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Abstract

The interplay between cerebral and cardiovascular activity, known as the functional

brain-heart interplay (BHI), and its temporal dynamics, have been linked to a plethora

of physiological and pathological processes. Various computational models of the

brain-heart axis have been proposed to estimate BHI non-invasively by taking advan-

tage of the time resolution offered by electroencephalograph (EEG) signals. However,

investigations into the specific intracortical sources responsible for this interplay

have been limited, which significantly hampers existing BHI studies. This study pro-

poses an analytical modeling framework for estimating the BHI at the source-brain

level. This analysis relies on the low-resolution electromagnetic tomography sources

localization from scalp electrophysiological recordings. BHI is then quantified as the

functional correlation between the intracortical sources and cardiovascular dynamics.

Using this approach, we aimed to evaluate the reliability of BHI estimates derived

from source-localized EEG signals as compared with prior findings from neuroimaging

methods. The proposed approach is validated using an experimental dataset gathered

from 32 healthy individuals who underwent standard sympathovagal elicitation using

a cold pressor test. Additional resting state data from 34 healthy individuals has been

analysed to assess robustness and reproducibility of the methodology. Experimental

results not only confirmed previous findings on activation of brain structures affect-

ing cardiac dynamics (e.g., insula, amygdala, hippocampus, and anterior and mid-

cingulate cortices) but also provided insights into the anatomical bases of brain-heart

axis. In particular, we show that the bidirectional activity of electrophysiological path-

ways of functional brain-heart communication increases during cold pressure with

respect to resting state, mainly targeting neural oscillations in the δ, β, and γ bands.

The proposed approach offers new perspectives for the investigation of functional

BHI that could also shed light on various pathophysiological conditions.
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1 | INTRODUCTION

Characterization of the complex phenomena underlying the functional

relationship between the central nervous system (CNS) and auto-

nomic nervous system (ANS) has increasingly gained attention in the

last decade. Although initially believed to pertain solely to central con-

trol over peripheral organs, the phenomenon is multi-faceted and can

be studied at different scales, from neural and glial signaling (Marina

et al., 2016; Truter et al., 2023) to functional psychosomatic reverber-

ations (Candia-Rivera, Catrambone, Thayer, et al., 2022; Skora

et al., 2022).

The study of central-autonomic interplay has placed particular

emphasis on studying cardiac dynamics because of their ease of mea-

surement and connection to both the sympathetic and parasympa-

thetic nervous systems (Chen et al., 2021; Liu et al., 2022). In this

context, most functional brain-heart interplay (BHI) estimations have

been performed using noninvasive electrophysiological signals, specif-

ically EEG and heart rate variability (HRV) series. Notably, these

approaches offer a sufficiently high time resolution, which is a crucial

factor, given the time-varying nature of BHI. The variety of physiolog-

ical and clinical contexts in which BHI is involved reflects its impor-

tance (Benarroch, 1993; Catrambone & Valenza, 2021; Schiecke

et al., 2016; Silvani et al., 2016; Valenza et al., 2020; Valenza

et al., 2024).

Indeed, several methodologies have emerged for estimating the

BHI, addressing different aspects, such as directionality, synchroniza-

tion, and complexity. These include formulation of an ad hoc synthetic

data-generation model (Candia-Rivera, 2023; Candia-Rivera, Catram-

bone, Barbieri, & Valenza, 2022; Catrambone et al., 2019;

Catrambone, Talebi, et al., 2021), the application of information the-

ory to disentangle linear and nonlinear components (Faes et al., 2015)

and to quantify information storage (Antonacci et al., 2023; Barà

et al., 2023), nervous system—wise functional estimation through

microstate occurrences (Catrambone & Valenza, 2023b), or methods

exploiting state-space reconstruction to investigate nonlinear and

directed interactions (Schiecke et al., 2016).

Currently proposed EEG-derived techniques excel in investigat-

ing time-resolved BHI processes with optimal time resolution, but

they are limited in terms of the spatial domain. Nevertheless, the

efferent and afferent functional pathways of ANS activity involve

several cortical and subcortical regions of the CNS, which form part

of the central autonomic network (CAN) (Benarroch, 1993;

Benarroch, 2012). Indeed, limbic structures, such as the cingulate

cortex, medial temporal lobe, amygdala, and hippocampus, and

regions such as the ventral medial prefrontal, insular, and parietal

cortices are associated with autonomic responses, and these regions

all belong to the CAN (Benarroch, 1993; Catrambone &

Valenza, 2021; Valenza et al., 2019). The identification of CAN com-

ponents has primarily been attained through technologies such as

functional magnetic resonance imaging (fMRI), which allows investi-

gation of the activity of deep CNS regions with commendable spatial

resolution at the cost of a temporal resolution that is inferior to that

of EEG.

Source localization of EEG signals aims to solve the inverse

problem of accurately estimating the brain regions that trigger electro-

magnetic changes measured at the scalp level by leveraging spatial

modeling of electrical propagation in brain tissues. This depends on a

variety of factors, including the neurophysiology of EEG sources, bio-

physics of electrical propagation, anatomy of conductive tissues, and

neuronal activity distribution properties (Michel & He, 2019). To this

extent, new source estimation methodologies have been developed

based on the most recent knowledge of EEG signal generation. The

first method for resolving the EEG inverse problem involves localiza-

tion of a constrained set of equivalent dipoles. According to the tradi-

tional method of dipole source localization, the scalp potential field is

produced by only one or a few active brain regions. Nonlinear optimi-

zation can be used to identify a mathematically ideal solution under

this restriction. Epileptic foci or primary sensory areas, such as the

sensorimotor cortex in surgical candidates, can be located with rea-

sonable results using dipole source localization, despite the simplicity

and limitations of this a priori assumption. Distributed-source imaging

approaches have largely replaced dipole source localization in experi-

mental EEG studies. In this case, a large number of equivalent dipoles

(order of magnitude of ≈5000) are dispersed in fixed locations across

the entire source space, and the strength of each dipole is estimated

(Michel & He, 2019). The source space is typically limited to the grey

matter, using an individual's anatomical information or template MRI.

One of the most commonly used methods is low-resolution electro-

magnetic tomography (LORETA), developed by (Pascual-Marqui

et al., 1994). LORETA and its variations (e.g., sLORETA (Pascual-

Marqui et al., 2002)) rely on the minimization of the Laplacian opera-

tor of the sources, resulting in a smooth (low resolution) distribution

of 3D activity. This constraint is justified by the physiologically tena-

ble hypothesis that the activity in adjacent voxels is correlated. In this

study, we employed sLORETA (Pascual-Marqui et al., 2002) as a

source localization technique. While it is a widely utilized method, it

achieves very good performance in localizing electrical activity

sources, has small computational complexity, provides a closed-form

expression based on an L2-norm-based solution, and is available in

the form of an open-source toolbox/library. Further information on

source localization methodologies proposed in the literature can be

found in, for example, (Asadzadeh et al., 2020).

Previous studies investigated the intracranial activity using inva-

sive stereo-EEG-based heartbeat-evoked potentials (HEPs) (Mazzola

et al., 2023). HEPs are calculated by averaging the sEEG signals that

synchronize with the R peaks of the concurrent ECG signal (Park &

Blanke, 2019). These studies indicated that HEPs originate from spe-

cific brain regions, including the anterior cingulate, right insula, pre-

frontal cortex, and left secondary somatosensory cortex (Babo-Rebelo

et al., 2016; Park et al., 2018; Park & Blanke, 2019), which are known

to interact with emotional, cognitive, and sensory processing. How-

ever, this approach comes with limitations (Park & Blanke, 2019).

First, the stereo-EEG recordings are invasive and may not be easily

gathered from the general population. Second, cardiac electric cur-

rents associated with ventricular contractions might induce artifacts in

stereo-EEG signals that can bias the HEP assessment. Third, cardiac
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cycle is influenced by dynamical variations in sympathetic and para-

sympathetic autonomic activities, which might be linked to several

EEG oscillations in an afferent and efferent fashion. Therefore, a com-

prehensive understanding of key cortical and sub-cortical regions

involved in cardiac autonomic control, that is, the functional brain-

heart axis, using non-invasive techniques is yet to be achieved.

In this study, we investigated the reliability of markers of func-

tional BHI estimated from intracortical source-localized signals and

cardiac sympathovagal oscillations. To the best of our knowledge, no

previous study has endeavored to estimate BHI through a functional

correlation between EEG model sources and cardiovascular activity.

To validate the proposed methodology, we tested it on data gath-

ered during a cold pressor test (CPT), which is a well-known auto-

nomic maneuver involving thermal stress that elicits a strong

sympathovagal response (Cui et al., 2002). Physiological responses

associated with thermal and nociceptive stress include increased heart

rate, which is attributed to higher sympathetic activity and lower vagal

outflow. At the CNS level, brain correlates of the CPT include cortical

and subcortical brain activation, such as an increase in power in the

delta and gamma bands in the fronto-temporal areas (Chang

et al., 2002; Fardo et al., 2017; Shao et al., 2012). Additionally, our

previous studies on functional BHI dynamics during the CPT have

revealed a bidirectional and diffuse interaction (Catrambone &

Valenza, 2023a; Catrambone & Valenza, 2023b) with changes pre-

dominantly in the EEG gamma and delta bands (Candia-Rivera,

Catrambone, Barbieri, & Valenza, 2022; Catrambone et al., 2019),

which were directly connected to ascending communication pathways

from autonomic inputs and corroborated by changes in HEPs (Shao

et al., 2011).

2 | MATERIALS AND METHODS

2.1 | Dataset description

The first dataset (D1) came from a group of 32 right-handed young

healthy adults underwent a CPT while recording physiological signals.

Data from 26 subjects (age range, 21–41 years; median, 27 years;

13 males) were considered for further analysis because of data length

and quality. In particular, data from three subjects were not considered

because of the presence of artifacts in their physiological data (EEG or

ECG), while data from three subjects were discarded because of early

withdrawal of their hands from the cold water. Each subject's recording

comprised of a 128-channel high-density EEG (Electrical Geodesics,

Inc., Eugene, OR, USA), respiratory activity, and one-lead ECG, sampled

at 500 Hz. Before data acquisition, the subjects were asked to sit com-

fortably on a chair to ensure hemodynamic stabilization. Throughout

the protocol, subjects were asked to keep their eyes closed to minimize

artifacts. The task consisted of a 3-min resting state, followed by a

3-min CPT, in which the subjects were guided to submerge their left

hand up to the write into asked place their hand into a bucket filled

with ice water (0–4�C), and a recovery phase, in which subjects were

asked to withdraw their hand from the ice-water bucket.

To better assess robustness and reliability of the experimental

results, a second dataset (D2) has been considered. It consisted of

physiological signals recordings (EEG and ECG) gathered employing

the same devices of the first dataset on a group of 34 healthy right-

handed young subjects (age range, 26.5 years median; 18 males, there

were no subject in common between the two groups) performing a

3 min resting state in a dark room. The same dataset has been already

presented and analysed in previous studies (Catrambone, Averta,

et al., 2021), and is part of a larger experiment whose data are freely

available (Averta et al., 2021).

2.2 | EEG processing

EEG data were preprocessed using MATLAB R2017a and the Fieldtrip

Toolbox (Oostenveld et al., 2011). The data were bandpass filtered

with a Butterworth filter of order four, between 0:5 and 45Hz. Large-

movement artifacts were removed using wavelet-enhanced indepen-

dent component analysis (ICA) (Gabard-Durnam et al., 2018), which

were identified using automated thresholding over the independent

component and multiplied by 50 to remove only very large artifacts,

as described by Candia-Rivera et al. (2021). Consequently, ICA was

re-run to recognize and reject eye movements and cardiac-field arti-

facts from the EEG data (Dirlich et al., 1997). Therefore, a one-lead

ECG was included as an additional input to the ICA to enhance the

process of identifying cardiac artifacts. Once the ICA components

with eye movements and cardiac artifacts were visually identified,

they were set to zero to reconstruct the EEG series. This step thus

yielded eye movement- and cardiac artifact-free EEG data. Individual

EEG channels were analyzed. The channels were marked as contami-

nated if their area under the curve exceeded three standard devia-

tions of the mean for all channels. The remaining channels were

compared with their weighted-by-distance-correlation neighbors

using the standard field-trip neighbor’ definition. If a channel resulted

in a weighted-by-distance correlation of less than 0.6, it was consid-

ered contaminated. The contaminated channels were replaced by

neighbor’ interpolation. The channels were referenced using a com-

mon average, which is the most appropriate for a functional BHI

assessment (Candia-Rivera et al., 2021).

2.3 | EEG source localization

Source-level analysis was performed on EEG at �60 to 60s with

respect to the cold-pressure onset for the first dataset, and an homo-

geneous time window of 60s was taken for dataset 2 as well. The

source reconstruction was performed using the Brainstorm toolbox

(Tadel et al., 2011). Default anatomy (ICBM152) was used together

with EGI 128 electrode locations. A three-shell sphere was created

for each participant using no-noise modeling, and sources were com-

puted using default parameters (minimum norm imaging, sLORETA

method, constrained). The conductivities for surface estimation were

set to default (scalp 1, skull 0.0125, brain 1). With the aim of avoiding
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curse of dimensionality in the inverse problem of EEG-source localiza-

tion, we choose to employ a standard brain volume partition in which

the brain volume itself is divided into a number of region of interest

(ROI) defined according to anatomical and functional criteria. Among

the different available standard ROI partitions of the brain volume,

also called brain atlases, we employed the automated-anatomical

labelling (AAL) atlas for a total of 95 brain ROIs (Tzourio-Mazoyer

et al., 2002). This choice was due to AAL large use and acknowledge-

ment in the field, as well as for the comparable cardinality of the atlas

(i.e., 95 ROIs) with respect to the number of EEG electrodes (i.e., 128).

The present study does not delve into the anatomical and structural

differences among standard ROI partitions and their functional conse-

quences, but an interested reader may find material in (Evans

et al., 2012). Sources were visualized using the ggseg package for R

(https://www.r-project.org/) and AAL implementations (Rolls

et al., 2015).

The source spectrogram was computed for ROIs by averaging the

time-varying vertices using a short-time Fourier transform with a Han-

ning taper. Calculations were performed through a 2s sliding time

window with a 50% overlap, resulting in spectrogram resolutions of

1s and 0:5Hz. The power spectral density (PSD) time series were then

integrated within five canonical frequency bands (delta: δ� 1�4½ �Hz,

theta: θ� 4�8½ �Hz, alpha: α� 8�12½ �Hz, beta: β� 12�30½ �Hz, and

gamma: γ � 30�45½ �Hz).

2.4 | ECG processing

The ECG time series was bandpass filtered using a Butterworth filter

of order 4, between 0.5 and 45 Hz. The R-peaks from the QRS waves

were first identified via an automatized process, followed by a visual

inspection of misdetections and final automated correction of the

remaining misdetections or ectopic heartbeats. This procedure is

based on a template-based method for detecting R peaks (Candia-

Rivera et al., 2021). All detected peaks were visually inspected over

the original ECG along with an interbeat interval histogram. Manual

corrections were performed where needed and then automatic cor-

rections were done using a point-process algorithm (Citi et al., 2012).

After cubic interpolation of HRV series at 4Hz, the time-resolved

spectogram of the HRV series was estimated using the smoothed

pseudo-Wigner–Ville distribution integrated into the two classical inter-

vals 0:04–0:15Hz (i.e., low-frequency band LF) as a non-specific

marker of sympathovagal activity and in the range 0:15–0:4Hz

(i.e., high-frequency band HF) for parasympathetic activity. We also

considered a third interval 0:1�0:2Hz (i.e., intermediate frequency IF)

to account for the HRV oscillations known to exists centered around

0:15Hz (Klimesch, 2018; Kluger & Gross, 2020; Perlitz et al., 2004;

Pfurtscheller et al., 2022). Such an IF band may be practical for study-

ing the BHI (Keller et al., 2020) and its relation to respiratory sinus

arrhythmia and baroreflex mechanism (Eckberg, 2009; Julien, 2006).

The three power series derived from HRV (i.e., LF, IF, and HF)

were sampled at 1Hz to be homogeneous with those derived from

the source estimation.

2.5 | Intracortical brain-heart interplay estimation

As the first attempt to estimate BHI at the brain source level, we con-

ducted a functional correlation analysis using the Spearman method

between the time-resolved PSD from the source ROI and cardiovas-

cular dynamics.

To obtain an intersubject BHI measure, each PSD series

(i.e., related to a specific experimental phase, brain- and HRV-related

frequency bands, and ROI) was constructed by concatenating the

subject-specific PSD series. To level the intersubject range difference,

each subject-specific PSD series was z-scored before concatenation.

Eventually, each series counted 60 (time instants)�26 (subject) points

for the first dataset, and 60 (time instants)�34 (subject) points for

the second dataset.

Finally, Spearman's correlation coefficients were calculated for

each HRV-PSD time series (i.e., LF, IF, and HF) and each band-specific

ROI-PSD series (i.e., δ,θ,α,β,γ). To statistically assess significance of

the correlation coefficients, the associated p-values were calculated

through a Z-test, due to the large sample size. The significance thresh-

old was fixed at 0:05, and p-value correction for multiple comparisons

was accounted for using the Bonferroni–Holm correction over the

95 source ROIs. Detailed statistical description of the correction

applied can be found at (Abdi, 2010).

The entire processing procedure pipeline is illustrated in Figure 1.

3 | RESULTS

The experimental results were expressed in terms of Spearman's cor-

relation coefficient and associated p-values as calculated per ROI and

EEG- and HRV-derived frequency bands. To provide an overview of

the findings, Figure 2 is a radar chart of the number of significant cor-

relations detected in the resting state (upper plot) and CPT phase

(lower plot), for both LF (blue), IF (orange), and HF (yellow), in the

analysis of dataset D1. Each vertex of the radar chart represents a

specific brain-associated frequency band (i.e., δ,θ,α,β,γ) for the

95 ROIs.

As shown in the top panel of Figure 2, during the resting state, no

significant correlations were detected within the IF and HF cardiovas-

cular bands, as well as within a higher frequency range of the EEG-

sources spectrum (i.e., α,β,γ bands), which encompassed frequencies

above 8Hz. Notably, significant correlations were primarily detected

in δ�LF combination, comprising a third of the ROIs (32 of 95), and

θ�LF relationship with 12 significant ROIs out of 95. Complementary

to this, during the CPT phase, as depicted in the lower panel of

Figure 2, no significant correlations were detected when considering

the IF and HF cardiovascular bands, whereas a notably higher number

of regions showed significant correlations with the LF cardiovascular

component as compared to the resting state. Specifically, nearly the

entire set of ROIs exhibited a significant correlation with the LF band,

considering both the δ and γ frequency bands (i.e., 84 and 81 of

95 ROIs, respectively), 46 of 95 ROIs were highlighted in the β band,

and 31 of 95 ROIs were highlighted in the θ band.

4 of 10 CATRAMBONE ET AL.

 10970193, 2024, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hbm

.26677 by C
ochraneItalia, W

iley O
nline L

ibrary on [25/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://www.r-project.org/


As previously mentioned, to better assess robustness of the

method a second dataset (D2) has been analysed comprising a resting

state, and the experimental results are presented in Figure 3. As in the

resting state of dataset D1, no significant correlations were detected

within the IF and HF cardiovascular bands with all EEG bands excep-

tion given for the γ band. Similarly, no significant Spearman correla-

tion were detected within the HRV-LF band. The only significant

value reported are related to the HRV-HF (10 of 95 ROIs) and HRV-IF

(22 of 95 ROIs) with the EEG-γ band. Experimental results from the

analysis of the two different datasets are largely in agreement, even if

they show some differences. The relations that were the only signifi-

cant in dataset D1 were absent in D2, whereas in dataset D2 some

significant correlations were found in γ� IF combination. Considering

the limited amount of data in both datasets, a disagreement of this

range could be expected, and it is encouraging that in an overwhelm-

ing part of combinations of ROIs, and sources- and HRV- frequency

bands there is agreement between the two different datasets.

As a further investigation of the specific locations of the signifi-

cant correlations observed and the quantitative evaluation of this BHI

estimation, Figure 4 graphically represents most of the significant cor-

relation coefficients, particularly related to dataset D1. The three

most enhanced combinations of frequency bands were HRV-LF and

EEG sources in the δ,β, and γ ranges. The other frequency ranges

(sources θ and α, HRV-HF, as well as the significant regions found in

dataset D2) are reported in Figures 1–3 of the Supplementary Mate-

rial, respectively. Specifically, Figure 4 comprises six subpanels orga-

nized as follows: the two columns are associated with two

experimental phases (i.e., the resting state on the left and CPT on the

right), whereas the three rows are associated with the frequency

bands of the three sources. Subpanels were generated using

R-Studio1 software and the ggseg2 package, and represent the right

hemisphere in the first row (the left hemisphere is in the second row),

for both the lateral (left column) and medial (right column) views.

Figure 4 graphically represents the varying numbers of significant

regions reported in Figure 2. We can now appreciate that all the

regions that are significant in the δ�LF interplay during the resting

state hold their significance during CPT, with the addition of various

other ROIs. In the resting state, a significant δ�LF BHI was detected

on a belt spanning the left lateral hemisphere from the frontal to

dorso-parietal area. Additionally, a narrower portion was observed in

the right hemisphere, and a few regions on the medial frontal lobes

and an area in the left dorso-parietal region also presented significant

correlations. During the CPT phase, the δ�LF interplay showed sig-

nificance across the cortex, except for the central-medial region in

both hemispheres, which was more pronounced on the left side.

Conversely, the β�LF and γ�LF BHI did not reveal significant

areas during the resting state, except for a small left temporal region

for the β�LF relationship. However, these became more prominent

during the CPT phase. Specifically, both the lateral and medial frontal

regions in both hemispheres as well as the right temporal lobe and a

region encompassing the left dorso-temporal and occipital areas

exhibited significance in both β and γ frequency bands. While the β

band does not exhibit any other ROI, the γ band increases its signifi-

cance by covering nearly the entire left hemisphere, leaving only a

centro-parietal region on the right hemisphere unaffected.

Interestingly, all detected correlations showed a positive sign,

indicating that an increasing trend in one of the PSDs involved

(e.g., the sources' γ-band) corresponds to a homogeneous trend in the

HRV-LF series.

For a detailed list of the specific ROIs correlated with HRV-LF

dynamics, please refer to Table 1 in the Supplementary Material. We

can appreciate the significant correlations detected between source-δ

F IGURE 1 Graphical representation of the processing pipeline.

1https://posit.co/download/rstudio-desktop/
2https://github.com/ggseg
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and -γ and HRV-LF, particularly in specific CAN regions, such as

insula, amygdala, anterior and middle cingulum, hippocampus, and

thalamus. For the sake of completeness, Tables 2 and 3 of the Supple-

mentary Material report a detailed list of the corrected p-value related

to all the sources- and HRV- frequency band combinations for the

ROIs considered.

4 | DISCUSSION

In this study, a novel approach to investigate the BHI phenomenon at

the brain source level was introduced. The BHI was estimated using

Spearman's correlation between the brain source electrical activity

(derived through sLORETA technique) and cardiovascular dynamics,

both estimated through their PSD representation, separated into

canonical frequency bands. To validate the methodological approach,

an experimental dataset comprising recordings from 26 subjects dur-

ing the resting state and a strong sympathovagal elicitation, such as

CPT, was employed. The experimental results revealed that several

brain regions exhibited significant correlations with HRV activity.

Interestingly, the nature of these correlations varies depending on the

experimental phase and frequency band considered.

From a methodological viewpoint, the proposed approach marks

an advancement in the spatial specificity of the BHI estimation. This

represents a noteworthy step away from the spatial constraints typi-

cally observed in the development of biomarkers based on EEG. This

approach can pave the way for further developments in the localiza-

tion of BHI while preserving the time-frequency resolution of electro-

physiological analysis. However, it is worth noting that EEG-based

source localization does not reach the spatial resolution provided by

fMRI, and represents an indirect extrapolation of the measure of inner

CNS region activity. Nevertheless, source localization techniques have

achieved a reliable level of accuracy in the reconstruction of brain

dynamics. The time resolution achieved by these techniques, which

we have only partially explored, may help further develop the BHI

research field.

From a physiological viewpoint, the results presented in this study

further deepen our knowledge of BHI under sympathovagal elicita-

tion. Our findings revealed a notable increase in the number of ROIs

that showed correlations with LF-HRV, a feature often linked to car-

diac sympathetic activity, albeit subject to debate. Furthermore, we

identified a significant correlation specifically during CPT. This correla-

tion has been observed in regions frequently associated with cardiac

autonomic regulation, including the insula, anterior and midcingulate

cortices, amygdala, thalamus, and hippocampus (Mazzola et al., 2023).

The significant correlation detected in the resting state, mainly at low

F IGURE 2 Radar chart representation of the number of ROIs
having significant correlations with HRV-LF (blue lines), HRV-IF
(orange lines), or HRV-HF (yellow lines) during the resting state (upper
panel) and CPT phase (lower panel) of dataset D1. Each vertex of the
charts refers to a specific brain-associated frequency
band (i.e., δ,θ,α,β,γ).

F IGURE 3 Radar chart representation of the number of ROIs
having significant correlations with HRV-LF (blue lines), HRV-IF
(orange lines), or HRV-HF (yellow lines) during the resting state of
dataset D2. Each vertex of the charts refers to a specific brain-
associated frequency band (i.e., δ,θ,α,β,γ).
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frequencies (i.e., EEG-δ and HRV-LF), can be interpreted within the

framework of the Mayer wave phenomenon. These are transient

oscillatory responses to hemodynamic perturbations (Julien, 2006),

suggesting that a central pacemaker is present at low frequencies

(Pfurtscheller et al., 2017; Pfurtscheller et al., 2020; Pfurtscheller

et al., 2022). In this framework, heartbeat and breathing dynamics

might induce the pressure pulsatility to which the mechano-sensitive

pyramidal neurons responds in a frequency range belonging to the δ

band (Hamill, 2023; Klimesch, 2023). Moreover, the absence of corre-

lation with the higher frequency bands of the HRV series may be

attributed to the specificity of CPT stimuli, which act as physical

stressors and may elicit specific changes other than other cognitive

stressors (Candia-Rivera et al., 2023; Young & Benton, 2015).

CPT is an interesting elicitation protocol since it represents a

complex of concurrent stimulations: somatosensory, via the thermal

stress and sub-threshold pain; emotional, since the perception

raises a certain arousal and valence; and motor, by holding the hand

in an unpleasant state, requiring strong voluntary motor control.

These stimuli arouse concurrent and partially independent CNS and

ANS responses, meaning that both systems are affected by their

specific activities, as well as by their inter-system communication.

Among the expected ANS-specific effects elicited by CPT are the

baroreceptor modulation of heart rate due to physiological arousal

(Cui et al., 2002) and the decreased heart-beat evoked potentials

under cold stimuli, mainly over the frontal and central scalp loca-

tions (Shao et al., 2011). It is noteworthy that CPT involves physio-

logical signaling from the skin to the brain. These physiological

dynamics have been captured through physiological modeling of

the BHI, in which the ascending BHI information flow (i.e., heart-to-

brain) is the first response to the CPT stimulus, which is followed by

the descending flow (Candia-Rivera, Catrambone, Barbieri, &

Valenza, 2022). Interestingly, these results are consistent with

those reported in high-arousal conditions, such as emotional elicita-

tion (Candia-Rivera et al., 2023; Candia-Rivera, Catrambone,

Thayer, et al., 2022), suggesting a leading role for BHI in the physi-

ology of arousal. The current study, even without investigating the

timing and direction of the interaction, supports the literature on

the brain frequency bands involved in the BHI (Candia-Rivera,

Catrambone, Barbieri, & Valenza, 2022; Catrambone et al., 2019),

mainly δ and γ, and bridges fMRI and electrophysiological studies

pointing at the CAN as the main player in CNS and ANS interaction

(Benarroch, 2012; Valenza et al., 2019).

This study had some limitations. First, in this primary study esti-

mating BHI in the EEG source space, we utilized a basic model-free

analysis relying on Spearman's correlations and predominantly

employed the general sLORETA technique for solving the source

localization inverse problem. However, more specific computational

models are required to better catch the BHI dynamics as a whole,

including its temporal dynamics, nonlinearity, and directionality, both

in terms of interplay estimation and source localization. For instance,

sLORETA is known to have relatively coarse spatial resolution, which

becomes particularly significant when addressing source localization

at a microscopic scale. Nevertheless, this study focused on a partition

of the brain volume in agglomerated ROIs, thus maintaining a macro-

scopic scale. Moreover, the proposed methodology does not consider

potential confounding factors related to physiological variables such

as respiration or blood pressure. Specifically, relationships have been

found between respiration and spectral content of hippocampal

F IGURE 4 Graphical
representation of the significant
correlation coefficient. The left
column refers to the resting state
period and the right to the CPT
phase. On the left side of each
column, the frequency bands
involved are expressed for both
the brain and heart. Each

subpanel has two rows and two
columns: the first row is the right
hemisphere, the second row
represents the left hemisphere,
whereas left column is the lateral
view and the right column
represents the medial view.
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activity in mice (Bagur et al., 2021), rodents, and human patients

(Herrero et al., 2018; Zelano et al., 2016). Furthermore, the proposed

processing pipeline is susceptible to specific limitations, especially

linked to the nonspecificity of HRV power as well as the source locali-

zation procedure. More advanced techniques will be employed in

future studies to develop a source-related BHI framework for applica-

tion in larger cohorts. Finally, actual temperature of the hand was not

measured before and after the CPT.

5 | CONCLUSION

In conclusion, we here proposed an approach for estimating the func-

tional relationship between the activity of specific brain regions and

cardiovascular dynamics during strong sympathovagal elicitation using

noninvasive recordings. This approach holds promise for investigating

the interplay between the brain and heart with high-time resolution in

flexible ecological setups without renouncing spatial information. Our

results indicate that intracortical BHI increases during CPT with

respect to resting state, mainly targeting neural oscillations in the θ, β,

and γ bands.

AUTHOR CONTRIBUTIONS

V.C., D.C.R., and G.V. designed the research; V.C., D.C.R., and

G.V. performed the research; V.C. and D.C.R. analyzed the data;

and V.C., D.C.R., and G.V. wrote the paper.

FUNDING INFORMATION

This research has received partial funding from the European Com-

mission under grant agreement N. 101017727 for the project EXPE-

RIENCE, and from the Italian Ministry of Education and Research

(MIUR) in the framework of the FoReLab and CrossLab projects

(Departments of Excellence).

CONFLICT OF INTEREST STATEMENT

The authors declare that they have no competing financial interests or

personal relationships that may have influenced the work reported in

this study.

DATA AVAILABILITY STATEMENT

This study was approved by the local ethics committee of the Area

Vasta Nord-Ovest Toscana. The participants signed an informed con-

sent form to participate in the study, as required by the Declaration of

Helsinki. None of the participants had any history of neurological, car-

diovascular, or respiratory diseases. Raw data of dataset 2 are freely

available (Averta et al., 2021) and raw data of dataset 1 are

freely available through reasonable mail requests if the ethical require-

ments are met.

ORCID

Vincenzo Catrambone https://orcid.org/0000-0001-9030-7601

Diego Candia-Rivera https://orcid.org/0000-0002-4043-217X

Gaetano Valenza https://orcid.org/0000-0001-6574-1879

REFERENCES

Abdi, H. (2010). Holm's sequential bonferroni procedure. Encyclopedia of

Research Design, 1(8), 1–8.
Antonacci, Y., Barà, C., Zaccaro, A., Ferri, F., Pernice, R., & Faes, L. (2023).

Time-varying information measures: An adaptive estimation of infor-

mation storage with application to brain-heart interactions. Frontiers in

Network Physiology, 3, 1242505.

Asadzadeh, S., Rezaii, T. Y., Beheshti, S., Delpak, A., & Meshgini, S. (2020).

A systematic review of eeg source localization techniques and their

applications on diagnosis of brain abnormalities. Journal of Neurosci-

ence Methods, 339, 108740.

Averta, G., Barontini, F., Catrambone, V., Haddadin, S., Handjaras, G.,

Held, J. P., Hu, T., Jakubowitz, E., Kanzler, C. M., Kühn, J.,

Lambercy, O., Leo, A., Obermeier, A., Ricciardi, E., Schwarz, A.,

Valenza, G., Bicchi, A., & Bianchi, M. (2021). U-limb: A multi-modal,

multi-center database on arm motion control in healthy and post-

stroke conditions. GigaScience, 10(6), giab043.

Babo-Rebelo, M., Wolpert, N., Adam, C., Hasboun, D., & Tallon-Baudry, C.

(2016). Is the cardiac monitoring function related to the self in both

the default network and right anterior insula? Philosophical Transac-

tions of the Royal Society of London. Series B, Biological Sciences,

371(1708), 20160004.

Bagur, S., Lefort, J. M., Lacroix, M. M., de Lavilléon, G., Herry, C.,

Chouvaeff, M., Billand, C., Geoffroy, H., & Benchenane, K. (2021).

Breathing-driven prefrontal oscillations regulate maintenance of

conditioned-fear evoked freezing independently of initiation. Nature

Communications, 12(1), 2605.

Barà, C., Zaccaro, A., Antonacci, Y., Dalla Riva, M., Busacca, A., Ferri, F.,

Faes, L., & Pernice, R. (2023). Local and global measures of information

storage for the assessment of heartbeat-evoked cortical responses.

Biomedical Signal Processing and Control, 86, 105315.

Benarroch, E. E. (1993). The central autonomic network: Functional orga-

nization, dysfunction, and perspective. In Mayo clinic proceedings (Vol.

68, pp. 988–1001). Elsevier.
Benarroch, E. E. (2012). Central autonomic control. In Primer on the auto-

nomic nervous system (pp. 9–12). Elsevier.
Candia-Rivera, D. (2023). Modeling brain-heart interactions from Poincaré

plot-derived measures of sympathetic-vagal activity. MethodsX, 10,

102116.

Candia-Rivera, D., Catrambone, V., Barbieri, R., & Valenza, G. (2022). Func-

tional assessment of bidirectional cortical and peripheral neural control

on heartbeat dynamics: A brain-heart study on thermal stress. Neuro-

Image, 251, 119023.

Candia-Rivera, D., Catrambone, V., Thayer, J. F., Gentili, C., & Valenza, G.

(2022). Cardiac sympathetic-vagal activity initiates a functional brain–
body response to emotional arousal. Proceedings of the National Acad-

emy of Sciences, 119(21), e2119599119.

Candia-Rivera, D., Catrambone, V., & Valenza, G. (2021). The role of elec-

troencephalography electrical reference in the assessment of func-

tional brain–heart interplay: From methodology to user guidelines.

Journal of Neuroscience Methods, 360, 109269.

Candia-Rivera, D., Norouzi, K., Ramsøy, T. Z., & Valenza, G. (2023).

Dynamic fluctuations in ascending heart-to-brain communication

under mental stress. American Journal of Physiology-Regulatory, Integra-

tive and Comparative Physiology, 324(4), R513–R525.
Catrambone, V., Averta, G., Bianchi, M., & Valenza, G. (2021). Toward

brain-heart computer interfaces: A study on the classification of upper

limb movements using multisystem directional estimates. Journal of

Neural Engineering, 18(4), 046002.

Catrambone, V., Greco, A., Vanello, N., Scilingo, E. P., & Valenza, G. (2019).

Time-resolved directional brain-heart interplay measurement through

synthetic data generation models. Annals of Biomedical Engineering, 47,

1479–1489.
Catrambone, V., Talebi, A., Barbieri, R., & Valenza, G. (2021). Time-

resolved brain-to-heart probabilistic information transfer estimation

8 of 10 CATRAMBONE ET AL.

 10970193, 2024, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hbm

.26677 by C
ochraneItalia, W

iley O
nline L

ibrary on [25/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0001-9030-7601
https://orcid.org/0000-0001-9030-7601
https://orcid.org/0000-0002-4043-217X
https://orcid.org/0000-0002-4043-217X
https://orcid.org/0000-0001-6574-1879
https://orcid.org/0000-0001-6574-1879


using inhomogeneous point-process models. IEEE Transactions on Bio-

medical Engineering, 68(11), 3366–3374.
Catrambone, V., & Valenza, G. (2021). Functional brain-heart interplay.

Springer.

Catrambone, V., & Valenza, G. (2023a). Complex brain-heart mapping in

mental and physical stress. IEEE Journal of Translational Engineering

in Health and Medicine, 11, 495–504.
Catrambone, V., & Valenza, G. (2023b). Nervous-system-wise functional

estimation of directed brain–heart interplay through microstate occur-

rences. IEEE Transactions on Biomedical Engineering, 70, 2270–2278.
Chang, P. F., Arendt-Nielsen, L., & Chen, A. C. (2002). Dynamic changes

and spatial correlation of eeg activities during cold pressor test in man.

Brain Research Bulletin, 57(5), 667–675.
Chen, W. G., Schloesser, D., Arensdorf, A. M., Simmons, J. M., Cui, C.,

Valentino, R., Gnadt, J. W., Nielsen, L., Hillaire-Clarke, C. S.,

Spruance, V., Horowitz, T. S., Vallejo, Y. F., & Langevin, H. M. (2021).

The emerging science of Interoception: Sensing, integrating, interpret-

ing, and regulating signals within the self. Trends in Neurosciences,

44(1), 3–16.
Citi, L., Brown, E. N., & Barbieri, R. (2012). A real-time automated point-

process method for the detection and correction of erroneous and

ectopic heartbeats. IEEE Transactions on Biomedical Engineering, 59(10),

2828–2837.
Cui, J., Wilson, T. E., & Crandall, C. G. (2002). Baroreflex modulation of

muscle sympathetic nerve activity during cold pressor test in humans.

American Journal of Physiology-Heart and Circulatory Physiology, 282(5),

H1717–H1723.

Dirlich, G., Vogl, L., Plaschke, M., & Strian, F. (1997). Cardiac field effects

on the eeg. Electroencephalography and Clinical Neurophysiology,

102(4), 307–315.
Eckberg, D. L. (2009). Point: Counterpoint: Respiratory sinus arrhythmia is

due to a central mechanism vs. respiratory sinus arrhythmia is due to

the baroreflex mechanism. Journal of Applied Physiology, 106, 1740–
1742.

Evans, A. C., Janke, A. L., Collins, D. L., & Baillet, S. (2012). Brain templates

and atlases. NeuroImage, 62(2), 911–922.
Faes, L., Marinazzo, D., Jurysta, F., & Nollo, G. (2015). Linear and non-

linear brain–heart and brain–brain interactions during sleep. Physiologi-

cal Measurement, 36(4), 683–698.
Fardo, F., Vinding, M. C., Allen, M., Jensen, T. S., & Finnerup, N. B. (2017).

Delta and gamma oscillations in operculo-insular cortex underlie

innocuous cold thermosensation. Journal of Neurophysiology, 117(5),

1959–1968.
Gabard-Durnam, L. J., Mendez Leal, A. S., Wilkinson, C. L., & Levin, A. R.

(2018). The harvard automated processing pipeline for electroenceph-

alography (happe): Standardized processing software for developmen-

tal and high-artifact data. Frontiers in Neuroscience, 12, 97.

Hamill, O. P. (2023). Pressure pulsatility links cardio-respiratory and brain

rhythmicity. Journal of Integrative Neuroscience, 22(6), 143.

Herrero, J. L., Khuvis, S., Yeagle, E., Cerf, M., & Mehta, A. D. (2018).

Breathing above the brain stem: Volitional control and attentional

modulation in humans. Journal of Neurophysiology, 119, 145–159.
Julien, C. (2006). The enigma of mayer waves: Facts and models. Cardio-

vascular Research, 70(1), 12–21.
Keller, M., Pelz, H., Perlitz, V., Zweerings, J., Röcher, E., Baqapuri, H. I., &

Mathiak, K. (2020). Neural correlates of fluctuations in the intermedi-

ate band for heart rate and respiration are related to interoceptive per-

ception. Psychophysiology, 57(9), e13594.

Klimesch, W. (2018). The frequency architecture of brain and brain body

oscillations: An analysis. European Journal of Neuroscience, 48(7),

2431–2453.
Klimesch, W. (2023). Heartbeat, brain oscillations and body awareness: A

commentary. Journal of Integrative Neuroscience, 22(6), 155.

Kluger, D. S., & Gross, J. (2020). Depth and phase of respiration modulate

cortico-muscular communication. NeuroImage, 222, 117272.

Liu, W., Zhang, X., Wu, Z., Huang, K., Yang, C., & Yang, L. (2022). Brain–
heart communication in health and diseases. Brain Research Bulletin,

183, 27–37.
Marina, N., Teschemacher, A. G., Kasparov, S., & Gourine, A. V. (2016).

Glia, sympathetic activity and cardiovascular disease. Experimental

Physiology, 101(5), 565–576.
Mazzola, L., Mauguière, F., & Chouchou, F. (2023). Central control of car-

diac activity as assessed by intra-cerebral recordings and stimulations.

Neurophysiologie Clinique, 53(2), 102849.

Michel, C. M., & He, B. (2019). Eeg source localization. Handbook of Clinical

Neurology, 160, 85–101.
Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J.-M. (2011). Fieldtrip:

Open source software for advanced analysis of meg, eeg, and invasive

electrophysiological data. Computational Intelligence and Neuroscience,

2011, 1–9.
Park, H.-D., Bernasconi, F., Salomon, R., Tallon-Baudry, C., Spinelli, L.,

Seeck, M., Schaller, K., & Blanke, O. (2018). Neural sources and under-

lying mechanisms of neural responses to heartbeats, and their role in

bodily self-consciousness: An intracranial EEG study. Cerebral Cortex,

28(7), 2351–2364.
Park, H.-D., & Blanke, O. (2019). Heartbeat-evoked cortical responses:

Underlying mechanisms, functional roles, and methodological consid-

erations. NeuroImage, 197, 502–511.
Pascual-Marqui, R. D., Michel, C. M., & Lehmann, D. (1994). Low resolution

electromagnetic tomography: A new method for localizing electrical

activity in the brain. International Journal of Psychophysiology, 18(1),

49–65.
Pascual-Marqui, R. D. (2002). Standardized low-resolution brain elec-

tromagnetic tomography (sloreta): Technical details. Methods and

Findings in Experimental and Clinical Pharmacology, 24(Suppl D),

5–12.
Perlitz, V., Lambertz, M., Cotuk, B., Grebe, R., Vandenhouten, R.,

Flatten, G., Petzold, E. R., Schmid-Schönbein, H., & Langhorst, P.

(2004). Cardiovascular rhythms in the 0.15-Hz band: Common origin

of identical phenomena in man and dog in the reticular formation of

the brain stem? Pflügers Archiv, 448, 579–591.
Pfurtscheller, G., Blinowska, K. J., Kaminski, M., Rassler, B., & Klimesch, W.

(2022). Processing of fmri-related anxiety and information flow

between brain and body revealed a preponderance of oscillations at

0.15/0.16 Hz. Scientific Reports, 12(1), 9117.

Pfurtscheller, G., Schwerdtfeger, A. R., Rassler, B., Andrade, A.,

Schwarz, G., & Klimesch, W. (2020). Verification of a central pace-

maker in brain stem by phase-coupling analysis between hr interval-

and bold-oscillations in the 0.10–0.15 Hz frequency band. Frontiers in

Neuroscience, 14, 922.

Pfurtscheller, G., Schwerdtfeger, A. R., Seither-Preisler, A., Brunner, C.,

Aigner, C. S., Brito, J., Carmo, M. P., & Andrade, A. (2017). Brain–heart
communication: Evidence for “central pacemaker” oscillations with a

dominant frequency at 0.1 Hz in the cingulum. Clinical Neurophysiol-

ogy, 128(1), 183–193.
Rolls, E. T., Joliot, M., & Tzourio-Mazoyer, N. (2015). Implementation of a

new parcellation of the orbitofrontal cortex in the automated anatomi-

cal labeling atlas. NeuroImage, 122, 1–5.
Schiecke, K., Pester, B., Piper, D., Benninger, F., Feucht, M., Leistritz, L., &

Witte, H. (2016). Nonlinear directed interactions between hrv and eeg

activity in children with tle. IEEE Transactions on Biomedical Engineering,

63(12), 2497–2504.
Shao, S., Shen, K., Wilder-Smith, E. P., & Li, X. (2011). Effect of pain per-

ception on the heartbeat evoked potential. Clinical Neurophysiology,

122(9), 1838–1845.
Shao, S., Shen, K., Yu, K., Wilder-Smith, E. P., & Li, X. (2012). Frequency-

domain eeg source analysis for acute tonic cold pain perception. Clini-

cal Neurophysiology, 123(10), 2042–2049.
Silvani, A., Calandra-Buonaura, G., Dampney, R. A., & Cortelli, P. (2016).

Brain–heart interactions: Physiology and clinical implications.

CATRAMBONE ET AL. 9 of 10

 10970193, 2024, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hbm

.26677 by C
ochraneItalia, W

iley O
nline L

ibrary on [25/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Philosophical Transactions of the Royal Society A: Mathematical, Physical

and Engineering Sciences, 374(2067), 20150181.

Skora, L. I., Livermore, J. J. A., & Roelofs, K. (2022). The functional role of

cardiac activity in perception and action. Neuroscience & Biobehavioral

Reviews, 137, 104655.

Tadel, F., Baillet, S., Mosher, J. C., Pantazis, D., & Leahy, R. M. (2011).

Brainstorm: A user-friendly application for meg/eeg analysis. Computa-

tional Intelligence and Neuroscience, 2011, 1–13.
Truter, N., Malan, L., & Essop, M. F. (2023). Glial cell activity in cardiovas-

cular diseases and risk of acute myocardial infarction. American Jour-

nal of Physiology-Heart and Circulatory Physiology, 324(4), H373–
H390.

Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F.,

Etard, O., Delcroix, N., Mazoyer, B., & Joliot, M. (2002). Automated

anatomical labeling of activations in spm using a macroscopic anatomi-

cal parcellation of the mni mri single-subject brain. NeuroImage, 15(1),

273–289.
Valenza, G., Di Ciò, F., Toschi, N., & Barbieri, R. (2024). Sympathetic and

parasympathetic central autonomic networks. Imaging Neuroscience, 2,

1–17.
Valenza, G., Passamonti, L., Duggento, A., Toschi, N., & Barbieri, R.

(2020). Uncovering complex central autonomic networks at rest: A

functional magnetic resonance imaging study on complex cardiovas-

cular oscillations. Journal of the Royal Society Interface, 17(164),

20190878.

Valenza, G., Sclocco, R., Duggento, A., Passamonti, L., Napadow, V.,

Barbieri, R., & Toschi, N. (2019). The central autonomic network at

rest: Uncovering functional mri correlates of time-varying autonomic

outflow. NeuroImage, 197, 383–390.
Young, H., & Benton, D. (2015). We should be using nonlinear indices

when relating heart-rate dynamics to cognition and mood. Scientific

Reports, 5(1), 16619.

Zelano, C., Jiang, H., Zhou, G., Arora, N., Schuele, S., Rosenow, J., &

Gottfried, J. A. (2016). Nasal respiration entrains human limbic oscilla-

tions and modulates cognitive function. Journal of Neuroscience,

36(49), 12448–12467.

SUPPORTING INFORMATION

Additional supporting information can be found online in the Support-

ing Information section at the end of this article.

How to cite this article: Catrambone, V., Candia-Rivera, D., &

Valenza, G. (2024). Intracortical brain-heart interplay: An EEG

model source study of sympathovagal changes. Human Brain

Mapping, 45(6), e26677. https://doi.org/10.1002/hbm.26677

10 of 10 CATRAMBONE ET AL.

 10970193, 2024, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hbm

.26677 by C
ochraneItalia, W

iley O
nline L

ibrary on [25/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1002/hbm.26677

	Intracortical brain-heart interplay: An EEG model source study of sympathovagal changes
	1  INTRODUCTION
	2  MATERIALS AND METHODS
	2.1  Dataset description
	2.2  EEG processing
	2.3  EEG source localization
	2.4  ECG processing
	2.5  Intracortical brain-heart interplay estimation

	3  RESULTS
	4  DISCUSSION
	5  CONCLUSION
	AUTHOR CONTRIBUTIONS
	FUNDING INFORMATION
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT

	REFERENCES


