
http://www.aimspress.com/journal/mine

Mathematics in Engineering, 2(1): 141–173.
DOI:10.3934/mine.2020008
Received: 21 June 2019
Accepted: 25 November 2019
Published: 09 December 2019

Research article

Crack growth by vanishing viscosity in planar elasticity†

Stefano Almi1, Giuliano Lazzaroni2,∗ and Ilaria Lucardesi3

1 Universität Wien, Fakultät für Mathematik, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria
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Abstract: We show the existence of quasistatic evolutions in a fracture model for brittle materials by
a vanishing viscosity approach, in the setting of planar linearized elasticity. Differently from previous
works, the crack is not prescribed a priori and is selected in a class of (unions of) regular curves. To
prove the result, it is crucial to analyze the properties of the energy release rate showing that it is
independent of the crack extension.
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Introduction

In many applications of engineering, it is crucial to predict the propagation of fracture in structures
and to understand whether cracks are stable. When the external loading is very slow if compared with
the time scale of internal oscillations (such as in a building in standard conditions), it is possible to
ignore inertia and to assume that the system is always at equilibrium: The resulting model is called
quasistatic. Quasistatic (or rate-independent) processes have been extensively analyzed in the
mathematical literature both in the context of fracture and of other models (see [44] and references
therein).

The first difficulties in modeling fracture are related to identifying equilibrium configurations. In
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fact, in order to state that a configuration is stable, one would have to use a derivative of the mechanical
energy with respect to the crack set, which is not well defined. Thus one may prefer a derivative-
free formulation where equilibria are restricted to global minimizers (of the sum of the mechanical
energy and of the dissipated energy due to crack growth), in the context of energetic solutions to rate-
independent systems, see, e.g., [7, 15, 16, 19, 24–26].

A second approach allows one to take into account of more equilibria by restricting the set of the
admissible cracks. In fact, the problem is to select a class of regular curves and to prove the existence
of a derivative of the mechanical energy with respect to the elongation of a crack in that class. The
opposite of this derivative is called energy release rate and represents the gain in stored elastic energy
due to an infinitesimal crack growth. Griffith’s criterion [27] allows crack growth only when the energy
release rate reaches the toughness of the material (i.e., the energy spent to produce an infinitesimal
crack).

In this context, some existence results for crack evolution were first given in the case of a prescribed
crack, i.e., before the evolution starts one already knows the set which is going to crack, see [33,48] in
linear elasticity and [36] for a nonlinear model. An algorithm for predicting a stable crack path (chosen
from a class of regular curves) was proposed in [38,40] in the case of antiplane linear elasticity, where
the deformation is represented by a scalar function (that is the vertical displacement, depending on the
two horizontal components, while the horizontal displacement is zero). This was extended in [12] to a
class of curves with branches and kinks.

In this paper we prove an existence result for crack evolution based on Griffith’s criterion, in the
context of planar linear elasticity, in dimension two, as in [33]. In this case the displacement is a vector
(with two components). Differently from [33], in our model the path followed by the crack is not a
priori known. In fact, the crack is assumed to be the union of a fixed number of C1,1 curves and is
selected among a class of (unions of) curves with bounded curvature, with no self-intersections, and
with at most one point meeting the boundary of the domain (in the reference configuration). Some
geometric constraints guarantee that this class is compact with respect to the Hausdorff convergence of
sets. The same class of admissible cracks was employed in [38].

In order to write the flow rule for crack propagation, we need the expression of the energy release
rate. The first step is by now standard and requires to prove that, when the crack is a prescribed curve,
then the mechanical energy (i.e., the sum of the stored elastic energy and of the work of external volume
and surface forces) is differentiable with respect to the arc length of the curve, and its derivative can be
written as a surface integral depending on the deformation gradient. This is done in Proposition 3.1,
by adapting to our framework (C1,1 crack, nonconstant elasticity tensor, volume forces) the classical
techniques of [21,28], as done e.g., in [30,32,33,39]. Since we want a model predicting the crack path
(not prescribed a priori), we need to prove that the energy release rate is independent of the extension
of the crack (in the class of C1,1 curves). This is a crucial result in our analysis, shown in Theorem 3.6.
Moreover, the energy release rate is continuous with respect to the Hausdorff convergence of cracks
(see Remark 3.11). When there are more curves, there is an energy release rate for each crack tip.

Proving such properties of the energy release rate(s) is fundamental to study quasistatic crack
evolution and is the major technical difficulty of this work. In fact, the strategy of the proof differs
from the method used in the corresponding results in the antiplane case, cf. [38, 39]. In planar
elasticity, assuming that the crack is C∞, that there are no external forces, and that the elasticity tensor
is constant, it was proven in [3] (see also [11, 20]) that each energy release rate can be expressed in
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terms of two stress intensity factors, which characterize the singularities of the elastic equilibrium;
since the stress intensity factors only depend on the current crack, it turns out that the energy release
rate is independent of the crack’s extension. In this paper we need a corresponding property for C1,1

cracks (in the class where we have compactness with respect to Hausdorff convergence) and for
energies with external forces and nonconstant elasticity tensor. The same strategy of the antiplane
case does not apply to the nonsmooth case, in particular we do not prove the existence of the stress
intensity factors; nonetheless, we prove that the energy release rate is stable under Hausdorff
convergence in the class of C1,1 cracks, so we can employ the results of [3] via some approximation
arguments (see Section 3). For this reason we need a version of Korn’s inequality in cracked domains,
where a sequence of converging crack paths is given and the constant of Korn’s inequality is uniform
with respect to the cracked domains (Section 2).

We remark that a recent paper [29], extending [6], shows the independence of the energy release
rates from the crack’s extension with different methods and under stronger regularity assumptions on
the cracks (which are required to be H3 curves). For an account on the wide literature regarding
energy release rates and stress intensity factors we mention e.g., [4,18,30,31,45,46] and the references
therein. Moreover, we point out that an energy release rate associated with a crack tip does exist
also under much weaker regularity conditions on the crack set. For instance, the results of [5] apply
to cracks that are merely closed and connected. However, in this setting energy release rates can be
characterized just up to subsequences through a blow-up limit, thus uniqueness is not guaranteed and,
ultimately, the independence on extensions may not hold. On the other hand, the results of [8] do not
have this limitation, but the initial crack needs to be straight, which makes it impossible to use such
characterization in the context of an evolution problem. (We also refer to [10] for related results in
antiplane elasticity.) For these reasons in this paper we resort to the class of (unions of) C1,1 cracks
where, as mentioned, better properties can be proven.

This allows us to employ the well known vanishing viscosity method for finding balanced viscosity
solutions to rate-independent systems, see [12, 33, 38] for brittle fracture in linear elasticity and [44]
for further references. We fix a time discretization and solve some incremental problems where we
minimize the sum of the mechanical energy and of the dissipated energy in the class of non prescribed
C1,1 cracks. Notice that in the present work the dissipated energy density is nonconstant and depends
on the position of the crack tip in the reference configuration. In the minimum problems, the total
energy is perturbed with a term penalizing brutal propagations between energy wells, multiplied by a
parameter ε. Passing to the continuous time, we obtain a viscous version of Griffith’s criterion, with
a regularizing term multiplied by ε; a second passage to the limit as ε → 0 leads to rate-independent
solutions. It is also possible to characterize the time discontinuities of the resulting evolution using
the reparametrization technique first proposed in [22] and then refined in [41–43, 47]: Thanks to these
methods we can also treat multiple non interacting cracks.

In our paper we extend the results of [38] to planar elasticity and the results of [33] to C1,1, non
prescribed cracks. Our main outcome is the existence of a quasistatic evolution (more precisely, a
balanced viscosity evolution) fulfilling Griffith’s criterion: The length of each component of the crack
is a nondecreasing function of time; at all continuity points of these functions, the energy release rate
at each tip is less than or equal to the material’s toughness at that tip (which is a stability condition);
the length is increasing only if the energy release rate reaches the toughness. Moreover, time
discontinuities (corresponding to brutal propagation) can be interpolated by a transition, characterized

Mathematics in Engineering Volume 2, Issue 1, 141–173.



144

by a viscous flow rule, where the energy release rates are larger than or equal to the toughness (see
e.g., [13, 14, 34, 35] for corresponding results in damage and plasticity).

Notation

Given two vectors a, b ∈ Rd, their scalar product is denoted by a · b. We set Md the space of d × d
square matrices, and we denote byMd

sym andMd
skw the subsets of symmetric and skew-symmetric ones,

respectively. We set I the identity matrix in Md. Given A and B in Md, we write A : B to denote
their Euclidean scalar product, namely A : B = Ai jBi j. Here and in the rest of the paper we adopt
the convention of summation over repeated indices. For every p ≥ 1 we define the p-norm in Rd

as |x|p :=
(∑d

i=1 |xi|
p)1/p. The 2-norm will be simply denoted by | · |. The latter induces the distance

dist(C,D) := inf{|x − y| : x ∈ C, y ∈ D} between two sets C and D. The maximal distance between
two points of a set E, namely its diameter, is denoted by diam(C).

The symbol Bρ(x) denotes the open ball of radius ρ in R2, centred at x. The support of a function f ,
namely the closure of { f , 0}, is denoted by spt( f ). For a tensor field V ∈ C1(Rd;Md), by div V we
mean its divergence with respect to lines, namely (div V)i := ∂ jVi j. The symmetric gradient of a vector
field u ∈ C1(Rd;Rd) is denoted by Eu, namely (Eu)i j := (∂iu j + ∂ jui)/2.

We adopt standard notations for Lebesgue and Sobolev spaces on a bounded open set of Rd. The
boundary values of a Sobolev function are always intended in the sense of traces. Boundary integrals on
Lipschitz curves are done with respect to the 1-dimensional Hausdorff measureH1. Given an interval
I ⊂ R and a Banach space X, Lp(I; X) is the space of Lp functions from I to X. Similarly, the sets
of continuous and absolutely continuous functions from I to X are denoted by C0(I; X) and AC(I; X),
respectively. Derivatives of functions depending on one variable are denoted by a prime or, when the
variable is time, by a dot.

The identity map in a vector space is denoted by id. Given a normed vector space X the norm in X
is denoted by ‖ · ‖X. We adopt the same notation also for vector valued functions in X. For brevity, the
norm in Lp over an open set Ω of Rd is denoted by ‖ · ‖p,Ω or, when no ambiguity may arise, simply
by ‖ · ‖p.

1. Description of the model and existence results

We describe a crack model in planar elasticity for a brittle body. The body is represented in its
reference configuration by an infinite cylinder Ω × R, where Ω ⊂ R2 is a bounded connected open
set, with Lipschitz boundary. By assumption, the displacement u produced by the external loading is
horizontal and depends only on the two horizontal components: The deformation is then given by

Ω × R 3 (x1, x2, x3) 7→ (x1 + u1(x1, x2), x2 + u2(x1, x2), x3) , where u = (u1, u2) : Ω→ R2 .

1.1. Admissible cracks

The set of possible discontinuity points of u (the crack) is assumed to lie in a class of admissible
regular cracks. We now define such class following [38, 39]. It depends on a parameter η > 0 that is
thought as small, but is fixed throughout the paper.

Definition 1.1. Fixed η > 0, the set R0
η contains all closed subsets Γ ⊆ Ω such that
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(a) Γ is a union of a finite number of arcs of C1,1 curves, each of them intersecting ∂Ω in at most one
endpoint,

(b) H1(Γ ∩Ω) > 0 and Ω \ Γ is a connected open set, union of a finite number of Lipschitz domains,

(c) for every x ∈ Γ there exist two open balls B1
η,B

2
η ⊆ R

2 of radius η such that

B1
η ∩ B2

η = {x} and (B1
η ∪ B2

η) ∩ Γ = ∅ . (1.1)

Furthermore, we denote with R0,1
η the class of curves Γ ∈ R0

η such that Γ is one arc of curve of class C1,1

intersecting ∂Ω in exactly one endpoint.

Notice that R0
η ⊆ R

0
η′ if η > η′. The role of (1.1) is twofold: On the one hand it gives a uniform

bound (depending on 1/η) on the curvature of each connected component of any set Γ ∈ R0
η, on the

other hand it ensures that each of these components is an arc of a simple curve, i.e., a curve with no
self-intersections. Because of (a), each of the arcs has one or two endpoints contained in Ω; we say
that these points are the crack tips.

Since quasistatic models are in general unable to predict crack initiation [9], i.e., nucleation of a
new crack from sound material, we assume that there is an initial crack Γ0 ∈ R

0
η. Each connected

component of an admissible crack Γ will be the extension of a connected component of Γ0, starting
from its crack tips. Let M be the number of crack tips of Γ0; notice that M may be larger than the
number of connected components of Γ0. We parametrize Γ0 by introducing M injective functions γm

of class C1,1, for m = 1, . . . ,M, in the following way:

• If a connected component Γm
0 of Γ0 intersects ∂Ω in a single endpoint x0, we consider its arc-

length parametrization γm : [0,H1(Γm
0 )] → Γm

0 such that γm(0) ∈ ∂Ω and γm(H1(Γm
0 )) is the crack

tip of Γm
0 . In particular, a crack in R0,1

η has exactly one tip.

• If a connected component of Γ0 is contained in Ω, we see it as the union of two curves Γm
0 , Γm+1

0 ,
intersecting at a single point x̄ (that is not a tip of Γ0); then we consider two arc-length
parametrizations γm : [0,H1(Γm

0 )] → Γm
0 , γm+1 : [0,H1(Γm+1

0 )] → Γm+1
0 , such that

γm(0) = γm+1(0) = x̄ and γm(H1(Γm
0 )) and γm+1(H1(Γm+1

0 )) are the two crack tips.

We then have Γ0 =
⋃M

m=1 Γm
0 . Analogous parametrizations will be used for the extensions of Γ0. In the

next definition, M is the number fixed above.

Definition 1.2. The set Rη contains all subsets Γ ∈ R0
η such that

(d) Γ is the union of M connected subsets Γ1, . . . ,ΓM, such that any two of them intersect in up to a
point,

(e) Γm ⊇ Γm
0 for every m = 1, . . . ,M,

(f) for every m = 1, . . . ,M and for every x ∈ Γm\Γm
0

B2η(x) ∩
(
∂Ω ∪

⋃
l,m

Γl
)

= ∅ .
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Given a set Γ =
⋃M

m=1 Γm ∈ Rη, we extend the functions γm, m = 1, . . . ,M, defined above, to
arc-length parametrizations γm : [0,H1(Γm)] → Γm; it turns out that they are injective and of
class C1,1. Properties (a)–(f) ensure that the class Rη is sequentially compact with respect to Hausdorff
convergence (see the next section for details), induced by the following distance.

Definition 1.3. Given two compact subsets Γ,Γ′ ⊂ Ω, their Hausdorff distance is given by

dH(Γ′; Γ) := max
{

sup
x∈Γ′

dist(x,Γ), sup
x∈Γ

dist(x,Γ′)
}
,

with the conventions dH(x; ∅) = diam Ω and sup ∅ = 0. A sequence (Γn)n∈N of compact subsets of Ω

converges to Γ in the Hausdorff metric if dH(Γn; Γ)→ 0 as n→ ∞.

Remark 1.4. There are choices of Γ0 such that Rη contains no elements different from Γ0: We mention
a few examples with Ω = [−1, 1]2. Let Γ0 = [−1, 0]× {0, 1

4 }: Then Γ0 ∈ R
0
η only if η ≤ 1/8, thus Rη = ∅

if and only if η > 1/8. If instead Γ0 = [−1, 0]×{0}, we have Rη = {Γ0} if and only if η ≥ 1/2. However,
given Γ0 such that Rη is trivial, one can find η′ < η such that Rη′ contains nontrivial extensions of Γ0.
Starting from an initial crack with nontrivial extensions, the model described in this paper is reliable
as long as our algorithm finds a current configuration Γ(t) such that there are nontrivial extensions.
If, during the evolution, some tip becomes (2η)-close to ∂Ω or to other connected components of the
crack, the results should not be regarded as meaningful.

1.2. The mechanical energy and the incremental scheme

Since the body is brittle, the uncracked part Ω \ Γ is elastic; we assume that the displacements are
small (so we adopt the setting of linear elasticity) and the crack is traction-free. We look for evolutions
in the time interval [0,T ], produced by the time-dependent external loading:

(H1) a boundary condition w ∈ AC([0,T ]; H1(Ω\Γ0;R2)), to be satisfied on a relatively open
subset ∂DΩ of ∂Ω, with a finite number of connected components,

(H2) a volume force f ∈ AC([0,T ]; L2(Ω\Γ;R2)) and a surface force g ∈ AC([0,T ]; L2(∂S Ω;R2)),
where ∂S Ω is a relatively open subset of ∂Ω such that ∂S Ω b ∂Ω\∂DΩ.

Without loss of generality, we assume that spt(w) ⊆ {x ∈ Ω : dist(x, ∂Ω) ≤ η}, so w ≡ 0 around any
crack tip.

At each point x ∈ Ω, the stress tensor is C(x) : M2
sym → M

2
sym, where

(H3) C(x)A = λ(x)tr(A)I + 2µ(x)A for every A ∈ M2
sym, with λ, µ ∈ C0,1(Ω) such that µ(x) > 0 and

λ(x) + µ(x) > 0 for every x ∈ Ω.

Notice that the standard conditions µ(x) > 0 and λ(x) + µ(x) > 0 ensure the positive definiteness
of C(x), uniformly in x.

Given t ∈ [0,T ] and Γ ∈ Rη, the minimum problem

min
{

1
2

∫
Ω\Γ

CEv : Ev dx −
∫

Ω\Γ

f (t) · v dx −
∫
∂S Ω

g(t) · v dH1 : v ∈ H1(Ω\Γ;R2), v = w(t) on ∂DΩ

}
(1.2)
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has a unique solution, denoted by u(t; Γ) : Ω\Γ→ R2, with elastic energy

E(t; Γ) B
1
2

∫
Ω\Γ

CEu(t; Γ) : Eu(t; Γ) dx −
∫

Ω\Γ

f (t) · u(t; Γ) dx −
∫
∂S Ω

g(t) · u(t; Γ) dH1 .

According to the assumption of brittle behavior, in order to produce a crack the system employs an
energy depending (only) on the geometry of the crack itself, in the context of Griffith’s theory [27].
The total energy of the configuration corresponding to a crack Γ at time t is

F (t; Γ) := E(t; Γ) +K(Γ) , K(Γ) :=
∫

Γ

κ dH1 ,

where the surface energy density satisfies

(H4) κ ∈ C0(Ω; [κ1, κ2]),

where 0 < κ1 < κ2.
Starting from the initial condition Γ0 fixed above, we define a discrete-time evolution of stable states

by solving some incremental minimum problems. For every k ∈ N we consider a subdivision of the
time interval [0,T ] in nodes {tk,i}0≤i≤k such that

0 = tk,0 < tk,1 < · · · < tk,k = T and lim
k→∞

max
1≤i≤k

(tk,i − tk,i−1) = 0 . (1.3)

Fixed ε > 0, we define by recursion the sets Γε,k,i, i = 0, . . . , k, as follows. We set Γε,k,0 := Γ0; for
i ≥ 1, Γε,k,i is a solution to the minimum problem

min

E(tk,i; Γ) +H1(Γ) +
ε

2

M∑
m=1

H1(Γm\Γm
ε,k,i−1)2

tk,i − tk,i−1
: Γ ∈ Rη , Γ ⊇ Γε,k,i−1

 , (1.4)

where the role of the term multiplied by ε is to penalize transitions between energy wells. The existence
of solutions to (1.4) is proven in Corollary 2.5 exploiting the compactness properties of Rη with respect
to the Hausdorff convergence, see Section 2 for details.

We define a piecewise constant interpolation on [0,T ] by

Γε,k(0) := Γ0 , Γε,k(t) := Γε,k,i for t ∈ (tk,i−1, tk,i] . (1.5)

The unilateral constraint Γ ⊇ Γε,k,i−1 in (1.4) enforces irreversibility of the crack growth, indeed the set
function t 7→ Γε,k(t) is nondecreasing with respect to the inclusion.

1.3. Existence results

Passing to the limit as k → ∞ and exploiting again the compactness of Rη, we obtain a time-
continuous evolution t 7→ Γε(t). In order to understand its properties, we need to define the energy
release rate associated to a crack.

For simplicity, let us first consider the case of a prescribed curve with only one tip. Given an
increasing family of cracks Γσ ∈ R

0,1
η parametrized by their arc length σ ∈ [0, S ], we will prove that

the map σ 7→ E(t; Γσ) is differentiable for every fixed t. Moreover, we will show that the derivative
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only depends on the current configuration Γs, and not on its possible extensions, i.e., if Γσ = Γ̂σ for
σ ≤ s, then

dE(t; Γσ)
dσ

∣∣∣∣∣
σ=s

=
dE(t; Γ̂σ)

dσ

∣∣∣∣∣
σ=s
.

In particular, we are allowed to write −dE(t;Γσ)
dσ

∣∣∣
σ=s

=: G(t; Γs) with no ambiguity. The quantity G(t; Γs)
is the energy release rate corresponding to the crack Γs and represents the (partial) derivative of the
energy E with respect to variations of crack in the set of all admissible curves R0,1

η larger than Γs. For
the details of these results, we refer to Section 3 below.

In the case of a curve with several connected components Γ ∈ Rη, for every tip indexed by m we
define the m-th energy release rate Gm(t; Γ) as above, with respect to variations of the sole
component Γm of Γ. The energy release rate will be in this case a vector
G(t; Γ) B (G1(t; Γ), . . . ,GM(t; Γ)).

The properties of the evolution t 7→ Γε(t) are summarized in the next proposition, whose proof is
postponed to Section 4.

Proposition 1.5. Fix η > 0, Γ0 ∈ R
0
η, and ε > 0. Assume (H1)–(H4). Let Γε,k be as in (1.5). Then there

are a subsequence (not relabeled) of Γε,k and a set function t 7→ Γε(t) ∈ Rη such that Γε,k(t) converges
to Γε(t) in the Hausdorff metric for every t ∈ [0,T ].

Set Γε(t) =
⋃M

m=1 Γm
ε (t), with the conventions of Definition 1.2, and lm

ε (t) := H1(Γm
ε (t)). Then for

every m = 1, . . . ,M and for a.e. t ∈ [0,T ]

(G1)ε l̇m
ε (t) ≥ 0;

(G2)ε κ(Pm
ε (t)) − Gm

ε (t) + ε l̇m
ε (t) ≥ 0;

(G3)ε l̇m
ε (t) [κ(Pm

ε (t)) − Gm
ε (t) + ε l̇m

ε (t)] = 0,

where Gm
ε (t) is the energy release rate corresponding to Γm

ε (t).
Moreover, along a suitable ε-subsequence, ε‖l̇m

ε ‖
2
2 is bounded uniformly w.r.t. ε.

Properties (G1)ε–(G3)ε show that the term multiplied by ε in (1.4) has a regularizing effect. Indeed,
the flow rule for the evolution of lε := (l1

ε, . . . , l
M
ε ) features a time derivative of the unknown. For this

reason the corresponding solutions are called viscous.
In the passage to the limit as ε→ 0, such viscous regularizing term vanishes, so the system follows

an evolution of stable states. We thus obtain a balanced viscosity evolution. The next result is proven
in Section 4.

Theorem 1.6. Fix η > 0 and Γ0 ∈ R
0
η. Assume (H1)–(H4). For every ε > 0, let Γε be the evolution found

in Proposition 1.5. Then there are a subsequence (not relabeled) of Γε and a set function t 7→ Γ(t) ∈ Rη
such that Γε(t) converges to Γ(t) in the Hausdorff metric for every t ∈ [0,T ].

Set Γ(t) =
⋃M

m=1 Γm(t), with the conventions of Definition 1.2, and lm(t) := H1(Γm(t)). Then for every
m = 1, . . . ,M

(G1) for a.e. t ∈ [0,T ], l̇m(t) ≥ 0;

(G2) for every t ∈ [0,T ] of continuity for lm, κ(Pm(t)) − Gm(t) ≥ 0;

(G3) for a.e. t ∈ [0,T ], l̇m(t) [κ(Pm(t)) − Gm(t)] = 0,
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where Gm(t) is the energy release rate corresponding to Γm(t).

Properties (G1)–(G3) are a formulation of Griffith’s criterion for crack growth and show the stability
of the evolution t 7→ l(t) := (l1(t), . . . , lM(t)) in its continuity points. However, the function t 7→ l(t)
may have discontinuities and Theorem 1.6 does not provide a characterization of jumps in time. The
existence result is refined in the following theorem, where we show that there are a reparametrization
of the time interval and a parametrized evolution, continuous in time, that interpolates l and follows a
viscous flow rule in the intervals corresponding to the discontinuities of l. The next theorem is proven
in Section 5.

Theorem 1.7 (Griffith’s criterion). Fix η > 0 and Γ0 ∈ R
0
η. Assume (H1)–(H4). There are absolutely

continuous functions t̃ : [0, S ] → [0,T ] and Γ̃m : [0, S ] → Rη, m ∈ {1, . . . ,M}, such that for a.e.
σ ∈ [0, S ], setting Γ̃(σ) =

⋃M
m=1 Γ̃m(σ), with the conventions of Definition 1.2, and l̃m(σ) := H1(̃Γm(σ)),

(pG1) t̃′(σ) ≥ 0 and (l̃m)′(σ) ≥ 0 for every m = 1, . . . ,M;

(pG2) if t̃′(σ) > 0, then G̃m(σ) ≤ κ(P̃m(σ)) for every m = 1, . . . ,M;

(pG3) if t̃′(σ) > 0 and (l̃m)′(σ) > 0 for some m ∈ {1, . . . ,M}, then G̃m(σ) = κ(P̃m(σ));

(pG4) if t̃′(σ) = 0, then there is m ∈ {1, . . . ,M} such that (l̃m)′(σ) > 0; moreover, for every m with this
property, we have G̃m(σ) ≥ κ(P̃m(σ)),

where G̃m(σ) is the energy release rate corresponding to Γ̃m(σ). Moreover, denoting with ũ(σ) the
solution of (1.2) at time t̃(σ) with a crack Γ̃(σ), for every s ∈ [0, S ] it holds

F (t̃(s); Γ̃(s)) = F (0; Γ0) +

∫ s

0

∫
Ω

CEũ(σ) : Eẇ(t̃(σ)) t̃′(σ) dx dσ

−

M∑
m=1

∫ s

0
(G̃m(σ) − κ(P̃m(σ)))(l̃m)′(σ) dσ

−

∫ s

0

∫
Ω

ḟ (t̃(σ)) · ũ(σ) t̃′(σ) dx dσ −
∫ s

0

∫
Ω

f (t̃(σ)) · ẇ(t̃(σ)) t̃′(σ) dx dσ

−

∫ s

0

∫
∂S Ω

ġ(t̃(σ)) · ũ(σ) t̃′(σ) dH1 dσ −
∫ s

0

∫
∂S Ω

g(t̃(σ)) · ẇ(t̃(σ)) t̃′(σ) dH1 dσ .

(1.6)

Finally,
if t̃′(σ) > 0 , then Γ̃(σ) = Γ(t̃(σ)) ,

where Γ is the balanced viscosity evolution found in Theorem 1.6.

2. Preliminary results

In this section we collect some properties of the class of admissible cracks Rη and of the associated
displacements. We recall that, given a crack, the associated displacement is the unique solution to the
corresponding minimum problem (1.2).

As already mentioned in the previous section, the elements of Rη have no self-intersections, and,
during the evolution, their crack tips stay uniformly far from the boundary and from the other connected
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components of the crack set. Moreover, it is easy to show that the curvature and theH1 measure of the
elements ofRη are controlled from above by η−1 and by some constant C(Ω,Γ0, η), respectively. Finally,
as proven in [39, Proposition 2.9 and Remark 2.10], the class of admissible cracks Rη is sequentially
compact with respect to the Hausdorff convergence introduced in Definition 1.3.

Theorem 2.1. Every sequence (Γn)n∈N ⊂ Rη admits (up to a subsequence) a limit Γ∞ ∈ Rη in the
Hausdorff metric. Moreover, along the subsequence (not relabeled), we have H1(Γn) → H1(Γ) as
n→ ∞.

In what follows we show the continuity of the elastic energy E w.r.t. Hausdorff convergence of the
crack set Γ ∈ Rη. This will in particular imply the existence of solutions for the incremental minimum
problems (1.4).

We start with recalling in Proposition 2.2 a Korn inequality for Ω\Γ. In Proposition 2.3, instead, we
show that, along sequences of cracks Γn ∈ Rη converging in the Hausdorff metric, such an inequality is
independent of n. The study is carried out disregarding the time variable, which for brevity is omitted.
Accordingly, the elastic energy associated to a fracture Γ writes E(Γ).

Proposition 2.2. Let Γ ∈ Rη. Then, there exists a positive constant C = C(Ω,Γ) such that for every
u ∈ H1(Ω \ Γ;R2)

‖∇u‖2 ≤ C(‖u‖2 + ‖Eu‖2) .

Proof. Being Ω \ Γ connected by arcs (see Definition 1.2), it is possible to fix Γ̂ ⊃ Γ such that Ω \ Γ̂ is
the union of N disjoint open sets Ωi with Lipschitz boundaries ∂Ωi such that H1(∂DΩ ∩ ∂Ωi) > 0 for
i ∈ {1, . . . ,N}, and apply the usual Korn inequality to u restricted to Ωi. �

Proposition 2.3. Let Γn,Γ∞ ∈ Rη be such that Γn converges to Γ∞ in the Hausdorff metric as n → ∞.
Then, there exists a positive constant C = C(Ω) (independent of n) such that for n sufficiently large

‖∇u‖2 ≤ C(‖u‖2 + ‖Eu‖2) for every u ∈ H1(Ω \ Γn;R2) . (2.1)

Moreover, for u ∈ H1(Ω \ Γn;R2) with u = 0H1-a.e. on ∂DΩ we have

‖∇u‖2 ≤ C‖Eu‖2 and ‖u‖2 ≤ C‖Eu‖2 . (2.2)

Proof. At least for n sufficiently large, we may assume that there exists an extension Γ̂n of Γn such
that Ω\Γ̂n =

⋃N
i=1 Ωn

i , where Ωn
i (i = 1, . . . ,N) are open bounded disjoint sets with Lipschitz boundaries

and Lipschitz constant L independent of n. Moreover, we can assume that H1(∂DΩ ∩ ∂Ωn
i ) > 0 for

i ∈ {1, . . . ,N} and every n. The same construction can be repeated for n = ∞ in such a way that Ωn
i

converges to Ω∞i in the Hausdorff metric as n→ ∞.
Let us now fix Ω′ b Ω∞1 . For n large enough (including the case n = ∞), we have that Ω′ b Ωn

1.
Hence, applying Proposition 2.2 in Ω′ we deduce that there exists a positive constant C′ independent
of n such that

‖∇u‖2,Ω′ ≤ C′(‖u‖2,Ω′ + ‖Eu‖2,Ω′) for every u ∈ H1(Ω \ Γn;R2) . (2.3)

Since Ωn
1 and Ω∞1 share the same Lipschitz constant L, applying locally, close to the boundary of Ωn

1
(resp. Ω∞1 ), the results of [23, Theorem 4.2], we also obtain that there exists a positive constant C̃ such
that

‖∇u‖2,Ωn
1\Ω

′ ≤ C̃(‖u‖2,Ωn
1\Ω

′ + ‖Eu‖2,Ωn
1\Ω

′) for every u ∈ H1(Ω \ Γn;R2) . (2.4)
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The same inequality can be proven for Ωn
i , i ≥ 2. Therefore, combining (2.3) and (2.4) we get (2.1) for

some positive constant C independent of n ∈ N ∪ {∞}, n large enough.
To prove (2.2) it is enough to show that

‖u‖2 ≤ C‖Eu‖2 for every u ∈ H1(Ω \ Γn;R2) with u = 0H1-a.e. on ∂DΩ, n large enough . (2.5)

We proceed with the usual contradiction argument. Assume that (2.5) is false. Then, for every k ∈ N
there exist nk > nk−1 and uk ∈ H1(Ω \ Γnk ;R

2) such that ‖uk‖2 > k‖Euk‖2. Without loss of generality,
we may assume that ‖uk‖2 = 1. By (2.1) we deduce that ‖∇uk‖2 is bounded. Hence, up to a
subsequence, ∇uk ⇀ ϕ weakly in L2(Ω;M2) and uk → u in L2

loc(Ω \ Γ∞;R2), which implies that
u ∈ H1

loc(Ω \ Γ∞;R2) with ∇u = ϕ. Since ϕ ∈ L2(Ω;M2), applying [17, Proposition 7.1] we deduce
that u ∈ H1(Ω \ Γ∞;R2). Since Euk converges to 0 in L2(Ω;M2), we get that Eu = 0 in Ω. Thus, u is a
rigid movement in Ω, i.e., there exist A ∈ M2

skw and b ∈ R2 such that u = Ax + b for x ∈ Ω. Moreover,
setting Ωη := {x ∈ Ω : dist(x, ∂Ω) < η}, by Definition 1.2 we have (Γnk ∩ Ωη) \ Γ0 = ∅ and uk ⇀ u
in H1(Ωη \ Γ0;R2). Therefore, u = 0 H1-a.e. on ∂DΩ, which implies that u = 0. We claim that
‖uk‖2 → ‖u‖2. Indeed, ‖uk‖2,Ω′ → ‖u‖2,Ω′ for every Ω′ b Ω \ Γ∞. By a simple reflection argument
applied on both sides of the crack set Γnk , we instead obtain that ‖uk‖2,Ω\Ω

′ → ‖u‖2,Ω\Ω′ . Thus,
1 = ‖uk‖2 → ‖u‖2 = 0, which is a contradiction. This concludes the proof of (2.2). �

We are now ready to prove the continuity of the energy Ewith respect to the crack set. The following
lemma is actually stated in a more general setting. Indeed, we show the continuity of the displacement u
solution of (1.2) not only w.r.t. the Hausdorff convergence of sets in Rη, but also w.r.t. the data of the
problem, i.e., the applied forces, the boundary datum, and the elasticity tensor. Such a continuity result
will be useful in the next section, where we prove the differentiability of E w.r.t. crack elongations by
using some approximations. From now on, when explicitly needed, we highlight the dependence on
the data by writing E( f , g,w,C; Γ) for E(Γ).

Lemma 2.4. Let fn, f∞ ∈ L2(Ω;R2), gn, g∞ ∈ L2(∂S Ω;R2), wn,w∞ ∈ H1(∂S Ω;R2), Cn,C∞ ∈ C0,1(Ω),
Γn,Γ∞ ∈ Rη, and n ∈ N be such that fn → f∞ strongly in L2(Ω;R2), wn → w∞ in H1(Ω \ Γ0;R2),
gn ⇀ g∞ weakly in L2(∂S Ω;R2), Cn → C∞ uniformly in Ω, and Γn → Γ∞ in the Hausdorff metric,
as n→ ∞.

Then, the energies E( fn, gn,wn,Cn; Γn) converge to E( f∞, g∞,w∞,C∞; Γ∞) in the limit as n → ∞.
Moreover, the corresponding displacements un and u∞, solutions to the associated minimum
problems (1.2), satisfy ∇un → ∇u∞ strongly in L2(Ω;M2).

Proof. The proof is carried out following the steps of [49, Lemma 3.7] and of [2, Lemma 5.5]. The
letter C will denote a positive constant, which can possibly change from line to line.

For the sake of clarity, we consider cracks in R0,1
η . The proof can be easily generalized to the whole

class Rη. For brevity, we set En B E( fn, gn,wn,Cn; Γn) and E∞ B E( f∞, g∞,w∞,C∞; Γ∞); furthermore,
along the proof we denote with En and E∞ the functionals appearing in the minimization (1.2) with
data { fn, gn,wn,Cn,Γn} and { f∞, g∞,w∞,C∞,Γ∞}, respectively. Clearly, we have

En = En(un) =
1
2

∫
Ω

CEun : Eun dx −
∫

Ω

fn · un dx −
∫
∂S Ω

gn · un dH1 for n ∈ N ∪ {∞} ,

where Eun are interpreted as functions defined a.e. in Ω.
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Let γn ∈ C1,1([0, `n];R2) and γ∞ ∈ C1,1([0, `∞];R2) be the arc-length parametrizations of Γn and Γ∞,
respectively, where `n and `∞ denote the H1 measures of the crack sets. By a simple rescaling of γn,
we construct a C1,1 parametrization γ̂n of Γn, defined in [0, `∞]. The new parametrization, by definition
of R0,1

η , belongs to W2,∞([0, `∞];R2) and its norm is bounded by a constant independent of n. From the
Hausdorff convergence of Γn to Γ∞, we deduce that γ̂n converges to γ∞ weakly* in W2,∞([0, `∞];R2)
and strongly in W1,∞([0, `∞];R2).

Let us fix ρ > 0 sufficiently small, so that the projection ΠΓ∞ over Γ∞ is well defined in Iρ(Γ∞) :=
{x ∈ Ω : d(x,Γ∞) < ρ)}. For n large enough we have Γn ⊆ Iρ(Γ∞). We want to construct a Lipschitz
function Λn such that Λn(Γ∞) = Γn and Λn(x) = x for x ∈ R2 \ Iρ(Γ∞). For every x ∈ Iρ(Γ∞) we
define s(x) ∈ [0, `∞] in such a way that γ∞(s(x)) = ΠΓ∞(x). We notice that the map x 7→ s(x) is locally
Lipschitz, while ΠΓ∞ is Lipschitz on Iρ(Γ∞). Moreover, we set dn := ‖γ̂n−γ∞‖

1/2
W1,∞ and λn(t) :=

(
1− |t|dn

)
+,

where (·)+ stands for the positive part. With this notation at hand, we define

Λn(x) := x + λn(|x − ΠΓ∞(x)|)(γ̂n(s(x)) − γ∞(s(x))) for x ∈ R2 .

In particular, Λn is Lipschitz, ‖Λn− id‖W1,∞ ≤ Cdn → 0 as n→ ∞, and, for n large enough, Λn(Γ∞) = Γn

and Λn = id out of Idn(Γ∞). Applying the Hadamard Theorem [37, Theorem 6.2.3], we deduce that Λn

is globally invertible with ‖Λ−1
n − id‖W1,∞ → 0 as n→ ∞.

Given v ∈ H1(Ω\Γ∞;R2) with v = w∞ on ∂DΩ\Γ0, we have that the function vn := v◦Λ−1
n +wn−w∞

belongs to H1(Ω \ Γn;R2) and satisfies vn = wn on ∂DΩ \ Γ0. Moreover, ∇vn → ∇v in L2(Ω;M2),
vn → v in L2(Ω;R2), and, by the continuity of the trace operator, vn → v strongly in L2(∂S Ω;R2). This
asymptotic analysis implies that the sequence

(
En(vn)

)
n∈N is bounded and converges to E∞(v) as n→ ∞.

By the minimality of un for En, we have

En(un) ≤ En(vn) < C . (2.6)

It is easy to see that the functionals En are equi-coercive in H1(Ω \ Γn;R2), so that inequality (2.6),
together with Proposition 2.3, provides a uniform bound on the L2 norm of un, of its gradient, and of
its trace. Therefore, up to a subsequence (not relabeled), we have un ⇀ ϕ weakly in L2(Ω;R2) for
some ϕ ∈ L2(Ω;R2). Moreover, in a suitably small neighborhoodU of the boundary, this convergence
is stronger, since (Ω \ Γn) ∩ U = (Ω \ Γ0) ∩ U for every n. More precisely, we have un ⇀ ϕ weakly
in H1((Ω \ Γ0)∩U;R2) and, therefore, un → ϕ strongly in L2(∂Ω;R2) and ϕ = w∞ on ∂DΩ. The above
convergences imply that

lim
n→∞

∫
Ω

fn · un dx +

∫
∂S Ω

gn · un dH1 =

∫
Ω

f∞ · ϕ dx +

∫
∂S Ω

g∞ · ϕ dH1 . (2.7)

Hence, passing to the liminf in (2.6) we get

E∞(ϕ) ≤ E∞(v) for every v ∈ H1(Ω \ Γ∞;R2) with v = w∞ H1-a.e. on ∂DΩ .

Thus, ϕ is a minimizer of E∞ in H1(Ω \ Γ∞;R2) with boundary condition w∞ and, by uniqueness of the
minimizer, ϕ = u∞. The strong convergence of the gradients follows by considering (2.6) for v = u∞.
Indeed, we have

E∞(u∞) ≤ lim inf
n

En(un) ≤ lim sup
n

En(un) ≤ lim
n

En(u∞ ◦ Λ−1
n + wn − w∞) = E∞(u∞) ,
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which implies, together with (2.7), that En → E∞ and Eun → Eu∞ in L2(Ω;M2
sym). Applying

Proposition 2.3 and recalling that wn → w∞ in H1(Ω \ Γ0;R2), we also obtain the strong convergence
of ∇un to ∇u∞ in L2(Ω;M2). This concludes the proof of the lemma. �

As a corollary of Lemma 2.4 we deduce the existence of solutions of the incremental minimum
problems (1.4).

Corollary 2.5. Fix ε > 0, k ∈ N, and i ∈ {1, . . . , k}. Then the minimum problem (1.4) admits a solution.

Proof. It is sufficient to apply the direct method. Let (Γn)n∈N ⊆ Rη be a minimizing sequence for (1.4).
By Theorem 2.1, Γn converges in the Hausdorff metric, up to a subsequence (not relabeled), to some
Γ∞ ∈ Rη such that the constraint Γ∞ ⊇ Γε,k,i−1 is preserved; moreover we have H1(Γn) → H1(Γ∞).
Applying Lemma 2.4 with Cn = C∞ = C, fn = f∞ = f (tk,i), gn = g∞ = g(tk,i), and wn = w∞ = w(tk,i),
we obtain the convergence of the corresponding energies E(tk,i; Γn) → E(tk,i; Γ∞). Hence, Γ∞ is a
solution to the minimum problem. �

3. The energy release rate

This section is devoted to the definition of the energy release rate, i.e., the opposite of the derivative
of the energy E(t; ·) with respect to the crack elongation. The problem is clearly time-independent,
therefore we omit the variable t, which is kept fixed. As in the previous section, the energy in (1.2)
simply writes E(Γ).

We aim at generalizing the results of [3], where the energy release rate has been computed only in
presence of smooth cracks Γ, in the absence of forces, and with a spatially constant elasticity tensor.
Here we extend its definition to the case Γ ∈ Rη, non-zero volume and boundary forces f ∈ L2(Ω;R2)
and g ∈ L2(∂S Ω;R2), boundary datum w ∈ H1(Ω \ Γ0;R2), and nonconstant tensor C ∈ C0,1(Ω).

As in [3], the fundamental steps are the following:

(i) Given an increasing family of cracks Γσ ∈ R
0,1
η parametrized by their arc length σ ∈ [0, S ], we

prove that the map σ 7→ E(Γσ) is differentiable, thus

dE(Γσ)
dσ

∣∣∣∣∣
σ=s
B lim

σ→s

E(Γσ) − E(Γs)
σ − s

.

(ii) We show that the above derivative only depends on the current configuration Γs, and not on its
possible extensions, i.e., if Γσ = Γ̂σ for σ ≤ s, then

dE(Γσ)
dσ

∣∣∣∣∣
σ=s

=
dE(Γ̂σ)

dσ

∣∣∣∣∣
σ=s

.

In particular, we are allowed to write −dE(Γσ)
dσ

∣∣∣∣∣
σ=s

=: G(Γs) with no ambiguity.

We point out a difference of our strategy with respect to the proof of [39] for the antiplane case. In
that case, the energy release rate is first characterized via the stress intensity factor assuming that the
volume force is null in a neighborhood of the crack tip; then, one treats general forces by
approximation, using the property that the stress intensity factor is continuous with respect to the
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force. In this paper, in the planar case we do not prove the existence of stress intensity factors for
nonsmooth curves. Hence, when expressing the energy release rate via integral forms, we have to deal
carefully with the terms containing the external force. Once the existence of the energy release rate is
guaranteed, we will reduce to the case of forces that are null close to the tip via some approximation
arguments, see Lemma 3.8 below.

In order to rigorously proceed with (i), we follow the classical techniques of [21, 28], refined e.g.,
in [30, 32, 33, 39]. We first restrict our attention to cracks Γs ∈ R

0,1
η . We write Γs as

Γs B {γ(σ) : 0 ≤ σ ≤ s} , (3.1)

where γ ∈ C1,1 is the arc-length parametrization of Γs. We will discuss in Remark 3.10 how to tackle
the general case Γ ∈ Rη. For brevity, we denote with us ∈ H1(Ω \ Γs;R2) the minimizer of (1.2).
As in the previous section, when explicitly needed, we will highlight the dependence on the data by
writing E( f , g,w,C; Γs) for E(Γs).

In order to make explicit computations, for every s ∈ (0, S ) and δ ∈ R with |δ| small we need to
employ a C1,1 diffeomorphism Fs,δ, borrowed from [30, 33], which transforms Γs+δ in Γs and maps Ω

into itself. Precisely, for r > 0 small enough we may assume that the curve Γσ ∩ Br(γ(s)), for |s − σ|
small, is the graph of a C1,1 function ζ, with ζ′(γ1(s)) = 0, where we have denoted with γ1 the first
component of the arc-length parametrization γ. We define the function Fs,δ : Br/2(γ(s))→ R2 by

Fs,δ(x) B x +

 (γ1(s + δ) − γ1(s))ϕ(x)
ζ(x1 + (γ1(s + δ) − γ1(s))ϕ(x)) − ζ(x1)

 ,
where ϕ ∈ C∞c (Br/2(γ(s))) is a suitable cut-off function equal to 1 close to γ(s). Notice that, for r small
enough, spt(ϕ) ∩ spt(w) = ∅. We extend Fs,δ to the identity in R2 \ Br/2(γ(s)).

By the regularity of ζ, Fs,δ is a C1,1 diffeomorphism of R2 such that Fs,δ(Γs) = Γs+δ and Fs,0 = id.
Moreover, the following equalities hold:

ρs(x) B ∂δ(Fs,δ(x))|δ=0 = γ′1(s)ϕ(x)
(

1
ζ′(x1)

)
, (3.2)

∂δ(det∇Fs,δ)|δ=0 = div ρs , ∂δ(∇Fs,δ)|δ=0 = −∂δ(∇Fs,δ)−1|δ=0 = ∇ρs .

Notice that ρs(x) only depends on s through the term γ′1(s), where γ1 ∈ C1,1; when we come to derive
in x, it turns out that s 7→ ∇ρs(x) is continuous for a.e. x. On the other hand, for the continuity of
the energy release rate we will need a bound on ‖∇ρs‖L∞ , uniform in s: for this reason we need the
assumption that the crack is C1,1.

With this notation at hand, we can write the derivative of s 7→ E(Γs) as a surface integral depending
on the deformation gradient. Such formula follows arguing as in [33], where it is stated for C2 cracks
and with elastic energy independent of the position in the reference configuration. For the reader’s
convenience, we include a proof adapted to our framework (C1,1 cracks, nonconstant elasticity tensor,
volume forces).

Proposition 3.1. Let {Γσ}σ≥0 ⊆ R
0,1
η be parametrized as in (3.1). Let f ∈ L2(Ω;R2), g ∈ L2(∂S Ω;R2),
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w ∈ H1(Ω \ Γ0;R2), and C ∈ C0,1(Ω). Then, the map σ 7→ E(Γσ) is differentiable and

dE(Γσ)
dσ

∣∣∣∣∣
σ=s

=
1
2

∫
Ω\Γs

(DC ρs)∇us : ∇us dx −
∫

Ω\Γs

C∇us∇ρs : ∇us dx

+
1
2

∫
Ω\Γs

C∇us : ∇us div ρs dx +

∫
Ω

f · ∇us ρs dx ,
(3.3)

where DC denotes the fourth order tensor

(DC ρs)i jkl :=
2∑

m=1

∂Ci jkl

∂xm
ρs,m , ρs = (ρs,1, ρs,2) .

Proof. The proof follows the lines of [21, 28, 30, 33]. To prove (3.3), we compute explicitly the limits

lim
σ↘s

E(Γσ) − E(Γs)
σ − s

= lim
δ↘0

E(Γs+δ) − E(Γs)
δ

, (3.4)

lim
σ↗s

E(Γσ) − E(Γs)
σ − s

= lim
δ↗0

E(Γs+δ) − E(Γs)
δ

, (3.5)

and show that the two limits coincide.
Let us start with (3.4). For every δ > 0, the function us◦F−1

s,δ belongs to H1(Ω\Γs+δ;R2) and us◦F−1
s,δ =

us on ∂Ω. Hence,

E(Γs+δ) − E(Γs)
δ

≤
1
2δ

( ∫
Ω\Γs+δ

C∇(us ◦ F−1
s,δ) : ∇(us ◦ F−1

s,δ) dx −
∫

Ω\Γs

CEus : Eus dx
)

−
1
δ

∫
Ω

f · (us ◦ F−1
s,δ − us) dx .

(3.6)

By a change of coordinate in the first integral in (3.6) we deduce that

E(Γs+δ) − E(Γs)
δ

≤
1
2δ

( ∫
Ω\Γs

C(Fs,δ)∇us(∇Fs,δ)−1 : ∇us(∇Fs,δ)−1 det∇Fs,δ dx −
∫

Ω\Γs

CEus : Eus dx
)

−
1
δ

∫
Ω

f · (us ◦ F−1
s,δ − us) dx .

(3.7)

By a simple computation, we can rewrite (3.7) as

E(Γs+δ) − E(Γs)
δ

≤
1
2

∫
Ω\Γs

(C(Fs,δ) − C)
δ

∇us(∇Fs,δ)−1 : ∇us(∇Fs,δ)−1 det∇Fs,δ dx

+
1
2

∫
Ω\Γs

C∇us
((∇Fs,δ)−1 − I)

δ
: ∇us(∇Fs,δ)−1 det∇Fs,δ dx

+
1
2

∫
Ω\Γs

C∇us : ∇us
((∇Fs,δ)−1 − I)

δ
det∇Fs,δ dx

+
1
2

∫
Ω\Γs

C∇us : ∇us
det∇Fs,δ − 1

δ
dx −

1
δ

∫
Ω

f · (us ◦ F−1
s,δ − us) dx

=: Iδ,1 + Iδ,2 + Iδ,3 + Iδ,4 + Iδ,5 .

(3.8)
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Since C(Fs,δ)−C
δ

converges to DCρs weakly* in L∞(Ω) and

lim
δ→0

(∇Fs,δ)−1 − I
δ

= ∂δ(∇Fs,δ)−1
∣∣∣∣
δ=0

= −∇ρs ,

lim
δ→0

det∇Fs,δ − 1
δ

= ∂δ(det∇Fs,δ)
∣∣∣∣
δ=0

= div ρs ,

where the limits are uniform in δ, we obtain

lim
δ↘0

Iδ,1 =
1
2

∫
Ω\Γs

(DCρs)∇us : ∇us dx , (3.9)

lim
δ↘0

Iδ,2 = lim
δ↘0

Iδ,3 = −
1
2

∫
Ω\Γs

C∇us∇ρs : ∇usdx , (3.10)

lim
δ↘0

Iδ,4 =
1
2

∫
Ω\Γs

C∇us : ∇us div ρs dx . (3.11)

Applying e.g., [1, Lemma 3.8] (see also [32, Lemma 4.1]), we see that δ−1(us ◦ F−1
s,δ − us) → −∇us ρs

in L2(Ω) as δ→ 0. Thus,

lim
δ↘0

Iδ,5 =

∫
Ω

f · ∇us ρs dx . (3.12)

Combining (3.8)–(3.12) we get

lim sup
δ↘0

E(Γs+δ) − E(Γs)
δ

≤
1
2

∫
Ω\Γs

(DCρs)∇us : ∇us dx

−

∫
Ω\Γs

C∇us∇ρs : ∇usdx +
1
2

∫
Ω\Γs

C∇us : ∇us div ρs dx

+

∫
Ω

f · ∇us ρs dx .

(3.13)

In order to obtain the opposite inequality, we consider the function us+δ ◦ Fs,δ ∈ H1(Ω \ Γs;R2). By
the minimality of us we have

E(Γs+δ) − E(Γs)
δ

≥
1
2δ

( ∫
Ω\Γs+δ

CEus+δ : Eus+δ dx −
∫

Ω\Γs

C∇(us+δ ◦ Fs,δ) : ∇(us+δ ◦ Fs,δ) dx
)

−
1
δ

∫
Ω

f · (us+δ − us+δ ◦ Fs,δ) dx .
(3.14)

For simplicity of notation, we denote with Us,δ B us+δ◦Fs,δ. By a change of variable in the first integral
in (3.14) we deduce that

E(Γs+δ) − E(Γs)
δ

≥
1
2δ

( ∫
Ω\Γs

C(Fs,δ)∇Us,δ(∇Fs,δ)−1 : ∇Us,δ(∇Fs,δ)−1 det∇Fs,δ dx −
∫

Ω\Γs

C∇Us,δ : ∇Us,δ dx
)

−
1
δ

∫
Ω

f · (us+δ − Us,δ) dx .
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Repeating the computations of (3.8)–(3.12) and taking into account that δ−1(us+δ − Us,δ) ⇀ −∇u ρs

weakly in L2(Ω;R2) (see, e.g., [1, Lemma 3.8]), we infer that

lim inf
δ↘0

E(Γs+δ) − E(Γs)
δ

≥
1
2

∫
Ω\Γs

(DCρs)∇us : ∇us dx

−

∫
Ω\Γs

C∇us∇ρs : ∇usdx +
1
2

∫
Ω\Γs

C∇us : ∇us div ρs dx

+

∫
Ω

f · ∇us ρs dx ,

which, together with (3.13) implies that

lim
δ↘0

E(Γs+δ) − E(Γs)
δ

=
1
2

∫
Ω\Γs

(DCρs)∇us : ∇us dx

−

∫
Ω\Γs

C∇us∇ρs : ∇usdx +
1
2

∫
Ω\Γs

C∇us : ∇us div ρs dx

+

∫
Ω

f · ∇us ρs dx .

Adapting the above argument to the case δ < 0, cf. (3.5), it is also possible to prove that

lim
δ↗0

E(Γs+δ) − E(Γs)
δ

=
1
2

∫
Ω\Γs

(DCρs)∇us : ∇us dx

−

∫
Ω\Γs

C∇us∇ρs : ∇usdx +
1
2

∫
Ω\Γs

C∇us : ∇us div ρs dx

+

∫
Ω

f · ∇us ρs dx .

This concludes the proof of (3.3). �

The following corollary states the continuity of the derivative (3.3) w.r.t. the data f , g, w, C, and Γs.

Corollary 3.2. Let fn, f ∈ L2(Ω;R2), gn, g ∈ L2(∂S Ω;R2), wn,w ∈ H1(Ω \ Γ0;R2), and Cn,C ∈

C0,1(Ω) be such that fn → f strongly in L2(Ω;R2), gn ⇀ g weakly in L2(∂S Ω;R2), wn ⇀ w weakly
in H1(Ω \ Γ0;R2), and Cn ⇀ C weakly* in W1,∞(Ω). Moreover, let S > 0, let {Γs}s∈[0,S ] ⊆ R

0,1
η be as

in (3.1), and assume that there exists a sequence {Γn
s}s∈[0,S ] ⊆ R

0,1
η such that Γn

s converges to Γs in the
Hausdorff metric of sets for every s ∈ [0, S ]. Then, for every s ∈ (0, S ) we have

lim
n

dE( fn, gn,wn,Cn; Γn
σ)

dσ

∣∣∣∣∣
σ=s

=
dE( f , g,w,C; Γσ)

dσ

∣∣∣∣∣
σ=s

. (3.15)

Proof. Let us denote with un and u the displacements associated to E( fn, gn,wn,Cn; Γn
s) and

to E( f , g,w,C; Γs), respectively. By Lemma 2.4 and by the hypotheses, it follows that ∇un converges
to ∇u strongly in L2(Ω;M2). Let us denote by ρn

s the quantity defined in (3.2) and corresponding to Γn
s .

Since Γn
s converges to Γs in the Hausdorff metric of sets for every s ∈ [0, S ], we have that ρn

s → ρs

uniformly in Ω and weakly* in W1,∞(Ω;R2) for every s ∈ (0, S ). Thus (3.15) follows by (3.3). �
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We notice that the dependence of dE(Γσ)
dσ

∣∣∣
σ=s

on {Γσ}σ∈[0,S ] is encoded by the quantity ρs introduced
in (3.2). The rest of this section is devoted to step (ii), namely at proving that the above derivative
only depends on the current fracture Γs, and not on its possible extensions, i.e., on the choice of the
family {Γσ}σ∈[0,S ]. We start by recalling a result of [3] (cf. also [11, 20]) stating that this very same
property holds for C∞ cracks in absence of external forces and with constant elasticity tensor.

Theorem 3.3 ( [3, Theorem 4.1]). Let f = g = 0 and let C be constant in Ω. Let {Γσ}σ∈[0,S ] ⊆ R
0,1
η be

as in (3.1) and assume that there exists s̄ ∈ (0, S ) such that Γσ is of class C∞ for every σ ∈ (0, s̄]. Then,
for every s ∈ (0, s̄] there exist two constants Q1(Γs) and Q2(Γs) (independent of Γσ for σ > s) such that

dE(Γσ)
dσ

∣∣∣∣∣
σ=s

= C(λ, µ)(Q2
1(Γs) + Q2

2(Γs)) , (3.16)

where C(λ, µ) is a constant which depends only on the Lamé coefficients λ and µ.

Remark 3.4. The constants Q1(Γs) and Q2(Γs) are the so called stress intensity factors. Indeed, it has
been proven in [3, Theorem 2.5] that, in the condition of Theorem 3.3, the displacement us can be
written as

us = uR + Q1(Γs)Φ1 + Q2(Γs)Φ2 , (3.17)

for suitable functions uR ∈ H2(Ω \ Γs;R2) and Φ1,Φ2 ∈ H1(Ω \ Γs;R2) \ H2(Ω \ Γs;R2). Moreover, the
proof of formula (3.16) follows from the above decomposition.

The next proposition is a simple localization of Theorem 3.3.

Proposition 3.5. Let {Γσ}σ∈[0,S ] ⊆ R
0,1
η be as in (3.1). Let s ∈ (0, S ), f ∈ L2(Ω;R2), g ∈ L2(∂S Ω;R2),

w ∈ H1(Ω \Γ0;R2), and C ∈ C0,1(Ω) be such that Γs is C∞, f = 0, and C is constant in a neighborhood
of the tip γ(s) of Γs. Then, there exist two constants Q1(Γs) and Q2(Γs) (independent of Γσ for σ > s)
such that

dE(Γσ)
dσ

∣∣∣∣∣
σ=s

= C(λs, µs)(Q2
1(Γs) + Q2

2(Γs)) , (3.18)

where C(λs, µs) coincides with the constant appearing in (3.16) and λs, µs denote the Lamé coefficients
of C in γ(s).

Proof. As mentioned in Remark 3.4, the proof of formula (3.18) follows directly from a splitting of
the form (3.17) for the displacement us solution of

min
{

1
2

∫
Ω\Γs

CEu : Eu dx −
∫

Ω\Γs

f · u dx −
∫
∂S Ω

g · u dH1 : u ∈ H1(Ω \ Γs;R2), u = w on ∂DΩ

}
.

close to the tip γ(s) of Γs. Indeed, given (3.17), we can simply repeat step by step the proof of [3,
Theorem 4.1] and get (3.18). In order to obtain such a decomposition in a neighborhood of γ(s), we
note that us is also solution of

min
{

1
2

∫
B`(γ(s))\Γs

CEu : Eu dx : u ∈ H1(B`(γ(s)) \ Γs;R2), u = us on ∂B`(γ(s))
}

with ` chosen in such a way that Γs is smooth, f = 0, and C is constant in B`(γ(s)). This enables us to
apply [3, Theorem 2.5] in the domain B`(γ(s)) and to deduce the decomposition (3.18) in B`(γ(s)). �
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We are now in a position to state and prove the main result of this section.

Theorem 3.6. Let {Γσ}σ∈[0,S ], {Γ̂σ}σ∈[0,S ] ⊆ R
0,1
η be as in (3.1). Let f ∈ L2(Ω;R2), g ∈ L2(∂S Ω;R2),

w ∈ H1(Ω \ Γ0;R2), and C ∈ C0,1(Ω). Let s ∈ (0, S ) and assume that Γσ = Γ̂σ for σ ≤ s. Then,

dE(Γσ)
dσ

∣∣∣∣∣
σ=s

=
dE(Γ̂σ)

dσ

∣∣∣∣∣
σ=s
. (3.19)

Remark 3.7. The previous theorem states that the derivative dE(Γσ)
dσ

∣∣∣
σ=s

computed in Proposition 3.1
does not depend on the possible extension of Γs in the class R0,1

η . Hence, it represents the slope of the
energy E with respect to variations of crack in the set of admissible curves R0,1

η .

The proof of Theorem 3.6 is a corollary of the following lemma, where we use an approximation
argument to reduce ourselves to the case of smooth cracks, constant elasticity tensor, and forces that
are null close to the crack tip. In the latter case, the relation between the energy release rate and the
stress intensity factors shows (3.19), cf. [3].

Lemma 3.8. Let {Γσ}σ∈[0,S ], f , and C be as in the statement of Theorem 3.6, and let s ∈ (0, S ).
Then, there exist δ > 0, fn ∈ L2(Ω;R2), Cn ∈ C0,1(Ω), and {Γn

σ}σ∈[0,s+δ] ⊆ R
0,1
η such that fn → f

strongly in L2(Ω;R2), Cn ⇀ C weakly* in W1,∞(Ω), Γn
σ → Γσ in the Hausdorff metric of sets for

every σ ∈ [0, s + δ], and, close to the tip of Γn
s , Γn

s is smooth, fn = 0, and Cn is constant.
Moreover, if {Γ̂σ}σ∈[0,S ] is another family of curves in R0,1

η with Γ̂σ = Γσ for σ ≤ s, then the
sequences {Γn

σ}σ∈[0,s+δ], {Γ̂
n
σ}σ∈[0,s+δ], Cn, Ĉn, fn, and f̂n can be chosen in such a way that Γ̂n

σ = Γn
σ

for σ ≤ s, Cn = Ĉn, and fn = f̂n.

Proof. We start with the construction of an approximating sequence for Γσ. Let δ > 0 be such that
s + δ < S . Let us fix a sequence sn ↗ s. By definition of the class R0,1

η , for every n there exist two open
balls B1

η,n and B2
η,n of radius η such that B1

η,n∩B2
η,n = {γ(sn)} and (B1

η,n∪B2
η,n)∩Γs = ∅. Up to a redefinition

of δ, for n large enough we may assume that the portion of curve {γ(σ) : sn − δ ≤ σ ≤ s + δ} ⊆ Γs+δ

can be represented, in a suitable coordinate system (x1, x2) possibly dependent on n, as graph of a
function ψn of class C1,1 with ψ′n(xsn

1 ) = 0, where the point (xsn
1 , ψn(xsn

1 )) coincides with γ(sn). A similar
notation is used for γ(s) = (xs

1, ψn(xs
1)). Without loss of generality, we assume that ψ′n(xs

1) ≥ 0.
The idea of our construction is to extend the curve Γsn with the arc of circumference of equation

x2 = ψn(xsn
1 ) + η −

√
η2 − (x1 − xsn

1 )2 for x1 ∈ [xsn
1 , x̄1) , (3.20)

where x̄1 is the smallest x1 ≥ xsn
1 such that ψ′n(x̄1) = ψ′n(xs

1). We notice that (3.20) is the equation of the
boundary of one of the two open balls Bi

η,n and that x̄1 = xsn
1 whenever ψ′n(xs

1) = 0. We denote with Λn

the extension of Γsn with the arc (3.20) and its tip with Pn. We also use the symbol Λn
σ, σ ∈ [0,H1(Λn)],

to indicate the piece of curve contained in Λn of length σ.
A direct computation givesH1(Λn) = sn + η arctan(ψ′n(xs

1)), which can also be written as follows:

H1(Λn) = sn + η

∫ ψ′n(xs
1)

0

1
1 + x2 dx . (3.21)
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On the other hand, exploiting the upper bound η−1 on the curvature of the crack set, which reads
|ψ′′n | [1 + (ψ′n)2]−3/2 ≤ η−1 in terms of the graph parametrization, we get

H1(Γs) = sn +

∫ xs
1

xsn
1

√
1 + (ψ′n)2(x) dx ≥ sn + η

∫ xs
1

xsn
1

|ψ′′n |

1 + (ψ′n)2(x)
dx ≥ sn + η

∫ ψ′n(xs
1)

0

1
1 + x2 dx . (3.22)

Comparing (3.21) and (3.22), we conclude thatH1(Λn) ≤ H1(Γs) = s.
IfH1(Λn) < s, we denote with αn

` the segment of length `, initial point Pn and parallel to γ′(s), and
we define {Γn

σ}σ∈[0,s+δ] as follows:

Γn
σ B


Λn
σ if σ ∈ [0,H1(Λn)] ,

Λn ∪ αn
σ−H1(Λn) if σ ∈ [H1(Λn), s] ,

Λn ∪ αn
s−H1(Λn) ∪

(
(Pn + (s −H1(Λn))γ′(s) − γ(s)) + Γσ \ Γs

)
if σ ∈ (H1(Λn), s + δ] ,

where we have used the notation v + E B {v + e : e ∈ E} for v ∈ R2 and E ⊆ R2.
IfH1(Λn) = s, we simply set

Γn
σ B

 Λn
σ if σ ∈ [0,H1(Λn)] ,

Λn ∪
(
(Pn − γ(s)) + Γσ \ Γs

)
if σ ∈ (H1(Λn), s + δ] .

In both cases, we have that {Γn
σ}σ∈[0,s+δ] ⊆ R

0,1
η , Γn

σ → Γσ in the Hausdorff metric of sets for every
σ ∈ [0, s + δ], and Γn

s is of class C∞ close to its tip.
The construction of fn is trivial, since the set of functions in L2(Ω;R2) that vanish close to γ(s) is

dense in L2(Ω;R2) w.r.t. the L2-norm. We only have to ensure that fn is also null close to the tip of Γn
s ,

which is still possible because of the Hausdorff convergence.
As for the elasticity tensor C, for every r > 0 we consider a cut off function ϕr in Br(γ(s))

with ϕr(x) = ϕr(|x − γ(s)|), ϕr = 1 in Br/2(γ(s)), and |∇ϕr| ≤ C/r for some positive constant C
independent of r. Let us set Cs B C(γ(s)) and Cr B ϕrC + (1 − ϕr)Cs. It is easy to see
that Cr ∈ C0,1(Ω) with Lipschitz constant bounded by C(Lip(C) + 1). Hence, Cr ⇀ C weakly*
in W1,∞(Ω) as r ↘ 0. To conclude, it is enough to choose a suitable sequence rn ↘ 0 in such a way
that Cn B Crn is constant close to the tip of Γn

s . This is possible thanks to the Hausdorff convergence
of Γn

s to Γs.
The last part of the lemma is a trivial consequence of the above construction. �

Proof of Theorem 3.6. To prove (3.19), we apply Lemma 3.8 to both Γσ and Γ̂σ. Fixed s ∈ (0, S ) and
δ > 0 small, let {Γn

σ}σ∈[0,s+δ], {Γ̂σ}{σ∈[0,s+δ], Cn, and fn be as in Lemma 3.8. By Corollary 3.2 we have
that

lim
n

dE( fn, g,w,Cn; Γn
σ)

dσ

∣∣∣∣∣
σ=s

=
dE( f , g,w,C; Γσ)

dσ

∣∣∣∣∣
σ=s

,

lim
n

dE( fn, g,w,Cn; Γ̂n
σ)

dσ

∣∣∣∣∣
σ=s

=
dE( f , g,w,C; Γ̂σ)

dσ

∣∣∣∣∣
σ=s

.

Taking into account Proposition 3.5, we have that

dE( fn, g,w,Cn; Γn
σ)

dσ

∣∣∣∣∣
σ=s

=
dE( fn, g,w,Cn; Γ̂n

σ)
dσ

∣∣∣∣∣
σ=s

for every n ∈ N

and we deduce (3.19). �
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We are now in a position to give the precise definition of energy release rate for a crack of the
form (3.1). We stress that this is now possible thanks to Theorem 3.6.

Definition 3.9. Let Γ ∈ R0,1
η , s B H1(Γ), f ∈ L2(Ω;R2), g ∈ L2(∂S Ω;R2), w ∈ H1(Ω \ Γ0;R2), and

C ∈ C0,1(Ω). Let S > s and let {Γσ}σ∈[0,S ] ⊆ R
0,1
η be such Γs = Γ. We define the energy release G(Γ) as

G(Γ) B −
dE(Γσ)

dσ

∣∣∣∣∣
σ=s
.

Remark 3.10. Definition 3.9, stated for a curve Γ ∈ R0,1
η , can be further generalized in order to consider

general cracks in the class Rη. Indeed, given Γ ∈ Rη, it is enough to represent it as union of arcs of C1,1

curves Γm, m = 1, . . . ,M. In particular, each component belongs to R0,1
η and can be written as in (3.1).

Hence, for every m we define the m-th energy release rate Gm(Γ) as in Definition 3.9 w.r.t. variations of
the sole component Γm of Γ. The energy release rate will be in this case the vector

G(Γ) B (G1(Γ), . . . ,GM(Γ)) .

Remark 3.11. We collect here the main properties of the energy release rate G.

(a) G is continuous w.r.t. the Hausdorff convergence of cracks Γ ∈ Rη, strong convergence of volume
forces f ∈ L2(Ω;R2), weak convergence of surface forces g ∈ L2(∂S Ω;R2), and convergence of
Dirichlet boundary data w ∈ H1(Ω \ Γ0;R2).

(b) There exists a positive constant C = C(C, η) such that for every Γ ∈ Rη, every f ∈ L2(Ω;R2),
every g ∈ L2(∂S Ω;R2), and every w ∈ H1(Ω \ Γ0;R2),

0 ≤ G(Γ) ≤ C‖u‖2H1 + ‖ f ‖2‖u‖H1 ,

where u ∈ H1(Ω \ Γ;R2) is the solution of (1.2) with data Γ, f , g, w, and C.

We will make use of these two properties in the proofs of Proposition 1.5 and Theorems 1.6 and 1.7.

4. Vanishing viscosity evolutions

In this section we focus on the proofs of existence of a viscous evolution Γε (see Proposition 1.5)
and of a balanced viscosity evolution Γ (Theorem 1.6), the latter obtained as limit of Γε as the viscosity
parameter ε tends to 0. To this end, we follow the method employed in a wide literature on rate-
independent processes [44]. However, we point out that the abstract results of [41–43] do not directly
apply to our setting.

Since the problem we analyze depends explicitly on time t through the applied loads f , g, and w,
from now on we denote with G(t; Γ) the energy release rate defined in Definition 3.9 and Remark 3.10
for a crack Γ ∈ Rη at time t ∈ [0,T ].

As anticipated in Section 1, the proofs of Proposition 1.5 and of Theorem 1.6 are based on a time-
discretization procedure. Let the initial crack Γ0 ∈ R

0
η and the viscosity parameter ε > 0 be fixed, and

let us set lm
0 B H

1(Γm
0 ), where Γ0 =

⋃M
m=1 Γm

0 , according to Definition 1.1. For every k ∈ N we fix a
partition {tk,i}

k
i=0 of the time interval [0,T ] as in (1.3). For i = 0 we set Γε,k,0 B Γ0. For i ∈ {1, . . . , k} we

denote with Γε,k,i a minimizer of the incremental minimum problem (1.4), whose existence is provided
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by Corollary 2.5. Recalling the conventions of Definition 1.2, we write Γε,k,i =
⋃M

m=1 Γm
ε,k,i, we set

lm
ε,k,i B H

1(Γm
ε,k,i), and we denote with Pm

ε,k,i the tip of Γm
ε,k,i. Furthermore, we define the interpolation

functions

lm
ε,k(t) B lm

ε,k,i−1 + (lm
ε,k,i − lm

ε,k,i−1)
t − tk,i−1

tk,i − tk,i−1
,

Gm
ε,k(t) B G

m(tk,i; Γε,k,i) , Gε,k(t) B G(tk,i; Γε,k,i) ,

Γε,k(t) B Γε,k,i , Pm
ε,k(t) B Pm

ε,k,i , uε,k(t) B uεk,i ,

tk(t) B tk,i , fk(t) B f (tk,i) , gk(t) B g(tk,i) for t ∈ (tk,i−1, tk,i] ,
Γε,k(t) B Γε,k,i−1 , uε,k(t) B uεk,i for t ∈ [tk,i−1, tk,i) ,

where we denoted with uεk,i the function u(tk,i; Γε,k,i) ∈ H1(Ω \ Γε,k,i;R2).
In the following proposition we state a time discrete version of the Griffith’s criterion (G1)ε–(G3)ε.

Proposition 4.1. For every ε > 0, every k ∈ N, every m ∈ {1, . . . ,M}, and a.e. t ∈ (0,T ] it holds:

(G1)k l̇m
ε,k(t) ≥ 0;

(G2)k κ(Pm
ε,k(t)) − G

m
ε,k(t) + εl̇m

ε,k(t) ≥ 0;

(G3)k l̇m
ε,k(t)(κ(P

m
ε,k(t)) − G

m
ε,k(t) + εl̇ε,k(t)) = 0.

Proof. By construction, lm
ε,k is a nondecreasing function, so that (G1)k is clearly satisfied. In order to

show (G2)k–(G3)k we take into account the minimality of Γε,k,i. Let us fix i ∈ {1, . . . k}. For every
m ∈ {1, . . . ,M}, let Γm ∈ Rη be such that Γm =

⋃
m,m Γm

ε,k,i ∪ Λm with Λm ⊇ Γm
ε,k,i, and let us set

λ B H1(Λm) ≥ lm
ε,k,i. Then,

E(tk,i; Γε,k,i) +

∫
Γε,k,i

κ dH1 +
ε

2

M∑
m=1

H1(Γm
ε,k,i \ Γm

ε,k,i−1)2

tk,i − tk,i−1

≤ E(tk,i; Γm) +

∫
Γm

κ dH1 +
ε

2

∑
m,m

H1(Γm
ε,k,i \ Γm

ε,k,i−1)2

tk,i − tk,i−1
+
ε

2

H1(Λm \ Γm
ε,k,i−1)2

tk,i − tk,i−1
,

which implies

E(tk,i; Γε,k,i) +

∫
Γm
ε,k,i

κ dH1 +
ε

2

(lm
ε,k,i − lm

ε,k,i−1)2

tk,i − tk,i−1
≤ E(tk,i; Γm) +

∫
Λm
κ dH1 +

ε

2

(λ − lm
ε,k,i−1)2

tk,i − tk,i−1
. (4.1)

We divide (4.1) by λ− lm
ε,k,i and pass to the limit as λ→ lm

ε,k,i, obtaining (G2)k as a consequence of (H4)
and of Definition 3.9. If, moreover, Γm

ε,k,i−1 ( Γm
ε,k,i, we can consider as a competitor a set Γm ∈ Rη as

above, with Γm
ε,k,i−1 ⊆ Λm ⊆ Γm

ε,k,i, so that lm
ε,k,i−1 ≤ λ ≤ lm

ε,k,i. Repeating the above computation we obtain

κ(Pm
ε,k,i) − G

m(tk,i; Γm
ε,k,i) + ε

lm
ε,k,i − lm

ε,k,i−1

tk,i − tk,i−1
= 0 .

This concludes the proof of (G3)k. �
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We now show an a priori bound on lε,k and on uε,k.

Proposition 4.2. The following facts hold:

(a) there exist two positive constants c and C independent of ε, k, and i such that for every ε > 0,
every k ∈ N, and every t ∈ [0,T ],

ε

2

M∑
m=1

∫ tk(t)

0
|l̇m
ε,k(τ)|2 dτ + c (‖Euε,k(t)‖22 − ‖uε,k(t)‖H1)

≤ F (0; Γ0) +

∫ tk(t)

0

∫
Ω

CEuε,k(τ) : Eẇ(τ) dx dτ + C
k∑

i=1

‖wk,i − wk,i−1‖
2
H1

−

∫ tk(t)

0

∫
Ω

ḟ (τ) · uε,k(τ) dx dτ −
∫ tk(t)

0

∫
Ω

fk(τ) · ẇ(τ) dx dτ

−

∫ tk(t)

0

∫
∂S Ω

ġ(τ) · uε,k(τ) dH1 dτ −
∫ tk(t)

0

∫
∂S Ω

gk(τ) · ẇ(τ) dH1 dτ ;

(4.2)

(b) for every ε > 0, along a suitable (not relabeled) subsequence, ‖uε,k(t)‖2 and ‖∇uε,k(t)‖2 are
bounded uniformly w.r.t. t ∈ [0,T ] and k ∈ N;

(c) for every ε > 0, along a suitable (not relabeled) subsequence, ε‖l̇m
ε,k‖

2
2 is bounded uniformly

w.r.t. k ∈ N and m ∈ {1, . . . ,M}.

Proof. For the sake of simplicity, let us denote with wk,i, fk,i, and gk,i the functions w(tk,i), f (tk,i),
and g(tk,i), respectively.

By definition of uεk,i, by hypothesis (H3), and by the regularity of the data of the problem f , g, and w,
we have that

C1(‖Euεk,i‖
2
2 − ‖u

ε
k,i‖H1) ≤ E(tk,i; Γε,k,i)

≤
1
2

∫
Ω

CEwk,i : Ewk,i dx −
∫

Ω

fk,i · wk,i dx −
∫
∂S Ω

gk,i · wk,i dH1 ≤ C2 ,
(4.3)

for some positive constants C1 and C2 depending only on f , g, w, and C.
Since, for every ε and k, the set function Γε,k : [0,T ] → Rη is nondecreasing, we have that uεk,i ∈

H1(Ω \ Γε,k(T );R2). By definition of the class Rη, the curves Γε,k(T ) have bounded length uniformly
w.r.t. ε and k. Hence, we may assume that, up to a not relabeled subsequence, Γε,k(T ) → Γ̂ε ∈ Rη
in the Hausdorff metric of sets as k → ∞. We are therefore in a position to apply Proposition 2.3
to Γε,k(T ), Γ̂ε, and uεk,i, which, together with (4.3), implies (b).

By definition of Γε,k,i and of the energy E(tk,i; Γ) we have that

E(tk,i; Γε,k,i) +

∫
Γε,k,i

κ dH1 +
ε

2

M∑
m=1

H1(Γm
ε,k,i \ Γm

ε,k,i−1)2

tk,i − tk,i−1
≤ E(tk,i; Γε,k,i−1) +

∫
Γε,k,i−1

κ dH1

≤
1
2

∫
Ω

CE(uεk,i−1 + wk,i − wk,i−1) : E(uεk,i−1 + wk,i − wk,i−1) dx

−

∫
Ω

fk,i · (uεk,i−1 + wk,i − wk,i−1) dx −
∫
∂S Ω

gk,i · (uεk,i−1 + wk,i − wk,i−1) dH1 +

∫
Γε,k,i−1

κ dH1
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= E(tk,i−1; Γε,k,i−1) +

∫
Ω

CEuεk,i−1 : E(wk,i − wk,i−1) dx +
1
2

∫
Ω

CE(wk,i − wk,i−1) : E(wk,i − wk,i−1) dx

−

∫
Ω

fk,i · (wk,i − wk,i−1) dx −
∫

Ω

( fk,i − fk,i−1) · uεk,i−1 dx −
∫
∂S Ω

gk,i · (wk,i − wk,i−1) dH1

−

∫
∂S Ω

(gk,i − gk,i−1) · uεk,i−1 dH1 +

∫
Γε,k,i−1

κ dH1 .

Iterating the above chain of inequalities for i ∈ {1, . . . , k} and using (H2) we deduce (4.2), which,
together with (b), implies (c). �

In the following proposition we discuss the properties of the limit of the sequence Γε,k as k → ∞.

Proposition 4.3. For every ε > 0 there exists a subsequence (not relabeled) of Γε,k and a set function
t 7→ Γε(t) ∈ Rη such that Γm

ε,k(t) converges to Γm
ε (t) in the Hausdorff metric for every t ∈ [0,T ] and

every m ∈ {1, . . . ,M}, and

(a) Γε is nondecreasing in time;

(b) lm
ε,k ⇀ lm

ε weakly in H1(0,T ) and lm
ε,k(t) → lm

ε (t) for every t ∈ [0,T ] and every m, where lm
ε (t) B

H1(Γm
ε (t));

(c) ∇uε,k(t)→ ∇uε(t) strongly in L2(Ω;M2) for every t ∈ [0,T ], where uε(t) B u(t; Γε(t));

(d) Gε,k(t)→ Gε(t) for every t ∈ [0,T ], where Gε(t) B G(t; Γε(t));

(e) Gε,k → Gε in L2(0,T ).

Moreover, along a suitable (not relabeled) subsequence, we have

( f ) ε‖l̇m
ε ‖

2
2 is uniformly bounded in ε for every m ∈ {1, . . . ,M};

(g) ‖∇uε(t)‖2 is uniformly bounded in ε and t.

Proof. For brevity, in the following we will not relabel subsequences. For ε > 0 let us consider the
subsequence Γε,k detected in (b) and (c) of Proposition 4.2. Since Γε,k is a sequence of increasing set
functions with uniformly bounded length, there exists a nondecreasing set function Γε : [0,T ] → Rη
such that, up to a further subsequence, Γε,k(t) converges to Γε(t) in the Hausdorff metric of sets for
every t ∈ [0,T ]. Hence, for every m ∈ {1, . . . ,M} and every t ∈ [0,T ] it holds Γm

ε,k(t)→ Γm
ε (t).

For ε > 0 fixed, by Proposition 4.2 we have that lm
ε,k ∈ H1(0,T ) is bounded w.r.t. k and m. Therefore,

for every m ∈ {1, . . . ,M} the sequence lm
ε,k converges weakly in H1(0,T ) to a nondecreasing function lm

ε .
Up to a further subsequence, we may assume that lm

ε,k(t) → lm
ε (t) for every t ∈ [0,T ] and every m. In

particular, lm
ε (t) = H1(Γm

ε (t)), so that (b) is proven. We also notice that, because of the continuity of lm
ε ,

we have that Γε,k(t)→ Γε(t) in the Hausdorff metric as k → ∞.
The L2-convergence of ∇uε,k(t) to ∇uε(t) is a consequence of the convergence of Γε,k(t) to Γε(t)

and of Lemma 2.4. In a similar way, since Γε,k(t) converges to Γε(t), ∇uε,k(t) → ∇uε(t) in L2(Ω;M2).
Moreover, by Remark 3.11 we have that Gε,k(t) → G(t; Γε(t)) =: Gε(t) for every t ∈ [0,T ], so that (d)
holds. Being ‖∇uε,k(t)‖2 and ‖uε,k(t)‖2 bounded uniformly w.r.t. t and k, again by Remark 3.11 we infer
that Gε,k(t) is bounded, so that Gε,k → Gε in L2(0,T ) and (e) is concluded.
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In order to prove (f) and (g), we employ Proposition 4.2, obtaining

‖Euε(t)‖22 − ‖uε(t)‖H1 ≤ C for every ε > 0 and every t ∈ [0,T ] , (4.4)

where C > 0 is independent of t and ε. Arguing as in the proof of Proposition 4.2, we have that
uε(t) ∈ H1(Ω \ Γε(T );R2) for every t ∈ [0,T ]. Since Γε(T ) ∈ Rη has a uniformly bounded length, we
may assume that, up to a subsequence, Γε(T ) → Γ̂ ∈ Rη in the Hausdorff metric of sets. Thus, we can
apply Proposition 2.3 to Γε(T ), Γ̂, and uε(t), to deduce from (4.4) that ‖∇uε(t)‖2 is bounded uniformly
w.r.t. ε and t, so that (g) holds.

Finally, we pass to the liminf in (4.2) for t = T , obtaining

ε

2

M∑
m=1

∫ T

0
|l̇m
ε (t)|2 dt + C1(‖Euε(T )‖22 − ‖uε(T )‖2)

≤ E(0; Γ0) +

∫
Γ0

κ dH1 +

∫ T

0

∫
Ω

CEuε(t) : Eẇ(t) dx dt −
∫ T

0

∫
Ω

ḟ (t) · uε(t) dx dt

−

∫ T

0

∫
Ω

f (t) · ẇ(t) dx dt −
∫ T

0

∫
∂S Ω

ġ(t) · uε(t) dH1 dt −
∫ T

0

∫
∂S Ω

g(t) · ẇ(t) dH1 dt .

By the boundedness of ‖∇uε(t)‖2 and of ‖uε(t)‖2 we immediately get (f), and the proof is thus concluded.
�

We are now in a position to prove Proposition 1.5.

Proof of Proposition 1.5. Let Γε, lm
ε , and Gm

ε be the functions determined in Proposition 4.3. Since lm
ε

is nondecreasing, (G1)ε is satisfied. In order to prove (G2)ε let us consider ψ ∈ L2(0,T ) with ψ ≥ 0.
By (G2)k we have ∫ T

0
(κ(Pm

ε,k(t)) − G
m
ε,k(t) + εl̇m

ε,k(t))ψ(t) dt ≥ 0 . (4.5)

From the Hausdorff convergence of Γm
ε,k(t) to Γm

ε (t) it follows that Pm
ε,k(t) → Pm

ε (t) for every t ∈ [0,T ]
and every m, where Pm

ε (t) stands for the tip of Γm
ε (t). By hypothesis (H4) we have that κ(Pm

ε,k)→ κ(Pm
ε )

in L2(0,T ). Hence, passing to the limit in (4.5) as k → ∞ and taking into account (e) of Proposition 4.3
we get ∫ T

0
(κ(Pm

ε (t)) − Gm
ε (t) + εl̇m

ε (t))ψ(t) dt ≥ 0 .

By the arbitrariness of ψ ∈ L2(0,T ), ψ ≥ 0, we infer (G2)ε.
As for (G3)ε, we integrate (G3)k over [0,T ] and pass to the liminf as k → ∞. By (b) and (e) of

Proposition 4.3 and by the convergence of κ(Pm
ε,k) to κ(Pm

ε ) we obtain∫ T

0
l̇m
ε (t)(κ(Pm

ε (t)) − Gm
ε (t) + εl̇m

ε (t)) dt ≤ 0 .

Combining the previous inequality with (G1)ε and (G2)ε we deduce (G3)ε. Finally, the uniform
boundedness of ε‖l̇m

ε ‖
2
2 has been stated in (f) of Proposition 4.3. �
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Remark 4.4. Let Γε be as in Proposition 1.5. Then, for every t ∈ [0,T ] it holds

F (t; Γε(t)) = F (0; Γ0) −
M∑

m=1

∫ t

0
(Gm

ε (τ) − κ(Pm
ε ))l̇m

ε (τ) dτ +

∫ t

0

∫
Ω

CEuε(τ) : Eẇ(τ) dx dτ

−

∫ t

0

∫
Ω

ḟ (τ) · uε(τ) dx dτ −
∫ t

0

∫
Ω

f (τ) · ẇ(τ) dx dτ

−

∫ t

0

∫
∂S Ω

ġ(τ) · u(τ) dH1 dτ −
∫ t

0

∫
∂S Ω

g(τ) · ẇ(τ) dH1 dτ .

(4.6)

Indeed, being lε ∈ H1([0,T ];RM), the function t 7→ F (t,Γε(t)) = E(t; Γε(t)) + K(Γε(t)) belongs
to H1(0,T ) with

d
dt
F (t; Γε(t)) = ∂tE(t; Γε(t)) −

M∑
m=1

[
Gm
ε (t) − κ(Pm

ε (t))
]

l̇m
ε (t) for a.e. t ∈ [0,T ] .

We conclude with the proof of Theorem 1.6.

Proof of Theorem 1.6. For ε > 0 and m ∈ {1, . . . ,M} let Γε, Γm
ε , and lm

ε be the viscous evolutions
determined in Proposition 1.5. Let us consider, without relabeling, the ε-subsequence satisfying (f)
and (g) of Proposition 4.3. Since Γε is a sequence of nondecreasing set functions and H1(Γε(t)) is
uniformly bounded w.r.t. t ∈ [0,T ] and ε > 0, there exists a nondecreasing set function Γ : [0,T ]→ Rη
such that Γε(t) → Γ(t) in the Hausdorff metric of sets for every t ∈ [0,T ]. In particular, Γm

ε (t) → Γm(t)
for every t and every m ∈ {1, . . . ,M}, where Γ(t) =

⋃M
m=1 Γm(t). Moreover, being lm

ε a sequence of
bounded nondecreasing functions, we may assume that, up to a further subsequence, lm

ε (t) → lm(t) for
every t ∈ [0,T ] and lm

ε → lm in L2(0,T ). In particular, lm(t) = H1(Γm(t)) and (G1) is proven.
In order to show (G2), let us consider ψ ∈ L2(0,T ) with ψ ≥ 0. In view of (G2)ε we have∫ T

0

(
κ(Pm

ε (t)) − Gm
ε (t) + εl̇m

ε (t)
)
ψ(t) dt ≥ 0 . (4.7)

Since Γm
ε (t) → Γm(t), we have that Pm

ε (t) → Pm(t) for every t and every m, where Pm(t) is the tip
of Γm(t). Thus, by hypothesis (H4) we get that κ(Pm

ε )→ κ(Pm) in L2(0,T ) for every m. From (e) and (f)
of Proposition 4.3 we deduce that εl̇m

ε → 0 and Gm
ε → G

m in L2(0,T ). Hence, passing to the limit
in (4.7) we get ∫ T

0

(
κ(Pm(t)) − Gm(t)

)
ψ(t) dt ≥ 0 for every ψ ∈ L2(0,T ), ψ ≥ 0 .

As a consequence, κ(Pm(t))−Gm(t) ≥ 0 for a.e. t ∈ [0,T ]. By continuity, this inequality holds in all the
continuity points of Γm(t). Hence, (G2) is proven.

As for (G3), we integrate (G3)ε over the interval [0,T ] and notice that the term ε(l̇m
ε )2 is positive, so

that ∫ T

0
l̇m
ε (t)(κ(Pm

ε (t)) − Gm
ε (t)) dt ≤ 0 .

Passing to the limit in the previous inequality we get∫ T

0
l̇m(t)(κ(Pm(t)) − Gm(t)) dt ≤ 0 . (4.8)

Combining (4.8) with (G1) and (G2) we deduce (G3). �
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5. Parametrized evolutions

This section is devoted to the proof of Theorem 1.7. The strategy is to perform a change of
variables which transforms the lengths lm

ε obtained in Proposition 1.5 in absolutely continuous
functions. Loosely speaking, this is done by a reparametrization of time which continuously
interpolates the time discontinuities of the solution lm.

Let us fix the sequence ε→ 0 determined in Proposition 4.3 and Theorem 1.6. For t ∈ [0,T ] we set

σε(t) B t +

M∑
m=1

(lm
ε (t) − lm

0 ) . (5.1)

Thanks to the properties of lm
ε (see Proposition 1.5), σε is strictly increasing, continuous, and

σ̇ε(t) ≥ 1 for every ε > 0 and a.e. t ∈ [0,T ]. Therefore, σε is invertible and we denote its inverse
with t̃ε : [0, σε(T )]→ [0,T ]. We deduce that t̃ε is strictly increasing, continuous, and 0 < t̃′ε(σ) ≤ 1 for
every ε > 0 and a.e. σ ∈ [0, σε(T )], where the symbol ′ stands for the derivative with respect to σ.

For m = 1, . . . ,M and σ ∈ [0, σε(T )], we set

l̃m
ε (σ) B lm

ε (t̃ε(σ)) , l̃ε(σ) B (l̃1
ε(σ), . . . , l̃M

ε (σ)) , l̃′ε(σ) B ((l̃1
ε)
′(σ), . . . , (l̃M

ε )′(σ)) ,
Γ̃ε(σ) B Γε(t̃ε(σ)) , Γ̃m

ε (σ) B Γm
ε (t̃ε(σ)) , P̃m

ε (σ) B Pm
ε (t̃ε(σ)) .

By (5.1) we have σ = t̃ε(σ) + |l̃ε(σ)|1 − |l0|1. Differentiating this relation we get

t̃′ε(σ) + |l̃′ε(σ)|1 = 1 (5.2)

for every ε > 0 and a.e. σ ∈ [0, σε(T )]. By (5.2) and the monotonicity of l̃m
ε we have 0 ≤ (l̃m

ε )′(σ) ≤ 1
for every ε > 0, every m = 1, . . . ,M, and a.e. σ ∈ [0, σε(T )]. Moreover, t̃ε and l̃ε are Lipschitz
continuous.

We define G̃m
ε (σ) B Gm(t̃ε(σ); Γ̃ε(σ)) for σ ∈ [0, σε(T )] and S̄ B supε>0 σε(T ), which is bounded

by a constant depending on T and on the class Rη. In order to deal with functions defined on the same
interval, we extend t̃ε, l̃ε, Γ̃ε, Γ̃m

ε , t̃′ε, and l̃′ε on (σε(T ), S̄ ] by t̃ε(σ) B t̃ε(σε(T )), l̃ε(σ) B l̃ε(σε(T )),
Γ̃ε(σ) B Γ̃ε(σε(T )), Γ̃m

ε (σ) B Γ̃m
ε (σε(T )), t̃′ε(σ) B 0, and s̃′ε(σ) B 0.

Recalling that t̃′ε(σ) > 0 on [0, σε(T )], the Griffith’s criterion stated in Proposition 1.5 reads in the
new variables as 

(l̃m
ε )′(σ) ≥ 0 ,

κ(P̃m
ε (σ))t̃′ε(σ) − G̃m

ε (σ) t̃′ε(σ) + ε(l̃m
ε )′(σ) ≥ 0 ,

(l̃m
ε )′(σ)

(
κ(P̃m

ε (σ))t̃′ε(σ) − G̃m
ε (σ) t̃′ε(σ) + ε(l̃m

ε )′(σ)
)

= 0 ,

(5.3)

for every m, every ε, and a.e. σ ∈ [0, S̄ ].
Finally, we observe that by (f) of Proposition 4.3

ε

∫ σε(T )

0
|(l̃m
ε )′(σ)|22 dσ = ε

∫ σε(T )

0
|l̇m
ε (t̃ε(σ))|22(t̃′ε)

2(σ) dσ

≤ ε

∫ σε(T )

0
|l̇m
ε (t̃ε(σ))|22 t̃′ε(σ) dσ = ε

∫ T

0
|l̇m
ε (t)|22 dt ≤ C
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uniformly in ε and m ∈ {1, . . . ,M}. Therefore, ε(l̃m
ε )′ → 0 in L2(0, S̄ ).

Passing to the limit as ε→ 0, we are now able to prove Theorem 1.7, showing that the parametrized
solution Γ̃ satisfies a generalized Griffith’s criterion.

Proof of Theorem 1.7. Since Γ̃ε : [0, S̄ ] → Rη is a nondecreasing set function with uniformly bounded
length, there exists Γ̃ : [0, S̄ ] → Rη such that, up to a not relabeled subsequence, Γ̃ε(σ) → Γ̃(σ) and
Γ̃m
ε (σ) → Γ̃m(σ) in the Hausdorff metric of sets for every σ ∈ [0, S̄ ] and every m ∈ {1, . . . ,M}. We

denote with P̃m(σ) the tip of Γ̃m(σ) and we notice that P̃m
ε (σ) → P̃m(σ) for every σ ∈ [0, S̄ ] and

every m ∈ {1, . . . ,M}.
Being t̃ε, l̃m

ε bounded in W1,∞(0, S̄ ), up to a further subsequence we have that t̃ε and l̃m
ε converge

weakly* in W1,∞(0, S̄ ) to some functions t̃ and l̃m, respectively, As a consequence, we have that l̃m(σ) =

H1(̃Γm(σ)), so that Γ̃m : [0, S ]→ Rη is continuous in the Hausdorff metric of sets. We can also assume
that σε(T ) → S and t̃, l̃m ∈ W1,∞(0, S ). Moreover, writing (5.2) in an integral form and passing to the
limit, we deduce that for a.e. σ ∈ [0, S ]

t̃′(σ) + |l̃′(σ)|1 = t̃′(σ) +

M∑
m=1

(l̃m)′(σ) = 1 , (5.4)

where we have set l̃(σ) B (l1(σ), . . . , l̃M(σ)). For m = 1 . . . ,M and σ ∈ [0, S ] we define,

G̃m(σ) B Gm(t̃(σ); Γ̃(σ)) , G̃(σ) B (G̃1(σ), . . . , G̃M(σ)) .

We notice that, by Remark 3.11, G̃ε(σ) converges to G̃(σ) for every σ ∈ [0, S ] and G̃ε → G̃ in L2(0, S ),
as ε→ 0.

By the monotonicity of t̃ and l̃m, we have t̃′(σ) ≥ 0 and (l̃m)′(σ) ≥ 0 for every m and a.e. σ ∈ [0, S ].
Moreover, by (5.4) they can not be simultaneously zero.

Let us fix m ∈ {1, . . . ,M} and ψ ∈ L2(0, S ) with ψ ≥ 0. Thanks to (5.3), for every ε we have∫ S

0
(κ(P̃m

ε (σ))t̃′ε(σ) − G̃m
ε (σ)t̃′ε(σ) + ε(l̃m

ε )′(σ))ψ(σ) dσ ≥ 0 . (5.5)

Since t̃′ε converges to t̃′ weakly* in L∞(0, S ), ε(l̃m
ε )′ → 0 in L2(0, S ), P̃m

ε (σ)→ P̃m(σ) for σ ∈ [0, S ],
and G̃m

ε → G̃
m in L2(0, S ), passing to the limit in (5.5) as ε→ 0 we get∫ S

0
(κ(P̃m(σ))t̃′(σ) − G̃m(σ)t̃′(σ))ψ(σ) dσ ≥ 0 ,

which implies (pG2).
We notice that if (pG1), (pG2) and (5.4) hold, then (pG3) and (pG4) are equivalent to the following

property:

if G̃m(σ̄) < κ(P̃m(σ̄)) for some m and some σ̄ ∈ (0, S ), then l̃m is locally constant around σ̄.

Let us therefore assume that G̃m(σ̄) < κ(P̃m(σ̄)). We first claim that there exist ε̄ > 0 and δ > 0 such
that G̃m

ε (σ) < κ(P̃m
ε (σ)) for every σ ∈ (σ̄−δ, σ̄+δ) and every ε ≤ ε̄. By contradiction, suppose that this

is not the case. Then, there exist σk → σ̄ and εk → 0 such that G̃m
εk

(σk) ≥ κ(P̃m
εk

(σk)). By continuity
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and monotonicity of Γ̃m, we have that Γ̃m
εk

(σk) → Γ̃m(σ) in the Hausdorff metric of sets and P̃m
εk

(σk) →
P̃m(σ) as k → ∞. Hence, the continuity of the energy release rate and the hypothesis (H4) lead us to
the contradiction G̃m(σ̄) ≥ κ(P̃m(σ̄)).

Let δ and ε̄ be as above. We deduce from the Griffith’s criterion (5.3) that l̃m
ε is constant in (σ̄ −

δ, σ̄ + δ) for every ε ≤ ε̄. Since l̃m
ε converges to l̃m weakly* in W1,∞(0, S ), we get that l̃m is locally

constant around σ̄, and this concludes the proof of (pG3) and (pG4).
In order to show that Γ(t̃(σ)) = Γ̃(σ) for every σ ∈ [0, S ] such that t̃′(σ) > 0, we define

s(t) B min {s ∈ [0, S ] : t̃(s) = t} for every t ∈ [0,T ] .

If t̃′(σ) > 0, then we have s(t̃(σ)) = σ and s(t̃(σ̄)) , s(t̃(σ)) for σ̄ , σ. Let us prove that t̃(σ) is a
continuity point for Γ, where the map t 7→ Γ(t) has been determined in Theorem 1.6. By contradiction,
assume that t̃(σ) is a discontinuity point of Γ. Then, there exist t1

ε < t2
ε such that t1

ε, t
2
ε → t̃(σ) and

Γε(t1
ε) → Γ−(t̃(σ)) and Γε(t2

ε) → Γ+(t̃(σ)) in the Hausdorff metric of sets, where we have denoted
with Γ±(t̃(σ)) the left and right limits of Γ(t) in t̃(σ). As a consequence, s(t̃(σ̄)) = s(t̃(σ)) for σ̄ ∈
(σ − H1(Γ+(t̃(σ)) \ Γ−(t̃(σ))), σ +H1(Γ+(t̃(σ)) \ Γ−(t̃(σ)))), which is a contradiction. Hence, t̃(σ) is a
continuity point of t 7→ Γ(t). Therefore, Γ̃ε(σ) = Γε(t̃ε(σ)) converges to Γ(t̃(σ)) in the Hausdorff metric
of sets. This implies that Γ(t̃(σ)) = Γ̃(σ).

We conclude with the energy balance (1.6). Starting from Eq. (4.6) and using the change of variable
t = tε(σ), for ε > 0 and for s ∈ [0, S ] we get

F (t̃ε(s); Γ̃ε(s)) = F (0; Γ0) +

∫ s

0

∫
Ω

CEũε(σ) : Eẇ(t̃ε(σ)) t̃′ε(σ) dx dσ

−

M∑
m=1

∫ s

0
(G̃m

ε (σ) − κ(P̃m
ε (σ)))(l̃m

ε )′(σ) dσ

−

∫ s

0

∫
Ω

ḟ (t̃ε(σ)) · ũε(σ) t̃′ε(σ) dx dσ −
∫ s

0

∫
Ω

f (t̃ε(σ)) · ẇ(τ) t̃′ε(σ) dx dσ

−

∫ s

0

∫
∂S Ω

ġ(t̃ε(σ)) · ũ(σ) t̃′ε(σ) dH1 dσ −
∫ s

0

∫
∂S Ω

g(t̃ε(σ)) · ẇ(t̃ε(σ)) t̃′ε(σ) dH1 dσ ,

(5.6)

where we have set ũε(σ) B uε(t̃ε(σ)). Since t̃ε and l̃m
ε converge weakly* in W1,∞(0, S ) to t̃ and l̃m,

respectively, G̃m
ε converges to G̃m in L2(0, S ), and Eũε(σ) converges to Eũ(σ) = Eu(t(σ), Γ̃(σ))

in L2(Ω;M2) (cf. Lemma 2.4), passing to the limit as ε → 0 in (5.6) we get (1.6). This concludes the
proof of the theorem. �
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