1 Study of thermal behavior and molecular composition of

2 mixtures of resinous materials and beeswax found as adhesives

in archaeological finds

- 4 Irene Bertelli, Marco Mattonai*, Jacopo La Nasa, Erika Ribechini
- 5 Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13,

- 6 56124 Pisa (Italy)
- 7
- 8 *Corresponding author: <u>marco.mattonai@dcci.unipi.it</u>
- 9
- 10
- 11

12 Abstract

Beeswax and resinous materials have been used and combined since ancient times to obtain 13 adhesives. In this work, we studied mixtures of these two materials under heating to investigate 14 15 the effect of their interactions on the properties of the resulting adhesive. The results were then compared with those of archaeological samples, to obtain new insights into ancient technological 16 knowledge. This study was performed by combining two different chemical-analytical techniques: 17 evolved gas analysis coupled with mass spectrometry and flow injection analysis-high resolution 18 19 mass spectrometry. Evolved gas analysis was used to investigate the thermal behavior of the mixtures and obtain information on production techniques and ageing processes. The data were 20 21 processed by isoconversional method to estimate the activation energies associated with the thermal degradation of the adhesives. The results suggested that archaeological mixtures were 22 subjected to a thermal pre-treatment before their use as adhesives and that heating led to a 23 material with new chemical features, due to the formation of hybrid species between resin 24 diterpenes and the beeswax compounds. The formation of these species was confirmed by high 25 26 resolution mass spectrometry. 27

28 Keywords: beeswax; pine resin; pine pitch; archaeological adhesives; mass spectrometry

30 1. Introduction

31	Beeswax and pine resin are among the most ubiquitous organic materials recovered as adhesives
32	from archaeological finds [1]. In particular, pine resin can be found either in its natural form or as
33	tar and pitch, products obtained by subjecting resinous wood to pyrolysis-like processes [2–4].
34	Adhesives found in archaeological objects are often constituted of mixtures of resinous substances
35	and other materials, such as beeswax or animal fats, which were added to improve the adhesive
36	properties of the formulation by modifying the physical-chemical properties of the resinous
37	substances [1,5–7].
38	Due to their complexity, the study of the composition of these materials requires the use of
39	instrumental techniques capable of molecular-level characterization, and mass spectrometry-
40	based techniques are particularly suitable for this purpose [3,6]. In addition, the use of such
41	techniques allows us to gain insights into the chemical transformations due to natural aging and
42	anthropogenic treatments [1,3,4,6,8].
43	In this view, the detection of key molecular species generated by the chemical interactions
44	between the mixture components is fundamental [16–20]. In a previous study, we showed that
45	flow injection analysis (FIA) coupled with high-resolution mass spectrometry through an ESI source
46	(ESI-Q-ToF) could be used to detect the presence of hybrid species resulting from reactions
47	between diterpenoids and fatty acids/hydroxy fatty acids from pine resin and beeswax,
48	respectively [17]. The formation of esters between the constituents of pine resin and beeswax was
49	attributed to the mixing and heating processes typically used to produce adhesive, suggesting not
50	only an intentional addition but also an advanced technological knowledge on the properties of
51	materials. Direct analysis by FIA-MS allowed us to overcome the limitations of chromatographic
52	techniques, such as the need for a hydrolysis or a thermal decomposition step which could lead to
53	a possible loss of information on the original composition of the organic residues and on the

54	structure of high molecular weight components. Correlating the molecular composition of
55	adhesives with their physical-chemical properties is also fundamental to understand the reasons
56	for their success in ancient history. In particular, the study of the thermal behavior is crucial to
57	understand the treatments underwent by the original materials and their preservation state.
58	Evolved gas analysis coupled to mass spectrometry (EGA-MS) is a powerful technique to study the
59	thermal behavior of complex organic samples and to determine the nature and amount of volatile
60	products formed during the thermal degradation of materials or the occurrence of cross-linking
61	phenomena [9,21]. Recently, EGA-MS has been used to estimate kinetic parameters of the thermal
62	degradation of organic materials through isoconversional methods [22–24]. Isoconversional
63	methods are a group of macroscopic modelling methods which provide kinetic data about
64	complex systems [22,25–27]. Model-free isoconversional methods are a sub-category of such
65	methods, that estimate the apparent activation energy of a reaction without any assumption on
66	its mechanism. An estimation of the activation energy of a pyrolytic process can provide useful
67	information on the energetics of the process.
68	In this work, we combined EGA-MS and FIA-HRMS to study both reference and archaeological
69	mixtures of resinous substance and beeswax, as well as mixtures of their characteristic single
70	components (abietic acid and hexadecyl- palmitate). EGA-MS was used to study the thermal
71	behavior and the thermo-chemistry of the mixtures. The obtained data were processed by
72	isoconversional method, to understand the variation of the thermal behavior of the mixtures
73	before and after heating, while FIA-HRMS was used to detect the formation of hybrid resin-
74	beeswax molecular species upon heating of the reference mixtures.

77 2. Experimental

78 **2.1.** Chemicals

79	Abietic acid (75%, Sigma-Aldrich) and hexadecyl palmitate (95% Sigma-Aldrich) were used to
80	prepare reference mixtures. Acetone (HPLC grade, Sigma-Aldrich) was used for homogenization of
81	the mixtures. Chloroform, hexane (HPLC grade, Sigma-Aldrich) and isopropanol (HPLC grade,
82	Fluka) were used as solvents for FIA-HRMS analyses. Hexamethyldisilazane (HMDS, 99.9%, Sigma-
83	Aldrich, USA) was used as derivatizing agent in UV/Py(HMDS)-GC/MS experiments.
84	2.2. Samples
85	Beeswax and resin from Pinus pinaster were purchased locally, while archaeological pitch (P) was
86	taken from the bottom of an amphora found in the archaeological site of Medinet Madi Fayum
87	(Egypt), dating back to 2 nd -3 rd century BC [4]. Binary reference mixtures were obtained by mixing
88	abietic acid (AA), hexadecyl palmitate (HP), beeswax (B) and pine resin (R) (1:1 mass ratio).
89	Homogeneous mixtures were obtained by suspending the components in 1 mL acetone and then
90	sonicating the suspensions (Bandelin Sonorex Digitec, 15 min at room temperature). Additional
91	reference samples were also obtained by heating the mixtures at 200 and 300 $^\circ\!C$ in oven for 1 h
92	and 2 h. Table 1 summarizes the mixtures produced and the heating conditions. These heating
93	conditions were determined in a previous step of the analysis. For the temperature, the
94	experiments were performed starting from melting point of beeswax (62 °C - 64 °C) and pine resin
95	(70 °C - 135 °C) to the optimal temperatures, while for the time it was observed that results
96	obtained were not significatively different by heating the samples for one hour or two hours.
97	Six archaeological samples collected from the archaeological site of Antinoe (Egypt, $4^{th}-5^{th}$ century

- AD) were used in this study. Their composition has already been determined in a previous work
- 99 [6]. Table 2 lists all archaeological samples and their composition.

101 Table 1: List of reference mixtures produced and their heating conditions. AA = abietic acid; HP =

Mixture	Heating conditions
	200 °C, 2 h
AA+HP	300 °C, 1 h
	200 °C, 2 h
AA+B	300 °C, 1 h
R+HP	200 °C, 2 h
	300 °C, 1 h
	untreated
R+B	200 °C, 2 h
	300 °C, 1 h
P+B	untreated

102 hexadecyl palmitate; B = beeswax; R = resin; P = pitch.

103

104 **Table 2:** List of the archaeological samples and their composition. B = beeswax; P = pitch.

Sample	Composition
A3	P+B
C5	P+B
C6a	P+B
D1a	P+B
D2a	В
D2bs	P+B

105 106

107 2.3. Evolved gas analysis-mass spectrometry (EGA-MS)

108 2.3.1. EGA-MS analysis

109 All experiments were performed with an EGA/PY-3030D micro-furnace pyrolyzer (Frontier

110 Laboratories, Japan) coupled to a 6890 gas chromatograph equipped with a split/splitless injector

111 and a 5973 mass spectrometric detector (Agilent Technologies, USA). During each experiment, the

112 furnace temperature was raised from 50 °C to 800 °C at six different heating rates (β = 15, 20, 25,

113 30, 35, and 40 °C/min). The interface between the furnace and the GC injector was kept 100 °C

above the furnace temperature, to a maximum of 320 °C. The GC injector was operated in split

115 mode with a 30:1 ratio at 300 °C. The pyrolyzer and mass spectrometer were connected by an

116 Ultra-ALLOY deactivated and uncoated stainless-steel capillary tube (UADTM-2.5N, 2.5 m x 0.15 117 mm, Frontier Laboratories, Japan), which was kept at 300 °C. Helium (1.2 mL/min) was used as 118 carrier gas. The mass spectrometer was operated in El positive mode (70 eV, m/z range 50-300). 119 The ion source and quadrupole analyzer were kept at 230 °C and 150 °C, respectively. 120 2.3.2. Isoconversional method Conversion profiles were calculated from the EGA-MS profiles using equation (1), where S is the 121 122 total ion current of the mass spectrometer as a function of the temperature T, T_0 the initial 123 temperature, and ATOT is the total area of the thermogram. The Kissinger-Akahira-Sunose isoconversional method was used to calculate the apparent activation energy for the thermal 124 125 degradation of the samples. The equation for this method is (2), where α is the conversion, β is the heating rate, E_a the apparent activation energy, R the gas constant and $r(\alpha)$ is a function of the 126 127 conversion. For a fixed value of α , the equation gives a linear trend of the left side as a function of 1/T. The slope of these functions can be directly related to the apparent activation energy [22,24– 128 26]. 129

130 (1) $\alpha = \frac{1}{A_{TOT}} \int_{T_0}^T S(\tau) d\tau$

131 (2)
$$\ln\left(\frac{\beta}{T^2}\right) = -\frac{E_a}{RT} + r(\alpha)$$

132 2.4. Flow-injection analysis-high resolution mass spectrometry (FIA-HRMS)

Approximately 0.1 mg of a reference mixture and archaeological sample were subjected to ultrasound-assisted extraction at room temperature using 1 mL and 500 μL of a 3:2 v/v chloroform:hexane mixture for 15 and 20 min, respectively. In both cases, 20 μL of the obtained mixture were diluted in isopropanol (1:4000). The initial extraction step allowed us to increase the amount of extracted material and avoid secondary transesterification of beeswax esters, which could cause an alteration in the profile of the material [28,29]. Sonication was used to increase efficiency and reduce extraction time [30,31].

140	The analysis was carried out using a 1200 Infinity HPLC coupled to a Jet Stream ESI interface with a	
141	6530 Infinity Q-ToF quadrupole-time of flight tandem mass spectrometer (Agilent Technologies,	
142	US). The eluents were methanol:water (85:15) and isopropanol; the flow rate was 0.2 mL/min and	
143	the injection volume was 1 μL . The mass spectrometer was calibrated using the HP0321 tuning mix	
144	(Agilent Technologies, USA). The ESI operating conditions were: drying gas (N ₂ , purity > 98%): 350	
145	$^\circ C$ and 10 L/min; capillary voltage 4.5 kV; nebulizer gas 35 psig; sheath gas (N_2, purity > 98%): 375	
146	$^\circ$ C and 11 L/min. High resolution MS spectra were acquired in positive mode in the range 100–	
147	3200 <i>m/z</i> . The acquisition time for full scan analysis was 1.5 min.	
148		
149	3. Results and discussion	
149 150	3. Results and discussion 3.1 EGA-MS and isoconversional method	
149 150 151	 3. Results and discussion 3.1 EGA-MS and isoconversional method EGA-MS was used to study the thermal behavior and the thermo-chemistry of the mixtures 	
149 150 151 152	 3. Results and discussion 3.1 EGA-MS and isoconversional method EGA-MS was used to study the thermal behavior and the thermo-chemistry of the mixtures starting from the reference samples. Figure 1 shows the thermograms obtained for 	
149 150 151 152 153	 3. Results and discussion 3.1 EGA-MS and isoconversional method EGA-MS was used to study the thermal behavior and the thermo-chemistry of the mixtures starting from the reference samples. Figure 1 shows the thermograms obtained for R+Buntreateduntreated, R+B300300 and P+Buntreateduntreated at a heating rate of 40 °C/min, while the 	
149 150 151 152 153 154	 3. Results and discussion 3.1 EGA-MS and isoconversional method EGA-MS was used to study the thermal behavior and the thermo-chemistry of the mixtures starting from the reference samples. Figure 1 shows the thermograms obtained for R+Buntreateduntreated, R+B300300 and P+Buntreateduntreated at a heating rate of 40 °C/min, while the relative average mass spectra are reported in Figure 2. Several experiments were carried out 	
149 150 151 152 153 154 155	 3. Results and discussion 3.1 EGA-MS and isoconversional method EGA-MS was used to study the thermal behavior and the thermo-chemistry of the mixtures starting from the reference samples. Figure 1 shows the thermograms obtained for R+Buntreateduntreated, R+B300300 and P+Buntreateduntreated at a heating rate of 40 °C/min, while the relative average mass spectra are reported in Figure 2. Several experiments were carried out varying the heating rate and Table 3 lists the temperatures of the signal maxima for each heating 	
149 150 151 152 153 154 155 156	3. Results and discussion 3.1 EGA-MS and isoconversional method EGA-MS was used to study the thermal behavior and the thermo-chemistry of the mixtures starting from the reference samples. Figure 1 shows the thermograms obtained for R+Buntreateduntreated, R+B300300 and P+Buntreateduntreated at a heating rate of 40 °C/min, while the relative average mass spectra are reported in Figure 2. Several experiments were carried out varying the heating rate and Table 3 lists the temperatures of the signal maxima for each heating rate for the various reference mixtures.	

Table 3: Peak temperatures for each heating rate for the reference mixtures. 158

Heating rate	R+Buntreateduntreated	R+B 300 300	P+Buntreateduntreated
15 °C/min	201	173	
20 °C/min	224	190	
25 °C/min	257	211	392
30 °C/min	328	245	388
35 °C/min	352	326	402
40 °C/min	342	346	426

160	The signal peak in the mixture of pitch and beeswax was at higher temperatures than in the
161	samples that contained beeswax and pine resin, even after heating. In particular, the signal peak
162	for samples with pine resin was below 300 °C (not reported here), while it was higher than 300 °C
163	for sample P+B. 300 $^\circ$ C is the temperature to discriminate between thermal desorption and
164	pyrolysis; therefore, it is possible to assert that the pyrolysis of a polymerized/cross-linked fraction
165	took place in sample P+Buntreateduntreated, while the thermal desorption of free molecular species
166	was the main phenomenon in samples R+Buntreateduntreated and R+B300300. In any case,
167	R+B untreateduntreated and R+B 300300 show different behaviors under heating. In fact, the
168	temperature of signal peak generally decreased going from R+B untreated_{untreated} to R+B300
169	$_{300}$ (Table 3) or remained almost the same at the heating rate of 40 °C/min. These results may be
170	attributed to the fact that the species desorbed from the heated sample were more
171	defunctionalized and aromatized than those from the untreated ones.
172	As support, Figure 2 shows the average mass spectra of samples R+Buntreateduntreated and
173	R+B 300 300. The mass spectrum of sample R+B untreated untreated (Figure 2a) was mainly
174	characterized by the peaks at m/z 241, 259, 287 and 302 ascribable to abietic acid, while the mass
175	spectrum of R+B $\frac{300}{300}$ (Figure 2b) showed peaks at <i>m/z</i> 197, 239, 285 and 300, and 298 and 237
176	ascribable to abieta-8,11,13-trienoic acid and abieta-6,8,11,13-tetraenoic acid. These compounds
177	will be addressed as dehydroabietic acid and didehydroabietic acid, respectively, in the remainder
178	of the paper [4]. Their presence, combined with the absence of signals ascribable to abietic acid,
179	confirms that the formation of unsaturated diterpenoid compounds was favored at the expense of
180	abietic acid when the mixture was heated during preparation. The signals at m/z values 71, 85, 99
181	and 69, 83, 97, 111 in each mass spectrum can be ascribed to the alkanes and alkenes,
182	respectively, deriving from the hydrocarbon chains and fatty acids and esters of beeswax [5]. The
183	average mass spectrum of the sample P+CB showed high intensities of the signals of unsaturated

- 184 diterpenoid compounds, but also showed a significant intensity of *m/z* 219, that can be ascribed to
- 185 retene, a molecular maker obtained from abietic acid and its derivatives during the heating of

- 188 Figure 1 Thermograms obtained at the heating rate of 40 °C/min for references mixtures a)
- 189 R+Buntreateduntreated, b) R+B300300 and c) P+Buntreateduntreated and d) archaeological sample C6a.
- 190 The temperature of signal maximum is shown for each thermogram.

ascribable to desorption/pyrolysis products of beeswax, the blue dots (•) indicate signals of pine

195 resin, and the orange dots (•) indicate signals of pine pitch.

196

198	By applying the isoconversional method to the data obtained from EGA-MS we obtained the	
199	following values of apparent activation energy values: 1.68 \pm 0.3 \cdot 10 4 J mol $^{-1}$ and 2.26 \pm 0.4 \cdot 10 4 J	
200	mol ⁻¹ for samples R+B untreated and R+B $\frac{300}{300}$, respectively, and 3.89 ± 0.7 \cdot 10 ⁴ J mol ⁻¹ for	
201	P+Buntreateduntreated. The apparent activation energies of heated references were higher than that	
202	of untreated samples, highlighting that the thermal pre-treatment and the ageing led to the	
203	removal of the more volatile components, promoting the formation of higher molecular weight	
204	species through cross-linking reactions. As a further confirmation, the final part of the	
205	thermogram of $R+B_{300,300}$ shows a higher signal intensity than the thermogram of	
206	R+Buntreateduntreated, while the opposite is true for the signals at lower temperatures. Figure 1 and	
207	Figure 2 show s also the thermograms and the resulting mass spectrum obtained for the	
208	archaeological sample C6a (Figure 1d) a representative archaeological mixture of pitch and	
209	beeswax, sample C6a (Figure 1d). EGA-MS results for the other archaeological samples are	
210	available in the Supplementary Material.	
211	The thermograms obtained for the archaeological samples are consistent with the thermal	
212	behavior highlighted for the reference mixture P+Buntreated _{untreated} rather than the two mixtures	
213	containing pine resin.	
214	The average mass spectra associated with the thermograms are dominated by signals ascribable	
215	to beeswax components and by m/z 316 and 330, ascribable to oxidized terpenes such as 7-	
216	hydroxyabieta-8,11,13-trienoic acid (7-hydroxydehydroabietic acid) and 15-hydroxy-7-oxoabieta-	
217	8,11,13-trienoic acid (15-hydroxy-7-oxodehydroabietic acid), together with dehydroabietic acid	
218	and 7-oxodehydroabietic acid. The m/z values 219 and 234, ascribable to retene, were also found	
219	in these samples.	
220	The thermograms of the archaeological samples showed a peak above 300 °C, similar to that	
221	observed for sample P+B untreated_{untreated}, and, also in this case, in the final part of thermograms	

222	the ion current remained high. In addition, the activation energy values increased further, to
223	approximately 6.00 \cdot 10 ⁴ J mol ⁻¹ . This highlights that, in a similar way to heating, aging promoted
224	the increment of cross-linking reactions and the formation of high molecular weight species in
225	archaeological samples.

- 226 Further confirmation of the increment of cross-linking reactions is information on the generation
- 227 of a macromolecular network can be obtained by comparison of comparing the extracted ion
- thermograms of different samples obtained from distinct m/z values, characteristic of
- dehydroabietic acid. Figure 3 compares the extracted ion thermograms for *m/z* 197 (a), 239 (b)
- and 285 (c) of reference samples R+Buntreated_{untreated}, R+B300₃₀₀ and P+Buntreated_{untreated}, and
- 231 archaeological sample C6a. The shift of the peak in the more aged and heated samples
- 232 (P+Buntreated and C6a) confirms the increment of cross-linking reactions and the formation of
- 233 high molecular weight species in archaeological samples. The temperature of signal maximum for
- these ions was at significantly higher values for the two samples containing archaeological pitch.
- 235 This indicates that the presence of pitch is the main responsible for the higher thermal stability.
- 236 Interestingly, sample R+B₃₀₀ did not show any significant shift of the temperature of signal
- 237 maximum compared to R+B_{untreated}, indicating that the formation of the cross-linked network is
- 238 mostly formed during the ageing of pitch, rather than during its preparation.

Figure 3: Extracted ion thermograms of a) *m/z* 197, b) *m/z* 239 and c) *m/z* 285 respectively. Black
profiles (•) correspond to R+Buntreated_{untreated}, red profiles (•) to R+B300₃₀₀, blue profiles (•) to

243 P+Buntreated_{untreated}, and green profiles (•) to archaeological sample C6a.

244

245 **3.2 FIA-HRMS**

- 246 Flow-injection experiments of heated reference mixtures provided complex mass spectra, as
- 247 shown in Figure 4 (a) and (b). These mass spectra showed clusters of signals that could be ascribed
- to resinous and beeswax components, both as free molecules and as oligomers [17]. In
- 249 comparison to sample R+B²⁰⁰200, sample R+B³⁰⁰300 showed a higher relative intensity of the
- 250 signals corresponding to free fatty acids of beeswax and monomeric diterpenoids of resin
- 251 compared to the intensities of the clusters of oligomers. This indicates that heating of the mixtures
- 252 favors the cleavage of ester bonds of higher-molecular weight oligomers to give lower-molecular
- 253 weight ones. Moreover, the clusters corresponding to beeswax oligomers in sample R+B300300

254	showed a greater number of <i>m/z</i> signals with high relative intensities than the corresponding
255	clusters in sample R+B 200₂₀₀. This indicates that the oligomers are not only degraded to smaller
256	aggregates, but also chemically modified. The most likely hypothesis in this case is a partial
257	oxidation of the oligomers taking place during heating. This is highlighted in Figure 5, showing the
258	portion of the mass spectra of samples $R+B_{200_{200}}$ and $R+B_{300_{300}}$ characteristic of beeswax
259	monoesters and resin dimers. As can be observed, the same species responsible for some of the
260	signals in sample R+B $\frac{200}{200}$ can be found in sample R+B $\frac{300}{300}$ at different m/z values, due to
261	either the addition of oxygen or the loss of H_2 after the more intense heating.
262	Finally, sample R+B $\frac{200}{300}$ also showed a small number of m/z signals that could be ascribed to
263	hybrid compounds, generated by the formation of ester bonds between beeswax and resin
264	components. These compounds were also detected in the mass spectra of the mixtures of
265	reference abietic acid and beeswax heated at 300 °C. Proposed structures for these hybrid
266	compounds are shown in Figure 6 (a) and (b). Confirmation of the proposed structures was based
267	on their MS/MS fragmentation patterns. Fragmentation examples are presented in Figure 7, which
268	shows the tandem mass spectra of the hybrid species identified in sample AA+B $\frac{300}{300}$. Samples
269	heated at lower temperatures did not show these signals, indicating that the threshold
270	temperature required for their formation is between 200 °C and 300 °C.
271	Signals ascribable to hybrid species were also detected in the mass spectra of archaeological
272	samples, as shown in Figure 6 (c). A complete list of all hybrid compounds is presented in Table 5.
273	The archaeological sample with the highest number of hybrid compounds was D2bs, while no
274	hybrid compounds were detected in samples C5, D1a and D2a. Archaeological samples were only
275	partially solubilized in the injection solvent used for flow-injection analyses. This is likely due to the
276	formation of a polymeric network during the ageing of these samples, as already hypothesized
277	from the EGA-MS results. This is consistent with the higher apparent activation energies obtained

278	for the archaeological samples compared to the reference mixtures. The low solubility of
279	archaeological samples is the most likely explanation for the lower signals obtained in their mass
280	spectra, especially for the beeswax oligoesters, and for the absence of signals ascribable to hybrid
281	compounds.
282	It is interesting to notice that the ester bonds in the hybrid compounds of the reference mixtures
283	mostly involve the carboxy group of abietanic abietane acids and long chain alcohols of beeswax.
284	As free alcohols are almost absent in fresh beeswax [1], we can conclude that the most likely
285	reaction mechanism leading to the formation of hybrid compounds is trans-esterification of the
286	beeswax esters with abietanic abietane acids. It is also worth noting that the hybrid compounds
287	obtained in the reference mixtures involve both oxidized and non-oxidized abietic acid. This
288	indicates that oxidation of abietic acid and formation of hybrid compounds have similar reaction
289	rates under the heating conditions adopted in this study.

Figure 4: FIA-HRMS average mass spectra of sample a) R+B200200, b) R+B300300 and c) sample
 D2bs. In each spectrum, clusters highlighted in green indicate *m/z* signals ascribable to ionization
 and fragmentation of beeswax components, while clusters highlighted in orange indicate those of
 pine resin.

296

297 Contrary to the reference samples, the ester bonds in archaeological samples mostly involve free

298 fatty acids from beeswax and the hydroxy group on carbon number 15 of the abietanic abietane

acids, which is a result of the oxidation of resin compounds. This indicates that, for the

300 archaeological samples, oxidation of abietanic abietane acids took place before trans-esterification

301 reactions. The reason for this is most likely that pitch, rather than fresh resin, was used to prepare

302 the archaeological mixtures, as pitch is richer in oxidated abietanic abietane acid.

303 The presence of ester bonds involving the hydroxy group on carbon number 15 of abietanic 304 abietane acids should not hinder the formation of other ester bonds involving the carboxy group. However, such ester bonds were not detected in the hybrid compounds of archaeological samples. 305 306 This leads us to conclude that trans-esterification reactions induced by heating of the mixtures at 300 °C were not favored during the preparation of the archaeological mixtures, meaning that the 307 308 mixtures were heated at lower temperatures. With this conclusion, a question remains on how the ester bonds could have been formed in the 309 310 archaeological adhesives. The most likely explanation is that the hybrid species are not a result of

heating, but rather of ageing. During ageing, the esters of beeswax undergo hyrolysis to give free
carboxylic acids, which can then generate the hybrid species with oxidized abietanic abietane acids
without the need of high temperatures.

314

315

Figure 5: Mass spectra of a) R+B200₂₀₀ and b) R+B300₃₀₀. Red dots (•) indicate the precursor, while

317 green dots (•) and orange dots (•) indicate the specie after the addition of oxygen and the loss of

318 H₂, respectively.

319 **Figure 6:** Structures of resin-wax esters detected in a) AA+B300₃₀₀, b) R+B300₃₀₀ and c)

320 archaeological samples, correlated to Table 5. Molecular weights are also shown for each

321 compound.

322 Figure 7: tandem mass spectra of hybrid esters found in reference sample AA+B300300. Blue dots

323 (•) represent the precursor ion, while red dots (•) correspond to the identified fragments.

Commentato [ER1]: Le masse non sono le stesse riportate in tabella e poi non ci sono nello schema sopra.

324

Sample	<i>m/z</i> [M+Na] ⁺ Predicted	<i>m/z</i> [M+Na]⁺ Detected	Compound
	689.548	689.551	15-Hydroxy-7-oxodehydroabietic acid + tetracosanol
	729.616	729.622	7- oxodehydroabietic <u>Oxodehydroabietic</u> acid + octacosanol
AA+B <mark>300</mark> 300	773.642	773.645	15-Hydroxy-7-oxodehydroabietic acid + triacontanol
	663.533	663.532	Abietic acid + hydroxydocosanoic acid
	675.569	675.567	15-Hydroxydehydroabietic acid + tetracosanol
	745.611	745.657	15-Hydroxydehydroabietic acid + octacosanol
	661.517	661.513	15-Hydroxydehydroabietic acid + tetracosanol
	771.684	771.706	Didehydroabietic acid + dotriacontanol
R+B 300 300	929.794	929.793	Hydroxypalmitic acid + 15-Hydroxydehydroabietic acid + tetracosanol
	957.825	957.825	hydroxypalmitic- <u>Hydroxypalmitic</u> acid + 15- Hydroxydehydroabietic acid + hexacosanol
	985.856	985.863	hydroxypalmitic <u>Hydroxypalmitic</u> acid + 15- Hydroxydehydroabietic acid + octacosanol
	575.408	575.404	15-Hydroxydidehydroabietic acid + palmitic acid
A3	845.627	845.615	15-Hydroxy-7-oxodehydroabietic acid + palmitic acid + hydroxypalmitic acid
C6a D2bs	719.523	719.520	15-Hydroxy-7-oxodehydroabietic acid + hydroxytetracosanoic acid
	983.841	983.843	15-Hydroxy-7-oxodehydroabietic acid + palmitic acid + octacosanol
	575.408	575.406	15-Hydroxydidehydroabietic acid + palmitic acid
	659.502	659.500	15-Hydroxydidehydroabietic acid + docosanoic acid
	675.496	675.497	15-Hydroxy-7-oxodehydroabietic acid + docosanoic acid
	743.595	743.592	15-Hydroxydidehydroabietic acid + octacosanoic acid

Commentato [ER2]: Attenzione, non c'è corrispondenza con la struttura riportata in figura

Table 5: *m*/*z* signals predicted and detected in FIA-HRMS spectra and corresponding compounds.

329 4. Conclusions

330	The formation of new hybrid species between diterpenoids of the resinous and beeswax
331	components has been confirmed both by EGA-MS and FIA-HRMS. Structures of these hybrid
332	components hypothesized from the FIA-HRMS spectra strongly suggest that trans-esterification
333	reactions are the main mechanisms responsible for their formation. In EGA-MS analyses, the shift
334	of the signal peak temperature from reference samples containing pine resin to mixture
335	containing pitch and archaeological samples suggested the formation of species with high
336	molecular weights and reticulated fractions. This was confirmed by the calculated values of
337	apparent activation energy. The formation of high molecular weight species, including resin-
338	beeswax hybrid esters, was also highlighted by data obtained from FIA-HRMS. Flow injection
339	analyses suggested that the formation of high molecular weight species occurred after heating the
340	reference mixture at 300 °C. Hybrid species were also found in archaeological samples, but with
341	different structures, suggesting that their formation is more likely due to hydrolysis of beeswax
342	esters during ageing, and that the archaeological adhesives were heated at lower temperatures
343	than the ones used for the references.
344	
345	Acknowledgements
346	The authors wish to thank Prof. Flora Silvano of the University of Pisa for providing the
347	archaeological samples from Antinoopolis.

350 References

351 352	[1]	M.P. Colombini, F. Modugno, Organic Mass Spectrometry in Art and Archaeology, Wiley, 2009.
353 354 355	[2]	B. Hjulström, S. Isaksson, A. Hennius, Organic geochemical evidence for pine tar production in middle Eastern Sweden during the Roman Iron Age, J Archaeol Sci. 33 (2006) 283–294. https://doi.org/10.1016/j.jas.2005.06.017.
356 357 358 359	[3]	C. Duce, S. Orsini, A. Spepi, M.P. Colombini, M.R. Tiné, E. Ribechini, Thermal degradation chemistry of archaeological pine pitch containing beeswax as an additive, J Anal Appl Pyrolysis. 111 (2015) 254–264. https://doi.org/10.1016/j.jaap.2014.10.020.
360 361 362 363	[4]	M.P. Colombini, F. Modugno, E. Ribechini, Direct exposure electron ionization mass spectrometry and gas chromatography/mass spectrometry techniques to study organic coatings on archaeological amphorae, Journal of Mass Spectrometry. 40 (2005) 675–687. https://doi.org/10.1002/jms.841.
364 365 366	[5]	M. Regert, C. Rolando, Identification of archaeological adhesives using direct inlet electron ionization mass spectrometry, Anal Chem. 74 (2002) 965–975. https://doi.org/10.1021/ac0155862.
367 368 369 370	[6]	E. Ribechini, S. Orsini, F. Silvano, M.P. Colombini, Py-GC/MS, GC/MS and FTIR investigations on LATE Roman-Egyptian adhesives from opus sectile: New insights into ancient recipes and technologies, Anal Chim Acta. 638 (2009) 79–87. https://doi.org/10.1016/j.aca.2009.02.004.
371 372 373 374	[7]	J. Pérez-Arantegui, E. Ribechini, C. Pardos, M.P. Colombini, Chemical investigation on black pigments in the carved decoration of sixteenth century alabaster tombs from Zaragoza (Spain), in: Anal Bioanal Chem, 2009: pp. 2191–2197. https://doi.org/10.1007/s00216-009-2977-4.
375 376 377	[8]	M.P. Colombini, G. Giachi, F. Modugno, E. Ribechini, Characterisation of organic residues in pottery vessels of the Roman age from Antinoe (Egypt), in: Microchemical Journal, 2005: pp. 83–90. https://doi.org/10.1016/j.microc.2004.05.004.
378 379 380	[9]	F. Nardella, C. Duce, E. Ribechini, Analytical pyrolysis and thermal analysis to chemically characterise bitumen from Italian geological deposits and Neolithic stone tools, J Anal Appl Pyrolysis. 158 (2021). https://doi.org/10.1016/j.jaap.2021.105262.
381 382	[16]	S.N. Dudd, R.P. Evershed, Unusual Triterpenoid Fatty Acyl Ester Components of Archaeological Birch Bark Tars, 1999.
383 384 385 386 387	[17]	J. la Nasa, F. Nardella, L. Andrei, M. Giani, I. Degano, M.P. Colombini, E. Ribechini, Profiling of high molecular weight esters by flow injection analysis-high resolution mass spectrometry for the characterization of raw and archaeological beeswax and resinous substances, Talanta. 212 (2020) 120800. https://doi.org/10.1016/j.talanta.2020.120800.

389 390 391	.18]	E. Ribechini, F. Modugno, M.P. Colombini, R.P. Evershed, Gas chromatographic and mass spectrometric investigations of organic residues from Roman glass unguentaria, J Chromatogr A. 1183 (2008) 158–169. https://doi.org/10.1016/j.chroma.2007.12.090.
392 [: 393 394 395	[19]	A. Charrié-Duhaut, J. Connan, N. Rouquette, P. Adam, C. Barbotin, M.F. de Rozières, A. Tchapla, P. Albrecht, The canopic jars of Rameses II: real use revealed by molecular study of organic residues, J Archaeol Sci. 34 (2007) 957–967. https://doi.org/10.1016/j.jas.2006.09.012.
396 [2 397	20]	S. Charters, R.P. Evershed, P.W. Blinkhorn, EVIDENCE FOR THE MIXING OF FATS AND WAXES IN ARCHAEOLOGICAL CERAMICS*, 1995.
398 [2 399	[21]	R. Risoluti, S. Materazzi, Mass spectrometry for evolved gas analysis: An update, Appl Spectrosc Rev. 54 (2019) 87–116.
400 [2 401 402 403	22]	F. Nardella, M. Mattonai, E. Ribechini, Evolved gas analysis-mass spectrometry and isoconversional methods for the estimation of component-specific kinetic data in wood pyrolysis, J Anal Appl Pyrolysis. 145 (2020) 104725. https://doi.org/10.1016/j.jaap.2019.104725.
404 [2 405 406 407	[23]	F. Nardella, S. Bellavia, M. Mattonai, E. Ribechini, Co-pyrolysis of wood and plastic: Evaluation of synergistic effects and kinetic data by evolved gas analysis-mass spectrometry (EGA-MS), J Anal Appl Pyrolysis. 159 (2021). https://doi.org/10.1016/j.jaap.2021.105308.
408 [2 409 410	[24]	Y.M. Kim, T.U. Han, B.A. Hwang, Y. Lee, A. Watanabe, N. Teramae, S.S. Kim, Y.K. Park, S. Kim, New approach for the kinetic analysis of cellulose using EGA-MS, Polym Test. 60 (2017) 12–17. https://doi.org/10.1016/j.polymertesting.2017.02.004.
411 [2 412	[25]	P. Šimon, ISOCONVERSIONAL METHODS Fundamentals, meaning and application, 2004.
413 [2 414	[26]	S. Vyazovkin, Isoconversional kinetics of thermally stimulated processes, Springer International Publishing, 2015. https://doi.org/10.1007/978-3-319-14175-6.
415 [2 416 417 418	27]	S. Vyazovkin, A.K. Burnham, J.M. Criado, L.A. Pérez-Maqueda, C. Popescu, N. Sbirrazzuoli, ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data, Thermochim Acta. 520 (2011) 1–19. https://doi.org/10.1016/j.tca.2011.03.034.
419 [7 420 421 422 423 424	28]	J. la Nasa, M. Zanaboni, D. Uldanck, I. Degano, F. Modugno, H. Kutzke, E.S. Tveit, B. Topalova-Casadiego, M.P. Colombini, Novel application of liquid chromatography/mass spectrometry for the characterization of drying oils in art: Elucidation on the composition of original paint materials used by Edvard Munch (1863-1944), Anal Chim Acta. 896 (2015) 177–189. https://doi.org/10.1016/j.aca.2015.09.023.

425	[29]	L. Blanco-Zubiaguirre, E. Ribechini, I. Degano, J. la Nasa, J.A. Carrero, J. Iñañez, M.
426		Olivares, K. Castro, GC–MS and HPLC-ESI-QToF characterization of organic lipid
427		residues from ceramic vessels used by Basque whalers from 16th to 17th centuries,
428		Microchemical Journal. 137 (2018) 190–203.
429		https://doi.org/10.1016/j.microc.2017.10.017.
430	[30]	L. Blanco-Zubiaguirre, M. Olivares, K. Castro, J.G. Iñañez, J.M. Madariaga, An
431		alternative analytical method based on ultrasound micro bath hydrolysis and GC-MS
432		analysis for the characterization of organic biomarkers in archaeological ceramics,
433		Anal Bioanal Chem. 408 (2016) 8001–8012. https://doi.org/10.1007/s00216-016-
434		9898-9.
435	[31]	L. Blanco-Zubiaguirre, M. Olivares, K. Castro, J.A. Carrero, C. García-Benito, J.Á. García-
436		Serrano, J. Pérez-Pérez, J. Pérez-Arantegui, Wine markers in archeological potteries:
437		detection by GC-MS at ultratrace levels, Anal Bioanal Chem. 411 (2019) 6711–6722.
438		https://doi.org/10.1007/s00216-019-02044-1.
439		