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Abstract—Conventional neural networks (NNs) for image 

classification make use of a convolutional layer and a feedforward 

(FF) classification layer. This paper presents a novel classification 

layer architecture and a training paradigm, in which the FF layer 

is split into small and specialized FF nets called Noise Boosted 

Receptive Fields (NBRFs), one per class. Each i-th NBRF provides 

three membership degrees: to the i-th class, to the super class 

made by its complementary classes, and to an extra class 

representing out-of-classes images. The training process 

artificially generates extra-class samples, via image 

transformation and noise addition. Experimental results, carried 

out on MNIST, KMNIST and FMNIST datasets show that, with 

respect to an FF layer, the NBRF layer improves robustness and 

accuracy of classification. The repository with the source code and 

experimental data has been publicly released to facilitate 

reproducibility and widespread adoption. 

Keywords—neural network, supervised learning, boosting, 

receptive field, image classification. 

I. INTRODUCTION AND BACKGROUND 

Convolutional Neural Networks (CNNs) are largely 

recognized as effective models for solving image classification 

tasks. CNNs employs convolutional hidden layers for feature 

extraction, i.e. for reducing data dimension and redundancy, 

generating feature maps. CNNs adopt feedforward (FF) neural 

networks to generate the output class from the feature space.  

The explosion of connections needed by FF architectures for 

complex mappings leads to increasing difficulties in modeling 

and to inability to cope with highly nonlinear relationships [1]. 

To tackle this problem, in this paper a novel architecture is 

proposed, based on the concept of Receptive Field (RF) [1][2]. 

The concept of RF is related to local modeling, i.e., it relates to 

sub-models that focus predominantly on some selected regions 

of the entire modeling domain. In contrast to fully dense 

networks, appropriate RFs help the network to focus on local 

features of the input. Sequences of convolutional layers are an 

example of this method, which allows networks to extract 

complex, hierarchical features from increasingly large portions 

of the input [3]. This research work aims to adopt this design 

approach for the classification layer. 

In the literature, an FF neural network architecture based on 

sub-models is known as modular neural network. It is made by 

a collection of neural networks moderated by a subsequent layer 

[4]. Each neural network serves as a module and operates on 

separate inputs to accomplish some subtask of the overall task. 

The moderator layer takes the output of each module and 

provides the output of the network as a whole. Recent works also 

focus on modular architectures to achieve model-intrinsic 

interpretability [4]. For example, different classes in a 

classification task may belong to a common superclass. This sort 

of category hierarchy can be exploited through specific network 

architectures as shown in [5]. In the literature, a type of 

interpretable neural architecture based on RF and computational 

stigmergy, called stigmergic RF, has been designed and 

successfully used to time series for behavioral analysis via 

wearable sensing [6][7][8]. Here, each RF is related to a 

different time series pattern. Another application field where an 

RF-based architecture has been successfully used to achieve 

interpretability is that of financial time series [9]. 

The novelty of the undertaken study relates to a new way in 

which RFs are being formed and optimized for image 

classification. Specifically, this work introduces the Noise 

Boosted Receptive Field (NBRF), a classification architecture 

and a training paradigm based on modular FF nets. With respect 

to a conventional FF classification layer with the same number 

of parameters, a layer of NBRFs is more accurate and robust, 

because it allows to recognize noise (extra-class) samples. Noise 

samples are artificially generated at training time via image 

transformation and noise addition. Experimental results, carried 

out on MNIST, KMNIST and FMNIST datasets, compare the 

FF and the NBRF layers, with different extra-class generation 

techniques. As a result, the NBRF layer improves robustness and 

accuracy of classification. The repository with the source code 

and experimental data has been publicly released to facilitate 

reproducibility and widespread adoption [11]. 

The paper is organized as follows. In Section II, the design 

of the NBRF is formally discussed. Experimental studies related 

to MNIST, KMNIST and FMNIST benchmarks are documented 

in Section III. Finally, Section IV draws some conclusions and 

future work. 

II. DESIGN OF NOISE BOOSTED RECEPTIVE FIELDS

In this section, the NBRF classification model is formalized 

and discussed. Fig. 1a shows the reference architecture. Given 

an input image �, to determine its class �(�) � ��	, . . . , ��, a

CNN made up of convolutional and pooling layers is first used 

to extract the related feature vector �, as it is commonplace for

image classification [10]. The feature vector is then processed 

by n small NBRFs, each made by an FF neural net specialized 
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on recognizing a domain class. Finally, a moderator component 

(MOD) takes the output of each NBRF to determine the overall 

output �. Fig. 1b shows the conventional CNN-FF, based on a 

monolithic FF classification layer followed by a simpler 

moderator.     

 
(a) 

 
(b) 

Fig. 1. (a) NBRF architectural model. The CNN subnetwork is made up of 

convolutional and pooling layers, while each subnetwork FFi is made up of 

feedforward and softmax layers, specialized to recognize whether the input 

image belongs to its class or not, or if it is a noise (extra-class) input. (b) 

Conventional CNN-FF architectural model, with a monolithic FF layer. 

A. Receptive fields and moderator logic 

An i-th NBRF provides three real output values, i.e., ���, ���� 
and ���, representing the membership degree of x to C�, C� �, and C�, respectively. Specifically, C� is the i-th class, whereas C� � is 

the superclass made by the union of the classes complementary 

to C�: 
C� � = � C����  (1) 

C�  is an extra class representing out-of-classes images. C� 
provides robustness, i.e., the capability to cope with noise and 
undetermined input. More precisely, the outputs of an NBRF are 
provided via the softmax function. As a consequence, ���, ����, 
and ��� are normalized, and their sum is 1. 

The moderator employs the following inference formulas to 

compute the strengthened membership degree of the input 

image x to the i-th class: Μ��(�) = ���(�) ⋅ �1 − ����(�)� ⋅ �1 − ���(�)� (2) 

  

which combines three conditions beneficial to the membership 

of x to the i-th class: (a) the membership to the i-th class, (b) the 

non-membership to the complementary superclass, and (c) the 

non-membership to the extra class.  

Given the strengthened membership degrees Μ��(�) of each 

j-th RF, the class of the input image x is assigned as follows: 

 

�(�) =  �! "#   max' Μ��(�) =  Μ��(�) > ℳ �* +,ℎ./0"1.  (3) 

 

where ℳ represents the limit membership degree for assigning 

a sample to a class. It is computed after the training process, as 

the optimum value minimizing the classification error, by 

applying Formula (3) to all the input images x of the training set 

and of the extra-class set. A good value of ℳ  can be easily 

found via a grid search on the interval [.5, .9] with step 0.1. 

B. Noise boosting approaches 

According to the supervised learning paradigm, the NBRF 
layer is trained via labelled images. The three classes encoded 
by an NBRF are labelled with binary values, i.e., (�! , �!̅ , �*) ∈�0,15. Two simpler variants can be also considered. The first 
variant, hereafter called RF, does not consider �* , i.e., it is 
without noise boosting. In this case, ���(�) = 0 in (2), and then (�! , �!̅) ∈ �0,16. Another variant, hereafter called NBRF2, does 

not consider the complementary superclass �̅! . In this case, ����(�) = 0 in (2), and then (�! , �*) ∈ �0,16. 

For a given training set, for a better accuracy and robustness, 
a set of noisy inputs is artificially generated via data 
augmentation techniques. This noise boosting allows the weak 
learners represented by the NBRFs to generate a global strong 
learner [12]. 

Specifically, the following three techniques are considered 
effective: 

1) Statistical surrogate of the training set (S for short): 

samples generated from a normal distribution with the mean 

and variance of the training set; as a consequence, the 

generated samples have the same statistical properties of the 

original ones; 

2) Averaging of training subsets (T for short): samples 

generated as the mean of randomly extracted samples of the 

training set; as a result, the generated samples have the same 

features of the training set; 

3) Averaging of the training batch (B for short): samples 

generated as the mean of the samples of the current training 

batch; as an effect, the generated samples have the same 

features of the training set and are also correlated to the 

batch elements; this makes the classification task more 

difficult. 

The source of generation of the artificial samples can be of 
two different types: 

1) Input images x (I for short), i.e., the source samples are sets 

of training images; in this case, the generated noise passes 

through the CNN, and then the classification layer is fed 



with homogeneous samples. As a side effect, the CNN can 

also learn the noise.   

2) Image feature vectors y (F for short), i.e., the source 

samples are the feature vectors extracted from sets of 

training images. Since the noise is generated in the feature 

space, only the classification layer is affected. As a side 

effect, the generated vectors can be artificial because they 

are not generated by the CNN. 

By combining the different approaches, and considering 
NBRF2, RF, and NBRF, the variants listed in Table I are 
considered effective. 

TABLE I.  TYPES OF NEURAL NETS ARCHITECTURES 

Acronym Description 

NBRF2 – SF 

Output: without complementary super-class; 

Noise sample generation: statistical surrogate; 

Noise sample source: feature vectors. 

NBRF2 – SI  

Output: without complementary super-class; 

Noise sample generation: statistical surrogate; 

Noise sample source: input images. 

NBRF2 – TF 

Output: without complementary super-class; 

Noise sample generation: averaging training set; 

Noise sample source: feature vectors. 

NBRF2 – TI 

Output: without complementary super-class; 

Noise sample generation: averaging training set; 

Noise sample source: input images. 

NBRF2 – BF 

Output: without complementary super-class; 

Noise sample generation: averaging training batch; 

Noise sample source: feature vectors. 

NBRF2 – BI 

Output: without complementary super-class; 

Noise sample generation: averaging training batch; 

Noise sample source: input images. 

RF 
Output: without complementary super-class, and 

without noise extra-class. 

NBRF – SF 

Full output; 

Noise sample generation: statistical surrogate; 

Noise sample source: feature vectors. 

NBRF – SI  

Full output; 

Noise sample generation: statistical surrogate; 

Noise sample source: input images. 

NBRF – TF 

Full output; 

Noise sample generation: averaging training set; 

Noise sample source: feature vectors. 

NBRF – TI 

Full output; 

Noise sample generation: averaging training set; 

Noise sample source: input images. 

NBRF – BF 

Full output; 

Noise sample generation: averaging training batch; 

Noise sample source: feature vectors. 

NBRF – BI 

Full output; 

Noise sample generation: averaging training batch; 

Noise sample source: input images. 

CNN – FF Conventional convolutional and feed-forward layers. 

 

C. Loss function 

The overall architecture, i.e., feature extraction and 

classification layers, is trained using the cross-entropy as a loss 

function. More specifically, the overall objective function is the 

sum of the cross-entropy functions of all NBRFs. 

For a given NBRF, the loss function is defined as the 

weighted average of the three cross-entropy functions related to 

the three outputs. The cross-entropy function of the c-th 

membership value, � = �! , �!̅ , �*, provided by an NBRF is the 

following: 

ℎ7(�) = − 8 �79(�) ⋅ :+;(�<(�))=  (4) 

where �<(�) and �79(�) are the membership value provided 
by the NBRF and the target value, respectively. 

As discussed on the labeling process, target values are 
binary, i.e., �79(�) ∈ �0,1. The cross-entropy function of the 
NBRF is the following: 

>?@AB(�) = 8 073 ⋅ ℎ7(�)7D7E,7E̅,7F
 

(5) 

where 07 is the weight used for class balancing. The weight 07 

is calculated according to the cardinality ratio between each i-

th class and the related i-th superclass or the noise extra-class, 

in order to tackle class unbalancing, as follows:  
07 = G |C�| |C�|⁄ "# � ∈ C� |C�| |C� �|⁄ "# � ∈ C� � |C�| |C�|⁄ "# � ∈ C�

 (6) 

Indeed, batch size and number of extra-class samples per 
batch are two independent hyperparameters. As a consequence, 
the number of generated samples can lead to unbalanced 
training. In order to balance the impact of labelled and classless 
images, the losses corresponding to each type of image are 
weighted in Formula (5). In the case of RF and NBRF2, Formula 
(5) and Formula (6) must be simplified, by removing the noise 
extra-class and the complementary super class, respectively. In 
particular, the denominator value of Formula (5) becomes 2, and 
the number of cases in Formula (6) become two. 

III. EXPERIMENTAL STUDIES 

To investigate the effectiveness of the NBRF architecture, 

some experiments have been carried out on three real-world 

problems used for benchmarking machine learning algorithms: 

MNIST [12], Fashion-MNIST [14], and K-MNIST [15]. 

MNIST is made of handwritten digits images, Fashion-MNIST 

is a dataset of fashion article images, whereas K-MNIST is made 

of handwritten Japanese characters. All the datasets are made by 

a training set of 60,000 examples, and a test set of 10,000 

examples. Each example is a 28×28 image, with pixels in 0–255 

grayscale values, associated with a class label of 10 possible 

classes. The task is to classify a given image into one of such 10 

classes. Fig.2 shows some sample data for each dataset. 

A. Architectural settings 

All the types of architecture listed in Table I have been 
developed and compared. A repository with the source code and 
experimental data has been publicly released to facilitate 
reproducibility and widespread adoption [11]. 

To guarantee a fair comparison, the convolutional layers are 

identical for all the networks. The classification layers have been 

structured so as to have a similar number of weights. Table II 

shows the number of weights in the FF layers for each type of 

architecture. The first FF layer is equipped with the same 



number of weights, whereas the second FF layer is slightly 

different because of the structural differences in the number of 

outputs. 

 

(a) 

 

(b) 

 

(c) 

Fig. 2. Sample data of Mnist (a), K-Mnist (b), and F-Mnist (c) datasets. 

TABLE II.  NUMBER OF WEIGHTS IN THE FF LAYERS 

Architecture 1st FF Layer 2nd FF layer Total 

NBRF2 or RF 4.000 M 10 K 4.010 M 

NBRF  4.000 M 15 K 4.015 M 

CNN – FF 4.000 M 50 K 4.050 M 

 

More specifically, the convolutional subnetwork scales the 

input through a batch normalization layer, and then it applies 

two iterations of convolution, nonlinearity, and pooling layers. 

Both convolution layers use 5×5 kernels. The first convolution 

produces an output of 20 channels, while the second one 

produces one of 50. The nonlinearity function used is a Leaky 

ReLU. The pooling operation applies max pooling over 2×2 

subregions. The resulting output is flattened, and corresponds 

to 800 values per image.  

The ten NBRFs are made up of two FF layers. The first layer 

is equipped with 500 units. According to Table II, the number 

of connections of the first layer is then 800×500=400K per 

NBRF. The second layer of an NBRF is made by 3 nodes, 

which become 2 nodes for NBRF2 and RF. Overall, 500×3 = 

15K for NBRF, and 500×2 = 10K for NBRF2 and RF, according 

to Table II. The first layer is followed by a nonlinearity layer 

that applies the Leaky ReLU, while the second layer is followed 

by a softmax layer to normalize the outputs.  

The CNN – FF network has two FF layers, equipped with 

5000 and 10 nodes, respectively. According to Table II, the 

total number of weights is 800×5000 + 5000×10 = 40M + 50K. 

The Adaptive Moment Estimation (Adam) method [16] has 

been used to compute adaptive learning rates for each 

parameter of the gradient descent optimization algorithms, 

carried out with batch method [17]. Early stopping is used as 

stopping criterion for the training loop. The validation loss is 

monitored using a patience value of 3. The optimum value 

found for ℳ is 0.9. Each architecture has been trained 10 times 

to get average performance measurements and confidence 

intervals. 

B. Analysis of Results 

Fig. 3 shows the classification capabilities of the different 

network architectures. Let us assume that the training set and 

the corresponding test set belong to the same dataset. Although 

CNN-FF has been equipped with 35-40K additional weights, it 

is apparent that there are NBRF models, such as NBRF-TI, 

NBRF-SI, and NBRF2-SI, performing better than the 

conventional CNN-FF on the three datasets. 

The impressive advantage of the proposed architecture is 

clear when considering robustness. Let us consider the CNN – 

FF. Fig. 4 shows the percentage of samples classified as noise 

extra-class, i.e., samples whose membership to all classes is 

lower than ℳ  = 0.9. For each cell, a related CNN – FF 

architecture has been trained with the dataset in the ordinates 

and tested with the dataset in the abscissae. As expected, 

diagonal cells achieve a classification close to zero, because the 

training and testing datasets are the same. Thus, no extra-class 

samples are available for that cells. However, the Figure clearly 

shows that the architecture is unable to adequately recognize 

extra-class samples in the other cells. Indeed, a very high noise 

percentage is expected to be found in non-diagonal cells, in 

which the architecture has been trained with a dataset and tested 

with a completely different dataset. However, the non-diagonal 

cells show a very low noise percentage, of about 8-16%.  

 

 

Fig. 3. Average and confidence intervals of the classification accuracy, for 

different architecture variants over different datasets. 



 

Fig. 4. CNN-FF net: percentage of samples classified as noise extra-class, 

with training and testing sets on the ordinates and abscissae, respectively. 

Fig. 5 and Fig. 6 show the same type of matrix for NBRF2–

TI and NBRF2–TF. Here, it can be easily noted that the NBRF-

based architecture sensibly outperforms the conventional CNN-

FF in terms of robustness. Indeed, both NBRF2–TI and NBRF2–

TF are able to recognize a considerable fraction of another 

dataset as a set of noise extra-class samples. Finally, Fig. 7 

shows the performance of an RF net. It is worth noting that 

without noise boosting there is a noticeable decrease of 

performance. This proves the effectiveness of the proposed 

approach. 

Fig.8 shows the time analysis, for the different types of 

noise boosting. The acronym NBRF*-S* stands for NBRF with 

statistical surrogate, with both input images and feature vectors 

as source, with and without the complementary class. Similarly 

for NBRF*-T* and NBRF*-B*, which correspond to NBRF 

with averaging of training subset and of the training batch as 

noise, respectively. In any case, the number of artificial samples 

is equal to the number of the original ones. Finally, RF does not 

consider any noise boosting, and CNN-FF is the conventional 

architecture with a monolithic FF. In particular, Fig. 8a shows 

the number of training steps, (each step is the processing of a 

training batch). It is apparent that the number of training steps 

is variable and not correlated with the type of noise boosting. 

Indeed, it is mainly correlated with the early stop of the training 

process. Nevertheless, the number of steps is a factor affecting 

the absolute training time, represented in Fig.8b. Here, the 

training time in seconds is measured for each noise boosting 

type, with a clear correlation. In particular, CNN-FF is faster 

with respect to the RF-based architectures. In order to 

understand this aspect, let us consider that all experiments have 

been carried out with the following hardware resources: 

• 1 CPU: 2.14 GHz AMD© EPYC, cache 512K L2, 8192K L3; 

• 1 GPU: Dell 16GB NVIDIA® Tesla® T4. 

As a consequence, the training of the 10 RFs cannot be 

carried out in parallel, but in a cycle. In addition, the cost of 

each RF training is comparable with the cost of the monolithic 

FF net, due to their same number of layers. Last, but not least, 

the noise boosting sensibly increases the training set, by 100%. 

 

Fig. 5. NBRF2 – TI net: percentage of samples classified as noise extra-class, 

with training and testing sets on the ordinates and abscissae, respectively.  

 

Fig. 6. NBRF2 – TF net: percentage of samples classified as noise extra-class, 

with training and testing sets on the ordinates and abscissae, respectively. 

 

Fig. 7. RF net: percentage of samples classified as noise extra-class, with 

training and testing sets on the ordinates and abscissae, respectively. 



 

Indeed, the RF architecture is the second in terms of 

convergence time, because it includes the training of the 10 RFs 

without noise boosting. Finally, the training of the other noise 

boosted architectures takes a longer time due to both the larger 

dataset and the 10 RFs.  

 

 
(a) 

 

 
(b) 

Fig. 8. Time analysis, for each type of noise boosting: (a) Number of training 

steps; (b) training time in seconds. 

IV. CONCLUSION AND FUTURE WORK 

In this paper, the concept of modular NBRFs has been 

discussed and developed, as an alternative to a monolithic FF 

classification layer. The proposed architecture is characterized 

by the capability of detecting extra-class samples, thanks to 

noise boosting.  

With respect to an FF classification layer having the same 

number of parameters, a classification layer of NBRFs is more 

accurate and robust. It allows by design to recognize noise 

extra-class samples. For this purpose, noise samples are 

artificially generated at training time via image transformation 

and noise addition.  

Experimental results have been carried out on MNIST, 

KMNIST and FMNIST datasets, to compare the FF and the 

NBRF layers, with different extra-class generation techniques.  

 Results show the high potential of the proposed approach, 

encouraging further comparative research. The source code has 

been publicly released to facilitate reproducibility and 

widespread adoption. 
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