coefficients at each new
iteration run.

Future work on this subject may include the extension of
MLE to a multi-component scenario, as an alternative to pop-
ular subspace-based or atomic norm minimization techniques.
In particular, we will check whether the familiar estimate-and-
subtract strategy can be adopted to estimate the parameters of
multiple sinusoids through a sequential application of MLE.

APPENDIX A

In this Appendix we evaluate the average power and the
covariance of the noise terms W±q expressed in (10). It is

easily checked that

E{Wr1W
∗
r2
} = ejπ(N−1)(r1−r2)/N

N−1∑
n=0

N−1∑
�=0

E{w(n)w∗()}

× ej2π[(�−n)kp+(�r2−nr1)]/N (84)

where E{w(n)w∗()} = σ2 for n =  and it is zero otherwise.
Hence, we get

E{Wr1W
∗
r2
} = σ2ejπ(N−1)(r1−r2)/N

N−1∑
n=0

ej2πn(r2−r1)/N

(85)

which can also be rewritten as

E{Wr1W
∗
r2
} = Nσ2fN(r1 − r2) (86)

with fN (x) being defined in (11). The result (86) indicates
that E{|W±q|2} = Nσ2 and E{W−qW

∗
q } = Nσ2fN(2q).

APPENDIX B

In this Appendix we use the Taylor series concept to
evaluate the limit of CRB(ε, q) when q approaches zero,
as specified in (27). We start by expanding γ = fN (2q)
as

γ = 1 + 2f ′′
N(0)q2 + o(q2) (87)

where we have borne in mind that fN (0) = 1 and f ′
N (0) = 0.

Then, combining (31) and (87), produces

γ = 1 − 2π2

3N2
(N2 − 1)q2 + o(q2) (88)

from which it follows that

1 − γ2 =
4π2

3N2
(N2 − 1)q2 + o(q2). (89)

We proceed further by considering the second order expansion
of fN (ε ± q) and f ′

N (ε ± q) around ε, yielding

fN (ε ± q) = fN (ε) ± f ′
N (ε)q +

1
2
f ′′

N (ε)q2 + o(q2) (90)

and

f ′
N (ε ± q) = f ′

N (ε) ± f ′′
N(ε)q +

1
2
f ′′′

N (ε)q2 + o(q2) (91)

with f ′′′
N (x) denoting the third derivative of fN (x). After

substitution of (88), (90) and (91) into (21)-(23), we get the
identities

ST DS = 4
[
f ′2

N (ε) +
π2

3N2
(N2 − 1)f2

N(ε)
]

q2 + o(q2)

(92)

αT Dα = 4
[
f ′′2

N (ε) +
π2

3N2
(N2 − 1)f ′2

N (ε)
]

q2 + o(q2)

(93)

ST Dα = 4
[
f ′

N (ε)f ′′
N (ε) +

π2

3N2
(N2 − 1)fN(ε)f ′

N (ε)
]

× q2 + o(q2) (94)
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which lead to the following expression

(ST DS)(αT Dα) − (ST Dα)2 =
16π2(N2 − 1)

3N2

× [
fN (ε)f ′′

N(ε) − f ′2
N (ε)

]2
q4 + o(q4). (95)

Finally, putting the results (89), (92) and (95) into (24) yields
the expression of CRB0(ε) reported in (28).
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