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Abstract

Climate change and global warming have contributed to increase terrestrial drought, causing negative impacts on agricultural
production. Drought stress may be addressed using novel agronomic practices and beneficial soil microorganisms, such as
arbuscular mycorrhizal fungi (AMF), able to enhance plant use efficiency of soil resources and water and increase plant
antioxidant defence systems. Specific traits functional to plant resilience improvement in dry conditions could have devel-
oped in AMF growing in association with xerophytic plants in maritime sand dunes, a drought-stressed and low-fertility
environment. The most studied of such plants are European beachgrass (Ammophila arenaria Link), native to Europe and
the Mediterranean basin, and American beachgrass (Ammophila breviligulata Fern.), found in North America. Given the
critical role of AMF for the survival of these beachgrasses, knowledge of the composition of AMF communities colonizing
their roots and rhizospheres and their distribution worldwide is fundamental for the location and isolation of native AMF
as potential candidates to be tested for promoting crop growth and resilience under climate change. This review provides
quantitative and qualitative data on the occurrence of AMF communities of A. arenaria and A. breviligulata growing in
European, Mediterranean basin and North American maritime sand dunes, as detected by morphological studies, trap culture
isolation and molecular methods, and reports on their symbiotic performance. Moreover, the review indicates the dominant
AMF species associated with the two Ammophila species and the common species to be further studied to assess possible
specific traits increasing their host plants resilience toward drought stress under climate change.
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Introduction ecologically disruptive event, greatly affecting human life

and the world’s food security (Naumann et al. 2021).

Climate change and global warming have contributed to
increase terrestrial drought, causing serious negative impacts
on agricultural production and posing severe threats to
worldwide food security (Dai 2011). Drought is estimated
to negatively affect plant growth for more than 50% of ara-
ble land by 2050, thus representing an economically and
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Drought stress may be addressed by using novel agro-
nomic practices able to enhance use efficiency of soil
natural resources and water and to increase plant antioxi-
dant defence systems. Several studies have been focused
on the isolation, selection, and application of beneficial
soil microorganisms, such as arbuscular mycorrhizal
fungi (AMF), able to enhance drought tolerance in food
crops, including cereals, fruit trees, and vegetables, by
means of diverse mechanisms beyond improved nutri-
tional status. AMF inoculation may produce changes in
root system architecture and functioning and enhance soil
water retention in dry sands, thus playing a key role in
the performance of plants growing in drought conditions
(Augé 2004; Wu et al. 2013; Jayne and Quigley 2014; Pau-
wels et al. 2023).
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Despite the growing recognition of the AMF’s role
in plant use efficiency of water and soil resources, the
exploitation of specific fungal traits functional to the
improvement of plant resilience to climate change remains
a significant challenge. Such traits relate to AMF’s ability
to germinate, grow, and develop large hyphal networks
expressing water and nutrient transporter genes at high
temperatures and under drought conditions, as well as to
induce the production of antioxidant compounds able to
protect plants against oxidative damage caused by abiotic
stresses (Rouphael et al. 2015). Another important trait
concerns the production of mucilage and exopolysaccharides
by AMF and their associated bacteria, compounds which
can increase soil aggregation and water retention, thereby
helping plants to face drought (Miller and Jastrow 2000;
Rillig and Mummey 2006; Piischel et al. 2020; Kakouridis
et al. 2022; Pauwels et al. 2023). Moreover, AMF genetic
organization represents a further fungal trait possibly
affecting mycorrhizal responses, as reported for four potato
cultivars colonized by homokaryotic strains, that showed
greater host biomass and tuber production, compared with
plants inoculated with dikaryotic strains (Terry et al. 2023).

It is conceivable that AMF strains showing the described
features may have developed when growing in association
with xerophytic plants in maritime sand dunes, a drought-
stressed, low-fertility environment for plant growth and
development, mainly because of dune instability, low water
retention, seasonal extreme temperatures, irradiance, salinity
and drought, high evaporation rates, and low concentrations
of nutrients and organic matter (Koske and Polson 1984;
Maun 2009). Indeed, the survival, establishment, and growth
of plants in such unfavourable ecosystems are promoted by
AMF, representing an effective means of dune revegetation
and restoration, in particular under stress conditions (Sylvia
1989; Gemma and Koske 1997; Corkidi and Rincén 1997,
Tadych and Blaszkowski 1999; Gemma et al. 2002; Koske
et al. 2004; Camprubi et al. 2011, 2012). Such beneficial
effects have been ascribed to extensive extraradical myce-
lium that functions as an auxiliary absorbing system, with
its fine hyphae efficiently exploring the soil and providing
host plants with water and mineral nutrients, in particular
phosphorus, the most important growth-limiting nutrient
in such harsh environments (Read 1989; Giovannetti 2008;
Kakouridis et al. 2022; Battini et al. 2016). For example,
in maritime sand dunes, AMF mycelium may reach a dry
weight of 34 ug per g of sand, representing up to 30% of sand
dune microbial biomass (Olsson and Wilhelmsson 2000).

Several studies have been carried out on European beach-
grass (Ammophila arenaria Link), native to maritime sand
dunes of Europe and the Mediterranean basin, and Ameri-
can beachgrass (Ammophila breviligulata Fern.), found in
North American dunes. These two plant species long have
been known as dune-building grasses and recently have been
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valued for their ecosystem engineering traits (Reijers et al.
2019; Lammers et al. 2023). They are highly mycotrophic
species, as reported by many authors worldwide. In North
American Atlantic coastal dunes, from Virginia to Maine,
A. breviligulata represented the dominant sand-colonizing
plant species, showing high levels of mycorrhizal coloniza-
tion, from 20 to 80% of root length (Koske and Polson 1984),
while when planted in barren sites in Cape Cod in Massa-
chusetts (USA), 78% of plants were mycorrhizal (Gemma
and Koske 1997). In European coastal sand dunes, the per-
centage of colonized root length of A. arenaria ranged from
7-33% in Tuscany (Italy) to 26—80% in the Netherlands,
0-30% in the Northeast of Spain, and 5-70% in six differ-
ent sites among England, Wales, the Netherlands, Belgium,
and Portugal (Giovannetti and Nicolson 1983; Giovannetti
1985; Kowalchuck et al. 2002; Rodriguez-Echeverria et al.
2008; Camprubi et al. 2010). When A. arenaria plants were
experimentally inoculated with native AMF originating from
their rhizosphere, mycorrhizal colonization was 55% (de la
Peiia et al. 2006).

Given the critical role of the mycorrhizal symbiosis for
the survival, nutrition, and growth of these two species of
beachgrass living in drought-stressed and low-fertility mari-
time sand dunes, knowledge of the composition of AMF
communities colonizing their roots and rhizospheres is of
primary importance because some taxa especially could
have developed symbiotic traits aiding the host plants to
tolerate such harsh environmental conditions. Accordingly,
native AMF from A. arenaria and A. breviligulata living in
maritime sand dunes might be isolated as potential candi-
dates for inocula promoting crop growth and resilience under
climate change.

In order to pursue such an objective, in this review we
report qualitative and quantitative data on (i) the occurrence
of AMF in A. arenaria and A. breviligulata thizospheres, as
detected by morphological studies and trap culture isolation,
in some cases followed by molecular identification; (ii) the
richness of AMF communities colonizing beachgrass roots
and rhizospheres, as detected by molecular methods, such as
PCR cloning and sequencing (PCR-CS), PCR-denaturating
gradient gel electrophoresis (PCR-DGGE), and Illumina
high-throughput metagenomic sequencing; and on (iii) sand
dunes native AMF plant-growth promoting properties.

Occurrence of AMF in A. arenaria and A.
breviligulata rhizospheres, as detected
by morphological studies and trap cultures

Early evidence of the occurrence of mycorrhizal symbiosis
in A. arenaria was reported in coastal sand dunes of Scot-
land and England, UK, with the description of the internal
and extraradical mycelium of root endophytes, attributed to



Mycorrhiza

Endogone, a genus which no longer belongs to the Glomero-
mycota (Nicolson 1958, 1959, 1960). Successive works con-
firmed the mycorrhizal status of A. arenaria and identified
Rhizoglomus fasciculatum as its only fungal root symbiont in
Scottish sand dunes (Nicolson and Johnston 1979) (Table 1;
Fig. 1). Here the generic name Rhizoglomus is used, as syn-
onymous with Rhizophagus (Sieverding et al. 2015; Walker
et al. 2017), and the original names of AMF taxa have been
updated following the sites: https://glomeromycota.wixsite.
com/lbmicorrizas and http://www.amf-phylogeny.com/.

Successive studies after 1979 found many AMF species
from A. arenaria rhizospheres, regardless of geographic loca-
tion. For example, 25 different AMF species were described
from maritime sand dunes adjacent to the Mediterranean
Sea in Israeli (Btaszkowski and Czerniawska 2006), and 21
and 26 from dunes adjacent to the Baltic Sea in Stowirski
National Park (Poland) and in Bornholm Island (Denmark),
respectively (Tadych and Btaszkowski 2000; Btaszkowski
and Czerniawska 2011) (Table 1; Fig. 1).

Fig. 1 Distribution of the species of arbuscular mycorrhizal fungi
associated with Ammophila arenaria rhizosphere and roots in mari-
time sand dunes of Europe and Mediterranean areas. The numbers in
the boxes refer to Tables 1 and 2. The different colours of the boxes

It is interesting to note that several new species from the
rhizosphere of A. arenaria growing in maritime sand dunes
were isolated and/or molecularly described: Complexispora
multistratosa, Complexispora mediterranea, Dominikia
achra, Diversispora peridiata, Diversispora slowinskiensis,
Diversispora valentine, Entrophospora drummondii, Glomus
tetrastratosum, Microkamienskia perpusilla, Rhizoglomus
irregulare, Septoglomus jasnowskae (Btaszkowski et al.
2006, 2008, 2009a, b, 2014a, b, 2015, 2023; Guillén et al.
2020a, b) (Table 1; Fig. 1).

On the other side of the Atlantic Ocean, only AMF spe-
cies associated with A. breviligulata were investigated, while
no studies were performed on AMF species of A. arenaria
in the west coast of the USA, where it is considered an
invasive species. The data on A. breviligulata come from
only three places in North Atlantic sand dunes, with high
numbers of AMF species recovered, 17 and 29 from Cape
Cod, MA and the Magdalen Islands archipelago, Québec,
respectively (Koske and Gemma 1997; Dalpé et al. 2016)

indicate works based only on morphological studies (green), on mor-
phological studies with taxa confirmed by molecular analyses (red),
or only on molecular analyses (blue)
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(Table 1). It is interesting to note that in Rhode Island and
Cape Cod sand dunes, A. breviligulata was predominantly
associated with Acaulospora scrobiculata and Gigaspora
gigantea (Koske 1981; Koske and Halvorson 1981), two spe-
cies that were not found in A. arenaria rhizospheres (Fig. 2).
Only one new AMF species associated with A. breviligulata
was described, Quatunica erythropa (Koske and Walker 1984),
probably because of few studies carried out on such species (10
studies), compared with those on A. arenaria (26) and to the
absence of studies in the years from 1997 to 2016 (Table 1).

Occurrence of AMF communities colonizing
A. arenaria and A. breviligulata roots,
as detected by molecular methods

The first thorough molecular study of an AMF community
associated with A. arenaria was performed by Kowalchuk
et al. (2002) in Dutch coastal sand dunes, utilizing the poly-
merase chain reaction-denaturing gradient gel electropho-
resis (PCR-DGGE) targeting the 18S rRNA gene (using the
AMI and NS31-GC clamp primer pair). Sequence analysis
of excised DGGE bands allowed the detection of at least
seven different species, belonging to the genera Glomus and
Scutellospora, i.e. F. coronatum, F. fragilistratus, Diversis-
pora spurca, Glomus sp., Racocetra castanea, Dentiscutata
cerradensis, and C. pellucida. Although PCR-DGGE is an
excellent molecular method able to distinguish even minor
levels of sequence variation, AMF species occurring in low
abundance were overlooked, such as Acaulospora and Glo-
mus spp. of which a few spores were isolated from sand,
while their sequences were not recovered from DGGE bands
(Table 2). This could be ascribed to the method which allows
the detection of populations representing > 1-2% of the total
and also ascribed to the primer pair used, unable to provide
total coverage of the AMF clade (Redecker et al. 2000).
The richness and composition of AMF communities
associated with A. arenaria in Belgium coastal sand dunes,
reproduced in trap cultures and investigated by PCR clon-
ing and sequencing using the primers NS31/AM1, produced
31 sequences of the genus Glomus, while no Scutellospora
sequences were recovered, although detected in the rhizo-
sphere by morphological observations (de la Pefia et al.
2006). This confirms the difficulty of covering the entire
AMF clade by the primers used. The same primers, utilized
for cloning and sequencing a fragment of the SSU rDNA
extracted and amplified from the roots of A. arenaria in
Portuguese sand dunes, allowed the detection of AMF
sequences belonging to the genus Glomus, some of which
clustered with Rhizoglomus intraradices, R. fasciculatum,
and Septroglomus constrictum (Rodriguez-Echeverria and
Freitas 2006). It is interesting to note that the sequencing of
spores obtained from trap cultures showed the presence of

Racocetra persica, whose sequences were not retrieved from
A. arenaria roots, confirming previous findings and sug-
gesting that the low level of root colonization by R. persica
could have led to a preferential amplification of the more
abundant sequences of Glomus spp. during PCR (Rodriguez-
Echeverria and Freitas 2006) (Table 2).

The regular occurrence of Racocetra fulgida and Racoce-
tra persica in A. arenaria rhizospheres, as assessed by mor-
phological methods, was confirmed utilizing both NS31/
AMI1 and ITS1F/ITS4 primers in an in situ collection of
coastal sand dunes AMF within a UNESCO Biosphere
Reserve in Tuscany, Italy (Turrini et al. 2008). Two recent
studies on sand dunes systems located at Curracloe, Wex-
ford, Ireland, showed that the AMF root communities of A.
arenaria comprised Gigasporaceae, Entrophospora, Para-
glomus, and Glomus, while AMF spores collected from the
rhizosphere showed a greater richness, although a taxonomic
assignment to the species level was not provided (Lastovetsky
et al. 2022, 2024) (Table 2).

The only molecular work investigating AMF diversity
in the rhizosphere of A. breviligulata reported the occur-
rence of G. gigantea, G. albida, G. rosea, Racocetra spp.,
Scutellospora spp., Cetraspora sp., Acaulospora spp., Den-
tiscutata sp., and Corymbiglomus sp. in plants growing in
North Atlantic maritime sand dunes at Cape Cod National
Seashore, MA, USA (Lastovetsky et al. 2018).

It is interesting to note that different AMF species were
associated with A. arenaria and A. breviligulata: only 20
species in common have been reported, while 20 were recov-
ered only from A. breviligulata and 33 only from A. arenaria
(Fig. 2). The most surprising finding is represented by the
consistent occurrence of taxa of the genus Gigaspora from
A. breviligulata, i.e. G. albida, G. gigantea, G. margarita,
and G. rosea, taxa that were never recovered from A. are-
naria, although two of them, G. gigantea and G. margarita,
occurred in sand dunes of the Paleartic biogeographical
realm (Sturmer et al. 2018). It is possible that such species
either did not occur in the investigated sites or showed a
selective association with plants other than A. arenaria.

Symbiotic performance of native sand
dune AMF

The hypothesis that AMF isolated from maritime sand dunes
might have developed symbiotic traits functional to plant
survival and growth in such a harsh environment stimulated
a few studies, aimed at assessing the performance of native
AMEF isolated from the rhizosphere of sand dune plants.
As early as 1979, Nicolson and Johnston carried out the
first plant growth experiment in pots, using unsterile dune
sands, utilizing R. fasciculatum from Scottish maritime sand
dunes, as compared with F. geosporum from agricultural
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A. breviligulata

Acaulospora laevis
Acaulospora scrobiculata
Cetraspora gilmorei
Dentiscutata reticulata
Gigaspora albida
Gigaspora gigantea
Gigaspora margarita
Gigaspora rosea
Glomus macrocarpum
Glomus reticulatum
Glomus rubiforme
Kamiemskia bistrata
Oehlia diaphana
Paraglomus occultum
Quatunica erythropa
Rhizoglomus clarum
Rhizoglomus
microaggregatum
Scutellospora calospora
Septoglomus deserticola
Sieverdingia tortuosum

20

(27.4%)

{

Acaulospora lacunosa
Acaulospora mellea
Cetraspora pellucida
Diversispora aurantia
Diversispora pustulata
Diversispora spurca
Diversispora versiformis
Entrophospora drummondii
Entrophospora etunicata
Entrophospora infrequens

A. arenaria Ambispora gerdemannii

Acaulospora paulineae
Archaeospora trappei
Cetraspora armeniaca
Complexispora multistratosa
Complexispora mediterranea
Corymbiglomus corymbiforme
Corymbiglomus globiferum
Dentiscutata cerradensis
Diversispora arenaria
Diversispora eburnea
Diversispora gibbosa
Diversispora peridiata
Diversispora slowinskiensis
Diversispora trimurales
Dominikia achra
Entrophospora claroidea
Entrophospora walkerii
Funneliformis coronatum
Funneliformis fragilistratum
Glomus badium

Glomus microcarpum
Microkamienskia perpusilla
Pacispora franciscana
Pacispora scintillans
Paraglomus laccatum
Racocetra castanea
Rhizoglomus intraradices
Rhizoglomus vesiculiferum
Sclerocystis sinuosa
Scutellospora dipurpurescens
Septoglomus xanthium
Simiglomus hoi

Entrophospora lamellosa
Funneliformis caledonius
Funneliformis geosporum
Funneliformis mosseae
Racocetra fulgida
Racocetra persica
Rhizoglomus aggregatum
Rhizoglomus fasciculatum
Rhizoglomus irregulare
Septoglomus constrictum

Fig.2 Venn diagram showing the AMF species associated with Ammophila arenaria (green), Ammophila breviligulata (orange), and shared taxa

soils, inoculated on A. arenaria and Zea mays. Both AMF
significantly improved A. arenaria growth, compared with
control plants: in young A. arenaria plants dry weight
increased by 18%, while maize plants dry weights were not
significantly different when inoculated with R. fasciculatum
or F. geosporum alone, showing significant increases - up
to 120% - only when the two AMF were inoculated together
(Nicolson and Johnston 1979). Although the authors con-
cluded “that plants grow in such adverse conditions as sand
dunes because they are mycorrhizal”, control plants were
able to grow, even if poorly.

In a revegetation and restoration program of a dune
system where naturally occurring plants previously had
been destroyed by grazing livestock and human use, in Cape
Cod National Seashore, MA, USA, the inoculation of A.
breviligulata with the dominant native AMF G. margarita,
R. clarum and S. calospora, produced significant increases
in culms (+14%) and inflorescences (+67%), compared with
control plants (Gemma and Koske 1997).

The mixture of two AMF, Septoglomus deserticola and
Glomus macrocarpum, isolated from sand dunes along the
north Atlantic coast of Florida increased shoot dry weight,
root length, and plant height by 219, 81, and 64%, respec-
tively, compared with control plants, in a replenishment
study with the sand dune grass Uniola paniculata (sea
oats) at Miami Beach, Florida (Sylvia 1989). The higher

performance of sand dunes native AMF, as compared with
two different commercial isolates, was reported in a study
performed in Iceland on another sand dune grass, Leymus
arenarius; interestingly, the foliage and root dry mass were
the highest when inoculated with native AMF even com-
pared with added phosphorus treatments (Greipsson and
El-Mayas 2000). Similarly, native AMF isolated from Het
Zwin, Knokke-Heist natural reserve, in Belgium, signifi-
cantly increased biomass (60%), number of tillers (45%), and
leaves (26%) in young A. arenaria plants while reducing root
infection and multiplication of the root-feeding nematode
Pratylenchus penetrans (de la Pefia et al. 2006).

A microcosm experiment carried out at the University
of Rhode Island, USA, showed that native AMF inoculum
significantly increased the survival ability of A. breviligu-
lata in dune sand under drought stress, as 78% of mycor-
rhizal plants survived, against 20% of non-inoculated ones
(Koske and Polson 1984). As to saline stress, AMF isolates
from coastal sand dunes did not enhance lettuce leaf bio-
mass, compared with isolates originating from desert or
field soil (Tigka and Ipsilantis 2020), but three out of six
AMF assemblages from Greek coastal sand dunes under
high salinity levels helped olive tree cuttings to tolerate the
stress (Kavroulakis et al. 2020).

An interesting work was carried out on 15 sand dune
plant species that comprised 12 grasses and three shrubs
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(Camprubi et al. 2011). The authors assessed the growth
effects of a consortium of native AMF isolated from six
sand dune plants including A. arenaria in the Mediterra-
nean northeast coast of Spain as compared with no inoc-
ulation and with R. intraradices BEG72, a strain isolated
from an agricultural soil in Spain that had been shown to
be highly efficient in a wide range of experimental studies.
They reported that seven plant species showed higher dry
weights when inoculated with either BEG72 or the native
AMF versus the controls, while five of those plant species
increased more when inoculated with the native AMF than
with BEG72. For example, Otanthus maritimus and Elymus
farctus growth was significantly improved by native AMF
but not by BEG72, although the reverse was also found, as
only BEG72 boosted Ononis natrix and Armeria maritima
growth. Moreover, the study revealed a high mycorrhizal
dependency of five of the plant species investigated, sug-
gesting that, overall, the limited growth of control plants
could be ascribed to the lack of adequate AMF inoculum
(Camprubi et al. 2011). As the consortium of native AMF
was composed of diverse AMF species, it is conceivable
that they reflected a high functional diversity, consistent
with previous findings (Munkvold et al. 2004; Mensah et al.
2015; Turrini et al. 2018).

Overall, the few works performed to test the symbiotic
performance of AMF isolated from sand dunes did not inves-
tigate the mechanistic aspects of AMF activity, which could
uncover the potentially beneficial fungal traits relevant to
drought tolerance. Hence, the question as to whether AMF
isolated from the rhizospheres of maritime sand dune plants
may promote plant growth and resilience, protecting agricul-
tural plants from drought, represents a demanding challenge
to be pursued by further extensive and in-depth studies.

Concluding remarks and future perspectives

This review shows that A. arenaria and A. breviligulata
growing in the harsh environment of maritime sand dunes,
subject to the selective pressure of seasonal extreme tem-
peratures and drought, host rich and large AMF communi-
ties in their roots and rhizospheres. Qualitative and quan-
titative data are provided on the occurrence of the diverse
AMF species in different sites in Europe, the Mediterranean
basin, the USA, and Canada. The dominant species belong
to Gigasporales and Glomerales, consistent with previous
data on their prevalence in maritime sand dunes worldwide
(Stiirmer et al. 2018), but members of Acaulosporaceae and
Diversisporaceae also are present.

Among the 33 AMF species found with A. arenaria, the
most frequently recovered are those belonging to the group
Rhizoglomus fasciculatum/intraradices/irregulare, occur-
ring in the sand dunes of several countries across Europe

@ Springer

and the Mediterranean basin, i.e. Belgium, Denmark,
Italy, Poland, Portugal, Spain, and the UK, together with
Racocetra persica occurring in Italy, Spain, and Portugal,
and Funneliformis coronatum found in the Netherlands
and Israel. Among the 20 AMF species recovered from
A. breviligulata, Acaulospora scrobiculata, and Gigaspoa
gigantea are the most frequent, while R. persica was the
prevalent species among those common to the two plant
species. Such fungus species could be further studied to
assess possible specific traits allowing their host plants
to withstand environmental stresses and thrive in hostile
ecosystems. As there has been very little testing of AMF
isolates from maritime sand dunes with crop plants under
drought-stressed agronomic conditions, further investiga-
tions should be carried out in microcosms, macrocosms
and in the field, under different levels of drought stress, in
order to assess the ability of such AMF isolates to survive
in the new soil environment and compete with native sym-
bionts, while maintaining their potential beneficial traits.

In the years to come, the availability of AMF showing
promising beneficial characteristics will allow the formu-
lation of innovative consortia, to be commercially repro-
duced and utilized as a viable alternative or in addition to
current ones. Such newly designed consortia could be used
as inoculants for increasing plant water and nutrient use
efficiency, in turn enhancing crop productivity and resil-
ience toward drought stress in sustainable food production
systems under climate change.
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