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Abstract

A new criterion for predicting multiaxial fatigue in plain and V-notched specimens made of ductile cast
iron is proposed. The criterion is based on volumetric strain energy density (SED) and separately accounts
for the effect of normal and shear mean stresses with two material-dependent coefficients. The criterion
also considers the impact of out-of-phase loading through a strengthening factor, assuming that fatigue

damage is initiated by the total SED peak in the cycle. The criterion is validated using a large amount of
independent multiaxial fatigue data, obtained from testing three different ductile cast iron grades.
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Nomenclature

2a notch opening angle

a,B material-dependent parameters accounting for the mode I and III mean stress effect
€ot strain at failure

0 angle defining the evolution of the loading cycle
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multiaxiality ratio

threshold A defining the transition from mode I to III dominated fatigue failure
Poisson’s ratio

principal stresses

axial and shear stress amplitudes

mode I and III intrinsic fatigue strengths

mode I and III notch fatigue strengths

mode I and III plain fatigue strengths

minimum and maximum axial stresses

yield strength

minimum and maximum shear stresses

phase angle between the axial and torsional loadings

mode I and IIT SED control volumes

geometrical parameter of the defect

correction coefficient accounting for the mean stress effect

notched specimen bar diameter

ductile cast iron

mean of the graphite nodules maximum Feret diameters

shrinkage pore maximum Feret diameter

elastic modulus (Young’s modulus)

modulating function defining the transition from mode I to III dominated fatigue failure
mode I and III inversion functions for the determination of R; and R;
shear modulus

Brinell hardness

high Si content DCI ferritic grade

mode I and III notch fatigue stress concentration factors

phase correction factor accounting for the phase effect



N¢ number of cycles to failure

Ry notch radius

R stress (or load) ratio

Ry, R3 mode I and III SED control radii

RMS root mean square

S standard deviation

SED strain energy density

SEDpeax peak strain energy density values in the cycle

A SEDpeqx difference between the peaks strain energy density values
UTS ultimate tensile strength

WLplaim W3‘plam mode I and IIT SED associated to the plain fatigue strengths
Wy, Wy mode I and III SED associated to the intrinsic fatigue strengths
Wi eqr W eq mode I and IIT equivalent SED

Wy y, Wy mode I and IIT SED for unitary applied nominal stress

1. Introduction

The expanding energy industry has spurred a growing demand for ductile cast iron (DCI), also known as
nodular cast iron, due to its unique material properties such as low melting point and good fluidity, which
enable good castability for complex and large components [1]. Examples include windmill parts, nuclear
waste storage containers, cement production components, and bench presses. However, large components'
low cooling rates often result in casting defects like degenerated graphite and micro-porosity [2]. To address
this, spheroidization treatment with magnesium and the addition of rare earths to the cast can reduce
graphite degeneration [3,4]. The size and distribution of shrinkage pores depend on DCI grade and cooling
rate, but their formation can be mitigated by placing chillers in critical zones, namely those affected by the
lowest cooling rates. Moreover, components are typically subjected to multiaxial and time-varying loading,
thus requiring the adoption of suitable multiaxial fatigue criteria for safe design.

Early approaches to design against multiaxial fatigue were empirical, relying on fitting experimental data
[5]. However, these approaches were limited in applicability to the stress states and the geometries that
were actually tested [5]. As a result, researchers turned to theoretical approaches that could be generally
applied to any geometry and loading condition. Stress invariants-based criteria [6,7] are based on exploiting
the hydrostatic stress and the second invariant of the deviatoric stress tensor. However, they can only be
applied to proportional loadings and, therefore, have been largely replaced by other multiaxial fatigue
calculation methods. Critical plane-based approaches [8-22] involve strain-based, stress-based, or
strain/stress-based criteria and rely on a "critical" plane, where a certain stress component, strain
component, or a combination of both displays its maximum value. Energetic approaches involve



transforming specific stress and strain components, or energies, into equivalent damage parameters
associated with a uniaxial fatigue curve [20,23-29].

In this paper, we will specifically focus on strain energy density (SED)-based approaches, which offer
several advantages over other multiaxial fatigue calculation methods. Firstly, the effect of stress gradients
is implicitly considered in the volumetric SED [30]. Secondly, the problem of defining a critical plane is
completely bypassed. The SED is indeed a scalar quantity that is averaged over a control volume whose
size is material-dependent (recalling the “elementary volume” and “structural support length” of Neuber
[30,31]). Working with scalars reduces the computational power required for the fatigue assessments and
simplify the method on a conceptual point of view, making its application more suitable for industries. The
base idea, proposed by Lazzarin and Zambardi [32], states that fatigue failure in a notched component
happens when the SED, evaluated over a control volume, reaches a critical value, which is a characteristic
feature of the material and of the loading mode. For plane or axisymmetric problems, the control volume
simplifies into a circular domain, as schematically illustrated in Fig. 1.
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Figure 1. Schematic representation of the mode I or mode Il SED critical volumes.

The circular sector encompassing the notch tip is centered in the origin of the curvilinear reference frame
used to describe the notch geometry and located at distance 7y from the notch tip moving along the notch
bisector. The radius ry is a function of notch radius Ry and opening angle 2a&. To account for different notch
sensitivity displayed by several materials to type I and III mode of loading, Berto et al. [30] proposed to
average mode I and III SED components, over control volume characterized by a distinct value of radius,
denoted in Fig. 1 as R, and R, respectively. The mode III type of loading is typically associated with lower
notch sensitivity, which can be attributed to the peculiar "factory roof" fracture morphology found in
notched specimens loaded under torsion. This phenomenon has been extensively studied by Berto et al.
[33] and Tanaka et al. [34], who associated the factory roof fracture with rubbing and abrasion, resulting in
energy dissipation. They proposed the concept of mode III notch-strengthening effect produced by cyclic
crack surface contact, which explains the abrasion and debris formation.

In the classical formulation of the method, the fatigue damage is linked to the variation between maximum
and minimum SED occurring during the load cycle. The mean stress effect is considered by means of a
correction coefficient ¢y [35] that is equal to 1 and 0.5 for the stress ratio R=0 and R=-1, respectively. As a

result, the fatigue strength range for the nominal ratio R=-1, increases according to a factor V2 with respect



to case corresponding to R=0, in agreement with the recommendations provided by the Eurocode 3 and ITW
for stress- relieved welded joints. The SED fatigue criterion devised so far can be formulated in this way:

[CW : Wl,notch (Rl) +Cw- W3,notch(R3) = Wl,plain

L+R? for —0<R<O0
ﬁ G-y 0
cw =131 for R=0
1-R?
k RESE forr 0<R<1

where ¢, is the correction coefficient for the mean stress effect (considered to be the same for mode I and
IIT loading), R is the stress ratio, Wl,plain is the SED of plain specimens under mode I loading, and, finally,
Wi noteh and Wi poten are the notch SEDs for mode I and mode 111 loading, which are function of the SED
control radii R and R5. Atzori et al. [36] and Berto et al. [33] successfully applied the strain energy density
(SED) method to compile a comprehensive collection of multiaxial fatigue data from axisymmetric V-
notched specimens made of C40 steel, 39NiCrMo3 hardened and tempered steel, and Ti-6Al-4V alloy.
However, despite these achievements, the existing SED-based fatigue calculation framework faces some
limitations.

Firstly, it does not consider the varying mean stress sensitivity displayed by different structural metals. To
address this issue, Benedetti et al. [37] recently proposed an alternative method to incorporate the mean
stress effect into an SED-based fatigue criterion. By integrating the range and maximum value of average
SED into a Walker-like equation, an equivalent fatigue damage parameter can be expressed. The mean
stress sensitivity factor & was found to significantly differ among Al alloys, quenched and tempered steels,
and cast irons and to be strongly dependent on the fatigue life regime.

Secondly, the application of the SED approach to multiaxial notch fatigue strength assessment raises the
challenge of accounting for the effects of non-proportional loading. The sensitivity to the phase angle is
influenced by the material's microstructure and notch acuity. Marangon et al. [38] analyzed multiaxial
fatigue data of steel specimens and provided insightful observations. They demonstrated that under a
nominal load ratio of R=-1, the most damaging configuration was the 90° out-of-phase loading, which
reduced fatigue strength by 6-13% compared to in-phase loading. The phase angle's influence was found to
be more pronounced at lower biaxiality ratios, and a similar trend was detected for a load ratio of R=0.
Additionally, the phase angle's effect was found to be slightly dependent on the notch opening angle and
the material characteristic length.

Furthermore, the reduction in fatigue strength of steel specimens due to out-of-phase loading aligns with
the findings of Sonsino et al. [39,40]. The "factory roof" morphology was also observed in notched
specimens tested under multiaxial fatigue, with slight variations in morphology depending on the phase
angle. Non-proportional out-of-phase loading influences the experimentally measured fatigue strength, but
this effect is strongly influenced by the tested material. Benedetti et al. [2], Berto et al. [41], and Tovo et
al. [42] observed a strengthening effect due to out-of-phase loading in both plain and notched specimens
made of ductile cast iron (DCI), while out-of-phase loading seemingly weakened specimens made of steel.
Itoh et al. [43] reported that the decrease in fatigue strength due to non-proportional loading depends on the
tested material's crystal structure. However, these aspects have not yet been incorporated into SED-based
fatigue approaches.

To conclude, another aspect must be considered when applying a multiaxial fatigue criterion to predict plain
and notch fatigue strengths of ductile cast iron (DCI), particularly for heavy-section pearlitic DCI. Indeed,
Benedetti et al. [44] observed that in plain specimens, fatigue damage was triggered by shrinkage pores,
while in notched specimens, it was initiated by graphite nodules located near the notch tip. A plausible
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explanation, which will be further substantiated in this work, is that the highly stressed volume (HSV) in
plain specimens is sufficiently large to encompass, from a probabilistic perspective, significant shrinkage
pores [45]. Conversely, the HSV in notched specimens might be too small to include pores more critical
than graphite nodules. This evidence highlights the necessity to define an intrinsic fatigue strength,
representing a pore-free material. Essentially, the intrinsic fatigue strength accounts for all homogeneously
distributed microstructural features within the material, such as the microstructure (ferritic, pearlitic,
ferritic-pearlitic, etc.) and graphite nodules. Shrinkage pores, on the other hand, are unevenly and randomly
distributed on a microscopic scale and, therefore, should be addressed using a probabilistic approach.

In this work, we introduce a novel SED-based multiaxial fatigue criterion capable of addressing both the
mean stress effect and the phase effect. The implementation of the criterion is carried out in elastic
conditions. The criterion's validation is demonstrated using independent sets of experimental data obtained
from testing three distinct DCI grades subjected to multiaxial fatigue loading. The paper is structured as
follows: Section 2 outlines the investigated materials and highlights their unique microstructure-related
fatigue properties, which must be incorporated into the modified SED-based multiaxial fatigue criterion.
Section 3 details the experimental procedures employed in conducting the fatigue tests. The proposed
multiaxial fatigue criterion is presented in Section 4, while Section 5 is devoted to validating the criterion
using independent sets of experimental multiaxial fatigue data. Finally, Section 6 summarizes the most
significant conclusions and observations.

2. Materials

The experimental campaign was carried out on three different cast iron grades, namely a EN-GJS-600-3
DCI with pearlitic matrix, a EN-GJS-450-18 DCI with high Si content (regarded as High-Si or HSi) and
ferritic matrix. Some of the data related to the EN-GJS-600-3 grade were already presented in [2], while in
this work, we present supplementary data obtained from multiaxial fatigue testing, which is crucial for
validating the proposed criterion.[41] Conversely, the data related to the HSi grade are reported in this work
for the first time. The discussion is enriched by the dataset collected in an independent previous work
carried out in [2] on an EN-GJS-400-18-LT DCI with ferritic-pearlitic matrix. The micrographs of the
investigated materials, shown in Fig. 2, were obtained by means of an optical microscope, polishing samples
extracted close to the fracture surfaces of the tested fatigue specimens. It must be pointed out that the HSi
grade was optimized by the foundry for large casts to provide the required mechanical properties and
considering the specific requests of customers and designers.

Figure 2. Micrographs of the three investigated DCI grades, showing the respective microstructures.



The chemical compositions and the mechanical properties of the three investigated grades are reported in
Table 1.

Table 1. Chemical composition and main mechanical properties of the three investigated DCI grades.

C Si Mn P S Cu Ni Mg
(%) (%) (%) (%) (%) (“o) (%) (%)
GJS-600 3.55 2.39 0.28 0.038 0.009 0.52 0.02 0.046
HSi 3.43 3.57 0.19 0.04 0.009 0.06 0.02 0.043
GJS-400 [46] 3.50 2.45 0.12 0.02 0.007 0.13 0.03 0.055
E G Gy,0.2 UTS Etot Poisson’s ratio HB

(GPa) (GPa) (MPa) (MPa) (%)

GJS-600 174+2 685+13 363+£8 485+15 2.1+£05 0.27 198 +£4
HSi 174+2 685+1.3 364+4 476+3 144+2.8 0.27 170 £2
GJS-400 [46] 174+2 68.5+1.3 267 378 11.5 0.27 145

The detailed description of the solidification conditions of the GJ-600 and the High Si grades can be found
in [44]. Basically, the fatigue specimens were extracted from as-cast cylinders of high thermal modulus
(about 6 cm), with diameter of 300 mm and height of 520 mm, exposed to air convection. The solidification
time is long enough to be representative of actual thick-walled components. Further details about the
production process of the GJS-400 grade are reported in [41]. To summarize them, casting blocks, provided
with feeders on the top, and with dimensions 300 x 250 x 300 mm®, were produced. The specimens for
mechanical tests were extracted from the zone with the longest solidification time, therefore representative
of real thick-walled casts.

3. Experimental method and campaign

The fatigue data were collected by testing the axisymmetric specimen geometries shown in Fig. 3(a-k).
Specimens (a-i) were produced in the GJS-600 and High-Si grades, while specimens (j-k) were produced
in the GJS-400 grade. The plain specimens (Fig. 3a, b and j) were tested to collect the materials’ baselines
fatigue curves. The V-notched specimens (Fig. 3¢-i) were appositely designed to optimize the stress state
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and maximize the intensity of the asymptotic stress filed and therefore to reduce the uncertainty in the
inverse search of the control radii [47,48].
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Figure 3. Technical drawings of the specimens exploited in the fatigue tests: (a) plain specimen for axial
tests, (b) plain specimen for torsional and multiaxial tests, (c) V-notched specimen with sharp notch radius
and opening angle 2& of 60° for axial tests, (d) V-notched specimen with sharp notch radius and opening
angle 2& of 60° for torsional tests, (e) V-notched specimen with sharp notch radius and opening angle 2a
of 60° for multiaxial tests, (f) V-notched specimen with blunt notch radius and opening angle 2& of 60° for
axial tests, (g) V-notched specimen with blunt notch radius and opening angle 2& of 60° for torsional tests,
(h) V-notched specimen with blunt notch radius and opening angle 2@ of 60° for multiaxial tests, (i) V-
notched specimen with sharp notch radius and opening angle 2& of 90° for axial tests, (j) plain specimen
for axial, torsional and multiaxial tests of the GJS-400 grade, and (k) V-notched specimen with sharp notch
radius and opening angle 2& of 60° for axial, torsional and multiaxial tests of the GJS-400 grade.

Because of the great influence that the notch radius has on the stress field in notched specimens, the actual
notch radii were measured by stereomicroscopy and reported in Table 2.

Table 2. Notch radii measured by stereomicroscopy for the investigated geometries.

Geometry Nominal notch radius (mm) Measured notch radius (mm)

Sharp notch (¢) 0.2 0.30



Sharp notch (d) 0.2 0.23

Sharp notch (e) 0.2 0.23
Blunt notch (f) 1 1
Blunt notch (g) 1 1
Blunt notch (h) 1 1
Sharp notch (i) 0.2 0.22
Sharp notch (k) 0.1 0.092

The medium-to-high-cycle fatigue life was explored between about 5x10* and 5x10° cycles to failure and
a stress amplitude range between 40 and 300 MPa. The stress amplitudes indicate the nominal stress
amplitude in the net cross section. Specimens (a), (c), (f) and (i) were tested under axial loading using two
Rumul (Switzerland) Testronic resonant testing machines, at a nominal frequency of 150 Hz, under load
control, equipped with load cells of 150 kN and 50 kN load capacity. Specimens (b), (d-e) and (g-h) were
tested under torsional and multiaxial loading using a Walter + Bai (Switzerland) LFV100-T1000-HH
biaxial servo-hydraulic testing machine equipped with hydraulic grips and a biaxial load cell with axial and
torsional load capacities of 100 kN and 1000 Nm, respectively, at a frequency between 15 and 20 Hz.
Specimens (j) and (k) were tested under axial, torsional and multiaxial loading, using an MTS 809 servo-
hydraulic biaxial machine with a 100 kN axial load cell and a 1100 Nm torsion load, at frequency between
3 and 10 Hz [41]. All data pertaining to axial and torsional loading are displayed in Figure 4 and detailed
in Appendix A. A subset of this fatigue data will be employed to calibrate the multiaxial fatigue criterion,
as elucidated subsequently. The multiaxial fatigue data, on the other hand, constitutes an independent
dataset that is not utilized for criterion calibration but is employed to evaluate the accuracy of fatigue
predictions in terms of stress amplitude and the number of cycles to failure. This data will be thoroughly
presented in Section 4 and serve as the basis for validating the proposed criterion.
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Figure 4. Axial and torsional fatigue data collected by testing the (a-b) GJS-600 grade, (c-d) HSi grade
and (e-f) GJS-400 grade [41,42], at room temperature and with a nominal frequency of 150 Hz or 3-20 Hz,
for axial and torsional tests, respectively. The solid lines represent the experimental 50 % failure
probability, while the colored bands the 10 to 90 % failure probability.

The axial fatigue curves indicating the 50 % failure probability are represented by the following asymptotic
equation, which can capture the knee observed in the experimental axial fatigue data:
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This formulation was introduced by Stromeyer as a modification of the well-known Basquin equation [49].
The addition of an asymptotic term is useful to represent the real behavior of the tested materials, and
basically substitute the use of a knee-point, which is the commonly adopted approach [50]. As the torsional
and multiaxial fatigue data, as it will be shown later in this work, do not display any knee, the corresponding
50 % failure probability curves is instead well represented by the well-known Basquin’s law:

ka k2

Ty = —5%=) 0, =
a = ykso a~ Nk

€))

The scatter of the experimental data was determined by assessing the estimated regression variance,
considered to be non-varying in the whole investigated fatigue range, and defined as:

n —5.:)? n 2 )?
S2 = ZL=1(‘:la;1p Gaji) . S2 = z:1=1(':la;1p'fa,1) (4)

where o, ; and 7,; are the i-th fatigue data point, 6,; and %,; are their estimators, n is the number of
experimental data points and p is the number of parameters in the regression (2 or 3 in the present case).
As previously highlighted in the introduction, it is crucial to consider numerous factors when designing
fatigue-resistant components made of ductile cast iron (DCI). Figure 5 presents a comprehensive overview
of the key characteristics for the studied DCI grades, as gathered throughout our experimental investigation.
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Figure 5. Schematic representation of peculiar characteristics of the investigated DCI grades. (a) diverse
features triggering fatigue failure (micro-shrinkage porosity or graphite nodules); remarkable (b) load
phase and (c) the mean stress effect; (d) the different notch sensitivity under mode I and mode 11l loading.

Figure 5a displays the fractographic analysis conducted using a JEOL JSM-IT300LV scanning electron
microscope (SEM). Previous studies [2,41,51] have provided experimental evidence that fatigue failure can
be initiated by shrinkage pores or graphite nodules, depending on the material and specimen geometry. In
the case of GJS-600 and GJS-400 grades, fatigue cracks in plain specimens originated from pores, whereas
in notched specimens, they began at graphite nodules near the notch tip, as previously demonstrated in [2]
and further explained in our recent publication [45].
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The probability of encountering a shrinkage pore in a highly stressed volume is influenced by both the
component's geometry and the distribution of pores within the material. For notched specimens, the size of
the critical defect (with a 99% cumulative probability) in the highly stressed volume is small enough to be
inactive compared to the notch, which exhibits a higher fatigue stress concentration factor. However, in
plain specimens, the critical defect in the highly stressed volume is large enough to affect fatigue properties,
being the highly stressed volume much larger. To design a notched component with suitable fatigue
resistance (assuming the notch is severe enough to prevent pore-notch interactions), the reference fatigue
strength should correspond to that of pore-free material. An intrinsic fatigue strength [2,45] can be
introduced to represent the pore-free material, with the determination framework detailed in [2] and
revisited later in this work. In contrast, fatigue failure in the HSi grade consistently originated from
shrinkage pores, regardless of the geometry being studied. This outcome is closely tied to the material-
dependent distribution of shrinkage pores. In the HSi grade, pores are homogeneously distributed
throughout the material at a scale comparable to that of the notches, making them a characteristic feature
like graphite nodules. The unique pore distribution in the HSi grade is likely linked to its chemical
composition. The high silicon content lowers the eutectic point for carbon, necessitating a reduction in
carbon content to achieve the eutectic chemical composition. Graphite nodule expansion during
solidification is known to counteract shrinkage pore formation in ductile cast iron [52]. It is logical that
lower carbon content leads to reduced graphite content and, consequently, less expansion due to graphite
nodule growth. This results in a denser pore distribution within the ductile cast iron. Since the defect
initiating fatigue is independent of geometry, the reference fatigue strength for the HSi grade should be
based on that of plain specimens.

The effect of the phase angle in the presence of non-proportional loadings is emphasized in Fig. 5b for the
GJS-600 grade ductile cast iron (DCI). This trend was also noted in the other investigated DCI grades. It is
evident that the phase angle ¢ significantly affects the fatigue properties of the material. Out-of-phase
loading enhances the fatigue strength of both plain and notched specimens, irrespective of the notch
geometry. This finding contrasts with the behavior of other metallic materials, such as steels, where out-of-
phase loading typically has adverse effects. However, the observed strengthening effect in DCIs is
supported by several studies [41,42,53—57]. As a result, it can be hypothesized that in brittle metallic
materials, where fatigue damage primarily results from maximum normal stresses, out-of-phase loading is
advantageous for fatigue strength [55].

The influence of mean stresses on the GJS-400 grade is illustrated in Fig. Sc, with similar patterns observed
in other examined DCI grades. Both uniaxial and torsional fatigue tests, conducted on identical geometries
but with varying load ratios, demonstrate the presence of mean stress sensitivity under both loading
conditions. This finding emphasizes the importance of incorporating mean stress effects for both mode I
and mode III into an appropriate multiaxial fatigue criterion.

Furthermore, Fig. 5d displays the distinct notch sensitivity observed for axial and torsional loadings. The
disparity between the fatigue strengths of plain and notched specimens is strongly associated with the type
of'loading applied. This difference is considerably smaller for torsional loading, where the fatigue strengths
of the two geometries coincide, indicating reduced notch sensitivity. The overlap can be elucidated by
referring to Fig. 5a, which reveals the impact of pores on the fatigue strengths of unnotched specimens. The
varying degrees of notch sensitivity can be attributed to the differing sizes of SED control radii, as proposed
by Berto et al. [30].

The experimental evidence presented in Fig. 5 offers insights into the various factors influencing the
multiaxial fatigue behavior of DCIs. These factors have been integrated into the proposed multiaxial

criterion, which will be elucidated in the subsequent discussion.

4. Multiaxial fatigue criterion
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The proposed approach utilizes a strain energy density (SED)-based criterion to assess the fatigue failure
of a component. The underlying assumption of this criterion is that fatigue failure occurs when the SED,
averaged over a control volume, exceeds a critical value, denoted as W,. This critical value is typically
determined by conducting tests on plain specimens and varies depending on whether the loading is axial
(mode I) or torsional (mode III):

™ _1 2 . T _ 1 2
Wl,plain = Eo-a,plain' W3,plain - Era,plain (5)

where 0, p1ain and T p1ain are the fatigue strengths, at a given number of cycles to failure, of plain specimens
tested under axial and torsional loading, respectively. E is the elastic (Young) modulus and G is the shear
modulus. This approach is supposed to work well for the HSi grade, where shrinkage pores are
homogeneously distributed within the material. Nevertheless, as already explained, fatigue failure in the
GJS-600 and GJS-400 grades is triggered by different features, depending on the specimen’s geometry.
Therefore, in order to obtain reliable predictions, the critical SED for mode I and III loadings should be
assessed by replacing the plain fatigue strengths with the intrinsic fatigue strengths o, and 73, representative
of a pore-free material. Summarizing:

Wy = %ag Z, Wy = irg 2, for the GJS — 600 and GJS — 400 grades ©
Wi =—02pains W5 =5-T2pim;  for the HSi grade

4.1 Definition of the intrinsic fatigue strengths and the SED control radius under different loading
modes

The procedure used to assess the intrinsic fatigue strengths o, and t; is based on the SED local approach
and provides the SED control radii R; and R3, for mode I and mode III loadings, respectively. The
framework, schematized in Fig. 6 and explained in detail in [58,59] and [60], consists in testing two V-
notched axisymmetric specimens with different severities, namely a sharp and a blunt notch. According to
the SED local method, the SED is averaged over a control volume Q; or 3, for mode I and mode III
loading, respectively (see Fig. 1). The characteristic sizes of these control volumes are the SED control
radii R; and R3, which are assumed to be a material property, function of the number of cycles to failure
[61,62].
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HSi grade:
Plain + Sharp notch
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Intrinsic fatigue SED control vol
0,,T, # i control volume
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o'a.plairl- fa.plain
Blunt notch

Sharp notch

GJS-600 and GJS-400 grades:
Blunt notch + Sharp notch

Figure 6. Schematization of the framework used to determine the mode I and 11l intrinsic fatigue strengths,
and the mode I and Il control radii, as function of the DCI grade. The notch depth A is equal to 0.3 D/2
for mode I loading and 0.25 D/2 for mode Il loading.

In V-notched axisymmetric specimens, {; and )5 are lenticular areas comprised within a circle of radius
1o + Ry or 1y + R3, respectively, and centered on the notch bisector at a distance 1, from the notch tip,
defined as:

_27
To = Ry ZT:r—zo(; @

where Ry is the notch radius and 2& is the notch opening angle. In [58—60], we proposed an inverse search
procedure of the control radii Ry and R3, which takes as input the fatigue strengths of a plain and an
optimized V-notched specimen. Given the coherence of microstructural defects leading to fatigue failure in
plain and notched specimens made of HSi grade, the procedure for mode I and mode III loading is
straightforward:

( _b RN Oaplain __ Oaplain
Rl - Efl,inversion D, ’ Kf,Nl s ,
2z a,N a,N

{ for the HSi grade
_D RN Oaplain | | __ Oaplain |
kR3 - ;f3,inversion <T' ) ’ Kf,N3 - ’
2

Ta,N Ta,N
(®)

Instead, for the GJS-600 and GJS-400 grades, the plain fatigue strength is replaced with the intrinsic fatigue
strength, and the inversion functions can be defined as:
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ON ON,a

D R A a
(Rl = Efl,inversion <TNJJ_a> ; Kf,Nl = J_;
S for the GJS — 600 and GJS — 400 grades 9)

R3 = %f&inversion (RTN'T;_Z) ; Kens = .L::\I_aa;
> N, :

Where D is the external diameter of the V-notched specimen, o,y and 7,y are the V-notched specimen
fatigue strengths, K¢y, and Kry3 are the mode I and mode III notch fatigue stress concentration factors.
Basically, the control radii are defined as a function of the specimen geometry, the intrinsic fatigue
strengths, and finite element-based inversion functions. Nevertheless, o, and t; are not known a priori,
thus making the problem unsolvable. This drawback can be bypassed by testing two V-notched specimens
with different severities, as schematized in Fig. 6, namely specimens (c) and (f) for mode I loading, and
specimens (d) and (g) for mode III loading. The main assumption of the SED-based approaches states that
the control radii are material properties, therefore, they must be the same if assessed by testing a sharp or a
blunt V-notched specimen. Consequently, the following equations can be written:

R. = Dsharpf (RN,sharp g3 ) _ Dbluntf (RN,blunt oa )
1= 1,inversion ’ - 1,inversion )
2 Dsharp/2 " Osharp,a 2 Dplunt/2 " Oblunt,a

R. = Dsharpf (RN,sharp T3 ) _ Dbluntf (RN.blunt Ta )
3= 3,inversion ’ - 3,inversion ,
2 Dsharp/2 " Tsharp,a 2 Dplunt/2 " Tblunta

(10)

In this way, the intrinsic fatigue strengths o, and 7 can be assessed by adopting an iterative root search
algorithm of Eq. (10). Finally, the control radii can be evaluated according to Eq. (9), utilizing the data
related to the sharp V-notched specimen. Unfortunately, no blunt V-notches were produced in the GJS-400
grade, thus making the inversion from double notch unfeasible. Therefore, the intrinsic strengths were

evaluated by rescaling the plain fatigue strengths with the well-known Murakami varea formula [63]:

1/6
dF,pore ) /

— .
%a = Taplain (dF,nodule

(11)

1/6
dF,pore ) /

* == . ——
Ty = Ta,plam <dF’n0du]e

where dg poqule 1 the mean maximum Feret diameter of the graphite nodules, set equal to 52.5 um
according to [64], and dg pore is the maximum Feret diameter of the pore expected to be found in the plain
specimens, set equal to 1350 um according to [46], as evidenced by the fracture surface shown in Fig. Sa.
Then, the SED control radii were evaluated according to Eq. (9) and using the sharp V-notch data. The
values of oy, t;, R; and R3, assessed for all the investigated materials, are shown in Fig. 7 as function of
the number of cycles to failure.
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Figure 7. (a) Mode [ plain and intrinsic fatigue strengths, (b) mode 11l plain and intrinsic fatigue strengths,
and (c) mode I and I1l control radii, as function of the number of cycles to failure Ny, for all the investigated
materials.

As already explained, no intrinsic fatigue strengths were calculated for the HSi grade. Another important
consideration regards the assessed intrinsic fatigue strengths of the GJS-600 and GJS-400 grades. In fact,
they are in good agreement with the fatigue strengths predicted by Vaara et al. in [65] and the experimental
fatigue strengths reported in [66—69]. The reason why they’re in agreement is that the reference fatigue
strengths above mentioned are obtained for small ductile cast iron casts, which generally don’t display any
shrinkage porosity.

4.2 Basic formulation of the criterion

Multiaxial (axial + torsional) fatigue tests can be defined through four main parameters, namely the applied
axial stress amplitude g,, the multiaxiality ratio A = 7,/0, (where 7, is the applied shear stress amplitude),
the stress ratio R = 0y /Omax (Where opin and oy, are the minimum and maximum axial stress values)
and the phase angle ¢, which is the shift angle between the sinusoidal axial and torsional loading. Therefore,
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a multiaxial fatigue criterion should account for all the above-mentioned parameters. In this work only
cyclic loadings at constant frequency are considered. The simple formulation of the criterion we propose
is:

02 Wiy +Ao)? Way =0 —f) W+ f W3 (12)

where g, is the stress amplitude to be predicted. W, ; and W5 ; are the SED values for unitary applied axial
or shear stress. Their values depend both on the investigated geometry and the material, thus the control
radii, and are calculated as explained in the following. Given the investigated specimen geometry,
parametric finite element simulations are carried out by varying the control radius (R; for axial loading and
R; for torsional loading), applying a nominal unitary axial or shear stress, and then assessing the
corresponding SED value averaged over the control volume, which is equal to W, ;; or W3 ;;, depending on
the applied load. The control volume is placed as schematized in Fig. 1. The unit of measure of the unitary
SEDs is mJ/(mm’ MPa?). It should also be noted that W, ;; and Ws ; are functions of R; and R3, which are
functions of the number of cycles to failure, but material dependent. Therefore, in Eq. (12), Wy y and W5
are interpolated according to the proper control radii, depending on the considered number of cycles to
failure. f'is a modulating function we propose, defined as:

ArcTan(A—A)
T

f=0G+ )5 Aen =15 (13)
A¢n 1s a threshold value that indicated the transition from mode I to mode I1I dominated failure. The limiting
cases are A = 0, which represent a pure axial loading, and A = oo, which represent a pure torsional loading.
It reasonable to think that the higher A, the lower the influence of the axial stress on the fatigue properties,
thus leading to mode III dominated failure. This is confirmed by Fig. 8, where some experimental fatigue
data are plotted in terms of equivalent SED. It can be observed that axial and multiaxial fatigue data lie in
the vicinity of the line defining the mode I critical SED W;". Instead, torsional fatigue data lie in the vicinity
on the line defining the mode III critical SED W This evidences how multiaxial fatigue failures, at least
for the investigated values of A, are mode I-nominated, while mode I1I-dominated failures are encountered
only when the shear stress component is very high, for instance under pure torsional fatigue.

GJS-600
Plain (a-b)
15-150 Hz, RT

¢ Axial Loading

Equivalent strain energy density, W, (mJ/mm?)

® Torsional Loading . .-
A Multiaxial Loading -
: + factor 1.5
0.1 4——w; -
+ factor 1.5
—r - —
10° 10°

Number of cycles to failure, N, (cycles)

Figure 8. Experimental data (data points) represented by means of an equivalent strain energy density
(solid lines), versus the critical SEDs Wy and W3, as function of the number of cycles to failure Ny. The
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colored bands represent a factor equal to £ 1.5. Axial and multiaxial fatigue failures are mode I-dominated.
Torsional fatigue failures are mode Ill-dominated.

In this work, we set Ay, = 15, which is an extremely high value for normal multiaxial conditions, thus
assuming that, inasmuch an axial stress component is present, the fatigue failure is mode I dominated.
Basically, /= 0 when 4 < A, (axial and multiaxial tests) and f'= 1 when 4 > A, (torsional tests). The
validity of the assumed value of A;, is confirmed by the experimental data used for the model validation,
as it will be shown in the following. Nevertheless, the proper value could be set only after a specific
experimental campaign. In any case, for a safe design, a worst-case condition, represented by a mode-I
dominated failure, can always be considered, thus being conservative in the fatigue predictions.

The proposed criterion can be subdivided into two parts. The left-hand side represents the energy associated
to the loads applied to the tested specimen. The stress amplitude to be predicted g, scales with the power
2, as the SED can be represented as a stress elevated to the power 2. Since both axial and torsional loads
are applied simultaneously, the corresponding SEDs are simply summed. The right-hand side, instead,
represents the critical SED leading to fatigue failure. Solving Eq. (12) for g, allows to assess the fatigue
strength of the investigated component. Nevertheless, the simplified formulation reported in Eq. (12)
accounts neither for the mean stress effect, related to the stress ratio R, nor for the phase effect. These
effects will be incorporated to the criterion in the following.

4.3 Mean stress effect

The effect of the mean stress, and thus the influence of the load ratio R, is accounted according to Benedetti
et al. [37]. In essence, the amplitude and the maximum value of the average SED are incorporated into the
following Walker-like equation to express an equivalent SED:

1) a 1-a\2y/ a (20a l-ay? _
Wl,eq = (02%(Omax) ) Wiy = (O'a ( ) ) Wiy

1-R

( 1-p\2 _
/ ! J((/laa)ﬁ (222) ) Wiy if 0<A<oo (14)
Vs oo = (7, =\, , = 1R '

W3,eq = (Ta (Tmax) ) W3,U =

l <(Ta)ﬁ (fj;)l_l;)z Wy if A=

where g, or T, are the axial and torsional stress amplitudes, 0y,,x OF Trpax the maximum axial and torsional
stresses. a and [§ are material-dependent parameters that can be experimentally assessed. In this work, the
same load ratio R is considered for mode I and mode III loading. Nevertheless, the criterion is still valid if
R takes different values for the axial and torsional loadings. It must be underlined that in [37] the equivalent
SED is defined in terms of range, and therefore by adopting a notation based on the stress range. In the
present work, we generalize every formulation by using the stress amplitude. Nevertheless, if the whole
criterion was based on the stress range, the predictions would be the same, as a factor 2 would be introduced
in both parts of the equation. The calibration of a and £ is carried out by testing plain or V-notched
specimens under axial and torsional loading, with a stress ratio R > 0. The obtained fatigue curves are
substituted in Eq. (14), in terms of 0, T4, Omax and Tyax, as function of the number of cycles to failure.
Then, by solving W; o, = Wy and W3 . = W5, the coefficient @ and 8 can be easily assessed. The obtained
results are shown in Fig. 9, for all the investigated materials. The lower a and S, the higher the influence
of the mean stress on the fatigue properties. Interestingly, the most detrimental effect of mean stresses is
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found for the GJS-600 grade. This material is distinguished by a fully pearlitic matrix, which makes the
material more brittle in contrast to the other grades under investigation, which possess a ferritic matrix.
Consequently, it appears that the impact of mean stresses is amplified as the material becomes more brittle.

0.1 4—HSi — .
—— GIS-400—- — -B
R ' T
10° 10°

Number of cycles to failure, N, (cycles)

Figure 9. Material-dependent coefficients a and 3, representing the mode I and Il mean stress effect, as
Jfunction of the number of cycles to failure Ny, for all the investigated materials.

4.4 Phase effect

As evidenced in Fig. 5, a systematic increase in the fatigue strength is observed when out-of-phase loadings
are applied to both plain and notched specimens, thus suggesting that the phase effect should be
incorporated into the multiaxial fatigue criterion. Moreover, as widely discussed in the introduction, fatigue
cracks in DCIs generally nucleate on the planes subjected to the maximum normal stress component. This
behavior is evidenced in Fig. 10, which shows fatigue cracks in plain specimens made of DCI GJS-600,
subjected different loading conditions. Clearly, in axial, torsional and in-phase multiaxial loading tests,
fatigue cracks propagated along the plane subjected to the maximum principal stress.

Plai axial Plain torsion Plain in-ph

ase

Plain out-of-phase
4 e

(a) -

Figure 10. Fatigue cracks in specimens made of DCI GJS-660, subjected to different loading conditions:
(a) axial loading R = -1, (b) torsional loading R = -1, (c¢) in-phase multiaxial loading A =1, R = —1, ¢ =
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0°, (d) (c) out-of-phase multiaxial loading 2. = 1, R = —1, ¢ = 90°. In (a-c), the fatigue cracks propagated
along the plane subjected to the maximum principal stress. This picture is a reproduction taken from [2].

To capture the brittle behavior displayed by DCI, we assume that the fatigue damage is linked to the SED
peak experienced by the control volume during each loading cycle. If we consider the following time-
varying biaxial stress state, produced by a combination of axial and torsional loadings, as shown in Fig.
11a:

( 0, Sin(0) 7, Sin(0 + go)) 15

T, Sin(0 + @) 0 as)

where 0 < 6 < 2m is the angle representing the cycle evolution, o, and 7, are generic stress amplitude and
@ is the phase shift angle between the axial and the torsional loading. The total strain energy density can
be expressed as a sum of the mode I and mode I1I SEDs:

_ (02 Sin(0))? | (12 Sin(0+¢))? _ (04 Sin(6))? n (A0, Sin(8+¢))?

Wioe =
tot 2E 26 2E 5 _E
2(1+v)

(16)

The total SED is shown in Fig. 11b for different values of the phase angle ¢, and unitary applied axial and
shear stress amplitudes.
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Figure 11. (a) Axial and shear stresses in a general out-of-phase loading condition, (b) corresponding
strain energy densities evolution during the loading cycle, for different phase angle @ values. (c) Phase
correction factor k, as a function of phase angle ¢ and biaxiality ratio A (Eq. (18)).

It can be demonstrated that the SED peak reached in the loading cycle is given by:

02 (1+22% (1+v) + /1 +4 2% (1+v)2 + 4 A2 (1+V) Cos(2 )
Wtot,peak = ( 1E ) 17)

To extend the validity of the criterion reported in Eq. (12), which basically assumes the mode I and I1I SED
peaks to be achieved simultaneously (¢ = 0°), we propose to introduce the following phase correction factor
k, as the ratio between W peak calculated for a generic phase angle ¢, and Wyt peak calculated for ¢p=0°:

_1+222 (1+v) +4/1+ 4 2% (1+v)2 + 4 A2 (1+V) Cos(2 )

ko 2+4 12 (1+v) (18)

Figure 11c shows how k,, varies as a function of ¢ and . It can be noted that for out-phase loading k,, is
lower than 1. Moreover, the higher the biaxiality ratio A, the closer k,, is to 1, thus the smaller the phase
effect. k, can be used to account for the experimentally observed phase strengthening effect. The proposed

approach assumes uniform sensitivity to nonproportionality across different materials. However, it is
important to note that the study exclusively focuses on DCI grades, known for their brittle behavior and
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exhibiting the same strengthening behavior when subjected to out-of-phase loadings. As a result, it may be
reasonable to extrapolate the effect of non-proportional loadings to all DCI grades studied. Further
investigations are necessary to evaluate the phase sensitivity of other material classes.

4.5 Complete formulation of the criterion

The complete formulation of the criterion, which includes both the mean stress and the phase effects, is
formulated as following:

(ky(Wieq + Waeq) = (1 — )Wy + f Wy
_ 20,\17¢ 2
Wieq = (Jaa (1—0R) ) Wiu

] (<(/1ffa)ﬁ(”6a)1_ﬁ)zwg,u S 0<i<o

(19)

1-R

(e (222)™" )ng,u if A=

The SED associated to the load application, thus M_/Leq + I/I_/'3,eq, is rescaled according to the strengthening
factor k,, defined in Eq. (18), as a function of the phase angle ¢ and the multiaxiality ratio A. The different
notch sensitivity observed under mode I and mode III loading is accounted by using different control radii,
namely R; and Rj, for the assessment of W, ;; and W; ;. We want to remark that the parameters assessed
as function of the number of cycles to failure N¢ are: Wy and W3, W, ; and W; ;; (which depend on R; and
R3, again assessed as function of N¢), @ and 8. The stress amplitude o, is therefore predicted as function of
Nt. All the other parameters, instead, regard the loading conditions.

Axial and multiaxial tests are referred to the axial stress amplitude o,, which is directly linked to the shear
stress amplitude 7, through the multiaxiality ratio A. When purely torsional tests are considered, 4 becomes
equal to o and the previous approach does not work anymore. Therefore, for torsional tests, fatigue data
and predictions are directly referred to 7,. This is valid for every tested geometry and material and for the
criterion formulations presented in the following.

The criterion can be easily extended to plain specimens, considering that the concept of critical volume
loses its meaning here and that SED values are defined according to Eq. (5). Since, in plain specimens,
fatigue failures are always triggered by shrinkage pores, the predicted fatigue strengths must be rescaled
according to the Murakami-like formula proposed in [63]. Nevertheless, this procedure is not adopted for
the HSi grade, as shrinkage pores are considered as an intrinsic feature of the material. Therefore, the
criterion is formulated, for plain specimens, as:

1 2o0\1"\% 1 220\ B\ — —
’f«J(ﬁ(%“(l_R) ) +E((“a)ﬁ(ﬁ) ) >=(1—f)W1 +fWs
dF,nodule)l/6 .
dF,pore ’

(20)

Oareal = Oa < for the GJS — 600 and GJS — 400 grades

Oareal = Oa; for the HSi grade
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To summarize, the calibration of the proposed multiaxial fatigue criterion requires 6 different fatigue
curves, and it is material dependent. The required curves are reported in Table 3, as function of the
investigated material.

Table 3. Required S-N fatigue curves for the criterion calibration, as function of the investigated DCI grade.

GJS-600 and GJS-400

Geometry

Loading mode

HSi

Geometry Loading mode

Sharp V-notch

Sharp V-notch

Blunt V-notch

Blunt V-notch

Generic V-notch

Generic V-notch

Axial, R =-1

Torsion, R = -1

Axial, R =-1

Torsion, R = -1

Axial, R>0

Torsion, R >0

Sharp V-notch Axial, R =-1

Sharp V-notch  Torsion, R =-1

Plain Axial, R =-1

Plain Torsion, R = -1

Generic V-notch Axial, R>0

Generic V-notch Torsion, R >0

The calibration procedure is schematized in the flowchart shown in Fig. 12.
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Multiaxial fatigue predictions
Egs. (19-20)

Figure 12. Flowchart schematizing the calibration of the multiaxial fatigue criterion, depending on the
specific investigated DCI grade.

4.6 Simplified formulation of the criterion

To reduce the number of required fatigue curves for the criterion calibration, a simplified version of the
multiaxial fatigue criterion can be formulated. According to Smith, Watson and Topper [70,71], the Walker-
like formulation presented in Eq. (14) can be modified by imposing a = # = 0.5, thus obtaining a simplified
version of the equivalent SEDs:
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_ _ 20\
Wieq = (O'aO'S(Umax)O'S)ZWLU =0, (TU) Wiy

(21)
_ _ 210,\
W3,eq = (Tao'S(Tmax)O's)ZWB,U = A0, (fa)

Therefore, the simplified multiaxial fatigue criterion, for notched specimens, becomes:

20,

kg (02 (322) Wiy + A0y (B52) Way ) = (L= ) Wy + £ W5 (22)

1-—

While, for plain specimens, it can be formulated as:

(k0 (75 (00 22)) 25 (1 (22))) = L= 5 4 1 5

dF,nodul 1/ (23)
Oareal = Oa (ﬁ) ; for the GJS — 600 and GJS — 400 grades
Oareal = Oa; for the HSi grade

This simplified formulation represents an alternative to the complete formulation. The advantage is that the
parameters @ and 8 do not need to be calibrated anymore. This translates in a loss of accuracy, as it will be
shown in the following. Nevertheless, the committed errors are still reasonably low.

4.7 Important remarks on the proposed criterion

To better clarify the proposed criterion before proceeding to the validation section, some remarks are
necessary. The criterion aims to predict the stress amplitude that leads to fatigue failure based on the number
of cycles to failure and the multiaxial fatigue parameters, namely A, R, and ¢. To make accurate predictions,
it is essential to calibrate the criterion on the specific material under investigation, as explained in detail in
Section 4 and illustrated in the flowchart depicted in Fig. 12. The material-dependent properties/parameters
obtained from the calibration are:

e the critical SEDs Wy and Wy’;
e the SED control radii Ry and R3;
e the parameters a and 8, accounting for the mean stress effect.

which describe the behavior of the investigated material under multiaxial fatigue. Therefore, any variation
in the microstructure directly translates in a variation of these properties/parameters.

There is an important point to note about the type of predictions that the criterion produces. As it stands,
the criterion offers forecasts in terms of stress amplitudes, as a function of the number of cycles until failure.
However, it is possible to obtain predictions in terms of fatigue life as a function of the applied stress
amplitude with ease, as discussed in Section 5. In essence, the criterion produces S-N fatigue curves, which
can be conveniently interpolated by setting the applied stress amplitude. This allows for the prediction of
the expected number of cycles to failure.

5. Criterion validation on independent multiaxial fatigue data sets

The criterion was validated by means of multiaxial fatigue data obtained by testing different geometries
and materials, with different combinations of the main multiaxial fatigue parameters, namely R, 1 and ¢. It
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must be pointed out that the datasets used for the validation are completely independent of those used for
the criterion calibration. Indeed, the criterion calibration only requires axial and torsional fatigue tests, and
no combinations of these loading modes. The predictions (thick solid lines), obtained by applying the
complete criterion formulation, Egs. (19-20), are compared to the collected multiaxial fatigue experimental
data in Fig. 13, where the colored bands represent the 10 % to 90 % failure probability, the thin solid lines
represent the 50 % failure probability, and the dots represent the experimental data points.
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Plain (b) and Sharp notch (¢) 150
15-20 Hz, RT

| GIS-600 multiaxial loading
| Blunt notch (h), 15-20 Hz, RT

= =
e [
Z 150+ 4 =2
2 =
3 5
[} &
- 4
2 El
= 100 " n 4 = =
£ s T - L ‘\o¢\—__¢-_. .
e i . Puln s " A= R=-1g=00 ——
] e L 2 o A=, R=-1,4=90° -
& & Plain (b, A= 1L,R=-1,6=0° A & & A=2,R=-1,4=0" 3
® Plin(b),h=1,R=-1,6=90 po v =2 R=-l,d=45
& Shap(eha=1LR=—1,4=0° i & h=0,R~05 B oY
¥ Sharp{e) b =1, R =—I, & =90 = =2 R0l =45
T T T T
10* 10* 10* 10
(a) Number of cycles to failure, N (cycles) (b) Number of cycles to failure, N, (cycles)
200 T T T
e HSi multiaxial loading GJS-400 multiaxial loading
. 15-20 Hz, RT 150 Sharp notch (k), 3-10 Hz, RT
=1 - =
£ 150 &£
= =
< =
" =
r 4 A
t:-, hz 100 4
[ b
o 100 "
= =
-] 2
B =
£ = s = =] -
= 8 Sharp (e i=1, R==1, §=10" =~ a B p=],R==1=0
3 ® Shap (el h= I, R=—1,4=90° o .- % o h=lRe—l,4=90°
= & Blumt(h), A= LR=~1,4=0° S A=LR=0,4=0°
: v Blunt(h), =1, R=~1 é=00° g 509 v A=1L,R=0,4=90" =
& Plain (h), A= 1,R==1,$=0° ® W=06,R=-1,4=0°
& Plain(b), A=1,R=-1,¢=90° A=06,R=-],4=N°
50 - - T T T
10 10* 10" 10" 10 10"
(c) Number of cyeles to failure, N, (cycles) (d) Number of eycles to failure, N, (cycles)
200 T T
G1S-400 multiaxial loading
Plain (j), 3-10 Hz, RT
m " -
= 150 4
‘é
b\‘.
o
-=
2 104 4
=
[
o
Z
E
@
1
= A=, R=-1,¢=0°
® i=1,R=-l,¢=90°
T T T
10 10 10°
(e) Number of cycles to failure, N, (cycles)

Figure 13. Multiaxial fatigue predictions (solid lines) versus experimental data (data points) as function
of the number of cycles to failure Ny, for the (a-b) GJS-600 grade, (c) HSi grade, and (d) GJS-400 grade.
The thin lines represent the experimental 50 % failure probability, while the colored bands the 10 to 90 %
failure probability.
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It can be observed that predictions become less accurate when moving towards higher stress amplitudes,
thus towards shorter fatigue lives. This loss of accuracy is probably due to the increasing plastic work taking
place in the region close to low cycle fatigue regime. In fact, the whole method was developed and applied
in elastic conditions. This is a very important advantage, as it greatly simplifies the FE simulations
compared to elastic-plastic conditions. The elastic-plastic modeling of real components could be indeed
demanding or even unfeasible, especially when designers must deal with components characterized by
complex shapes or large dimensions. Nevertheless, predictions are very accurate in the high-cycle fatigue
regime, where the plastic work is small or even absent. The fatigue strengths, predictions, according to Egs.
(19-20), and errors at 5x10° cycles are reported in Table 4 for all the investigated DCI grades and
geometries. The total root mean square (RMS) error, evaluated at 5x10° cycles, is 11.02 %.

Table 4. Multiaxial fatigue predictions (o, preq) VErsus experimental data (g,eyp) at Ne = 5 X 10 cycles.
The committed error is also reported.

Specimen Loading Ojexp @ 5%10° cycles O, pred @ 5x10° cycles Error
conditions (MPa) (MPa) (%)

GJS-600 Plain (b) A=1, R=—1, ¢=0° 90.62 94.72 4.52

Plain (b) A=1, R=—1, ¢=90° 131.29 111.82 -14.83

Blunt Notch =0, R=0.5 45.30 44.76 -1.19

(h)

Blunt Notch A=1, R=—1, ¢=0° 81.68 85.58 4.77

(h)

Blunt Notch A=1,R=—1, p=90°  104.54 101.03 -3.36

(h)

Blunt Notch A=2, R=—1, ¢=0° 48.12 54.44 13.13

(h)

BluntNotch =2, R=—1, p=45°  60.63 55.63 -8.25

(h)

BluntNotch =2, R=0.1, p=45° 32.53 28.77 -11.56

(h)

Sharp Notch A=1, R=—1, ¢=0° 73.39 72.65 -1.01

©)
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Sharp Notch A=1,R=—1, p=90°  92.98 85.77 -7.75
()
RMS error = 8.43 %

HSi Plain (b) A=1, R=—1, ¢=0° 101.24 99.60 -1.62
Plain (b) A=1,R=-1, p=90°  114.27 117.59 2.91
Blunt Notch A=1, R=—1, ¢=0° 59.38 74.46 25.40
(h)

Blunt Notch A=1,R=—1, ¢=90°  80.31 87.91 9.46
(h)

Sharp Notch A=1, R=—1, ¢=0° 65.44 72.27 10.44
(e)

Sharp Notch A=1, R=—1, ¢=90°  86.00 85.32 -0.79
(e)

RMS error =11.94 %

GJS-400 Plain (j) A=1, R=—1, ¢=0° 75.44 77.09 2.19
Plain (j) A=1, R=—1, p=90°  88.64 91.00 2.66
Sharp Notch A=1, R=—1, ¢=0° 69.50 64.88 -6.65
9]

Sharp Notch A=1,R=—1, ¢=90°  80.70 76.60 -5.08
(9]

Sharp Notch A=1, R=0, ¢=0° 50.23 43.36 -13.68
9]

Sharp Notch A=1, R=0, ¢=90° 48.95 51.18 4.56
(k)
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Sharp Notch ~ 2=0.6, R=—1, 9=0°  86.41 73.52 -14.92
(k)

Sharp Notch ~ 2=0.6, R=-1, 78.92 101.73 28.90
(k) =90°

RMS error =12.98 %

Total RMS error @ 5x10° cycles = 11.02 %

The multiaxial fatigue predictions are presented in Fig. 14 also for a fatigue life ranging from 10* and 5 x
10 cycles. The results are presented in terms of predicted stress amplitudes versus experimental stress
amplitudes, for all the investigated DCI grades and by applying different formulations of the SED-based
approach. Fig. 14a refers to the complete formulation of the criterion we propose, explained in Section 4.5
and represented by Egs. (19-20). Fig. 14b refers to the simplified formulation of the criterion, obtained by
imposing @ = = 0.5, explained in Section 4.6 and represented by Eqs. (22-23). In the end, Fig. 14c refers
to the original formulation of the approach, explained in the introduction Section and represented by Eq.

(D).

Complete formulation Eqs. (19-20) a=f=0.5, Eqgs. (22-23) Original formulation, Eq. (1)
S-N curves for the calibration = 6 S-N curves for the calibration = 4 S-N curves for the calibration = 4
RMS error =122 % RMS error=12.9 % RMS error = 19.8 %
_ 200 Multiaxial loading " iy 200 Multiaxial loading S 1 2w Muliiaxial leading
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Figure 14. Multiaxial fatigue predictions in terms of predicted stress amplitude versus experimental stress
amplitude for all the investigated DCI grades and different SED-based formulations: (a) complete
formulation of the proposed criterion, with the calibrated coefficients a and [, (b) simplified formulation
of the proposed criterion, and (c) original formulation, Eq (1).

The complete criterion formulation offers the most accurate predictions, with a total root-mean-square
(RMS) error of 12.2 %. If only tests with non-zero mean stresses are considered the RMS error becomes
11.2 %. If the simplified formulation, Fig 14b, is adopted, the total RMS error slightly increases up to 12.9
%, but the great advantage is that the number of S-N curves required for the criterion calibration decreases
to 4. If only tests with non-zero mean stresses are considered the RMS error becomes 10.6 %. It can be
observed that the criteria proposed in this work lead to lower errors (comprised in a + 15 % error band)
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compared to the original formulation reported in Eq. (1). As mentioned earlier, evaluating predictions based
on fatigue life is also essential. To that end, Figure 15 presents the comparison between predicted and

experimental fatigue life using various SED-based approaches.

Complete formulation Eqs. (19-20) u=f=10.5, Eqgs. (22-23) Original formulation, Eq. (1)
S-N curves for the calibration = 6 S-N curves for the calibration = 4 S-N curves for the calibration = 4
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Figure 15. Multiaxial fatigue predictions in terms of predicted fatigue life versus experimental fatigue life
for all the investigated DCI grades and different SED-based formulations: (a) complete formulation of the
proposed criterion, with the calibrated coefficients a and B, (b) simplified formulation of the proposed
criterion, and (c) original formulation, Eq (1).

In this case, the error committed in fatigue live estimations is assessed through an error factor defined as
the ratio between the predicted and the experimental fatigue life. The complete formulation of the criterion
yields the best predictions, although the simplified formulation shows a low increase in the committed error,
as shown in Fig. 14b. It is worth noting that the original formulation, presented in Figs. 14c and 15c, results
in a larger committed error than the criterion proposed in this work. However, the predictions are typically
conservative, which confirms the high reliability of SED-based approaches. In Fig. 16, the predictions
obtained using Eqgs. (19-20) of the complete formulation are presented in terms of equivalent strain energy
density versus the number of cycles to failure. The experimental stress amplitudes for notched and plain
specimens are replaced in Egs. (19-20) to obtain the data points.
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Figure 16. Experimental data (data points) represented by means of an equivalent strain energy density
(solid lines), versus the critical SED (1 — f) Wy + f W5 ~ WY, as function of the number of cycles to
Jfailure Ny¢. The colored bands represent a factor equal to + 1.5. The calculations were carried out according
to the complete formulation of the criterion.

The colored bands represent the critical SED value used as reference to carry out predictions, namely
(1 — )W+ f W ~ Wy, +afactor of 1.5, for all the investigated DCI grades. Obviously, since the SED
scales with the power 2 of the stress, the committed error is higher than for the stress amplitude predictions.
Nevertheless, most of the data points lie close to the mode I critical SED W', confirming the hypothesis
that multiaxial fatigue failures in DCIs are generally mode I dominated.

5.1 Comparison with critical plane-based approaches

To enhance the comprehension of the effectiveness of the proposed criterion, this section employs a set of
multiaxial fatigue data, obtained from testing the GJS-600 grade, to carry out predictions and assess the
error involved. This data set has been previously analyzed by Benedetti et al. in [2]. In Table 5, we compare
several multiaxial fatigue criteria, including Fatemi-Socie [17], MWCM [72], Carpinteri et al. [8], and
Modified SWT [28], to the proposed criterion presented in this study. The notations “3p” and “4p” describe
the number of parameters, namely 3 or 4, required for the criterion calibration.

Table 5. Multiaxial fatigue experimental data (o,.y,) and predictions (o, preq) carried out by using the
proposed SED-based criterion and several critical plane-based criteria. The reported data correspond to a
fatigue life of Ny = 5 x 10° cycles.

Specimen Loading Caexp Method Proposed Method Fatemi-Socie [17] MWCM [72] Carpinteri et al. Modified SWT
condition (MPa) criterion 18] 28]
Oapred Error Oapred Error Oapred Error Oapred Error Oapred Error
(MPa) (%) (MPa) (%) (MPa) (%) (MPa) (%) (MPa) (%)
Blunt Torsion 192.6 Complete 192.5 -0.05% 3p 226 17.34 - - 214 11.11 217 12.67
Notch (g)
R=-1 Egs. (22-
23)
Simplified 192.5 -0.05* 3p 226 17.34 - - 214 1111 217 12.67
Eqgs. (25-
26)
Sharp A=1 73.4 Complete 72.7 -0.95 3p 725 -1.23 61.6 -16.08 74.8 1.91 73.1 -0.41
Notch (e)
R=-1 Egs. (22-
23)
$=0°
Simplified 72.7 -0.95 4p 61.7 -15.94 - - 76.9 4.71 65.9 -10.22
Eqgs. (25-
26)
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Sharp A=1
Notch (e)

93

Complete

Eqgs. (22-
23)

85.8

-1.74

3p

92.7 -0.32

60.2

-35.27

823 -11.51

91.8

-1.29

Simplified

Egs. (25-
26)

85.8

-1.74

4p

92.6 -0.43

90.2 -3.01

102

9.68

Blunt =1
Notch (h)

81.7

Complete

Egs. (22-
23)

85.6

4.717

3p

90.6 10.89

88

7.71

90.5 10.77

90.8

11.14

Simplified

Eqgs. (25-
26)

85.6

4.77

4p

83.2 1.84

98.5 20.56

91.8

12.36

Blunt A=1
Notch (h)

R=1

®=90°

104.5

Complete

Eqgs. (22-
23)

101.0

-3.35

3p

118 12.92

108

3.35

100 -4.31

118

12.92

Simplified

Egs. (25-
26)

101.0

-3.35

4p

118 12.92

114 9.09

118

12.92

Sharp Axial
Notch 90°
(i)

55.1

Complete

Egs. (22-
23)

55.1

0%

3p

71.7 30.13

-87.0

257.89

57 3.45

63.4

15.06

Simplified

Eqgs. (25-
26)

65.2

18.33

4p

68.3 23.96

58 -

74.1

34.48

RMS error (%)

Complete

Egs. (22-

23)

Simplified

Egs. (25-
26)

4.87

9.28

3p

4p

15.79

14.13

116.69

8.23

10.63

10.65

18.48

* Fatigue data used for the criterion calibration. This error is not considered in the total RMS error.
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The proposed SED-based criterion has demonstrated its effectiveness in providing reliable multiaxial
fatigue predictions, as shown by the comparable RMS errors with the well-established Carpinteri et al.
criterion [8], which have the advantage of orienting the critical plane according to the material ductility and
is therefore able to capture the brittle behavior of DCI. On the contrary, the Fatemi-Socie criterion [17] is
affected by slightly higher RMS errors, presumably because it is based on the assumption that the critical
plane is the one experiencing the maximum range of shear strain, which is generally valid for ductile
materials, such as steel.

To conclude, the proposed criterion offers several advantages. Firstly, the mesh size-sensitivity of the
proposed criterion is lower compared to critical plane-based criteria, which requires the assessment of local
stress and strain states. The reason is the intrinsic low sensitivity to mesh size of SED-based approaches
[30,58]. This attribute enables designers to decrease the computational power required for Finite Element
(FE) simulations, making the criterion more cost-effective. Secondly, implementing the proposed SED-
based criterion into FE code is straightforward and only requires defining the control volume at the
geometrical discontinuity. Finally, the proposed criterion works with scalars instead of tensors, which
makes it easier to understand from a conceptual point of view. This significantly increases the potential of
applicability of the criterion in the industry.

6. Conclusions

In this work, a novel volumetric SED-based multiaxial fatigue criterion for ductile cast irons was proposed
and successfully validated on a large amount of independent experimental data. The main conclusions can
be summarized as follows:

1. The criterion accurately assesses the multiaxial fatigue properties of DCI grades with different
microstructures, namely fully pearlitic, ferritic-pearlitic and ferritic (high Si content). The effect of
the microstructure is incorporated in the critical strain energy densities and the SED control radii
R, and R;.

2. The different notch sensitivity under mode I and mode III loadings is accounted by the different
sizes of the SED control radii R; and Rj;.

3. The effect of mean stresses is well assessed by two distinct material-dependent coefficients o and
B, for axial and torsional loading, respectively. The use of two distinct coefficients allows the
criterion to distinguish between the effect of mean axial stresses and mean shear stresses. Even if a
simplified formulation of the criterion is adopted, thus by imposing a = § = 0.5, the total RMS
error slightly increases compared to the complete formulation of the criterion.

4. The effect of out-of-phase loading is accounted by means of a strengthening factor k,, that predicts
the increase of fatigue strengths when out-of-phase loadings are applied.

5. The complete criterion calibration requires a total of 6 fatigue curves:

a. Blunt V-notches tested under axial and torsional loading, at a stress ratio R=—1;
b. Blunt V-notches tested under axial and torsional loading, at a stress ratio R = —1;
c. Generic V-notches tested under axial and torsional loading, at a stress ratio R > 0.

6. If the simplified formulation of the criterion is adopted, the calibration of the coefficients a and 8
is not necessary, therefore only 4 fatigue curves are required for the criterion calibration.

7. The proposed SED-based criterion provides comparable accuracy to well-established critical plane-
based criteria, with an RMS error of 11 % in the high-cycle fatigue regime and 12.2 % for a fatigue
life between 10* and 5x10° cycles. Additionally, it offers several advantages over these established
criteria, including lower sensitivity to mesh size, ease of implementation, and the ability to work
with scalars. These benefits make it a highly promising option for practical applications in the
industry.
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In the future, additional research will be conducted to explore the complex reformulation of the criterion
under elastic/plastic conditions. This will be done with the goal of enhancing the accuracy in the low-
to-medium-cycle fatigue domain. Furthermore, we anticipate that this criterion can be applied to other
metal classes, such as steels or aluminum alloys, by adjusting the strengthening coefficient k,, to

accommodate the material's distinct response to out-of-phase loading.

Appendix A. Fatigue data

A.1. GJS-600 Axial fatigue data

GJS-600
Plain (a)

Axial loading, R=—1

Number of cycles to failure, N (cycles)

Stress amplitude, o, (MPa)

5000005

1838930

5000012

1075698

694293

1532626

259825

517186

900404

293965

35

160

160

160

180

180

180

200

200

200

220



137516 220

271244 220
5000004 170
145018 240
2174451 170
GJS-600

Blunt notch (f)

Axial loading, R=—1

Number of cycles to failure, N¢ (cycles) Stress amplitude, o, (MPa)

539448 160
260000 160
5000000 100
1631007 140
1058112 140
812422 140
3742955 120
2712425 120
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5000000 110

455808 160
5000000 110
5000000 115
GJS-600

Blunt notch (f)

Axial loading, R=0.5

Number of cycles to failure, Ns (cycles) Stress amplitude, o, (MPa)

281968 70
2459220 50
1946112 50
705742 60
5000000 45
178690 75
881573 60
273488 70
3548471 50
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GJS-600
Sharp notch (¢)

Axial loading, R=—1

Number of cycles to failure, N¢ (cycles) Stress amplitude, o, (MPa)

407693 120
368488 120
2327507 100
5000000 100
282475 140
228978 140
5000000 90

4701773 95

5000000 90

417018 120
273662 140
100000 160
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GJS-600
Sharp notch 90° (i)

Axial loading, R=0.1

Number of cycles to failure, N¢ (cycles) Stress amplitude, o, (MPa)

682557 70
2204029 60
5000000 60
454439 70
2265509 60
1625713 60
2656910 60
2901015 60
1352330 60
5000000 55
5000000 55
5000000 55
2410301 55
2777083 55
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891311 70

273768 80
299783 80
385664 80
185040 90
213037 90
187023 90
101563 100
100282 100
87474 100

A.2. GJS-600 Torsional fatigue data

GJS-600
Plain (b)

Torsional loading, R=—1

Number of cycles to failure, N¢ (cycles) Shear stress amplitude, 7, (MPa)

3000000 160

152000 240
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46000 260

534000 200
684669 200
82000 260
2070000 180
940862 180
754196 180
1013395 200
392869 220
3000000 160
210340 240
209996 220
GJS-600

Blunt notch (g)

Torsional loading, R=—1

Number of cycles to failure, N¢ (cycles) Shear stress amplitude, 7, (MPa)

1960572 200
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471522 220

239157 240
2353571 200
791874 220
214739 240
3000000 190
83000 260
3000000 200
90600 260
690738 220
208668 240
77766 260
1619225 210
GJS-600

Blunt notch (g)

Torsional loading, R=0.1

Number of cycles to failure, Ns (cycles) Shear stress amplitude, 7, (MPa)
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460906 130

2301839 110
700891 130
5000000 100
139002 150
286159 150
1245382 110
1260414 110
591800 130
GJS-600

Sharp notch (d)

Torsional loading, R=—1

Number of cycles to failure, Ns (cycles) Shear stress amplitude, 7, (MPa)

2000000 100
2000000 150
70000 220
2000000 180
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5597 270

126125 220
409480 200
2000000 180
17285 250
475383 200
103954 220
763260 190
20038 250
948396 190
775687 190
650000 180

A.3. GJS-600 Multiaxial fatigue data

GJS-600
Plain (b)

Multiaxial loading, 2=1, R=—1, ¢=0°

Number of cycles to failure, N¢ (cycles) Stress amplitude, o, (MPa)
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212099 150

415072 130
1518569 100
1897706 100
2000000 90
182211 130
484191 150
2000000 90
2000000 100
165936 150
61149 170
38332 170
269280 150
338738 130
GJS-600

Plain (b)

Multiaxial loading, 2=1, R=—1, ¢=90°
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Number of cycles to failure, N¢ (cycles) Stress amplitude, o, (MPa)

260432 160
145035 180
3000000 140
781387 150
769140 150
168574 160
36925 180
390240 160
337534 150
2126980 140
43944 180
1373134 140
GJS-600

Blunt notch (h)

Multiaxial loading, A=1, R=—1, ¢=0°

Number of cycles to failure, N¢ (cycles) Stress amplitude, o, (MPa)
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127257 140

319681 120
595380 110
2147533 100
423115 100
5000000 80
108931 140
2475139 90
5000000 80
277923 120
5000000 90
1258058 90
GJS-600

Blunt notch (h)

Multiaxial loading, 2=1, R=—1, ¢=90°

Number of cycles to failure, N¢ (cycles) Stress amplitude, o, (MPa)

5000000 100

47



257642 150

518204 125
597006 125
5000000 100
5000000 110
751322 125
61284 150
121961 150
239743 137.5
2895375 115
197512 137.5
1020783 115
288376 137.5
GJS-600

Blunt notch (h)

Multiaxial loading, A=2, R=—1, ¢=0°

Number of cycles to failure, N¢ (cycles) Stress amplitude, o, (MPa)
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207195 80

79986 90
1215835 60
1032688 60
4103365 50
226605 80
102745 90
GJS-600

Blunt notch (h)

Multiaxial loading, A=2, R=—1, ¢p=45°

Number of cycles to failure, N¢ (cycles) Stress amplitude, o, (MPa)

419909 80
536213 80
5000000 60
1734162 70
235584 90
177844 90
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960957 70

58729 100

GJS-600
Blunt notch (h)

Multiaxial loading, A=2, R=0.1, ¢p=45°

Number of cycles to failure, N¢ (cycles) Stress amplitude, o, (MPa)

1584537 40
366774 50
1510317 40
388806 50
121715 60
2762930 35
120284 60
3089467 35
GJS-600

Sharp notch (e)
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Multiaxial loading, A=1, R=—1, ¢=0°

Number of cycles to failure, N (cycles)

Stress amplitude, o, (MPa)

230649

257809

121839

1672262

2000000

25443

1566089

55185

5000000

234030

365066

1880865

1289763

792446

249467

51

95

95

95

80

80

115

80

115

75

95

95

85

85

85

95



2000000 80
51000 115
2000000 80
43913 115
448817 90
168000 90
GJS-600

Sharp notch (e)

Multiaxial loading, 2=1, R=—1, ¢=90°

Number of cycles to failure, N¢ (cycles)

Stress amplitude, o, (MPa)

2552155

637181

83523

100028

5000000

52141

1988821

52

100

120

140

140

90

140

100



2423709 100

367334 120
784273 110
326603 120
733855 110

A.4. HSi Axial fatigue data

HSi
Plain (a)

Axial loading, R=—1

Number of cycles to failure, N¢ (cycles) Stress amplitude, o, (MPa)

5000010 170
5000011 190
310008 230
453442 230
141703 250
139712 250
1135517 210
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830609 210
1708075 210
5000005 170
359115 250
5000005 190
280816 270
2768109 190
5000011 180
151030 270
1441356 200
4391109 180
5000002 180
36850 290
5000011 180
13699 290
5000015 180
64710 290
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5000008 190

48391 290
5000004 200
361467 210
176156 270
50693 270
690228 200
HSi

Plain (a)

Axial loading, R=0.1

Number of cycles to failure, N¢ (cycles) Stress amplitude, o, (MPa)

909335 120
1429112 120
1104738 120
10000013 110
49331 160
305680 140
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300567 140

300186 140
10000004 110
76808 160
10000004 110
99804 160
56135 160
106447 160
89653 160
HSi

Blunt notch (f)

Axial loading, R=—1

Number of cycles to failure, N¢ (cycles) Stress amplitude, o, (MPa)

570242 110
1348704 100
5000000 90
2725278 95
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1775266 95

4215742 90
1116515 100
801265 120
208130 130
4352468 90
961895 120
273719 130
497616 110
HSi

Sharp notch (c)

Axial loading, R=—1

Number of cycles to failure, N¢ (cycles) Stress amplitude, o, (MPa)

314452 130
169101 130
1130698 110
4759547 90
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3499493 90

843296 110
5000005 80
5000017 80
255091 130
5000019 85
5000013 90
1593028 100
2310181 100
HSi

Sharp notch (c)

Axial loading, R=0.5

Number of cycles to failure, N¢ (cycles) Stress amplitude, o, (MPa)

5000000 40
713707 50
5000000 45
1424451 55
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1051000 50

1807855 45
299162 65
152594 75
3859594 45
734224 55
217979 55
529635 65
182520 75

A.5. HSi Torsional fatigue data

HSi
Plain (b)

Torsional loading, R=—1

Number of cycles to failure, Ns (cycles) Shear stress amplitude, 7, (MPa)

3780956 160
2960414 150
1525557 180
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2968176 160

479056 180
1511928 180
1320674 200
1303674 160
709364 200
147346 220
300553 220
274515 240
HSi

Blunt notch (g)

Torsional loading, R=—1

Number of cycles to failure, N5 (cycles) Shear stress amplitude, 7, (MPa)

550637 200
490687 200
582136 200
124250 220
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127412 220

1364011 180
1504460 180
1283849 180
2122528 170
3455409 160
HSi

Blunt notch (g)

Torsional loading, R=0.1

Number of cycles to failure, N¢ (cycles) Shear stress amplitude, 7, (MPa)

5000000 100
222000 140
1014513 120
440521 140
1572345 120
2333850 120
581922 140
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157881 160

68946 160

HSi
Sharp notch (d)

Torsional loading, R=—1

Number of cycles to failure, N¢ (cycles) Shear stress amplitude, 7, (MPa)

1138020 190
1196418 190
517271 210
361986 210
1138249 190
1789935 180
2176289 180
202240 230
191694 230
527483 210
4219051 170
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1900286 180

A.6. HSi Multiaxial fatigue data

HSi
Plain (b)

Multiaxial loading, A=1, R=—1, ¢=0°

Number of cycles to failure, N¢ (cycles) Stress amplitude, o, (MPa)

2257723 100
5000000 100
843076 120
1756329 120
325651 140
2161359 120
598682 140
326765 140
92937 160
182454 160
97870 160
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4559484 100

HSi
Plain (b)

Multiaxial loading, 2=1, R=—1, ¢=90°

Number of cycles to failure, N¢ (cycles) Stress amplitude, o, (MPa)

1182000 140
422188 160
99000 180
481310 140
482506 140
236509 160
2277200 120
206740 160
5000000 120
89753 180
3202101 120
98137 180
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HSi

Blunt notch (h)

Multiaxial loading, A=1, R=—1, ¢=0°

Number of cycles to failure, N¢ (cycles) Stress amplitude, o, (MPa)

305405

291264

337136

856643

685152

668174

89904

100068

2500000

1836000

2281000

5000000

264694

100

100

100

80

80

80

120

120

70

70

70

60

100
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HSi
Blunt notch (h)

Multiaxial loading, A=1, R=—1, ¢=90°

Number of cycles to failure, N¢ (cycles) Stress amplitude, o, (MPa)

484239 100
5000000 80
2421352 90
2546960 90
1786072 90
5000000 80
817547 100
509923 110
412791 110
285501 120
842368 100
HSi
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Sharp notch (e)

Multiaxial loading, A=1, R=—1, ¢=0°

Number of cycles to failure, N¢ (cycles) Stress amplitude, o, (MPa)

710070 90
768201 90
730173 90
5000000 70
1828873 70
1935893 70
175151 110
151780 110
154258 110
52044 130
52248 130
HSi

Sharp notch (e)

Multiaxial loading, 2=1, R=—1, ¢=90°
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Number of cycles to failure, N¢ (cycles) Stress amplitude, o, (MPa)

1898888 90

1598072 90

395081 110
356010 110
393402 110
5000000 80

17789 130
17267 130
45660 120
29674 120

A.4. GJS-400 Axial fatigue data

GJS-400
Plain (j)

Axial loading, R=—1

Number of cycles to failure, N¢ (cycles) Stress amplitude, o, (MPa)

100520 160
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3000000 140

805352 160
21585 200
14980 200
262928 160
1671517 150
3000000 150
277501 180
GJS-400

Plain (j)

Axial loading, R=0

Number of cycles to failure, N¢ (cycles) Stress amplitude, o, (MPa)

27299 120
562940 100
439778 90
2967983 90
1493548 80
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3000000 70
3000000 80
13822 120
GJS-400

Sharp notch (k)

Axial loading, R=—1

Number of cycles to failure, N¢ (cycles)

Stress amplitude, o, (MPa)

159000 130
408667 108.5
2000000 80
86632 160
1091520 108.5
193903 130
40194 160
GJS-400

Sharp notch (k)
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Axial loading, R=0.05

Number of cycles to failure, N¢ (cycles) Stress amplitude, o, (MPa)

136081 80
1389281 60
3000000 50
46121 100
3000000 60
709456 70

A.5. GJS-400 Torsional fatigue data

GJS-400
Plain (j)

Torsional loading, R=—1

Number of cycles to failure, N¢ (cycles) Shear stress amplitude, 7, (MPa)

1997292 140
174802 180
1465636 140
12900 220
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174965 180

22681 220
29571 200
77203 200
347217 160
359370 160
2380226 140
280117 160
GJS-400

Plain (j)

Torsional loading, R=0

Number of cycles to failure, N¢ (cycles) Shear stress amplitude, 7, (MPa)

1517 180
24981 160
69549 140
995771 80
2235000 80
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845935 100

572822 100
119857 120
GJS-400

Sharp notch (k)

Torsional loading, R=—1

Number of cycles to failure, Ns (cycles) Shear stress amplitude, T, (MPa)

350000 180
5055500 140
3698000 140
10000 220
38500 200
285000 180
980000 160
338500 180
45750 200
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GJS-400
Sharp notch (k)

Torsional loading, R=0

Number of cycles to failure, N¢ (cycles) Shear stress amplitude, 7, (MPa)

61890 140
5000000 80
5000000 100
73000 140
286830 130
1663000 110
597350 120
1720000 110
21000 150

A.6. GJS-400 Multiaxial fatigue data

GJS-400
Plain (j)

Multiaxial loading, A=1, R=—1, ¢=0°

Number of cycles to failure, N¢ (cycles) Stress amplitude, o, (MPa)
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127708 120

716772 100
53359 140
2300000 80
11272 160
16264 160
781172 100
141804 120
643539 90
1694317 90
2600000 80
GJS-400

Plain (j)

Multiaxial loading, A=1, R=—1, ¢=90°

Number of cycles to failure, N¢ (cycles) Stress amplitude, o, (MPa)

29000 160

305000 120
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2500000 100
6500 180
350000 110
GJS-400

Sharp notch (k)

Multiaxial loading, A=1, R=—1, ¢=0°

Number of cycles to failure, N¢ (cycles)

Stress amplitude, o, (MPa)

229000

1361500

68500

520000

297500

5000000

1998000

602000

46800

28500

76

100

80

90

90

100

70

80

90

120

130



103000 110

16400 140

GJS-400
Sharp notch (k)

Multiaxial loading, A=1, R=—1, ¢=90°

Number of cycles to failure, N¢ (cycles) Stress amplitude, o, (MPa)

56700 100
10440 120
9300 100
620000 90
1104000 90
17500 110
30000 100
16500 110
10100 120
444900 90
607000 90
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472480 95

1200000 85

GJS-400
Sharp notch (k)

Multiaxial loading, A=1, R=0, ¢=0°

Number of cycles to failure, N¢ (cycles) Stress amplitude, o, (MPa)

43525 80
20535 90
1410000 60
180000 70
173000 70
9000 100
1040000 60
GJS-400

Sharp notch (k)

Multiaxial loading, A=1, R=0, ¢=90°
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Number of cycles to failure, N¢ (cycles) Stress amplitude, o, (MPa)

99000 70
15500 90
1315000 60
35000 80
69000 70
510000 60
GJS-400

Sharp notch (k)

Multiaxial loading, 2=0.6, R=—1, ¢=0°

Number of cycles to failure, N¢ (cycles) Stress amplitude, o, (MPa)

50500 140
170000 120
5000000 80

2700000 100
494000 110
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