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Abstract
In a period in which climate change is significantly varying rainfall regimes and their intensity all over the world, river-flow 
prediction is a major concern of geosciences. In recent years there has been an increase in the use of deep-learning models 
for river-flow prediction. However, in this field we can observe two main issues: i) many case studies use similar (or the 
same) strategies without sharing the codes, and ii) the application of these techniques requires good computer knowledge. 
This work proposes to employ a Google Colab notebook called CleverRiver, which allows the application of deep-learning 
for river-flow predictions. CleverRiver is a dynamic software that can be upgraded and modified not only by the authors but 
also by the users. The main advantages of CleverRiver are the following: the software is not limited by the client hardware, 
operating systems, etc.; the code is open-source; the toolkit is integrated with user-friendly interfaces; updated releases with 
new architectures, data management, and model parameters will be progressively uploaded. The software consists of three 
sections: the first one enables to train the models by means of some architectures, parameters, and data; the second section 
allows to create predictions by using the trained models; the third section allows to send feedback and to share experiences 
with the authors, providing a flux of precious information able to improve scientific research.
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Introduction

River flow prediction is an important tool for early flood 
warning, water resource management, water demand assess-
ment, irrigation, agriculture, and hydroelectric power gen-
eration. These aspects become more and more critical in the 

case of climate changes causing a variation in rainfall regime 
and land use in many areas (Merz et al. 2014; Deitch et al. 
2017; Blöschl et al. 2019). In particular, extreme weather 
events produce flash floods, floods, and debris flow phe-
nomena. These have relevant socio-economic implications 
and represent a significant scientific issue, as confirmed by 
the extensive literature on the subject (Bates et al. 2008a, b, 
2012; Gaume et al. 2016; Bryndal et al. 2017; IPCC 2018).

In recent years, we have observed an increase in the use 
of deep-learning in geosciences and in particular in river-
flow prediction, with promising results (e.g., Boulmaiz et al. 
2020; Chattopadhyay et al. 2020; Kratzert et al. 2018; Lup-
pichini et al. 2022; Sit et al. 2020). The implementation of 
suitable run-off models is made difficult by the complexity 
of the natural systems and by the environmental information 
available (Jaiswal et al. 2020). Furthermore, each physically-
based model is limited by the inevitable simplifications of 
the modeled system (Antonetti and Zappa 2018). The deep-
learning models available make it possible to manage com-
plex systems without having to introduce any simplifica-
tions, Information is instead directly extracted from the data. 
These procedures are the most appropriate for addressing 

Communicated by: H. Babaie

 * Marco Luppichini 
 marco.luppichini@unifi.it

1 Department of Earth Sciences, University of Pisa, Via S. 
Maria, 52, 56126 Pisa, Italy

2 Department of Earth Sciences, University of Study 
of Florence, Via La Pira 4, Florence, Italy

3 Istituto Nazionale di Geofísica e Vulcanologia (INGV), Via 
Vigna Murata 605, 00143 Rome, Italy

4 CIRSEC Centro Interdipartimentale di Ricerca per lo Studio 
degli Effetti del Cambiamento Climatico dell’Università di 
Pisa, Via del Borghetto 80, 56124 Pisa, Italy

5 Institute of Geosciences and Earth Resources, IGG-CNR, Via 
Moruzzi 1, 56124 Pisa, Italy

http://crossmark.crossref.org/dialog/?doi=10.1007/s12145-022-00903-7&domain=pdf


 Earth Science Informatics

1 3

the noisy and chaotic nature of the time-series forecasting 
problems (Livieris et al. 2020).

Long short-term memory (LSTM) and convolutional 
neural networks (CNNs) are the most common and most 
efficient deep-learning methods (Zheng et al. 2019; Yi et al. 
2019; Fawaz et al. 2020; Sit et al. 2020). The combination 
of CNN and LSTM models (CNN-LSTM) allows to exploit 
the advantages of two different layers. LSTM efficiently 
acquires sequence pattern information thanks to its pecu-
liar architecture, whereas CNN layers filter the noise in the 
input data and extract the most significant features for the 
final prediction model (Bengio et al. 2013). On the other 
hand, LSTM exploits only the features present in the train-
ing set, although they can be adapted to cope with temporal 
correlations (Livieris et al. 2020). Several works have used 
deep-learning models based on LSTM networks to create 
run-off simulations (Kratzert et al. 2018; Le et al. 2019; 
Boulmaiz et al. 2020; Liu et al. 2020; Nguyen and Bae 2020; 
Hu et al. 2020), whereas others are based on CNN (Li et al. 
2018; Huang et al. 2020; Kim and Song 2020; Hussain et al. 
2020), or on a combination of both (CNN-LSTM) (Kimura 
et al. 2019; Baek et al. 2020; Xu et al. 2020). Other LSTM 
techniques (LSTM-ED) consider two blocks of layers: the 
first block (called encoder) reads the input sequence and 
encodes it into a fixed-length vector, whereas the second 
block (called decoder) decodes the fixed-length vector and 
transmits the intended sequence (Sutskever et al. 2014; Cui 
et al. 2022; Luppichini et al. 2022).

However, these tools require good computer skills that 
can limit an application of these techniques outside the 
research community, for example the technical bodies 
managing the territory. The availability of software and 
user-friendly toolkits can improve the application of these 
techniques in several other cases. If the results derived 
from these toolkits are inserted into a network, it will be 
possible to obtain increased knowledge, leading to future 
developments and improvements in the field. However, Sit 
et al. 2020 observed that similar techniques had been used 
worldwide for different studies but, apart from some excep-
tions, these applications are not open-source and reproduc-
ible. This is a noteworthy limit to their distribution and 
application.

The aim of this work is to exploit a dynamic and valid 
Google Colab toolkit called CleverRiver for the applica-
tion of deep-learning models for river-flow prediction. This 
toolkit makes it possible to build workflows using hardware 
resources made available by the company and not those of 
the user’s desktop PC (Bisong 2019). The toolkit allows the 
application of deep-learning models based on different archi-
tectures, currently the most used to create models for river 
flow predictions. In particular, the architectures are based 
on the researches of Luppichini et al. 2022 and Lupi et al. 
(2022). Google Colab can be employed by two different 

types of users: the first user has poor computer skills, or 
none at all; the second user is able to understand and to inter-
act with the code of the toolkit. In the first case, the user can 
apply the method of the tool to her/his data to obtain a result 
and new computational capacity. In the second case, the user 
can compare the code of the toolkit with her/his own code, 
and can also contribute to improving the toolkit by bringing 
new and clear knowledge to the scientific community.

Materials and methods

CleverRiver is projected in close relationship to the work 
of Luppichini et al. 2022, making it possible to apply their 
method. The workflow is based on the use of the API of 
Keras, Tensorflow libraries for the creation of the deep-
learning models. The toolkit uses also the Numpy and Pan-
das libraries for the management of the data. CleverRiver is 
composed of three sections. The first one aims to train deep-
learning models by using a progressive and user-friendly 
procedure. In this section the user can exploit different types 
of data (e.g., hydrometric height, discharge, rainfall, tem-
perature) with different data frequency (e.g., daily, hourly) 
setting the inputs and outputs of the models in simple man-
ner. A deep-learning model can be interpreted as a math-
ematical expression:

where Ô is the predicted output (hydrometric height or 
discharge) at time t, and I are the antecedent inputs (e.g., 
m can be 1 = rainfall, 2 = discharge, 3 = temperature). The 
choice of the dimension of n depends on the characteristics 
of data such as sample frequency (daily, hourly, etc.), and on 
the characteristics of the simulated watershed (e.g., run-off 
time). These parameters must be chosen by the user after 
some tests have been performed. For example, Luppichini 
et al. 2022 set n to 96, using rainfall data with 15 min of 
frequency corresponding to a maximum antecedent t of 24 h. 
The authors then simulated the watershed characterized by 
a fast run-off (in several cases lower than 12 h). By setting 
these parameters and after uploading the CSV files (e.g., 
rainfall data) in the workspace, the procedure allows to cre-
ate the input matrix that will be used to train the models.

For training of the models, the dataset has to be divided 
into three parts: training, validation, and dataset testing. The 
training and validation datasets are used during the training 
steps, whereas the test dataset is used during the evaluation 
of the results. Dividing the dataset allows the user to reduce 
the possibility of overfitting. The partition 60%–20%–20% 
for training, validation and test datasets, respectively, has 
been used in several studies (Li et al. 2020; Nguyen and 
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Bae 2020; Hu et al. 2020; Luppichini et al. 2022) and has 
permitted to dispose of sufficient data for both the training 
and the evaluation of the model. To train the model, the soft-
ware allows to select between loss function and optimizer 
from a list of the most commonly used of the two param-
eters. CleverRiver provides the use of three different model 
architectures: i) LSTM; ii) LSTM-ED; iii) CNN-LSTM. 
These are the most common architectures used for flood 
prediction (Sit et al. 2020; Cui et al. 2022; Luppichini et al. 
2022). The first one is the most straightforward architecture 
composed of a simple LSTM node and a Dense node. The 

LSTM-ED architecture was proposed by Luppichini et al. 
(2022) and is based on two blocks of LSTM nodes. Finally, 
the CNN-LSTM architecture proposed by Lupi et al. (2022) 
is composed of a combination of CNN and LSTM nodes 
(Fig. 1). The parameters of the architecture size (e.g., num-
ber of nodes) can be modified by the user allowing to test 
different settings.

The last parameters for simulation allow to define the 
range of the time interval of the predictions. For exam-
ple, if the dataset has a daily frequency, we can define 
that the max value of the range is t = 10 days and we 

Fig. 1  Deep-Learning architectures developed in CleverRiver: A  Long Short-Term Memory (LSTM) architecture; B  encoder-decoder LSTM 
architecture; C Convolutional Neural Network (CNN) and LSTM combined (CNN-LSTM) architectures
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can create a simulation each day (step = 1) or every five 
days (step = 5). The algorithm trains a model for each 
t of prediction. The following step is model training. 
During this phase, some graphs and CSV files are com-
piled, which help to understand the errors of the models. 
To stop the training, we used the specific API of Keras 
and specifically the early stopping method. This method 
allows the training procedure to stop when the monitored 
metric, namely the value of the cost function, has ceased 
to improve. Therefore, given all the possible hypotheses, 
we wanted to find the best one (called “optimal”). This 

hypothesis would allow us to make more accurate esti-
mates, still based on the data available.

The first section ends with the possibility to create a 
unique ZIP file of the output of the models and to transfer it 
onto the local device.

The second section uses the trained models processed dur-
ing the first section to create specific simulations of events 
designed to test and apply the models. In this section, the user 
can define the time interval of the events and steps between 
each simulation. In other words, one can choose an interval 
time (from 2020-01-10 to 2020-01-15) and then decide the 

Fig. 2  Study area and location 
of the stations used in this work

Fig. 3  Steps 1.1 and 1.2: 
creation of the workspace and 
importing of the data input
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beginning of each simulation (e.g., each day, every two days), 
until the interval is complete. The results can be exported 
using the functionalities of Google Colab, or running a spe-
cific step that creates a ZIP of the work environment.

The third section aims to create a relationship between the 
users and the CleverRiver authors, with a form that allows 
to send a message directly to the authors, inviting the users 
to share their toolkits and experiences.

CleverRiver is loaded onto a GitHub repository 
together with the documentation and datasets having 
different characteristics (e.g., number of stations, sam-
ple frequency) for experimentation (https:// github. com/ 
mlupp ichini/ Cleve rRiver). In this work, the CleverRiver 
results are derived using the “dataset2” uploaded onto the 
GitHub repository, composed of 25 hydrometric height 
time series and 19 rainfall time series of the Arno River 

Fig. 4  Steps 1.3 and 1.4: definition of the parameters and creation of the input dataset

Fig. 5  Step 1.5: definition of the parameters for model training

https://github.com/mluppichini/CleverRiver
https://github.com/mluppichini/CleverRiver
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Fig. 6  Step 1.5: training of models

Fig. 7  History graph of the 
training procedure. The graph is 
referred to a simulation of 0 h of 
forecast ( t0)
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(Tuscany, Italy) watershed. The data has an accumula-
tion period of 1 h from 2010 to 2020. This dataset is used 
and analyzed in more detail by Luppichini et al. 2022, 
who applied the same methodologies for the analysis of 

the precision and accuracy of the deep learning mod-
els on this study area. Figure 2 shows the location of 
the stations composing the dataset used to describe the 
workflow.

Fig. 8  Scatter plot of the 
observed and predicted values. 
The graph is referred to a simu-
lation of 0 h of forecast ( t0)

Fig. 9  Plot of the observed and 
predicted values of the test data-
set. The graph is referred to a 
simulation of 0 h of forecast ( t0)



 Earth Science Informatics

1 3

Software description

CleverRiver is installed by importing the necessary librar-
ies and setting up of the workspace (Step 1.1 in Fig. 3). 
The tool then prompts the user to import the input data in 
the “training_input_data” directory; the notebook checks 
whether the files are correct for the following procedures 
(Step 1.2 in Fig. 3). CleverRiver can create the input matrix 
through Steps 1.3 and 1.4. The algorithm provides some 
information on the size of the input matrix, such as number 
of records, number of columns, number of data (Fig. 4). 
The user can define the model parameters with Step 1.5 
by using a simple user-friendly interface (Fig. 5). Step 1.6 
allows to train the models. For each simulation, CleverRiver 
provides the structure of the model and the errors calculated 
on the test dataset of the best model expressed in terms of 
Root Mean Square Error (RMSE) and Mean Absolute Error 
(MAE). The outputs are saved in the “trained_models” 
directory and each training has its own directory. For each 
simulation, the algorithm saves the model in JSON and H5 
format. It also saves a CSV file including the information 
and the errors of the model; the predicted values calculated 
on the test dataset in CSV format; and three graphs (Fig. 6). 

The first graph is a plot of the training history of the loss 
function value calculated on the training and on the vali-
dation dataset (Fig. 7). The second graph is a scatter plot 
showing the relationship between observed and predicted 
values (Fig. 8). The third graph is a time plotter of the test 
dataset with observed and predicted values (Fig. 9).

Section Materials and methods allows to use the trained 
model to create specific simulations. With Steps 2.1, 2.2 
and 2.3, CleverRiver creates the workspace and imports the 
trained models and data for the simulations. With Step 2.4, 
it creates the input matrix as for Step 1.4, and it saves the 
predicted values in the “output_predictions” directory.

It is then possible to execute Step 2.5 for the simulation of a 
specific event. In this step, the algorithm prompts some simple 
inputs: i) the time interval to simulate; ii) the time distance 
between each simulation; iii) the label of the y axis for the 
output graphs (Fig. 10). For each simulated event, the plots 
(Fig. 11) are saved in the output folder and can be downloaded 
using the Google Colab functions or Step 2.6, which allows to 
create a ZIP file of the “output_predictions” directory.

Table 1 summarizes the parameters required by the 
toolkit with a brief description, the value ranges, and the 
default values.

Fig. 10  Steps 2.1, 2.2 and 2.3: creation of the workspace and import of trained models and data input for simulations
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Fig. 11  Step 2.5: setting the 
simulation of the event and 
result of the graph (the coloured 
curves are the successive 
simulations with a time distance 
of 6 h, whereas the black line 
represents the observed values)

Table 1  Parameters of the toolkit with a brief description, the value ranges and the default values

Section Step Parameter Description Value Range Default Value

I 1.3 n_step_back Number of back shifts 0 - inf 24
I 1.3 n_step Frequency of the step 1 - inf 1
I 1.5 train_size Train dataset size as a percentage of the entire dataset 1 - 99 60
I 1.5 val_size Validation dataset size as a percentage of the entire dataset 1 - 99 20
I 1.5 test_size Test dataset size as a percentage of the entire dataset 1 - 99 20
I 1.5 model_select Choice of the model architecture as showed in Fig. 1 LSTM; LSTM-ED; CNN-LSTM LSTM-ED
I 1.5 cnn_n_node Number of nodes of the CNN layers 0 - 128 0
I 1.5 lstm_n_node Number of nodes of the LSTM layers 0 - 128 32
I 1.5 patience Number of epochs with no improvement after which train-

ing will be stopped
10–1000 100

I 1.5 optimizer Optimizer used to minimize the loss function Adam; SGD; RMSProp Adam
I 1.5 loss_function Loss function MSE; MAE MSE
I 1.5 max_t_forecasting Range of the prediction - 24
I 1.5 step_t Dimension of the step for the range of the prediction 1  -  inf 1
II 2.5 date_start Starting date of the simulation - -
II 2.5 date_end Ending date of the simulation
II 2.5 step Temporal period between each simulation 1  -  inf 6
II 2.5 ylabel Y-axis label of the output graph - -
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Section Software description is a form that allows to 
contact the CleverRiver authors, so as to create a net-
work for different applications of river flood prediction 
(Fig. 12).

Discussion and conclusions

Google Colab notebooks are important tools for creating 
dynamic workspaces with no limits for the client in terms of 
operating system, Python installation, and hardware (Bisong 
2019; Yang et al. 2022). CleverRiver is the first deep-learn-
ing software for the prediction of river-flow, and it provides 
valid techniques based on the most common approaches (Sit 
et al. 2020; Van et al. 2020; Luppichini et al. 2022) for train-
ing of the models and evaluation of the results. CleverRiver 
is an open-source Python toolkit for the simulation of river 
flows and can be a reference point for the dissemination of 
deep-learning models in this field. This toolkit is based on 
the LSTM and CNN layers, which are probably the most 
popular, efficient, and commonly used deep-learning tech-
niques (Fawaz et al. 2020; Yi et al. 2019; Zheng et al. 2019). 
These types of layers have been used in several works with 
the purpose of predicting river-flow (e.g., Li et al. 2018; 
Baek et al. 2020; Boulmaiz et al. 2020; Huang et al. 2020; 
Kim and Song 2020; Van et al. 2020; Hussain et al. 2020; 
Luppichini et al. 2022). For this reason, CleverRiver is a 
valid toolkit able to apply this, or similar architectures, in a 
potentially large number of future applications.

River-flow models based on deep-learning cannot yet be 
used on a large scale as they require particular computational 
skills. This is the main difference from physical models, 
which use different types of free, for-pay, open-source, and 
non open-source software.

Importantly, the ability to simulate efficient river-flow with 
the great number of data available in different parts of the word 
is crucial for present-day river management and geo-risks. In 

this regard, CleverRiver represents a valuable tool for a range 
of potential users including (but not limited to):

• policy makers responsible for regulating river development;
• river managers and engineers designing and implement-

ing flood protection;
• researchers evaluating the impacts of climate change 

within the fluvial zone;
• students and neophytes to deep-learning techniques, who 

will be able to learn and try out their datasets.

Finally, the growing demographic pressure on fluvial 
zones and the changes caused by climate change in high-
frequency and high-intensity precipitation events strongly 
suggest the need to plan for future adaptation of the commu-
nity (Bates et al. 2008a, b, 2012; Gaume et al. 2016; Bryndal 
et al. 2017; IPCC 2018).

New releases will be progressively uploaded with new 
architectures, data management, and model parameters. 
For these reasons, we think that CleverRiver can be a valid 
tool to solve the problem of the scarce availability of open-
source codes for flood prediction (Sit et al. 2020) and to 
extend the use of these tools outside the scientific com-
munity by means of a preliminary and cognitive approach.
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