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Tracking data 

The tracking data was filtered using the Hybrid Douglas Filter available in Movebank (Douglas et al. 2012). 

We identified the individual wintering area as the site where the teal was captured and where its movements 

between successive locations were < 24 km. Migration was considered started when the individual made a 

movement of > 24 km, directed towards the breeding grounds without any return to the initial area (for a 

detailed explanation of this criterion, see Cerritelli et al. 2020). This approach was necessary for two reasons:

i) some teal flew more than 24 km from the first residency area identified but then returned to stay for a long 

time in a site close to the first one (distance between areas: median = 35.4 km; IQR = 8 – 53.2 km); ii) some 

individuals were not oriented towards the breeding grounds (heading South or West) during their first 

movement. Stopover areas were identified as sites where birds remained > 48 h and moved < 24 km between

successive locations. Breeding sites were identified as areas where teal showed restricted movements (< 4 

km) and remained for more than 1 month. 

Selection of pressure level for the wind components 

To select the appropriate pressure level of the wind components, we performed a preliminary analysis. As 

flight altitude measurements for free-ranging teal were not available, we compared models that included 

wind components at the three lowest altitude levels (1000, 975 and 950 mPa), among the pressure levels 

available in the dataset used. We made this choice based on the only available flight altitude information for 

ducks obtained through radar tracking (Guillemain and Elmberg 2014) and on previous works on birds of 

similar body mass and flight as teal, which investigated the effect of winds during migration (Gill et al. 

2014). Nevertheless, we did not detect any difference among the three models and thus opted to include the 

1000mPa level of wind components in all subsequent analyses.

Statistical analysis

Departure from wintering sites

We first checked for correlation between variables using Spearman correlation, ensuring that we did not 

include variables that were highly correlated (more than 0.50) in the same model. To assess the possible 

effects of environmental cues on departure probability we used a Cox-proportional hazard model (Cox 

1972). This non-parametric model estimates the probability, per unit of time, of an event (in this case, 

“departure”) occurring as a function of the baseline hazard, which can be modified by a set of fixed or time-

dependent explanatory variables, such as environmental conditions experienced by birds in their wintering 

site. The analysis included all tracked teal (n = 30), including those that did not complete migration. For the 

two individuals tracked over three successive years, we only included data from one year, which was 

randomly sampled (year 2016 for TUS04 and year 2014 for VEN05).

We constructed a base model with the environmental variables that should affect the departure decision, 

based on literature. Since photoperiod plays a crucial role in bird migration (Berthold 1996) we included in 
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this model the hours of light per day (day length), estimated using R package “geosphere” ver. 1.5-14 

(Hijmans 2021). Temperature may also play a crucial role in departure from wintering site, as it may indicate

the advancement of the spring season (e.g., Bauer et al. 2008; Weller et al. 2022). Because the mean soil 

temperature was correlated with daylength (rs = 0.61), we considered the effect of temperature as the 

residuals of a linear regression between daily soil temperature and day of the year (residual soil temperature, 

RSoilTemp). We performed the linear regression for each wintering area (Friuli, Veneto, Tuscany, 

Lombardy and Puglia), including data from all years of tracking (2014 - 2018) only for the period that 

included the last wintering phase and the departures of all animals (1 January to 31 March).  By doing this, 

we tested the effect of relatively anomalous temperature (temperatures above the average of the period, in 

particular) experienced by the animals during the last part of the wintering period, rather than the effect of 

temperature per se (Linek et al. 2021). Finally, we included the wind v-component (North-South component 

of the wind vector) in the base model, because many bird species prefer to start migratory flights with 

favourable wind conditions (e.g., Liechti et al. 2006; Gill et al. 2014). Positive values of the wind v-

component (winds with a South-North direction) should represent favourable winds. We expected that the 

wind u-component (West-East component of the wind vector) would be less important than the v-

component, given the main northward component of migratory tracks of tagged teal, and thus did not include

it in the base model. The individuals were included in the model as clusters.

Given the available sample of individuals and the correlation among several of meteorological variables (Fig.

S3), we added one of the remaining meteorological variables (wind u-component, cloud cover, precipitation, 

atmospheric pressure and relative humidity) at a time to the base model (i.e., the model including 

photoperiod, RSoilTemp and wind v-components) to avoid overparametrization (Anderson and Burnham 

2002). Model selection was performed using the Akaike Information Criterion corrected for small sample 

size (AICc, Anderson and Burnham 2002).  We considered models within two AICc units from the best 

models to be equivalent (Anderson and Burnham 2002) unless they differed only for one additional 

parameter which was considered uninformative (Arnold 2010). All variables were centered before the 

analysis (Schielzeth 2010). Model significance was tested by means of the Wald test. Collinearity and other 

model assumptions were checked according to Therneau and Grambsch (2000) using package “survminer” 

ver. 0.4.9 (Kassambara et al. 2021) and “rms” ver. 6.3-0 (Harrell 2022).

Analysing departure from stopover

The variables considered in this analysis included Defrost Degree Day (DDD), total precipitation, 

atmospheric pressure, cloud cover and wind components. DDD is a modification of Growing Degree Days 

(GDD) that was previously used in studies investigating the possible effect of vegetation growth on the 

departure decision of migratory geese (e.g., van Wijk et al. 2012; Lameris et al. 2017). DDD was used as a 

proxy for food availability, as teal feed on both seeds and invertebrates during spring migration (Guillemain 

and Elmberg 2014). To calculate the yearly Defrost Degree Day (DDD) for each stopover site, we followed 

the method described by van Wijk et al. (2012). Specifically, we used the daily temperatures of the first soil 

level (0 - 7 cm) and identified the soil temperature of the day when ground thawing started in the area as the 
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threshold temperature (TBASE). This was determined as the first day that thaw ground was recorded in the 

satellite data followed by at least 10 days of absence of freeze. Given the large range of latitudes involved, 

we used a different TBASE for each stopover. Finally, we extracted the DDD values for the days when the 

teal were residing in the stopover.

We did not include photoperiod in our analysis due to the variability in day length during migration caused 

by both seasonal progression and changes in bird latitude, resulting in significant heterogeneity among 

different stopovers. Nonetheless, we did not anticipate photoperiod to be a significant cue for the birds' 

departure decisions from stopover sites. Photoperiod serves as a proxy for time of year, indicating the time 

frame during which birds can prepare for and initiate migration (Berthold 1996; Akesson et al. 2017; 

Akesson and Helm 2020). As observed in Pink-footed geese (Bauer et al. 2008), once migration started birds

do not use photoperiod to regulate their migration speed.

Some meteorological variables showed high degrees of correlation (Fig. S4), like cloud cover with 

precipitation (rs = 0.53) and relative humidity (rs = 0.51), and precipitation with relative humidity (rs = 0.72). 

This high level of correlation was considered when constructing the model (see below). All variables were 

centered before the analysis (Schielzeth 2010). The analysis was done using Generalized Estimating 

Equations (GEE; Hardin & Hilbe 2002) with a  binomial error distribution and an AR1 correlation structure 

to take into account the temporal autocorrelation of the data. The model was fitted using package “wgeesel” 

ver. 1.5 (Xu et al. 2018) and individuals were included in the model as clusters. The analysis was carried out 

on the 21 that completed migration, and when the same individual was tracked for multiple years, we 

included data from only one year randomly sampled (year 2016 for TUS04 and year 2014 for VEN05). To 

avoid model overparametrization and given the high level of correlation between some meteorological 

variables, we performed model selection using the same approach used in the previous analysis. We started 

with a base model including DDD and wind v-component, which we hypothesized would have the most 

significant effect on teal decision to continue migration. Then we added one of the remaining meteorological 

variables at time. The best model was selected according to the Quasi-likelihood under the independence 

model Information Criterion (QIC, Hardin & Hilbe 2002).  Model assumptions were checked using 

“DHARMa” ver. 0.4.5 (Hartig 2022), and marginal R2 (Zheng 2000) was estimated using package “wgeesel”

ver. 1.5 (Xu et al. 2018).
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Table S1. Summary information for tracked teals. IDs marked with an asterisk refer to individuals tracked for 
successive years. In these cases, we included in the models the data for just one year randomly sampled: year 2016 for 
TUS4 and year 2014 for VEN 05. Three different duty cycles of Argos satellite transmitters (PTT) were used: 6/16 = 6 
hours on/16 hours off, 10/48 = 10 hours on/48 hours off, 10/48 on-off = 10 hours on/48 hours off, but the PTT was 
activated whenever it reached a sufficient charging level, even before the end of the 48 hour “off” period. For the 
attachment procedures please refer to Giunchi et al. (2019). 

ID Sex Weight (g) Date of capture Capture site PTT duty cycle Tracking duration (days)

FRI02 F 326 22/01/2018 Valle Pantani (UD) 10/48 on-off 334

LOM02 F 260 06/01/2014 Quinzano d'Oglio (BS) 10/48 342

LOM03 F 250 13/01/2015 Quinzano d'Oglio (BS) 6/16 147

LOM04† F 285 25/01/2015 Quinzano d'Oglio (BS) 6/16 86

LOM05 F 235 16/01/2016 Gambara (BS) 10/48 on-off 272

LOM07 F 336 03/01/2017 Clusane (BS) 10/48 on-off 294

PUG01† M 290 23/01/2016 S. Giovanni Rotondo (FG) 10/48 on-off 40

TUS01† F 290 28/12/2013 San Rossore (PI) 10/48 153

TUS04* F 299 07/01/2014 San Rossore (PI) 10/48 817

TUS06† F 269 31/12/2014 San Rossore (PI) 6/16 137

TUS09 F 342 08/01/2015 San Rossore (PI) 6/16 248

TUS10† F 298 12/01/2015 San Rossore (PI) 6/16 105

TUS14 F 306 06/02/2018 San Rossore (PI) 10/48 on-off 205

VEN01 F 314 13/01/2014 Valle Morosina (PD) 10/48 352

VEN02 F 327 13/01/2014 Valle Morosina (PD) 10/48 211

VEN03† F 355 13/01/2014 Valle Morosina (PD) 6/16 513

VEN04 F 361 13/01/2014 Valle Morosina (PD) 10/48 141

VEN05* F 339 13/01/2014 Valle Morosina (PD) 10/48 on-off 805

VEN06 F 373 18/01/2015 Valle Morosina (PD) 6/16 257

VEN07† F 375 18/01/2015 Valle Morosina (PD) 6/16 228

VEN09 F 337 18/01/2015 Valle Morosina (PD) 6/16 192

VEN10 F 348 18/01/2015 Valle Morosina (PD) 6/16 283

VEN12 F 389 09/01/2016 Valle Morosina (PD) 10/48 on-off 151

VEN13 F 391 08/01/2016 Valle Morosina (PD) 10/48 on-off 180

VEN14 M 445 08/01/2016 Valle Morosina (PD) 10/48 on-off 368

VEN15 M 446 07/01/2016 Valle Morosina (PD) 10/48 on-off 136

VEN16† M 381 18/01/2016 Valle Morosina (PD) 10/48 on-off 41
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VEN17 F 415 18/01/2016 Valle Morosina (PD) 10/48 on-off 280

VEN18 F 403 16/01/2017 Valle Morosina (PD) 10/48 on-off 159

VEN19† F 386 16/01/2017 Valle Morosina (PD) 10/48 on-off 66

† Individuals that did not complete the migration because they were shot, or the instrument stopped transmitting 
abruptly. 
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Table S2. Environmental datasets used in the analyses.

Data
Data provider

Dataset
Spatial

resolution
Temporal
resolution

Used in
analysis

Soil Temperature
(first level: 0-7cm)

ECMWF (European
Centre for Medium-

Range Weather Forecasts
global)

ERA5-Land hourly data from
1950 to present

9 km
Hourly

Wintering
grounds,
stopovers

Relative humidity ECMWF
ECMWF Global Atmospheric

Reanalysis (ERA-Interim)
~ 70 km Daily

Wintering
grounds

Cloud cover
percentage

ECMWF
ECMWF Global Atmospheric

Reanalysis (ERA-Interim)
~ 70 km Daily

Wintering
grounds,

Stopovers

Wind components
3 pressure levels

ECMWF
ECMWF Global Atmospheric

Reanalysis (ERA-Interim)
~ 70 km

6 h
(6 – 12 PM)

Wintering
grounds,

Stopovers

Precipitation ECMWF
ECMWF Global Atmospheric

Reanalysis (ERA-Interim)
~ 70 km

Daily
Wintering
grounds,

Stopovers

Atmospheric
Pressure

ECMWF
ERA5-Land hourly data from

1950 to present
9 km

Hourly
Wintering
grounds
Stopover

Freeze/thaw
grounds

NSIDC (National Snow
and Ice Data Center)

MEaSUREs Global Record of
Daily Landscape Freeze/Thaw

Status (Version 5)
25 km Daily

Stopover
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Table S3. Model selection for the Cox proportional hazards model on departure from wintering sites of teal tagged in Italy from 2013 to 2018. The model selection was 
performed keeping fixed the variables: photoperiod (Daylength), residuals of temperature (RSoilTemp) and wind v-component at atmospheric pressure level 1000 mPa (Vwind). 
These variables were expected to have an effect on teal’s departure decision. We also imposed to the model selection a maximum number of fixed variables of four in order to 
avoid overparametrization. For each model we have reported ΔAICc (difference in AICc between a given model and the model with the lowest AICc) and Akaike weights (w i). 
Concordance (± SE), model significance [Wald test], model coefficients (β ± SE) and relative significance, estimated hazard ratio (HR) of departure after 1 SD increase of the 
variables included in the model (95% coefficient intervals) are reported only for the best model, as the other models deviate by more than two AICc units from the best one. 
Number of observations = 1876; number of individuals = 30.

Model ΔAICc wi Concordance Wald test Daylenght RSoilTemp Vwind Cloud cover

Daylength + 
RSoilTemp + 
Vwind

0.00 0.38 0.68 ± 0.07
9.95, df = 3,

p = 0.02

β = 1.29 ± 0.61,
z = 2.58, p = 0.009

HR = 3.63 (1.369.6)

β = 0.17 ± 0.26,
z = 0.81, p = 0.41
HR = 1.19 (0.78-

1.813)

β = 0.180 ±
0.10,

z = 1.72, p =
0.08

HR = 1.20
(0.97-1.48)

-

Daylength + 
RSoilTemp + 
Vwind + Cloud 
cover

1.87 0.15 0.69 ± 0.06
10.18, df = 4,

p = 0.04

β = 1.24 ± 0.62,
z = 2.41, p = 0.01

HR = 3.46 (1.26-9.48)

β = 0.20 ± 0.26,
z = 0.93, p = 0.35
HR = 1.22 (0.79-

1.90)

β = 0.17 ±
0.10,

z = 1.61, p =
0.10

HR = 1.19
(0.96-1.48)

β = -0.19 ± 0.21,
z = -1.08, p = 0.27

HR = 0.82 (0.58-1.16)

Daylength + 
RSoilTemp + 
Vwind + Uwind

2.19 0.12

Daylength + 
RSoilTemp + 
Vwind + Relative
humidity

2.29 0.12

Daylength + 
RSoilTemp + 
Vwind + 
Precipitation

2.51 0.11

Daylength + 
RSoilTemp + 
Vwind + 
Atmospheric 
pressure

2.66 0.10
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Table S4. Model selection for the GEE model on departure from stopover sites of teal tagged in Italy from 2013 to 
2018. The model selection was performed keeping fixed the variables: Defrost Degree Day (DDD) and wind v-
component (Vwind), that were expected to have an effect on teal’s departure decision. We also imposed to the model 
selection a maximum number of fixed variables of three in order to avoid overparametrization. The models are here 
reported from the lowest value of QIC. Number of observations = 1050; number of individuals = 21.

Model deltaQIC weight

DDD + Vwind + Cloud cover 0.0 0.963

DDD + Vwind + Precipitation 8.1 0.017

DDD + Vwind 9.4 0.009

DDD + Vwind + atmospheric pressure 10.1 0.006

DDD + Vwind + Uwind 10.4 0.005
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Fig. S1 Plot of the effects of day length (hours) (RSoilTemp = -0.0 °C, wind v-component = -0.49 m/s, cloud cover = 
-0.0) on the probability of departure from wintering areas. Shaded areas = 95% confidence bands. Results from the best 
Cox proportional hazard model developed to describe the factors affecting the departure from wintering areas for 
spring-migrating teal tagged in Italy from 2013 to 2018. Number of birds: 30. See Table S3 for numerical results.
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Fig. S2 Spatio-temporal matrixes of soil temperatures for each stopover frequented by teal and breeding site. The x-axis
represents “time” as day of the year from the 1 January, while the y-axis represents “space” as the latitude of the 
stopover frequented by each teal. The last latitude reported is the latitude of the breeding area. The colour gradient 
represents the soil temperatures recorded in each stopover (latitude) and time of year. The black dots and triangles 
indicate the day of year when the teal arrived and left the stopover area respectively. The blue diamond shows the 
arrival day at the breeding site. The data for VEN05 refers only to spring migration for year 2014, that was used in all 
the analysis.
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Fig. S3 Correlation between environmental variables considered as potential cues for the departure from wintering areas
of teal tagged in Italy between 2013 and 2018. The correlation between variables reported in the plot was evaluated 
using Spearman correlation test.  Uwind and Vwind represent the u and v wind components respectively, at altitude of 
1000 mPa.
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Fig. S4 Correlation between environmental variables considered as potential cues for the departure from stopover sites 
of teal tagged in Italy between 2013 and 2018. The correlation between variables reported in the plot was evaluated 
using Spearman correlation test. DDD is the Defrost Degree Day, while Uwind and Vwind represent the u and v wind 
components respectively, at altitude of 1000 mPa.
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