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ABSTRACT 

Background. Machine learning (ML) employs algorithms that learn from data, building models 

with the potential to predict events by aggregating a large number of variables and assessing 

their complex interactions. The aim of this study is to assess ML potential in identifying patients 

with ischemic heart disease (IHD) at high risk of cardiac death (CD). 

Methods. 3987 (mean age 68 ± 11) hospitalized IHD patients were enrolled. We implemented 

and compared various ML models and their combination into ensembles. Model output 

constitutes a new ML indicator to be employed for stratification. Primary variable importance 

was assessed with ablation tests. 

Results. An ensemble classifier combining three ML models achieved the best performance to 

predict CD (AUROC of 0.830, F1-macro of 0.726). ML indicator use through Cox survival 

analysis outperformed the 18 variables individually, producing a better stratification compared to 

standard multivariate analysis (improvement of ~20%). Patients in the low risk group defined 

through ML indicator had a significantly higher survival (88.8% versus 29.1%). The main 

variables identified were Dyslipidemia, LVEF, Previous CABG, Diabetes, Previous Myocardial 

Infarction, Smoke, Documented resting or exertional ischemia, with an AUROC of 0.791 and an 

F1-score of 0.674, lower than that of 18 variables. Both code and clinical data are freely 

available with this article. 

Conclusion. ML may allow a faster, low-cost and reliable evaluation of IHD patient prognosis 

by inclusion of more predictors and identification of those more significant, improving outcome 

prediction towards the development of precision medicine in this clinical field. 

Keywords: Machine Learning, Ischemic Heart Disease, Prognosis, Survival Analysis, Artificial 

Intelligence 
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INTRODUCTION 

Ischemic Heart Disease (IHD) remains the most important cause of morbidity and mortality in 

the world (1). The objective to identify subjects at high risk of adverse events remains difficult 

due to IHD complexity, in which a large number of variables, clinical, anthropometric, 

socioeconomic, life-style and, also, cardiovascular imaging contribute to prognostic 

stratification. Artificial intelligence (AI) is the computer science field related to the capacity to 

perform tasks normally associated with cognitive abilities. Its subfield of Machine Learning 

(ML) employs algorithms and builds models learned from data, without specific encoding of 

knowledge. They provide the potential to predict events in different patient groups by 

aggregating a large number of variables and assessing their complex interactions (2). In the 

clinical setting, ML models have been used to identify predictors of events in IHD patients (3-9). 

Previous studies showed that ML could identify different variables predicting mortality at early 

and late follow up time. Aziz and al identified age, heart rate, Killip class, fasting blood glucose, 

prior primary percutaneous revascularization or pharmaco-invasive therapy and diuretics, as 

predictors for 30 days and 1 year mortality of AMI patients (6). Motwani et al showed that 

combining clinical and coronary computed tomographic angiography through ML improved 

prediction of overall mortality at 5 years in respect to include only coronary computed 

tomographic angiography data (7). D’Assenzo et al showed that ML identified different types of 

predictors in relation to the type of event considered (8). Okere et al showed that in-hospital 

length of stay and the mortality risk score, based on Elixhauser comorbidity measure, were 

predictors of 180-day in-hospital mortality using ML approach (9). In the study of Chiu, the 

fusion of six classifiers was used to construct and optimize the stacked set of second level 

classifiers, with an accuracy of 95 % in predicting mortality of HF patients at 3 days, 1 and 3 
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months and 1 year (10). Moreover, random Survival Forest (RSF) approaches, which are RF 

models trained to maximize stratification, were also used to identify, among a large number of 

variables, the predictors of cardiovascular events in a population-based observational cohort 

study (11). The authors used the RSF approach both to select event predictor variables (i.e., 20 

for each event), and as a model for risk prediction. This approach of risk prediction provided 

better event prediction over standard risk scores, such as the Framingham score and the 

Framingham Cardiovascular score, and also the Cox proportional hazard regression model. 

Additionally, ML methods without missing value imputation can outperform expert variable 

selection with imputation of missing values, with better performances in terms of prediction and 

risk stratification (12).  Thus, the hypothesis of the present study was that ML can identify IHD 

patients at high risk of long-term cardiac death (CD). Therefore, we conducted a retrospective 

analysis including patients with known IHD, considering clinical data in the ML analysis as 

potential predictors of CD occurring at long follow-up time (7 years).  

METHODS 

Patient Dataset  

The study included 3987 (mean age 68 ± 11 years) IHD patients hospitalized (1977-2011) at the 

CNR Clinical Physiology Institute in Pisa, Italy (angina 35.24%, arrhythmias 4.44%, dyspnea 

8.21%, documented myocardial ischemia 26.52%, acute heart failure 9.16%, syncope 1.67%, 

acute coronary syndrome 24.29, valvulopathy 1.48%), followed up for up to 10 years after 

hospital admission. IHD definition included one or more of the following conditions: 1) at least 

one coronary vessel with stenosis >= 75%; 2) acute myocardial infarction (MI); 3) previous 

coronary artery bypass surgery (CABG); 4) previous coronary intervention; 5) previous MI; 6) 
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post-ischemic dilated cardiomyopathy (IDC). Smoking habits, IHD family history, arterial 

hypertension, diabetes, obesity and dyslipidemia were coded in a dichotomized fashion (values 

0/1; Smoking habits: 0-never smokers, 1-smokers for current/ex-smokers). All patients either 

suffered CD or survived for the whole observation period. Informed consent was obtained from 

each patient. The study complied with the Declaration of Helsinki regarding ethical conduct of 

research involving human subjects. All data (completely anonymous, evaluated as aggregated 

and not individually) were acquired in the context of institutional clinical assistance within 

clinical care purposes in a retrospectively collected modality from our Institution patient’s 

dataset (Image database), including clinical characteristics, previous history, IHD risk factors, 

comorbidities, laboratory and instrumental results, pharmacological therapies, and post-discharge 

follow-up outcomes. Exclusion criteria: severe systemic diseases (e.g. neoplasia, acute or chronic 

inflammatory disease, immunological disease), non-CD during the observation period, refusal or 

inability to supply written Informed Consent (13-15). The data are available publicly on Github: 

https://github.com/orientino/ml4cad. 

Follow-up 

Follow-up data were obtained through review of the patient's record, telephone interview, 

personal communication with the patient's physician, or medical check. Death cause was derived 

from medical records or death certificates. CD definition required either significant arrhythmias, 

or cardiac arrest, or death attributable to congestive heart failure, or myocardial infarction, in the 

absence of any other precipitating factor.  

 

ML Analysis  
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ML analysis aims to develop an indicator based on multiple clinical variables suitable to stratify 

patients at high and low risk of CD. This was achieved through: 1) building ML model to 

separate two target classes: patients who survived for 7 years from hospital admission, and those 

who underwent CD within the same period; besides a binary classification, this model also 

produces a probability of surviving for more than 7 years, which is the novel ML indicator; 2) 

evaluating the performance of the ML indicator using survival analysis; 3) identifying the most 

important clinical variables for this model, through single-variable and multi-variable ablation 

studies, obtaining a simplified ML indicator. The computational analysis was performed in 

Python, both data and analysis are publicly available at https://github.com/orientino/ml4cad. 

ML Dataset Preparation 

The processed dataset consists of 18 independent variables. We defined the binary dependent 

variable “survive7Y” indicating whether the patient survived for at least 7 years starting from the 

hospital admission. Even though follow-up was longer than 7 years, we chose the value “7 

years” empirically, since we observed better predictive performance for it on the validation data. 

However, we also tested a 10-year threshold, with very similar results for both prediction and 

stratification (see the results section for the results of the 10-year models). Since the final dataset 

presented a class imbalance (84% of patients survived >7 years), we employed two techniques 

for reducing its effects: “class weights” and “dataset sampling” (17). Among the independent 

variables, creatinine and number of stenosed coronary vessels (“Vessels”) contained missing 

values, replaced with 0 (after translating the “Vessels” values by 1).   

 

ML Model Building 
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We employed a standard ML pipeline (2,3): we divided the dataset into 3 smaller datasets 

preserving the class ratio, with 60% of the patients placed in the training dataset (2391), 20% in 

the validation dataset (798) and 20% in the test dataset (798). We standardized all 3 datasets, by 

computing the scaling parameters (mean and standard deviation) on the training dataset to 

prevent data leakage. Standardisation was performed after replacing missing values with 0. This 

decreased original averages and shifted the distributions of the Creatinine and Vessels variables 

to the left. However, it was necessary, otherwise the missing values would have been equal to the 

mean of the distribution of the variables after standardisation. For our models, we needed 

missing values to be different from others as they include information on medical decisions (i.e. 

recording or not a certain variable, see also ref. 12). Then, we trained the ML models using the 

training dataset to predict the dependent variable “survive7Y”. The models were evaluated using 

the validation dataset, while the test dataset was reserved exclusively to evaluate the final model 

with best results on the validation dataset. We used: logistic regression, support vector classifier, 

k-nearest neighbors, random forest (RF), adaboost, multilayer perceptron, gradient boosting, and 

extreme gradient boosting. For each model type, we optimized several model hyperparameters, 

and employed early stopping during training where possible, using 2-fold cross-validation on 

training data only. We include the complete definition of the hyperparameter search space as 

Supplementary file 1. To select the best hyperparameter combination for each model, given that 

in our case we train multiple models with a different number of hyperparameters to be optimized, 

we performed 5000 iterations of random search. Random search provides performance results 

comparable with a full grid search, but with much shorter running times (17,18), due to the fact 

that it does not explore all hyperparameter combinations but randomly selects a subset of 

combinations to test. We have also tested a higher number of samples (10000) but results were 
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very similar. To mitigate dataset imbalance, we applied “dataset sampling”, which modifies the 

training dataset by simultaneously undersampling the largest class, and by oversampling the 

smallest class using SMOTE, Borderline SMOTE, or SVMSMOTE (16). We chose among these 

procedures during the hyperparameter optimisation phase. Lastly, the final proposed model was 

designed as an ensemble of a subset of ML models. The ensemble computes the output of all the 

models in the set and averages them to obtain a better output estimate. The combination of 

models chosen as the final model was based on the performance on the validation dataset. We 

evaluated the models using F1-macro, the area under the receiver operating characteristic curve 

(AUROC), precision and recall. We also performed calibration analysis, in order to evaluate how 

the probabilities that the models produce are aligned with the actual class labels. We report the 

Brier scores for all models, and we also compare probabilities with actual survival times.  

 

ML Variable Importance 

We estimated variable importance by using “ablation tests” (19), applying the trained predictive 

model (the ensemble model above) to patients where one or several variables are replaced with 

their mean value, to remove the information they hold, i.e., performing a variable knock-out. A 

new F1-score is computed, denoted by F1’. If F1’ is lower than the original F1, then we can 

conclude that these variables are important for the prediction. Thus, we define a variable 

importance as the ratio F1/F1’. A value above 1 indicates an important variable; a value below 1 

would indicate a noisy variable that does not help classification.  Ablation tests have two main 

advantages: First, compared to feature selection methods that use rankings internal to the models 

(e.g., impurity-based feature importance for random forest), they are model agnostic, so they can 
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be used also with models that do not provide an internal importance of features (such as our 

ensemble models). Second, compared to methods that use an external ranking (such as statistical 

tests or variance based methods), they can be used for multivariable analysis, i.e., estimating the 

importance for a set of features simultaneously. Furthermore, they have the advantage that they 

do not make any assumption on the probability distribution of variables, unlike most statistical 

tests (20).  

We performed two types of ablation analyses to assess variable importance: 1) single-variable 

analysis, knocking out one variable at a time; 2) multi-variable analysis, using hierarchical 

clustering (16) to identify groups of most similar variables, and then knocking out one group at a 

time. The variable group importance is calculated as the ratio between the original F1 score and 

the score after knocking out all the variables in the group, F1’, similarly to the importance of 

single variables. Single- and multi-variable analysis were then combined to extract a set of 

important clinical variables for a reduced ML indicator, by considering the most important 

variable of each cluster.  

The advantage of multi-variable ablation tests is that they can enable simultaneous knockout of 

correlated variables, removing thus completely the signal contained in that group. In single-

variable tests, even if we knock out one variable, if there is another correlated variable then the 

model could still be able to perform well, by employing the information from the correlated 

variable.  

Survival Analysis 

We conducted survival analysis using the Kaplan-Meier curves on the test dataset, considering a 

CD event in the first 7 years. Firstly, we investigated the quality of stratification obtained by 
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using the model output, i.e. the model’s probability of survival over 7 years, using a threshold to 

divide the dataset into two parts. A low threshold on the probability will divide the patients into a 

very small homogeneous high-risk group and a large heterogeneous low risk group.  As the 

threshold increases, the high-risk group grows but at the same time it becomes more 

heterogeneous, with patients with higher survival, while the low-risk group becomes smaller. In 

general, even for higher thresholds, the low-risk group is much smaller, since the median 

probability value on the test dataset is 0.695. Here, we used a threshold of 0.6 that allowed us to 

maintain a good proportion between the two groups without sacrificing too much the 

homogeneity of the smaller high-risk group. , A different Kaplan-Meier estimator was used to fit 

on each group: by plotting the estimator’s results it was possible to visualize the quality of the 

stratification. Lastly, univariate and multivariate Cox Regression has also been performed, 

obtaining a Concordance value (C-index) for the predictor variables producing a quantitative 

comparison. To evaluate model performance, we again divided the patients into training and test 

datasets, and we report the average performance in 5-fold cross validation. We used the lifelines 

Python library (21) for survival analysis. 

RESULTS 

Patients 

Clinical characteristics of the 3987 patients are summarized in Table 1. Patients with CD were 

older, had higher incidence of diabetes, atrial fibrillation, previous CABG and previous MI, IDC, 

reduced LVEF and a higher number of stenosed coronary vessels. 

ML Indicator to predict CD risk    
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We trained various ML classifiers with several parameters, combining the various models to 

obtain an optimal ensemble. Out of all possible combinations, the best performing ensemble 

(validation F1-macro=0.685 and AUC=0.817) was the one combining LR, RF and adaboost. 

This integrates the two top performing models based on the validation F1 score with the model in 

third position in terms of AUC. Table 2 shows standard classification performance metrics on the 

internal validation dataset and on the external test dataset, for each individual model and for the 

ensemble model; Figure 1 shows ROC curves for the models. The ensemble classifier achieved 

the best performance (AUROC of 0.830, F1-macro of 0.726 , precision of 0.705 and recall of 

0.762; Figure 1).  

Table 2 also shows results of calibration analysis on test data, including Brier scores for all 

models. We note that all models have very low Brier scores, indicating that 7-year survival 

probabilities are well aligned with the two classes. Although classification performance is best 

for the ensemble methods, calibration results are best for the RF model. However, the ensemble 

model still shows good calibration. To investigate this in more detail, Figure 2 compares the 

survival probabilities provided by the model on test data with the actual survival in years. We 

note how as actual survival times increase, the distribution of model output values shifts towards 

larger values, as required. Also, as we move further from the 7-year threshold, probabilities 

become more extreme, i.e. closer to 0 or 1, indicating that the model is more confident in these 

patients. For censored patients, where we do not have an exact survival value, we observe that 

the model generally assigns large probabilities, again as expected, since we did not observe a CD 

event in these patients.  

The performance of the new ML indicator through Cox survival analysis was compared against 

univariate and multivariate survival analysis performed on the original clinical variables. Table 3 
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shows the performance of Cox univariate regression for all variables individually, along with the 

performance of traditional multivariate Cox regression: not only the ML indicator outperformed 

the 18 variables individually, but it also produced a better stratification compared to standard 

multivariate analysis (improvement in C-index of ~15%).  

Figure 3a shows the Kaplan-Meier curves for the ML Indicator, the high-risk group was 

significantly separated from the low-risk one by using a ML indicator cut-off of 0.6.  

In this study we trained our model by considering events after 7 years of hospitalization. The 

threshold was chosen based on performance on validation data, however results were very 

similar for other thresholds. For the 10-year threshold we obtained an AUROC of 0.828 and an 

F1-macro score of 0.726 for the ensemble model, very close to that of 7 years (Table 2). For Cox 

regression, the C-index with the ML indicator with 18 variables was 0.814 for 10 years, and 

0.816 for 7 years.  Thus, the values are comparable and still  larger than that obtained with Cox 

regression on the original variables, even multivariate, suggesting that the performance of our 

analysis does not depend a lot on the chosen threshold. 

Primary variable selection and a simplified indicator  

To select a subset of variables that maximizes the model performance, we performed single- and 

multi-variable ablation tests for feature selection. Table 4 shows the ranking of variables, and 

corresponding importance in single-variable ablation tests, for the 18 clinical variables employed 

in our study. Top variables were dyslipidemia, LVEF, Diabetes, previous MI, also showing very 

low p-values in Table 3 (univariate Cox Regression). Ranking obtained with ML methods agrees 

with Cox analysis: top variables in Table 4 are also at the top (or at least statistically significant) 

in Table 3. However, the opposite is not true; i.e., some significant variables in univariate Cox 
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Regression are ranked low by our method: Age, IDC, and angiography show little contribution to 

the predictive performance but have very low p-values at Univariate Cox Analysis. Among 

these, age maintains a low p-value also at Multivariate Cox Analysis. All this suggests that the 

ML model finds and uses its relationship with other related variables (e.g., creatinine, smoke and 

gender, see clustering results below), processing its significance in connection with other related 

biomarkers. Thus, assigning importance based on ML methods could have better ability to 

account for complex relations over traditional statistical analysis. Almost all variables provided a 

contribution, with values generally above one, albeit at times the contribution was very low 

(importance close to 1, Table 4). The only variable reducing the predictive power of the ML 

model is angina (importance<1), also not significant at Cox regression. Besides single-variable 

importance analysis, ML methods also have the advantage of enabling meaningful multivariable 

analysis, through the combination of clustering and ablation tests. Clinical variables were first 

clustered into meaningful groups and then ablation tests assigned a predictive importance to each 

group. Figure 4 shows the 7 variable clusters, which group together variables correlated from a 

statistical as well as clinical viewpoints, thus validating the overall clustering procedure. Table 4 

shows the 7 cluster ranking, and their importance in the predictive model, with a good agreement 

with results presented in Table 4, (most important variables being those related to dyslipidemia, 

LVEF, IDC, and CABG). All clusters contribute to the prediction (values>1), suggesting the 

importance of using all available data. We note that some importance values were much closer to 

1 in single-variable ablation tests. This is probably because in single-variable tests the model can 

employ information from a correlated variable to maintain a high performance. However, in 

multivariable tests that is not possible, explaining the generally higher importance values. When 

the single-variable and multivariable analysis were combined, a 7-variable-combined indicator 
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(dyslipidemia, LVEF, previous CABG, diabetes, previous MI, smoke, and documented resting or 

exertional ischemia) was obtained. ML prediction power achieved AUROC of 0.791,F1-score of 

0.674, precision of 0.656 and recall of 0.719,  lower than the model that combines all 18 

variables (Table 2). Univariate Cox regression using the simplified ML indicator obtained an 

overall C-index of 0.77 , while multivariate Cox regression using the same 7 clinical variables 

resulted in a C-index of 0.74. Again, the simplified ML indicator produces a more meaningful 

combination with respect to the 7 variables, (better risk stratification), being also superior to all 

individual variables (see Table 3 for comparison). However, as seen before for AUROC and F1-

score, the simplified indicator did not outperform the full version, which combines all 18 

variables. Figure 3b shows Kaplan-Meier curves, where the 2 groups separated according to the 

threshold of 0.6 were significantly different.  

DISCUSSION 

In this study we applied ML tools for CD risk stratification in a large dataset of IHD patients. 

The main results can be summarized as follows: 

1) the proposed ML model was able to predict a CD with AUROC of 0.830, F1-macro of 0.726, 

precision of 0.705 and recall of 0.762, with a calibration concordance index of 0.143 .  

2) the ensemble method, consisting of an aggregation of logistic regression, RF and Adaboost 

models, had the higher prognostic stratification capability, superior to standard survival models;  

3) the most important variables at single-variable ablation analysis were dyslipidemia, LVEF, 

diabetes, previous MI and paroxysmal or chronic atrial fibrillation;  
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4) considering the 7 clusters identified at multi-variable ablation analysis, the prognostic 

predictive weight of our indicator was superior to the standard survival models using the same 7 

variables, but significantly lower when compared to that obtained by our same indicator, 

including all the 18 variables of the study.  

These results show the effectiveness of ML-based models to identify IHD patients at high risk of 

CD, and to identify the major risk factors through ablation or analysis of feature importance, as 

demonstrated here. ML, in particular the use of ensemble methods for risk stratification, has been 

previously applied in different settings of cardiac diseases, and mainly in patients with AMI (5-

10,12,18,22-31), which however are largely different from our study in terms of patient 

population, type of outcomes, follow-up lengths, and variables.  

We focused on longer term CD prediction (7 years), and obtained AUROC values superior to 

those found in the literature for long-term event prediction. Furthermore, we employed the 

output of ML models as a new ML indicator for stratification, evidencing improved patient 

stratification compared to existing clinical variables. Our method, however, does not build the 

model having survival analysis as a goal, but for a different, related, classification task 

(predicting the events), and then employs the output as a variable in the survival analysis, similar 

to other recent works  (5,25,26,29). This approach has the advantage of employing any ML 

model, and not only RSF.   

Furthermore, we employed the new integrated model to identify the best predictive variables. 

Unlike the above-mentioned works, we used a posteriori method of variable ranking (ablation 

tests) that enabled us to evaluate how important the contribution of each variable was. Then, we 

performed multivariable analysis through clustering and ablation to identify important groups of 
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variables, which has not been done in previous works. Finally, we identified 7 important factors 

that were integrated into a simplified ML indicator. Similarly to previous studies (11,27), the 

indicator combining 18 variables showed better predictive performance in comparison to that 

including only 7 variables, as the addition of more parameters increases the possibility that some 

of them contain prognostic value helpful to increase model performance. This result highlights 

the importance of processing as many variables as possible, in the prognostic prediction analysis, 

allowing for a more personalized and systemic approach to individual patients. This is definitely 

aligned with personalized or precision medicine, and suggests that all variables can enter ML 

analysis, potentially increasing prognostic stratification power, without the risk of overfitting or 

undercutting the input data (12). While adding more variables in a model generally augments the 

risk of overfitting, the fact that the number of patients available is starting to grow, due to the 

increased digitisation of healthcare, reduces this risk. Furthermore, ML pipelines include various 

levels of cross validation that allow to avoid overfitting and ensure model generalization. In this 

way, all variables can be included without having to give up on any useful information through 

data undercutting. Our study brings further support in this direction, with the integrated ML 

indicator able to outperform other survival models. Furthermore, ML makes minimal 

assumptions about the data-generating systems and the probability distributions underlying the 

processes being measured. Therefore, it is more effective compared to classical statistical 

methods in presence of a large number of data and variables gathered without a carefully 

controlled experimental design, and in the presence of complicated nonlinear interactions, as in 

our study population (32).  

Study limitations 
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ML methods are considered as “black-box methods”, meaning that they provide a predictive 

capacity without explaining why certain results are obtained. The ranking of variables that we 

provided is a first step towards improving the explainability of our ML indicator. The simplified 

indicator also contributes to explainability and could be easier to adopt as the number of included 

variables is smaller. However, this simplification reduced the predictive and stratification power. 

The study is retrospective, with data gathered several years ago, thus lacking new variables, 

evidencing how new integrated variables obtained from ML analysis need to be continuously 

updated with new predisposing parameters.  

By excluding no-CD in the training phase, we may have introduced a selection bias, not 

reflecting the clinical reality of patient outcomes. However, as stated, the model can be used on 

all deaths, both CD and no-CD.  This approach incurs an obvious limitation, that is, some no-CD 

deaths could be attributed to a cardiovascular cause, and that is the reason why many authors do 

recommend all-cause deaths as an end-point (33). However, our decision to exclude those deaths 

was taken to ensure a better understanding of how the AI-model works, because we did not want 

to query the model on end points that could not be predicted upfront, such as cancer and/or 

accidental events. It is the scope of our future research to develop the model into a more 

comprehensive assessment of outcome. 

CONCLUSION  

ML indicator, including all the available clinical variables, produced a higher stratification 

compared to the standard approach (improvement of ~20% in survival analysis). ML approaches 

allow for accurate, reliable and low cost prognostic and risk stratification models in IHD 

patients, favoring the development of precision medicine.  
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FIGURE TITLES AND CAPTIONS 

Figure 1. AUROC Curves for all the ML Models.  

On the left the curves for each individual model, while on the right we superimpose the ensemble 

model that shows best performance. AUROC: area under the receiver operating characteristic 

curve; logistic regression (LR), support vector classifier (SVC); k-nearest neighbors (KNN); 

random forest (RF), adaboost; multilayer perceptron (MLP); gradient boosting (GB); and 

extreme gradient boosting (XGB). 

Figure 2. Calibration analysis for the ensemble model.  

The figure displays the survival probabilities generated by the ML model with 18 variables, for 

different actual survival times. We note that probabilities increase as survival time increases, as 

required. 

Figure 3. Kaplan-Meyer curves for the ML Indicator and for the simplified ML indicator.  

Figure 3a: we stratify using the threshold 0.6 on the probability of surviving more than 7 years 

estimated by the model. The curves show the fraction of patients that survive for a given number 

of years, separately for those under the threshold (blue line) and those over the threshold (red 

line). Patients classified as low risk by our model survive much longer, with a final survival at 

88.8% for the red curve and 29.1% for the green curve. Ischemic Heart Disease (IHD).  

Figure 3b: We stratify using the thresholds 0.6 on the probability of surviving more than 7 years 

estimated by the simplified model. The final survival values for the two groups are  89.1% for 

the low risk group (red curve) and  44.3% for the high risk group (blue curve). Ischemic Heart 

Disease (IHD). 

Figure 4. Clustering clinical variables. 

Dendrogram produced by the clustering algorithm, which grouped all the variables into 7 clusters 

containing related variables. Myocardial Infarction (MI); coronary by-pass grafting (CABG); left 
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ventricular ejection fraction (LVEF); coronary stenosed vessels (Vessels); previous coronary 

intervention (PCI). 
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TABLES (each on a separate page) 

Table 1. Table describing the patients and the 18 variables considered. P-values correspond to a 

univariate chi-square analysis on CVD death/no CVD
1
 death for discrete variables, and a 

Wilcoxon rank-sum test for continuous variables (Age, LVEF
2
, Vessels, Creatinine). A total of 

3987 patients are included, of which 757 suffered CVD death over the observation period.   

 Count (#)/ 

Mean±SD 

Percent. 

(%) 

CVD Death 

(n=757; 

18.99%) 

No CVD 

Death 

(n=3230; 

81.01%) 

p-value 

Sex, male/female 3058/929 76.7%/ 

23.3% 

566/191; 

74.8%/25.2% 

2492/738; 

77.1%/22.9% 

0.1776 

Age  

(years) 

68±11  74±10 67±11 < 

0.0001 

Angina 2676 67.1% 473; 62% 2203; 68%  0.0029 

Previous CABG
3
 589 14.8% 193; 25.4% 396; 12.2% < 

0.0001 

Previous PCI
4
 966 24.2% 167; 22.0% 799; 24.7% 0.1337 

PMI
5
 1836 46.0% 465; 61.4% 1371; 42.4% < 

0.0001 

AMI
6
 661 16.5% 139; 18.3% 522; 16.1% 0.1581 

LVEF 49.58±12.18  40.28±14.19 51.75±10.54 < 

                                                
1 CVD: cardiovascular diseases 
2 LVEF: left ventricular ejection fraction 
3 CABG: coronary by-pass grafting 
4 PCI: previous coronary intervention 
5 PMI: previous myocardial infarction 
6 AMI: acute myocardial infarction 
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0.0001 

Resting or exertional 

ischemia 

2501 62.7% 390; 51.5% 2111; 65.3% < 

0.0001 

Post ischemic DCM
7
 746 18.7% 290; 38.3% 456; 14.1% < 

0.0001 

History of smoke 1903 47.7% 330; 43.5% 1573; 48.6% 0.0127 

History of diabetes 1096 27.4% 267; 35.2% 829; 25.6% < 

0.0001 

History of 

hypertension 

2503 62.7% 474; 62.6% 2029; 62.8% 0.9508 

History of 

dyslipidemia 

3228 80.9% 487; 64.3% 2741; 84.8% < 

0.0001 

Paroxysmal or 

chronic - AF
8
 

475 11.9% 170; 22.4% 305; 9.4% < 

0.0001 

Creatinine  1.20±0.67  1.5±1.02 1.14±0.55 <0.0001 

Angiography 3193 80.0% 493; 65.1% 2700; 83.5% <0.0001 

Vessels 1.74±1  2.15±1.02 1.66±0.98 0.0094 

 

 

 

Table 2. Building the ML Indicator: comparison of the model performance for different model 

types.  The best model is reported in the last row, while the best result per metric is marked with 

*. 

                                                
7 DCM: dilated cardiomyopathy 
8 AF: atrial fibrillation 
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Model Val. 

AUROC 

Val. F1-

macro  

Test 

AUROC 

Test 

F1-

macro 

Test 

Precision- 

macro 

Test 

Recall-

macro 

Test 

Brier 

Score 

LR
9
 0.808 0.672 0.820 0.704 0.683 0.750 0.139 

SVC
10

 0.781 0.668 0.790 0.683 0.664 0.737 0.211 

k-NN
11

 0.708 0.607 0.758 0.660 0.646 0.727 0.166 

RF
12

 0.805 0.680 0.826 0.698 0.695 0.700 *0.119 

Adaboost 0.799 0.680 0.786 0.663 0.647 0.704 0.236 

MLP
13

 0.789 0.668 0.802 0.708 0701 0.717 0.120 

GB
14

 0.811 0.664 0.815 0.704 0.683 0.747 0.137 

XGB
15

 0.810 0.676 0.820 0.708 0.686 0.759 0.139 

Ensemble 

(LR, RF, 

Adaboost) 

*0.817 *0.685 *0.830 *0.726 *0.705 *0.762 0.143 

  

                                                
9
 LR: logistic regression 

10 SVC: support vector classifier 
11 K-NN: k-nearest neighbors 
12 RF: random forest 
13 MLP: multilayer perceptron 
14

 GB: gradient boosting 
15

 XGB: extreme gradient boosting 
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Table 3. Univariate and multivariate Cox regression: performance in terms of C-index for 

standard clinical variables (univariate and multivariate) and for the novel ML
16

 Indicator 

(univariate, because treated as a single composite variable containing all the information of other 

variables).  

 Variable C-index 

 

Univariate Cox regression 

ML Indicator (18 variables) 0.82 

LVEF
17

 0.75 

Age 0.69 

Post-ischemic Dilated Cardiomyopathy 0.62 

Dyslipidemia 0.62 

Angiography 0.59 

Previous CABG
18

 0.56 

Documented resting or exertional ischemia 0.58 

Paroxysmal or chronic atrial fibrillation 0.54 

Previous Myocardial Infarction 0.54 

Diabetes 0.53 

Creatinina 0.60 

Gender 0.55 

Acute Myocardial Infarction 0.54 

Smoke 0.51 

Hypertension 0.50 

                                                
16 ML: machine learning 
17 LVEF: left ventricular ejection fraction 
18 CABG: coronary by-pass grafting 
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Angina 0.51 

Previous PCI
19

 0.49 

Vessels 0.48 

Multivariate Cox Regression (18 variables) 0.71 

  

                                                
19 PCI: previous coronary intervention 
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Table 4. Single-variable ablation tests for variable ranking.  The Importance column 

quantifies the increase in performance (in terms of F1 score, see “Methods”) when the variable is 

included in the model. The higher the value, the more important the variable. 

Variable Importance 

Dyslipidemia 1.141 

LVEF
20

 1.106 

Diabetes 1.056 

PMI
21

 1.052 

Paroxysmal or chronic atrial fibrillation 1.044 

Previous CABG
22

 1.041 

Smoke  1.022 

Vessels 1.021 

Creatinina 1.018 

Gender 1.016 

Documented resting or exertional ischemia 1.016 

Previous PCI
23

 1.013 

Angiography 1.013 

Post-ischemic Dilated Cardiomyopathy 1.011 

Hypertension 1.011 

AMI
24

 1.005 

Age 1.001 

Angina 0.995 

  

                                                
20 LVEF: left ventricular ejection fraction 
21 PMI: previous myocardial infarction 
22 CABG: coronary by-pass grafting 
23 PCI: previous coronary intervention 
24 AMI: acute myocardial infarction 
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Table 5. Multi-variable ablation tests for variable ranking. The Importance column 

quantifies the increase in performance (in terms of F1 score, see “Methods”) when the group of 

variables is included in the model. The higher the value, the more important the group of 

variables.  

Cluster Variables Importance 

1 Dyslipidemia, Paroxysmal or chronic atrial fibrillation 1.243 

2 LVEF
25

, Post-ischemic Dilated Cardiomyopathy 1.101 

3 Previous CABG
26

, Angiography, Vessels 1.081 

4 Diabetes, Hypertension 1.080 

5 Previous PCI
27

, Previous Myocardial Infarction 1.061 

6 Gender, Age, Smoke, Creatinine 1.053 

7 Angina, AMI
28

, Documented resting or exertional ischemia 1.034 

  

                                                
25 LVEF: left ventricular ejection fraction 
26 CABG: coronary by-pass grafting 
27 PCI: previous coronary intervention 
28 AMI: acute myocardial infarction 
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Machine Learning improves cardiac death prediction patients with ischemic heart disease 
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