
Vol.:(0123456789)1 3

Earth Science Informatics
https://doi.org/10.1007/s12145-022-00903-7

SOFT WARE

CleverRiver: an open source and free Google Colab toolkit
for deep‑learning river‑flow models

Marco Luppichini1,2 · Monica Bini1,3,4 · Roberto Giannecchini1,4,5

Received: 4 October 2022 / Accepted: 15 November 2022
© The Author(s) 2022, corrected publication 2022

Abstract
In a period in which climate change is significantly varying rainfall regimes and their intensity all over the world, river-flow
prediction is a major concern of geosciences. In recent years there has been an increase in the use of deep-learning models
for river-flow prediction. However, in this field we can observe two main issues: i) many case studies use similar (or the
same) strategies without sharing the codes, and ii) the application of these techniques requires good computer knowledge.
This work proposes to employ a Google Colab notebook called CleverRiver, which allows the application of deep-learning
for river-flow predictions. CleverRiver is a dynamic software that can be upgraded and modified not only by the authors but
also by the users. The main advantages of CleverRiver are the following: the software is not limited by the client hardware,
operating systems, etc.; the code is open-source; the toolkit is integrated with user-friendly interfaces; updated releases with
new architectures, data management, and model parameters will be progressively uploaded. The software consists of three
sections: the first one enables to train the models by means of some architectures, parameters, and data; the second section
allows to create predictions by using the trained models; the third section allows to send feedback and to share experiences
with the authors, providing a flux of precious information able to improve scientific research.

Keywords CleverRiver · Google Colab · River flow · Forecasting · Deep-learning · Software · Geosciences

Introduction

River flow prediction is an important tool for early flood
warning, water resource management, water demand assess-
ment, irrigation, agriculture, and hydroelectric power gen-
eration. These aspects become more and more critical in the

case of climate changes causing a variation in rainfall regime
and land use in many areas (Merz et al. 2014; Deitch et al.
2017; Blöschl et al. 2019). In particular, extreme weather
events produce flash floods, floods, and debris flow phe-
nomena. These have relevant socio-economic implications
and represent a significant scientific issue, as confirmed by
the extensive literature on the subject (Bates et al. 2008a, b,
2012; Gaume et al. 2016; Bryndal et al. 2017; IPCC 2018).

In recent years, we have observed an increase in the use
of deep-learning in geosciences and in particular in river-
flow prediction, with promising results (e.g., Boulmaiz et al.
2020; Chattopadhyay et al. 2020; Kratzert et al. 2018; Lup-
pichini et al. 2022; Sit et al. 2020). The implementation of
suitable run-off models is made difficult by the complexity
of the natural systems and by the environmental information
available (Jaiswal et al. 2020). Furthermore, each physically-
based model is limited by the inevitable simplifications of
the modeled system (Antonetti and Zappa 2018). The deep-
learning models available make it possible to manage com-
plex systems without having to introduce any simplifica-
tions, Information is instead directly extracted from the data.
These procedures are the most appropriate for addressing

Communicated by: H. Babaie

 * Marco Luppichini
 marco.luppichini@unifi.it

1 Department of Earth Sciences, University of Pisa, Via S.
Maria, 52, 56126 Pisa, Italy

2 Department of Earth Sciences, University of Study
of Florence, Via La Pira 4, Florence, Italy

3 Istituto Nazionale di Geofísica e Vulcanologia (INGV), Via
Vigna Murata 605, 00143 Rome, Italy

4 CIRSEC Centro Interdipartimentale di Ricerca per lo Studio
degli Effetti del Cambiamento Climatico dell’Università di
Pisa, Via del Borghetto 80, 56124 Pisa, Italy

5 Institute of Geosciences and Earth Resources, IGG-CNR, Via
Moruzzi 1, 56124 Pisa, Italy

http://crossmark.crossref.org/dialog/?doi=10.1007/s12145-022-00903-7&domain=pdf

 Earth Science Informatics

1 3

the noisy and chaotic nature of the time-series forecasting
problems (Livieris et al. 2020).

Long short-term memory (LSTM) and convolutional
neural networks (CNNs) are the most common and most
efficient deep-learning methods (Zheng et al. 2019; Yi et al.
2019; Fawaz et al. 2020; Sit et al. 2020). The combination
of CNN and LSTM models (CNN-LSTM) allows to exploit
the advantages of two different layers. LSTM efficiently
acquires sequence pattern information thanks to its pecu-
liar architecture, whereas CNN layers filter the noise in the
input data and extract the most significant features for the
final prediction model (Bengio et al. 2013). On the other
hand, LSTM exploits only the features present in the train-
ing set, although they can be adapted to cope with temporal
correlations (Livieris et al. 2020). Several works have used
deep-learning models based on LSTM networks to create
run-off simulations (Kratzert et al. 2018; Le et al. 2019;
Boulmaiz et al. 2020; Liu et al. 2020; Nguyen and Bae 2020;
Hu et al. 2020), whereas others are based on CNN (Li et al.
2018; Huang et al. 2020; Kim and Song 2020; Hussain et al.
2020), or on a combination of both (CNN-LSTM) (Kimura
et al. 2019; Baek et al. 2020; Xu et al. 2020). Other LSTM
techniques (LSTM-ED) consider two blocks of layers: the
first block (called encoder) reads the input sequence and
encodes it into a fixed-length vector, whereas the second
block (called decoder) decodes the fixed-length vector and
transmits the intended sequence (Sutskever et al. 2014; Cui
et al. 2022; Luppichini et al. 2022).

However, these tools require good computer skills that
can limit an application of these techniques outside the
research community, for example the technical bodies
managing the territory. The availability of software and
user-friendly toolkits can improve the application of these
techniques in several other cases. If the results derived
from these toolkits are inserted into a network, it will be
possible to obtain increased knowledge, leading to future
developments and improvements in the field. However, Sit
et al. 2020 observed that similar techniques had been used
worldwide for different studies but, apart from some excep-
tions, these applications are not open-source and reproduc-
ible. This is a noteworthy limit to their distribution and
application.

The aim of this work is to exploit a dynamic and valid
Google Colab toolkit called CleverRiver for the applica-
tion of deep-learning models for river-flow prediction. This
toolkit makes it possible to build workflows using hardware
resources made available by the company and not those of
the user’s desktop PC (Bisong 2019). The toolkit allows the
application of deep-learning models based on different archi-
tectures, currently the most used to create models for river
flow predictions. In particular, the architectures are based
on the researches of Luppichini et al. 2022 and Lupi et al.
(2022). Google Colab can be employed by two different

types of users: the first user has poor computer skills, or
none at all; the second user is able to understand and to inter-
act with the code of the toolkit. In the first case, the user can
apply the method of the tool to her/his data to obtain a result
and new computational capacity. In the second case, the user
can compare the code of the toolkit with her/his own code,
and can also contribute to improving the toolkit by bringing
new and clear knowledge to the scientific community.

Materials and methods

CleverRiver is projected in close relationship to the work
of Luppichini et al. 2022, making it possible to apply their
method. The workflow is based on the use of the API of
Keras, Tensorflow libraries for the creation of the deep-
learning models. The toolkit uses also the Numpy and Pan-
das libraries for the management of the data. CleverRiver is
composed of three sections. The first one aims to train deep-
learning models by using a progressive and user-friendly
procedure. In this section the user can exploit different types
of data (e.g., hydrometric height, discharge, rainfall, tem-
perature) with different data frequency (e.g., daily, hourly)
setting the inputs and outputs of the models in simple man-
ner. A deep-learning model can be interpreted as a math-
ematical expression:

where Ô is the predicted output (hydrometric height or
discharge) at time t, and I are the antecedent inputs (e.g.,
m can be 1 = rainfall, 2 = discharge, 3 = temperature). The
choice of the dimension of n depends on the characteristics
of data such as sample frequency (daily, hourly, etc.), and on
the characteristics of the simulated watershed (e.g., run-off
time). These parameters must be chosen by the user after
some tests have been performed. For example, Luppichini
et al. 2022 set n to 96, using rainfall data with 15 min of
frequency corresponding to a maximum antecedent t of 24 h.
The authors then simulated the watershed characterized by
a fast run-off (in several cases lower than 12 h). By setting
these parameters and after uploading the CSV files (e.g.,
rainfall data) in the workspace, the procedure allows to cre-
ate the input matrix that will be used to train the models.

For training of the models, the dataset has to be divided
into three parts: training, validation, and dataset testing. The
training and validation datasets are used during the training
steps, whereas the test dataset is used during the evaluation
of the results. Dividing the dataset allows the user to reduce
the possibility of overfitting. The partition 60%–20%–20%
for training, validation and test datasets, respectively, has
been used in several studies (Li et al. 2020; Nguyen and

Ô = f
(

Xt

)

= f
(

(It−1,1, It−2,1,… , It−n,1
)

,
(

It−1,2, It−2,2,… , It−n,2
)

,… ,
(

It−1,m, It−2,m,… , It−n,m
)

)

Earth Science Informatics

1 3

Bae 2020; Hu et al. 2020; Luppichini et al. 2022) and has
permitted to dispose of sufficient data for both the training
and the evaluation of the model. To train the model, the soft-
ware allows to select between loss function and optimizer
from a list of the most commonly used of the two param-
eters. CleverRiver provides the use of three different model
architectures: i) LSTM; ii) LSTM-ED; iii) CNN-LSTM.
These are the most common architectures used for flood
prediction (Sit et al. 2020; Cui et al. 2022; Luppichini et al.
2022). The first one is the most straightforward architecture
composed of a simple LSTM node and a Dense node. The

LSTM-ED architecture was proposed by Luppichini et al.
(2022) and is based on two blocks of LSTM nodes. Finally,
the CNN-LSTM architecture proposed by Lupi et al. (2022)
is composed of a combination of CNN and LSTM nodes
(Fig. 1). The parameters of the architecture size (e.g., num-
ber of nodes) can be modified by the user allowing to test
different settings.

The last parameters for simulation allow to define the
range of the time interval of the predictions. For exam-
ple, if the dataset has a daily frequency, we can define
that the max value of the range is t = 10 days and we

Fig. 1 Deep-Learning architectures developed in CleverRiver: A Long Short-Term Memory (LSTM) architecture; B encoder-decoder LSTM
architecture; C Convolutional Neural Network (CNN) and LSTM combined (CNN-LSTM) architectures

 Earth Science Informatics

1 3

can create a simulation each day (step = 1) or every five
days (step = 5). The algorithm trains a model for each
t of prediction. The following step is model training.
During this phase, some graphs and CSV files are com-
piled, which help to understand the errors of the models.
To stop the training, we used the specific API of Keras
and specifically the early stopping method. This method
allows the training procedure to stop when the monitored
metric, namely the value of the cost function, has ceased
to improve. Therefore, given all the possible hypotheses,
we wanted to find the best one (called “optimal”). This

hypothesis would allow us to make more accurate esti-
mates, still based on the data available.

The first section ends with the possibility to create a
unique ZIP file of the output of the models and to transfer it
onto the local device.

The second section uses the trained models processed dur-
ing the first section to create specific simulations of events
designed to test and apply the models. In this section, the user
can define the time interval of the events and steps between
each simulation. In other words, one can choose an interval
time (from 2020-01-10 to 2020-01-15) and then decide the

Fig. 2 Study area and location
of the stations used in this work

Fig. 3 Steps 1.1 and 1.2:
creation of the workspace and
importing of the data input

Earth Science Informatics

1 3

beginning of each simulation (e.g., each day, every two days),
until the interval is complete. The results can be exported
using the functionalities of Google Colab, or running a spe-
cific step that creates a ZIP of the work environment.

The third section aims to create a relationship between the
users and the CleverRiver authors, with a form that allows
to send a message directly to the authors, inviting the users
to share their toolkits and experiences.

CleverRiver is loaded onto a GitHub repository
together with the documentation and datasets having
different characteristics (e.g., number of stations, sam-
ple frequency) for experimentation (https:// github. com/
mlupp ichini/ Cleve rRiver). In this work, the CleverRiver
results are derived using the “dataset2” uploaded onto the
GitHub repository, composed of 25 hydrometric height
time series and 19 rainfall time series of the Arno River

Fig. 4 Steps 1.3 and 1.4: definition of the parameters and creation of the input dataset

Fig. 5 Step 1.5: definition of the parameters for model training

https://github.com/mluppichini/CleverRiver
https://github.com/mluppichini/CleverRiver

 Earth Science Informatics

1 3

Fig. 6 Step 1.5: training of models

Fig. 7 History graph of the
training procedure. The graph is
referred to a simulation of 0 h of
forecast (t0)

Earth Science Informatics

1 3

(Tuscany, Italy) watershed. The data has an accumula-
tion period of 1 h from 2010 to 2020. This dataset is used
and analyzed in more detail by Luppichini et al. 2022,
who applied the same methodologies for the analysis of

the precision and accuracy of the deep learning mod-
els on this study area. Figure 2 shows the location of
the stations composing the dataset used to describe the
workflow.

Fig. 8 Scatter plot of the
observed and predicted values.
The graph is referred to a simu-
lation of 0 h of forecast (t0)

Fig. 9 Plot of the observed and
predicted values of the test data-
set. The graph is referred to a
simulation of 0 h of forecast (t0)

 Earth Science Informatics

1 3

Software description

CleverRiver is installed by importing the necessary librar-
ies and setting up of the workspace (Step 1.1 in Fig. 3).
The tool then prompts the user to import the input data in
the “training_input_data” directory; the notebook checks
whether the files are correct for the following procedures
(Step 1.2 in Fig. 3). CleverRiver can create the input matrix
through Steps 1.3 and 1.4. The algorithm provides some
information on the size of the input matrix, such as number
of records, number of columns, number of data (Fig. 4).
The user can define the model parameters with Step 1.5
by using a simple user-friendly interface (Fig. 5). Step 1.6
allows to train the models. For each simulation, CleverRiver
provides the structure of the model and the errors calculated
on the test dataset of the best model expressed in terms of
Root Mean Square Error (RMSE) and Mean Absolute Error
(MAE). The outputs are saved in the “trained_models”
directory and each training has its own directory. For each
simulation, the algorithm saves the model in JSON and H5
format. It also saves a CSV file including the information
and the errors of the model; the predicted values calculated
on the test dataset in CSV format; and three graphs (Fig. 6).

The first graph is a plot of the training history of the loss
function value calculated on the training and on the vali-
dation dataset (Fig. 7). The second graph is a scatter plot
showing the relationship between observed and predicted
values (Fig. 8). The third graph is a time plotter of the test
dataset with observed and predicted values (Fig. 9).

Section Materials and methods allows to use the trained
model to create specific simulations. With Steps 2.1, 2.2
and 2.3, CleverRiver creates the workspace and imports the
trained models and data for the simulations. With Step 2.4,
it creates the input matrix as for Step 1.4, and it saves the
predicted values in the “output_predictions” directory.

It is then possible to execute Step 2.5 for the simulation of a
specific event. In this step, the algorithm prompts some simple
inputs: i) the time interval to simulate; ii) the time distance
between each simulation; iii) the label of the y axis for the
output graphs (Fig. 10). For each simulated event, the plots
(Fig. 11) are saved in the output folder and can be downloaded
using the Google Colab functions or Step 2.6, which allows to
create a ZIP file of the “output_predictions” directory.

Table 1 summarizes the parameters required by the
toolkit with a brief description, the value ranges, and the
default values.

Fig. 10 Steps 2.1, 2.2 and 2.3: creation of the workspace and import of trained models and data input for simulations

Earth Science Informatics

1 3

Fig. 11 Step 2.5: setting the
simulation of the event and
result of the graph (the coloured
curves are the successive
simulations with a time distance
of 6 h, whereas the black line
represents the observed values)

Table 1 Parameters of the toolkit with a brief description, the value ranges and the default values

Section Step Parameter Description Value Range Default Value

I 1.3 n_step_back Number of back shifts 0 - inf 24
I 1.3 n_step Frequency of the step 1 - inf 1
I 1.5 train_size Train dataset size as a percentage of the entire dataset 1 - 99 60
I 1.5 val_size Validation dataset size as a percentage of the entire dataset 1 - 99 20
I 1.5 test_size Test dataset size as a percentage of the entire dataset 1 - 99 20
I 1.5 model_select Choice of the model architecture as showed in Fig. 1 LSTM; LSTM-ED; CNN-LSTM LSTM-ED
I 1.5 cnn_n_node Number of nodes of the CNN layers 0 - 128 0
I 1.5 lstm_n_node Number of nodes of the LSTM layers 0 - 128 32
I 1.5 patience Number of epochs with no improvement after which train-

ing will be stopped
10–1000 100

I 1.5 optimizer Optimizer used to minimize the loss function Adam; SGD; RMSProp Adam
I 1.5 loss_function Loss function MSE; MAE MSE
I 1.5 max_t_forecasting Range of the prediction - 24
I 1.5 step_t Dimension of the step for the range of the prediction 1 - inf 1
II 2.5 date_start Starting date of the simulation - -
II 2.5 date_end Ending date of the simulation
II 2.5 step Temporal period between each simulation 1 - inf 6
II 2.5 ylabel Y-axis label of the output graph - -

 Earth Science Informatics

1 3

Section Software description is a form that allows to
contact the CleverRiver authors, so as to create a net-
work for different applications of river flood prediction
(Fig. 12).

Discussion and conclusions

Google Colab notebooks are important tools for creating
dynamic workspaces with no limits for the client in terms of
operating system, Python installation, and hardware (Bisong
2019; Yang et al. 2022). CleverRiver is the first deep-learn-
ing software for the prediction of river-flow, and it provides
valid techniques based on the most common approaches (Sit
et al. 2020; Van et al. 2020; Luppichini et al. 2022) for train-
ing of the models and evaluation of the results. CleverRiver
is an open-source Python toolkit for the simulation of river
flows and can be a reference point for the dissemination of
deep-learning models in this field. This toolkit is based on
the LSTM and CNN layers, which are probably the most
popular, efficient, and commonly used deep-learning tech-
niques (Fawaz et al. 2020; Yi et al. 2019; Zheng et al. 2019).
These types of layers have been used in several works with
the purpose of predicting river-flow (e.g., Li et al. 2018;
Baek et al. 2020; Boulmaiz et al. 2020; Huang et al. 2020;
Kim and Song 2020; Van et al. 2020; Hussain et al. 2020;
Luppichini et al. 2022). For this reason, CleverRiver is a
valid toolkit able to apply this, or similar architectures, in a
potentially large number of future applications.

River-flow models based on deep-learning cannot yet be
used on a large scale as they require particular computational
skills. This is the main difference from physical models,
which use different types of free, for-pay, open-source, and
non open-source software.

Importantly, the ability to simulate efficient river-flow with
the great number of data available in different parts of the word
is crucial for present-day river management and geo-risks. In

this regard, CleverRiver represents a valuable tool for a range
of potential users including (but not limited to):

• policy makers responsible for regulating river development;
• river managers and engineers designing and implement-

ing flood protection;
• researchers evaluating the impacts of climate change

within the fluvial zone;
• students and neophytes to deep-learning techniques, who

will be able to learn and try out their datasets.

Finally, the growing demographic pressure on fluvial
zones and the changes caused by climate change in high-
frequency and high-intensity precipitation events strongly
suggest the need to plan for future adaptation of the commu-
nity (Bates et al. 2008a, b, 2012; Gaume et al. 2016; Bryndal
et al. 2017; IPCC 2018).

New releases will be progressively uploaded with new
architectures, data management, and model parameters.
For these reasons, we think that CleverRiver can be a valid
tool to solve the problem of the scarce availability of open-
source codes for flood prediction (Sit et al. 2020) and to
extend the use of these tools outside the scientific com-
munity by means of a preliminary and cognitive approach.

Acknowledgements We thank the three referees for their suggestions
which improved the manuscript.

Author contributions Conceptualization, M.L.; methodology, M.L.;
software, M.L.; validation, M.L., M.B. and R.G.; formal analysis, M.L.,
M.B. and R.G.; investigation, M.L.; resources, M.B. and R.G.; data
curation, M.L., M.B. and R.G.; writing—original draft preparation,
M.L., M.B. and R.G.; writing—review and editing, M.L., M.B. and
R.G.; visualization, M.L., M.B. and R.G.; supervision, M.B. and R.G.;
project administration, M.B. and R.G.; funding acquisition, M.B. and
R.G. All authors have read and agreed to the published version of the
manuscript.

Funding Open access funding provided by Università di Pisa within
the CRUI-CARE Agreement. This research was funded by the

Fig. 12 Section Software description and the form to share issues, results, or general observations with the CleverRiver authors

Earth Science Informatics

1 3

collaborative research agreement no. 579999-2019 “Autorità di Bacino
Distrettuale Appennino Settentrionale” (Resp. Monica Bini and Rob-
erto Giannecchini) and by the project “Cambiamenti globali e impatti
locali: conoscenza e consapevolezza per uno sviluppo sostenibile della
pianura Apuo-versiliese” Fondazione Cassa di Risparmio di Lucca (call
2018 years 2019–2022- Resp. M. Bini).

Data availability You can contact Marco Luppichini (marco.luppi-
chini@unifi.it) for data and materials.

Declarations

Competing interests The authors declare no competing interests.

Conflicts of Interest The authors declare no conflict of interest.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Antonetti M, Zappa M (2018) How can expert knowledge increase the
realism of conceptual hydrological models? A case study based
on the concept of dominant runoff process in the Swiss Pre-Alps.
Hydrol Earth Syst Sci 22:4425–4447. https:// doi. org/ 10. 5194/
hess- 22- 4425- 2018

Baek S-S, Pyo J, Chun JA (2020) Prediction of water level and water
quality using a CNN-LSTM combined deep learning approach.
Water 12:3399

Bates B, Kundzewicz Z, Wu S et al (2008a) Climate change and water
Bates B, Kundzewicz ZW, Wu S et al (2008b) Climate change and water.

Technical paper of the intergovernmental panel on climate change
Bates BC, Chandler RE, Bowman AW (2012) Trend estimation and

change point detection in individual climatic series using flexible
regression methods. J Geophys Res Atmos 117:D16106. https://
doi. org/ 10. 1029/ 2011J D0170 77

Bengio Y, Courville A, Vincent P (2013) Representation learning:
a review and new perspectives. IEEE Trans Pattern Anal Mach
Intell 35:1798–1828. https:// doi. org/ 10. 1109/ TPAMI. 2013. 50

Bisong E (2019) Google colaboratory. In: Bisong E (ed) Building
machine learning and deep learning models on google cloud
platform: a comprehensive guide for beginners. Apress, Berke-
ley, pp 59–64

Blöschl G, Hall J, Viglione A et al (2019) Changing climate both
increases and decreases European river floods. Nature 573:108–
111. https:// doi. org/ 10. 1038/ s41586- 019- 1495-6

Boulmaiz T, Guermoui M, Boutaghane H (2020) Impact of training
data size on the LSTM performances for rainfall–runoff modeling.
Model Earth Syst Environ 6:2153–2164. https:// doi. org/ 10. 1007/
s40808- 020- 00830-w

Bryndal T, Franczak P, Kroczak R et al (2017) The impact of extreme
rainfall and flash floods on the flood risk management process and

geomorphological changes in small Carpathian catchments: a case
study of the Kasiniczanka river (Outer Carpathians, Poland). Nat
Hazards 88:95–120. https:// doi. org/ 10. 1007/ s11069- 017- 2858-7

Chattopadhyay A, Nabizadeh E, Hassanzadeh P (2020) Analog fore-
casting of extreme-causing weather patterns using deep learning.
J Adv Model Earth Syst 12:e2019MS001958. https:// doi. org/ 10.
1029/ 2019M S0019 58

Cui Z, Zhou Y, Guo S et al (2022) Effective improvement of multi-
step-ahead flood forecasting accuracy through encoder-decoder
with an exogenous input structure. J Hydrol (Amst) 609:127764.
https:// doi. org/ 10. 1016/j. jhydr ol. 2022. 127764

Deitch MJ, Sapundjieff MJ, Feirer ST (2017) Characterizing precipita-
tion variability and trends in the world’s mediterranean-climate
areas. Water (Basel) 9:259. https:// doi. org/ 10. 3390/ w9040 259

Fawaz HI, Forestier G, Weber J et al (2020) Deep learning for time
series classification: a review. To cite this version: HAL Id:
hal-02365025

Gaume E, Borga M, LLASSAT MC et al (2016) Mediterranean extreme
floods and flash floods. In: The mediterranean region under cli-
mate change. A scientific update. IRD Editions, pp 133–144

Hu Y, Yan L, Hang T, Feng J (2020) Stream-flow forecasting of small
rivers based on LSTM

Huang C, Zhang J, Cao L et al (2020) Robust forecasting of river-flow
based on convolutional neural network. IEEE Trans Sustain Com-
put 5:594–600. https:// doi. org/ 10. 1109/ TSUSC. 2020. 29830 97

Hussain D, Hussain T, Khan A et al (2020) A deep learning approach
for hydrological time-series prediction: a case study of Gilgit
river basin. Earth Sci Inform 13:1–13. https:// doi. org/ 10. 1007/
s12145- 020- 00477-2

IPCC (2018) Global warming of 1.5°C. An IPCC Special Report on the
impacts of global warming of 1.5°C above pre-industrial levels
and related global greenhouse gas emission pathways, in the con-
text of strengthening the global response to the threat of climate
change

Jaiswal RK, Ali S, Bharti B (2020) Comparative evaluation of concep-
tual and physical rainfall–runoff models. Appl Water Sci 10:48.
https:// doi. org/ 10. 1007/ s13201- 019- 1122-6

Kim DY, Song CM (2020) Developing a discharge estimation model for
ungauged watershed using CNN and hydrological image. Water
(Basel) 12:3534. https:// doi. org/ 10. 3390/ w1212 3534

Kimura N, Yoshinaga I, Sekijima K et al (2019) Convolutional neural
network coupled with a transfer-learning approach for time-series
flood predictions. Water (Basel) 12:96. https:// doi. org/ 10. 3390/
w1201 0096

Kratzert F, Klotz D, Brenner C et al (2018) Rainfall – runoff model-
ling using Long Short-Term Memory (LSTM) networks. Hydrol
Earth Syst Sci 22:6005–6022

Le XH, Ho H, Lee G, Jung S (2019) Application of Long Short-Term
Memory (LSTM) neural network for flood forecasting. Water
(Basel) 11:1387. https:// doi. org/ 10. 3390/ w1107 1387

Li X, Du Z, Song G (2018) A method of rainfall runoff forecasting
based on deep convolution neural networks. In: 2018 Sixth inter-
national conference on advanced Cloud and Big Data (CBD), pp
304–310

Li W, Kiaghadi A, Dawson C (2020) High temporal resolution rain-
fall–runoff modeling using long-short-term-memory (LSTM)
networks. Neural Comput Appl. https:// doi. org/ 10. 1007/
s00521- 020- 05010-6

Liu D, Jiang W, Mu L, Wang S (2020) Streamflow prediction using
deep learning neural network: case study of Yangtze River. IEEE
Access 8:90069–90086. https:// doi. org/ 10. 1109/ ACCESS. 2020.
29938 74

Livieris IE, Pintelas E, Pintelas P (2020) A CNN–LSTM model
for gold price time-series forecasting. Neural Comput Appl
32:17351–17360. https:// doi. org/ 10. 1007/ s00521- 020- 04867-x

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.5194/hess-22-4425-2018
https://doi.org/10.5194/hess-22-4425-2018
https://doi.org/10.1029/2011JD017077
https://doi.org/10.1029/2011JD017077
https://doi.org/10.1109/TPAMI.2013.50
https://doi.org/10.1038/s41586-019-1495-6
https://doi.org/10.1007/s40808-020-00830-w
https://doi.org/10.1007/s40808-020-00830-w
https://doi.org/10.1007/s11069-017-2858-7
https://doi.org/10.1029/2019MS001958
https://doi.org/10.1029/2019MS001958
https://doi.org/10.1016/j.jhydrol.2022.127764
https://doi.org/10.3390/w9040259
https://doi.org/10.1109/TSUSC.2020.2983097
https://doi.org/10.1007/s12145-020-00477-2
https://doi.org/10.1007/s12145-020-00477-2
https://doi.org/10.1007/s13201-019-1122-6
https://doi.org/10.3390/w12123534
https://doi.org/10.3390/w12010096
https://doi.org/10.3390/w12010096
https://doi.org/10.3390/w11071387
https://doi.org/10.1007/s00521-020-05010-6
https://doi.org/10.1007/s00521-020-05010-6
https://doi.org/10.1109/ACCESS.2020.2993874
https://doi.org/10.1109/ACCESS.2020.2993874
https://doi.org/10.1007/s00521-020-04867-x

 Earth Science Informatics

1 3

Lupi A, Luppichini M, Barsanti M, Giannecchini R (2022) Deep learn-
ing models to complete rainfall time series databases affected by
missing or anomalous data. Earth Science Informatics. Submitted

Luppichini M, Barsanti M, Giannecchini R, Bini M (2022) Deep learn-
ing models to predict flood events in fast-flowing watersheds. Sci
Total Environ 813:151885. https:// doi. org/ 10. 1016/j. scito tenv.
2021. 151885

Merz B, Aerts J, Arnbjerg-Nielsen K et al (2014) Floods and cli-
mate: emerging perspectives for flood risk assessment and man-
agement. Nat Hazard 14:1921–1942. https:// doi. org/ 10. 5194/
nhess- 14- 1921- 2014

Nguyen DH, Bae D-H (2020) Correcting mean areal precipitation fore-
casts to improve urban flooding predictions by using long short-
term memory network. J Hydrol (Amst) 584:124710. https:// doi.
org/ 10. 1016/j. jhydr ol. 2020. 124710

Sit M, Demiray BZ, Xiang Z et al (2020) A comprehensive
review of deep learning applications in hydrology and water
resources. Water Sci Technol. https:// doi. org/ 10. 2166/ wst.
2020. 369

Sutskever I, Vinyals O, Le QV (2014) Sequence to sequence learning
with neural networks. In: Advances in neural information process-
ing systems

Van SP, Le HM, Thanh DV et al (2020) Deep learning convolutional
neural network in rainfall–runoff modelling. J Hydroinf 22:541–
561. https:// doi. org/ 10. 2166/ hydro. 2020. 095

Xu W, Jiang Y, Zhang X et al (2020) Using long short-term memory
networks for river flow prediction. Hydrol Res 51:1358–1376.
https:// doi. org/ 10. 2166/ nh. 2020. 026

Yang J, Liu H, Tang Z et al (2022) Visualization of aqueous geochemi-
cal data using python and WQChartPy. Groundwater. https:// doi.
org/ 10. 1111/ gwat. 13185

Yi A, Li Z, Gan M et al (2019) A deep learning approach on short-term
spatiotemporal distribution forecasting of dockless bike-sharing
system. Neural Comput Appl 31:1–13. https:// doi. org/ 10. 1007/
s00521- 018- 3470-9

Zheng J, Fu X, Zhang G (2019) Research on exchange rate forecasting
based on deep belief network. Neural Comput Appl 31:573–582.
https:// doi. org/ 10. 1007/ s00521- 017- 3039-z

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/j.scitotenv.2021.151885
https://doi.org/10.1016/j.scitotenv.2021.151885
https://doi.org/10.5194/nhess-14-1921-2014
https://doi.org/10.5194/nhess-14-1921-2014
https://doi.org/10.1016/j.jhydrol.2020.124710
https://doi.org/10.1016/j.jhydrol.2020.124710
https://doi.org/10.2166/wst.2020.369
https://doi.org/10.2166/wst.2020.369
https://doi.org/10.2166/hydro.2020.095
https://doi.org/10.2166/nh.2020.026
https://doi.org/10.1111/gwat.13185
https://doi.org/10.1111/gwat.13185
https://doi.org/10.1007/s00521-018-3470-9
https://doi.org/10.1007/s00521-018-3470-9
https://doi.org/10.1007/s00521-017-3039-z

	CleverRiver: an open source and free Google Colab toolkit for deep-learning river-flow models
	Abstract
	Introduction
	Materials and methods
	Software description
	Discussion and conclusions
	Acknowledgements
	References

