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Abstract: A comparative quali-quantitative study of the peel extracts of eight Punica granatum cul-
tivars obtained from underexploited areas of South Italy was carried out in order to valorize them
as health-promoting by-products. The results showed that all of the samples possessed 45 ellagi-
tannins, consisting mainly of polyhydroxyphenoyls; 10 flavonoids, belonging to flavonol, flavone,
and catechin classes; and 2 anthocyanins. The most representative compounds underwent quantifi-
cation through a LC-MS/MS multiple reaction monitoring (MRM)-based method; their qualitative
profile was almost superimposable, while variability in the quantitative phenolic content was ob-
served. The antioxidant activity was investigated using cell-free and cell-based assays. The in vitro
anti-inflammatory potential was also studied by monitoring three typical markers of inflammation
(IL-1β, IL-6, and TNF-α). Moderate differences in both activities were observed between the cul-
tivars. Results showed that all of the investigated peels have a potential use as healthy bioactive
phytocomplexes due to the interesting antioxidant and anti-inflammatory activities; in particular
from the bioinformatic approaches a series of compounds, including galloyl-, pedunculagin- and
ellagic acid-based, were found to be highly correlated with bioactivity of the extracts. Finally, the
bioactivities showed by a Campanian local cultivar, ‘Granato di Aiello del Sabato’, could promote its
cultivation by local farmers and germplasm conservation.

Keywords: Punica granatum; pomegranate; mass spectrometry; phenolic compounds; antioxidant;
anti-inflammatory; bioinformatics analyses

1. Introduction

Punica granatum L. (Lythraceae), commonly known as pomegranate, is a small tree
native to Iran, China, and India and is widely cultivated in the Mediterranean region, North
and South Africa, Asia, and Central and South America due to its commercial attractiveness
as a fresh fruit or as juice. It’s a temperate climate species capable of easily spreading in arid
and semi-arid areas and is tolerant to salinity and water deficiency and agronomic factors
that usually reduce the growth of other crops. The pomegranates’ successful adaptation to
Mediterranean weather conditions has led to their diffusion in this area and the propagation
of new varieties. Since ancient times, the usage of pomegranate has been reported in many
prehistoric human cultures [1], while recently it has been described as a “super food”
and classified among the top ten fruits with high nutraceutical value. The juice, mostly
marketed instead of fresh fruit to avoid the unpleasant removal of the seeds, is a rich
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source of polyphenols such as anthocyanins (glycosides of cyanidin, delphinidin, and
pelargonidin), flavonoids (proanthocyanidins and flavanols), and tannins (ellagitannins
and gallotannins) [2] as well as volatile substances with an intense aroma [3]. The phenolic
content of pomegranate juice varies among the different cultivars, varieties, and genotypes
(actually more than 500), climates, agronomical conditions, harvest and post-harvest times,
juice obtaining method, and its processing, leading to different health-promoting products
widely used not only as food but also in nutraceutical and cosmetic preparations [4].

The by-product of P. granatum is estimated to be composed of 80% peels and 20% seeds;
therefore, in this context, the impact of this bio-waste is mainly addressed to discharge,
representing a significant issue for the agro-food industry and requiring strategic action
for the agricultural production and processing industry. Recently, the increasing attention
to avoid environmental pollution, as well as to the rationalization of the agro-industrial
cycle has stimulated the search for a possible exploitation of fruit residue, from a circular
bioeconomy perspective. Pomegranate peels have been widely used for the treatment of
different pathologies such as inflammation, ulcers, infections, and brain ischemia, while
the seeds can be used to produce a high-quality oil [5,6]. Recently, our group reported an
herbal mixture made from propolis, pomegranate peels, and grape pomace as an active
anti-inflammatory agent in an in vivo rheumatoid arthritis, model highlighting its possible
use as a new natural product-based formulation against this disease [7].

In several areas of South Italy, there is a long-held tradition concerning the cultivation,
in parks and public or private gardens, of pomegranates used as ornamental plant, and
for juice and eating. Recently, due to the discovery of the healthy and nutritional promot-
ing properties of the fruit, its cultivation has been increased, yielding a high quantity of
bio-waste. Although the pomegranate cultivation in the internal areas of South Italy could
produce notable economic and commercial income with interesting development opportu-
nities, no studies have been reported until now on the pomegranate cultivars collected from
these Italian areas. Therefore, to valorize them as by-products, pomegranate peels from
eight cultivars of South Italy were selected and subjected to a quali-quantitative compar-
isons for their secondary metabolite contents. Among the investigated cultivars, ‘Granato
di Aiello del Sabato’, a local accession of Campanian internal areas with a good yield from
an agronomic point of view as it adapts perfectly to this area environment, was selected
with the aim to promote its cultivation by local farmers also through the valorization of its
main by-products. Furthermore, considering the high interest in pomegranate by-product
biological activity, extracts from the peels were evaluated for their radical scavenger ac-
tivity by DPPH and ABTS+-based and in-cell antioxidant activity assays. Subsequently,
the in vitro anti-inflammatory potential was also investigated by monitoring their effect on
the secretion of three typical markers of inflammation (IL-1β, IL-6, and TNF-α) in human
macrophages. Finally, several bioinformatic analyses were carried out to achieve a deeper
understanding of the chemical profiles characterizing the different cultivars as well as to
identify potential biochemical markers associated with the bioactivities. Specifically, to the
best of our knowledge, this is the first study on the chemical and bioactive profile of the
‘Granato di Aiello del Sabato’ cultivar.

2. Materials and Methods
2.1. Samples

The fourteen pomegranate fruit peels, M1-M14, were obtained in autumn 2020 from eight
cultivars and different collection sites as reported in Table 1. The whole fruits were separated
into arils and peels, and the peels were stored at −22 ◦C until the extraction procedure.
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Table 1. Cultivars and collection area of the fourteen Punica granatum samples.

Sample Collection Area Cultivars Company

M1 Benevento, Campania region Dente di cavallo Caruso

M2 Palomonte, Campania region Dente di cavallo Rosso Granato

M3 Sicignano degli Alburni, Campania region Wonderful Rosso Granato

M4 Palomonte, Campania region Wonderful One Rosso Granato

M5 Aiello del Sabato, Campania region Granato di Aiello del Sabato Giovomel

M6 Pietrelcina, Campania region Dente di cavallo Salgliocca

M7 Acri, Calabria region Dente di cavallo Cofone

M8 Tursi, Basilicata region Dente di cavallo Francolino

M9 Forchia, Campania region Hicaz ErarslanFarm

M10 Caserta, Campania region Wonderful precoce Luce

M11 Altavilla silentina, Campania region Dente di cavallo De Matteis

M12 Altavilla silentina, Campania region Mollar de Elche De Matteis

M13 Telese, Campania region Parfianka Troiano

M14 Grottaminarda, Campania region Wonderful Bruno

2.2. Reagents

Ultra-pure acetonitrile, water, methanol, and formic acid for LC-MS analysis were pur-
chased from Romil Ltd. Pure Chemistry (Cambridge, UK). Solvents for extraction were
purchased from Sigma Chemicals Company (Milan, Italy). For quali-quantitative analy-
sis, the following standards were used: punicalin and punicalagin from PhytoLab GmbH
& Co. KG (Vestenbergsgreuth, Germany), ellagic acid, gallic acid, apigenin 7-O-glucoside, and
cyanidin 3-O glucoside were obtained from Sigma Chemicals Company (Milan, Italy). THP-1
(human leukemia monocytic) and HaCat (human epidermal keratinocytes) cell lines were
purchased from American Type Cell Culture (ATCC) (Rockville, MD, USA). DMEM (Dulbecco’s
Modified Eagle Medium) and RPMI 1640 (Roswell Park Memorial Institute Medium), Fetal
Bovine Serum (FBS) were purchased from GIBCO (Life Technologies, Grand Island, NY, USA).
Phorbol-12-myristate-13-acetate (PMA), MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetra-
zolium bromide] were purchased from Sigma Aldrich (St. Louis, MO, USA). OxiSelect™ Cellu-
lar Antioxidant Activity Assay Kit was purchased from CellBiolLabs
(San Diego, United States). Human IL-1β, IL-6, TNF-α, and ELISA Kits were purchased
from Diaclone (Besançon Cedex, France).

2.3. Peels Extraction

5 g of each P. granatum dried peel cultivar were extracted with EtOH-H2O 7:3. The
extraction was performed using a 320 W Ultrasonic bath (Branson 2510E-MTH, Bransonic®,
Milan, Italy) for 15 min. The amount of solvent used was 1:10 (w/v). The extracts, after
filtration, were dried under vacuum, frozen, and lyophilized to remove the exceeded water
and stored at 4 ◦C for further analysis.

2.4. Qualitative Profiling of Pomegranate Peels Hydroalcoholic Extracts

All fourteen hydroalcoholic extracts were dissolved in H2O-MeOH at a ratio of 4:1 to
obtain a final concentration of 5 mg/mL and subjected to HR-ESI-LC-MS/MS analysis. A
Luna® C18 150 × 2 mm, 3 µm (100 Å) column (Phenomenex®, Castel Maggiore, Bologna,
Italy) was employed using H2O acidified by 0.1% formic acid v/v (solvent A) and CH3CN
(solvent B) with the following linear gradient as the elution method: solvent B from 5
to 50% over 50 min to 50 to 100% in 10 min. The flow rate was set to 0.2 mL/min and
the column oven was set to 40 ◦C. Q Exactive™ Hybrid Quadrupole-Orbitrap™ Mass
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Spectrometer (Thermo Fischer Scientific Inc., Darmstadt, Germany) was operated in the
negative ion mode coupled with the Thermo Scientific UltiMate 3000 UHPLC system. The
identification of specialized metabolites was based on accurate MS values and an MS/MS
spectra, aided by the injection of standard compounds and comparison with data from
previous literature [8].

2.5. Quantitative Analysis

The quantitative determination of gallic acid, cyanidin 3-O-glucoside, delphynidin
3-O-glucoside, ellagic acid, punicalin, and punicalagin was carried out by ABSCIEX API
6500 QTRAP® Mass Spectrometer coupled with a Nexera X2 UPLC Shimadzu system
in both the positive and negative ion modes. A Luna® Omega 100 × 1.6 mm, 3 µm
(100 Å) column (Phenomenex®, Castel Maggiore, Bologna, Italy) was employed using
H2O acidified by 0.1% formic acid v/v (solvent A) and CH3CN (solvent B). Two different
gradient methods were set up for anthocyanins and for the other compounds. The first
method provides a linear gradient from over 12 min followed by a faster gradient until
reaching 100% of B in 3 min. The second gradient started from 5% of B and reached 30%
in 18 min, this was followed by a faster gradient until 100% of B was reached. In both
methods, the flow rate was set to 0.25 mL/min and the column oven was set to 30 ◦C.
Analyses were performed in positive and negative ion modes and, for each analyte, the
mass parameter was optimized using a standard molecule. The calibration curves for
each compound were obtained at a concentration range from 10 ng/mL to 5 µg/mL. The
linearity of the instrumental response in the analyzed concentration range was confirmed
for each compound, as inferred by the following fitting curve parameters: gallic acid,
y = 1.5 × 103 x + 1.9 × 105, R2 = 0.9922; cyanidin 3-O-glucoside,y = 3.8 × 104 x – 3.0 × 106,
R2 = 0.9966; delphynidin 3-O-glucoside y = 5.0 × 103 x + 9.7 × 104, R2 0.9986; ellagic acid
y = 1.5 × 104 x + 1.0 × 106, R2 0.9984; punicalin, y = 1.3 × 103 x −3.6 × 104, R2 = 0.9992,
and punicalagin y = 3.9 × 103 x − 7.6 × 105, R2 = 0.9968. For all of the compounds the
lowest concentration of each calibration curve was clearly higher than respective LOQ, as
the signal-to-noise ratios observed at those points were between 8 to 12.

2.6. DPPH Assay

The DPPH (2,2′-diphenyl-1-picrylhydrazyl radical) assay is a spectrophotometric
technique where the radical cation reacts with hydrogen donors [9]. The violet color that
shows the DPPH in the solution at 515 nm is decolorized by the presence of antioxidants.
A stock solution of 10 mM DPPH was freshly prepared in methanol and diluted until an
absorbance of 1 OD at 515 nm was reached. Samples were assayed in the presence of a
0.15 mM final concentration of DPPH in 100% methanol. Extracts were diluted between
500 and 2000-fold; the reaction was allowed to proceed for a maximum of 30 min in the
dark at room temperature, and then the decrease in absorbance at 515 nm was measured.
Different Trolox µM concentrations (0–100 µM-X-axis) were incubated in the presence of
the DPPH radical, and its absorbance was measured at 515 nm (Y-axis). A calibration curve
was constructed with Trolox concentrations and Abs at 515 nm. All solutions were used on
the day of preparation, and all determinations were carried out in triplicate. Millimolar
concentrations of Trolox equivalents (TE) of dry extract were quantified using the linear
regression equation as follows: extract TE µM = [(Abs 515 nm–1.1057)/(−0.006)]. Then,
the appropriate dilution factor was applied to calculate the millimolar TE of the extract at
10 mg/mL.

2.7. ABTS Assay

The ABTS radical cation decolorization assay is based on the reduction of ABTS+•

radicals by the antioxidants included in an extract [10]. For the study, the ABTS+• solution
was diluted in PBS (Phosphate Buffer Saline) to an absorbance of 0.7 (±0.02) at 734 nm. After
the addition of 100 µL of extract solutions to 100 µL of ABTS+• solution, the absorbance
reading was taken at 30 ◦C for 10 min after initial mixing. All solutions were used on
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the day of preparation, and all determinations were carried out in triplicate. Samples
were compared to known concentrations of Trolox standards, a water-soluble analog of
tocopherol (Vitamin E), which is a very strong antioxidant and commonly used to measure
antioxidant capacity. Different Trolox µM concentrations (0–50 µM-X-axis) were incubated
in the presence of the ABTS radical, and its absorbance was measured at 734 nm (Y-axis).
Micromolar concentrations of Trolox equivalents (TE) of dry extract were quantified using
the linear regression equation as follows: extract TE µM = [(Abs 734 nm–0.8594)/(−0.0156)].
Then, the appropriate dilution factor was applied to calculate the millimolar TE of the
extract at 10 mg/mL.

2.8. Cell Viability Assay

A cell viability assay was performed on THP-1 (human acute monocytic leukaemia
cell line) and HaCat (human epidermal keratinocytes). THP-1 were plated in 96-well
plates at a cell density of 1 × 105 cells/well and differentiated in the THP-1 macrophage
attached cell line by treating with 100 nM of phorbol-12-myristate-13-acetate (PMA) for
24 h. THP-1 cell differentiation was enhanced by removing the PMA-containing media
and adding fresh media for 24 h. Then, they were incubated for 24 h in the presence of
the extracts at concentrations in the range 25–100 µg/mL. HaCat were plated in 96-well
plates at a cell density of 1 × 104 cells/well. Then, the cells were incubated for 48 h in the
presence of extracts at concentrations of 100 µg/mL. For both cell lines, the number of viable
cells was quantified by the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium
bromide] assay. Absorption at 550 nm for each well was assessed using Multiskan GO
(Thermo Scientific). Experiments were performed in technical triplicates.

2.9. Antioxidant Activity in M0 Macrophages

Using the OxiSelect™ Cellular Antioxidant Activity Assay Kit, the cells were differ-
entiated, as reported above. Then, they were treated with a DCFH-DA probe solution
in association with a quercetin standard (0.125–2 mM) or an extract sample (50 µg/mL)
and incubated for 1 h. After washing with DPBS 1X buffer, the free radical initiator solution
was incubated and immediately the plates were read on a fluorescence microplate reader
using an excitation wavelength of 480 nm and an emission wavelength of 530 nm. The
reading was performed in the time interval 0–60 min with a reading every 5 min. The
analysis was firstly performed evaluating the AUC value (area under the curve) for each
sample and then the CAA value (cellular antioxidant activity) was calculated as follows:
[CAA Units = 100 − (AUCAntioxidant/AUCControl) × 100] [11].

2.10. Cytokine Production and Enzyme-Linked Immunosorbent Assay (ELISA)

The THP-1 were differentiated in the THP-1 macrophage attached cell line by treating
with 100 nM of PMA for 24 h. THP-1 cell differentiation was enhanced by removing the
PMA-containing media and adding fresh media for 24 h. The cells were incubated with
extracts (100 µg/mL) with and without LPS (0.1 µg/mL) for 24 h. The conditioned medium
was collected and analyzed by an Enzyme-Linked Immunosorbent Assay (ELISA). The
assays were performed according to manufacturer instructions to quantify the release of
inflammatory cytokines (IL-1β, IL-6, and TNF-α). The values were normalized to the LPS
sample and reported as percentages. Experiments were performed in technical triplicates.

2.11. Bioinformatics Analyses

Statistical analyses of chemical and bioactivity data have been carried out as previously
reported [12], using an ANOVA coupled to a pairwise Tukey’s t-test performed by the PAST
software. Heatmaps and hierarchical clustering (HCL) were performed using the Morpheus
as reported before, whereas correlation analyses were done as previously described [13],
but only considering negative significant (p ≤ 0.05) correlations between bioactivities and
chemical compounds.
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3. Results
3.1. LC-MS/MS-Based Quali-Quantitative Analysis

Eight cultivars of P. granatum from different collection areas (Table 1) were obtained
from Campanian plant breeders and companies, including those widely cultivated to
produce pomegranate juice such as ‘Dente di Cavallo‘ and ‘Wonderful‘. All pomegranate
accessions come from the same 2020 collection year, and the fruits were harvested at
complete maturation. Their peels were subjected to hydroalcoholic ultrasound-assisted
extraction. LC-MS/MS analysis (Figures 1 and S1) of the resulting extracts revealed that all
fourteen samples displayed almost superimposable profiles with only small differences.
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Figure 1. UHPLC-HR-ESI-MS profiles of the fourteen peel samples M1–M14 (M1 the first up, M-14
the last down) in the negative ion mode.

In particular, according to MS data, retention time, and comparison with available
pure standards, 45 ellagitannins, consisting of many polyhydroxyphenoyl groups (such as
hexahydroxyphenoyl-HHDP) also characterized by the presence of a C–C linkage between
galloyl units and 10 flavonoids, belonging to flavonol, flavone, and catechin classes, were
tentatively identified (Table 2, Figures S2 and S3). Moreover, among anthocyanins, cyanidin
3-O-glucoside was detected in all the samples, whereas delphinidin 3-O-glucoside was
found only in M13 (Table 3, Figure S4). These results were in agreement with previous
reports of the specialized metabolite composition in pomegranate peels [14–19].
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Table 2. UHPLC-HR-ESI-MS/MS data of compounds detected in pomegranate peels M1-M14.

tR (min) [M-H]2−/[M-H]− MS2 Compound MSI
Status a

1 2.1 481.0632 300.9991, 275.0185 HHDP b-hexoside 1 2
2 2.8 481.0632 300.9991, 275.0185 HHDP-hexoside 2 2
3 3.0 331.0680 271.0449, 211.0239, 169.0143 Galloyl-hexoside 1 2
4 3.5 331.0680 271.0449, 211.0239, 169.0143 Galloyl-hexoside 2 2
5 3.9 649.0705 300.9991, 497.0575 Galloyl-HHDP-gluconate 2

6 4.0 633.0752 481.0630, 300.9991, 249.0407,
275.0185 HHDP-galloyl-hexoside 2

7 4.2 169.0138 125.0249 Gallic acid 1
8 4.3 331.0680 271.0449, 211.0239, 169.0143 Galloyl-hexoside 3 2
9 4.4 483.0798 331.0671, 313.0566, 169.0143 Digalloyl-hexoside 2

10 4.6–4.8 781.0555 721.0330, 600.9907, 475.0361 Punicalin 1
11 4.9 483.0798 331.0671, 313.0566, 169.0143 Digalloyl-hexoside isomer 2

12 5.7 633.0752 481.0630, 300.9991, 249.0407,
275.0185 HHDP-galloyl-hexoside isomer 2

13 6.0 391.0321/783.0712 765.0588, 721.0330, 481.0630,
300.9991 Casuariin 2

14 6.1 541.0272/1083.0630 807.0330, 721.0330, 600.9907,
510.0260, 275.0185 Punicalagin isomer 1 2

15 6.5 649.0705 300.9991, 497.0575 Galloyl-HHDP-gluconate 2

16 6.8 541.0272/1083.0630 807.0330, 721.0330, 600.9907,
510.0260, 275.0185 Punicalagin isomer 2 2

17 7.1 483.0798 331.0671, 313.0566, 169.0143 Digalloyl-hexoside isomer 2

18 7.2 466.0299/933.0679 915.0552, 781.0550, 721.0330,
600.9907, 300.9991 Castalagin 2

19 7.8 391.0321/783.0712 631.0589, 481.0630, 300.9991 Pedunculagin 2

20 7.9 707.0647/1415.1368 783.0690, 613.0480, 633.0739,
300.9991 Di (HHDPgalloyl-hexoside)-pentoside 2

21 8.3 305.0675 125.0249, 137.0250 Gallocatechin 2

22 8.4 466.0299/933.0679 781.0550, 631.0589, 450.9945,
425.0153, 300.9991, 275.0185 2-O-Galloylpunicalin 2

23 12.9 541.0272/1083.0630 781.0550, 600.9907, 300.9991,
275.0185 Punicalagin A 1

24 14.3 391.0318/783.0708 631.0589, 481.0630, 300.9991 Pedunculagin isomer 2

25 14.5 951.0767 907.0867, 783.0690, 605.0800,
481.0630, 300.9991 Trisgalloyl HHDP-hexoside 2

26 15.3 632.0670/1265.1423 783.0690, 481.0630 Pedunculagin-I-der 2

27 16.2 392.0392/785.0859 300.9991, 275.0185, 249.0407,
169.0143 Digallolyl HHDP-hexoside 2

28 16.3 541.0272/1083.0630 781.0550, 600.9907, 300.9991,
275.0185 Punicalagin B 1

29 17.4 799.0657 781.0550, 479.0476, 300.9991 Granatin A 2

30 18.2 467.0374/935.0822 917.0711, 783.0690, 633.0739,
571.0740 Galloyl-bis-HHDP-hexoside (casuarinin) 2

31 18.3 400.0371/801.0814 649.0681, 499.0724, 347.0623,
300.9991 Punigluconin 2

32 18.4 783.0718/1567.1511 765.0588, 300.9991 Digalloyl triHHDP-dihexoside 2

33 19.2 392.0392/785.0859 300.9991, 275.0185, 249.0407,
169.0143 Digallolyl-HHDP-hexoside 2

34 19.2 542.0355/1085.0795 783.0690, 765.0588, 300.9991 Digalloyl-gallagyl-hexoside 2
35 19.6 542.0355/1085.0795 783.0690 765.0588, 300.9991 Digalloyl-gallagyl-hexoside isomer 2

36 19.8 633.0752 481.0630, 300.9991, 249.0407,
275.0185 HHDP galloyl-hexoside isomer 2

37 20.6 463.0530 300.9991 Ellagic acid hexoside 2

38 22.7 951.0767 933.0668, 765.0588, 613.0480,
445.0425, 300.9991 Trisgalloyl HHDP-hexoside 2

39 23.6 787.1035 635.0883, 617.0779, 465.0671,
447.0562 Tetragalloyl-hexoside isomer 1 2

40 23.7 392.0392/785.0859 300.9991, 275.0185, 249.0407,
169.0143 Digallolyl HHDP hexoside 2
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Table 2. Cont.

tR (min) [M-H]2−/[M-
H]− MS2 Compound MSI

Status a

41 23.8 433.0428 299.9917, 300.9991 Ellagic acid-pentoside 2
42 24.0 447.0580 300.9991, 300.9991 Ellagic acid-deoxyhexoside 2
43 24.2 787.1035 635.0883, 617.0779, 465.0671, 447.0562 Tetragalloyl-hexoside isomer 2 2
44 24.6 787.1035 635.0883, 617.0779, 465.0671, 447.0562 Tetragalloyl-hexoside isomer 3 2
45 24.7 609.1458 301.0356 Rutin 1
46 24.8 300.9995 257.0094, 229.0146, 185.0249 Ellagic acid 1
47 25.5 463.0902 301.0356 Quercetin-hexoside 2
48 26.3 939.1158 787.1030, 635.0883 Pentagalloyl-hexoside 2
49 26.8 593.1534 447.0948, 285.0400 Kaempferol-rutinoside 2
50 27.8 447.0948 285.0400 Kaempferol-hexoside 2
51 28.4 431.0999 269.0447 Apigenin 7-O-glucoside 1
52 28.7 431.0999 269.0447 Apigenin-hexoside 2
53 29.1 417.0843 285.0400 Kaempferol-pentoside 2
54 29.8 447.0948 285.0400 Luteolin 7-O-glucoside 1
55 29.9 417.0843 285.0400 Kaempferol pentoside isomer 2

a MSI level of identification according to Sumner et al., 2007 [20]. b HHDP, hexahydroxydiphenoyl.

The most representative compounds underwent quantification through a LC-MS/MS
multiple reaction monitoring (MRM)-based method. Although the qualitative profile of the
different accessions was almost superimposable, there was variability in their phenolic content.
The results obtained (Table 3) showed that punicalagin was the most abundant compound in all
samples, with sample M7 being the richest. Ellagic acid and punicalin were the second and the
third most represented compounds in all extracts, respectively, while gallic acid was present in
lower amounts. The M13 extract showed a quantitative profile quite different from the others;
in fact, it was richer in anthocyanins, according to the different peel color, but showed a lower
quantity of the tannin compounds. This evidence suggested a slightly different secondary
metabolism for the ‘Parfianka’ species compared to the others. To the best of our knowledge,
this is the first time the peel composition of the M5 cultivar, ‘Granato Aiello del Sabato’, was
investigated, being one of the highest phenolic compounds among the analyzed species.

Table 3. Amounts of selected compounds detected in pomegranate peels M1–M14.

Cyanidin
3-O-glucoside

Delphinidin
3-O-glucoside Ellagic Acid Gallic Acid Punicalagin Punicalin

M1 0.15 ± 0.02 nd 13.20 ± 1.89 a 0.55 ± 0.10 a 87.86 ± 20.16 a 4.22 ± 0.11 a

M2 0.13 ± 0.01 nd 7.07 ± 2.29 bc 0.71 ± 0.01 ac 72.91 ± 18.59 a 3.43 ± 0.41 a
M3 0.35 ± 0.01 nd 8.19 ± 1.68 acd 0.75 ± 0.02 ad 93.86 ± 22.66 a 3.85 ± 0.29 a

M4 0.34 ± 0.01 nd 5.65 ± 1.39 bde 0.65 ± 0.02 a 58.16 ± 9.72 a 2.27 ± 0.22 a

M5 0.17 ± 0.01 nd 11.55 ± 0.69 af 0.77 ± 0.04 a 107.28 ± 3.86 ac 3.70 ± 0.11 a

M6 0.14 ± 0.01 nd 13.80 ± 2.51 a 1.52 ± 0.06 b 85.16 ± 11.90 a 6.73 ± 0.46 ab

M7 0.14 ± 0.01 nd 14.67 ± 0.92 a 0.68 ± 0.01 ah 142.38 ± 4.16 bd 6.58 ± 0.74 ab

M8 0.12 ± 0.01 nd 12.66 ± 1.76 a 0.96 ± 0.01 bcdh 112.79 ± 5.01 acd 4.22 ± 0.45 a

M9 0.47 ± 0.05 nd 7.15 ± 0.56 bdfg 0.47 ± 0.01 afi 85.04 ± 6.85 a 4.04 ± 0.66 a

M10 0.44 ± 0.03 nd 4.60 ± 0.30 bdh 0.36 ± 0.01 afi 89.79 ± 1.57 a 3.02 ± 0.21 a

M11 0.13 ± 0.01 nd 11.96 ± 0.68 acg 0.20 ± 0.03 bdgij 83.35 ± 6.90 a 3.43 ± 0.61 a

M12 0.11 ± 0.01 nd 8.64 ± 0.54 aceghi 0.41 ± 0.01 af 80.65 ± 2.42 a 3.30 ± 0.27 a

M13 1.99 ± 0.05 0.52 ± 0.08 4.62 ± 0.1 bdi 0.33 ± 0.01 ae 52.38 ± 5.99 a 2.36 ± 0.23 a

M14 0.61 ± 0.07 nd 5.87 ± 0.40 bdi 0.56 ± 0.01 ac 59.32 ± 5.37 a 2.50 ± 0.27 a

Data are expressed as mg of compounds in g of dried hydroalcoholic extract ± standard deviation. Different
letters within each column indicate statistically significant differences at p≤ 0.05 in an ANOVA + Tukey’s pairwise
t-test analysis.

3.2. Antioxidant Activity

The pomegranate peel extracts were analyzed for their antioxidant activity using
DPPH and ABTS+-based assays. Using this approach, the antioxidant capacity of each
extract was estimated in terms of Trolox equivalent antioxidant capacity (TEAC) and re-
ported as the average of those resulting from at least three independent experiments
(Table 4, Figure S5A) [21–24]. Different antioxidant activities were observed among
pomegranate cultivars. Significant differences in the results of the DPPH assay were
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registered, with the activity values ranging from 40.1, obtained for M13 ‘Parfianka’, to
72.8 and 70.0, measured for M3 ‘Wonderful’ Sicignano degli Alburni and M14 ‘Wonderful’
Grottaminarda, respectively. Interestingly, also ABTS activity data showed that M14 ‘Won-
derful’, Grottaminarda accession and M3 ‘Wonderful’ Sicignano degli Alburni accession
displayed the highest value.

Table 4. Antioxidant activities of pomegranate peels M1-M14. Different letters within each col-
umn indicate statistically significant differences at p ≤ 0.05 in an ANOVA and Tukey’s pairwise
t-test analysis.

Sample DPPH TEAC mM ABTS TEAC mM

M1 45.8 ± 4.1 a 7.4 ± 0.2 a

M2 53.3 ± 5.3 ac 8.4 ± 0.1 b

M3 72.8 ± 6.1 b 10.3 ± 0.1 bc

M4 49.7 ± 6.1 ad 10.2 ± 0.1 bc

M5 67.4 ± 4.5 a 7.6 ± 0.2 a

M6 45.3 ± 3.6 a 8.5 ± 0.1 b

M7 63.1 ± 3.9 bc 10.2 ± 0.1 bc

M8 59.6 ± 5.5 bcd 8.4 ± 0.1 b

M9 60.6 ± 5.4 bcd 9.4 ± 0.2 bcd

M10 59.2 ± 5.1 bcde 10.2 ± 0.1 bc

M11 48.3 ± 2.3 ae 9.3 ± 0.2 bcd

M12 47.3 ± 6.8 a 8.2 ± 0.2 b

M13 40.1 ± 5.9 a 9.4 ± 0.1 bcd

M14 70.0 ± 9.1 b 13.3 ± 0.2 bcde

Values are expressed as means ± standard deviation (n = 3). TEAC (Trolox equivalent antioxidant capac-
ity) is expressed as mM Trolox equivalent. DPPH: 2,2-diphenyl-1-picrylhydrazyl. ABTS: 2,20-azino-bis
(3-ethylbenzothiazoline-6-sulphonic acid). Different letters within each column indicate statistically significant
differences at p ≤ 0.05 in an ANOVA + Tukey’s pairwise t-test analysis.

A further evaluation of the antioxidant activity was carried out through an in-cell
assay performed on the human acute monocytic leukemia cell line THP-1-derived M0
macrophages. Preliminarily, the cytotoxic activity of the pomegranate peel extracts towards
these cells was evaluated by an MTT assay. The cells were incubated with the extracts for
48 h at a concentration of 100 µg/mL and no cytotoxicity was observed. Once the cytotoxic
effect was verified, the antioxidant activity of pomegranate peel extract was evaluated using
OxiSelect™ Cellular Antioxidant Activity Assay Kit (Figure 2). Compared to quercetin,
used as a positive control, most of the tested extracts also showed an interesting antioxidant
effect in cells. However, the extracts M9, M10, M11, M12, and, most importantly, M13, were
clearly and significantly less effective than the others.
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3.3. Anti-Inflammatory Activity

Subsequently, the anti-inflammatory activity of pomegranate peel extract was eval-
uated. Since pro- and anti-inflammatory cytokines play a key role in the pathogenesis
and evolution of the inflammatory state of rheumatoid arthritis, three typical markers of
rheumatoid arthritis were monitored: IL-1β, IL-6, and TNF-α (Figures 3 and S5B). Although
their appearance is temporally different, especially in the early course of pathology, they
are considered key driving molecules [25]. The extracts were tested on THP-1-derived
macrophage cells co-stimulated with LPS. All pomegranate peel extracts revealed potential
anti-inflammatory activity, as demonstrated by the observation that all the treatments
significantly reduced the secretion of IL-1β and, to a lesser extent, that of IL-6. Instead,
TNF-α was only slightly modulated by the peel extract treatment (Figure 3). In particular,
M1 and M7 samples were able to inhibit the IL-1β secretion by about 80%, while M5 and M8
inhibited it by about 75%, compared to LPS (Figure 3A). The lowest activity was displayed
by M4 and M11 samples (about 55% of reduction). Regarding the IL-6 secretion inhibition,
the M14 sample was the most active (55% reduction), while M1, M5, M6, M8, M9, and M11
showed a reduction of about 40% (Figure 3B). Based on these results, IL-6 and IL-1β seem
to be the pro-inflammatory cytokines most specifically modulated. In particular, IL-1β
appears as the most suitable biomarker to evaluate the potential anti-inflammatory activity
of pomegranate peel extract, thus confirming what has already been shown regarding the
anti-inflammatory activity of this fruit on human chondrocytes [26,27].
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Figure 3. Percentage of secretion of IL-1β (A), IL-6 (B), and TNF-α (C) from LPS-stimulated
THP-1-derived macrophage cells after 24 h of treatment with M1-M14 extracts. Different letters
within each column indicate statistically significant differences at p ≤ 0.05 in an ANOVA + Tukey’s
pairwise t-test analysis.

3.4. Bioinformatics Analyses

In order to achieve a more detailed understanding of the chemical and bioactivity
data under study, a series of bioinformatics approaches were carried out. First of all,
multivariate analyses (principal component analyses, PCAs) were performed, either at
variety or metabolite levels (Figures 4 and S4), while the latter was not able to clearly
discriminate the different varieties (which clustered all together, Figure S6). In agreement
with what reported in Section 3.1, the former (variety) highlighted a group of compounds
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responsible for the total variance of the dataset. More specifically, punicalagin a and b,
granatin, and to a lesser extent, trisgalloyl iso 2 and galloyl-pentoside resulted in the most
variable metabolites among the pomegranate genotypes (Figure 4). Notably, components 1
and 2 explained more than 90% of the total variance. We also measured PCA loadings and
scores (Tables S1 and S2A,B, Figures S7 and S8), which evidenced, except for M4, positive
contributions to components 1 and 2 (PC1, PC2) and a positive and negative influence of
M10 on, respectively, PC1 and PC2 (Table S1A,B, Figure S7). PCA and loading scores also
confirmed the role of two of the aforementioned metabolites (punicalagin a and b) as the
metabolites driving the variance of the whole chemical dataset under study.
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Figure 4. Principal component analysis (PCA) of the metabolites of M1-M14 peel samples. Compo-
nent 1 and 2 explained, respectively, 77.8% and 14.4% of the total variance.

Subsequently, a hierarchical clustering (HCL) analysis was exploited as an alternative
strategy to evaluate the differences among the pomegranate cultivars under study at global
chemical profiling levels (Figure 5). Notably, HCL was able to clearly separate the different
genotypes by highlighting the presence of five clusters. More specifically, a distinct attitude
of M14 and to a lesser extent, M10, as the varieties with the more marked profiling was
found, which placed farthest compared to the others at the left and right sides of the
HCL, respectively. On the contrary, all remaining cultivars were distributed into two
well recognizable groups, one composed of M1, M5, M6, M7, M11, and M12, and the
other including M2, M8, M3, M9, M14, and M13 (Figure 5). It was interesting to notice
that genotypes belonging to the same variety mostly grouped together: for instance, the
four ‘Dente di Cavallo’ samples (M1, M6, M7, and M11) were all found in the first group,
whereas the two additional cultivars were placed in the second group together with the
two ‘Wonderful’ cultivars (M3, M14). Thus, HCL resulted a powerful and effective method
to infer the chemical differences among the pomegranate cultivars under study, and proved
the existence, at least for ‘Dente di Cavallo’, of either genotype- (M1, M6, M7, M11) and
genotype x environment-based (M3, M14) effects (Figure 5).
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Figure 5. Hierarchical clustering (HCL) analysis of chemical data from peel pomegranate samples.
HCL was calculated on columns by applying the One Minus Pearson correlation with the average
linkage algorithm and evidencing the presence of specific clusters. Increasing intensity of the red
color is directly proportional to compound intensity. The data represent, for each, LC-MS signal
intensities and are expressed as average values/100,000,000.

A detected bioactivity can be associated with the presence of a few or a group of
molecules in a specific peel extract [28]. In order to elucidate whether specific compounds
could be responsible for the antioxidant and anti-inflammatory activity of pomegranate peel
extracts and which compounds they were, we performed a correlation analysis, calculating
the Pearson correlation coefficients (ρs) between each metabolite and the analyzed bioac-
tivities (Table 5 and Table S3A,B). More specifically, to highlight relationships of interest,
only negative significant correlations were considered (corresponding to opposite tendency
between metabolite and bioactivity data). Overall, it was not possible to find a large number
of significant correlations, thus suggesting the absence, at least on a mathematical basis, of
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a phytocomplex-derived effect. However, this analysis allowed identifying compounds
displaying significant ρs towards the antioxidant and anti-inflammatory activities, notable
examples include granatin, trisgalloyl iso 2, and ellagic acid, displaying significant negative
correlations towards all antioxidant activities (Table 5A and Table S3A). Similarly, although
at a higher extent, a group of compounds showed significant negative correlations towards
anti-inflammatory activities, including galloyl hexoside iso 2, pedunculagin, and punicala-
gin iso 2, being negatively correlated with IL-1β and TNF-α; and punicalagin iso 2, ellagic
acid deoxy, and ellagic acid pentoside, displaying significant negative correlations towards
IL-1β IL-6, and TNF-α (Table 5B and Table S3B).

Table 5. Pearson correlation coefficients (ρs) between metabolites and (A) antioxidants and
(B) anti-inflammatory activities of pomegranate peel extracts. Only negative statistically signifi-
cant correlations (p ≤ 0.260; *: p ≤ 0.05; **: 0.01 ≤ p ≤ 0.05; ***: p ≤ 0.001) were reported. Blue color
intensity is directly proportional to Pearson coefficient significance.

(A)

ABTS TEAC DPPH Assay

ρ

Granatin −0.485 *** −0.557 ***
Trisgalloyl iso 2 −0.469 *** −0.491 ***

HHDP iso 2 −0.464 *** 0.180
Casuarinin −0.441 ** −0.137

Digalloyl HHDP iso 3 −0.364 ** −0.160
Galloyl-hexoside iso 1 −0.351 ** 0.260

Ellagic acid −0.319 * −0.436 **
Pedunculagin −0.313 * 0.103

Galloyl-hexoside iso 3 −0.312 * −0.084
HHDP iso 1 −0.303 * −0.035

Digalloyl iso 3 −0.288 * 0.243
Pedunculagin iso 2 −0.269 * 0.373

Galloyl-hexoside iso 3 −0.260 −0.141
Galloyl-hexoside iso 3 −0.260 −0.141

(B)

IL-1β IL-6 TNF-α

ρ

Galloyl-hexoside iso 2 −0.900 *** 0.022 −0.374 **
Pedunculagin −0.728 *** −0.057 −.591 ***
HHDP iso 2 −0.677 *** 0.083 −0.323 *

Pedunculagin iso 2 −0.673 *** 0.042 −0.310 *
Punicalagin iso 2 −0.600 *** −0.060 −0.634 ***

Pedunculagin iso 1 −0.588 *** −0.096 −0.295 *
Trisgalloyl iso 1 −0.582 *** −0.085 −0.460 ***

Galloyl-gluconate iso 2 −0.555 *** −0.222 −0.359 **
Galloylpunicalin −0.544 *** −0.092 −0.576 ***

Digalloyl −0.520 *** −0.112 −0.436 **
Digalloyl HHDP iso 2 −0.518 *** 0.131 −0.273 *

Castalagin −0.515 *** −0.127 −0.615 ***
Casuarinin −0.499 *** −0.248 −0.454 ***

Punicalagin iso 1 −0.489 *** −0.241 −0.703 ***
Galloyl-gluconate iso 1 −0.446 ** −0.296 * −0.382 **

Ellagic acid deoxy −0.438 ** −0.361 ** −0.545 ***
Ellagic acid pentoside −0.429 ** −0.356 ** −0.504 ***
Digalloyl gallagyl iso 1 −0.416 ** −0.381 ** −0.109
Digalloyl gallagyl iso 2 −0.410 ** −0.402 ** −0.108
Digalloyl HHDP iso 3 −0.403 ** −0.500 *** −0.221

Casuariin −0.395 ** −0.298 * −0.133
Galloyl-hexoside iso 3 −0.268 * −0.470 *** −0.038
Ellagic acid hexoside −0.217 −0.329 * −0.485 ***

Digalloyl iso 2 −0.127 −0.376 ** −0.376 **

4. Discussion

The recovery of agricultural and industrial waste is now recognized as an essential
process due to its great economic importance and the reduction of the environmental
impact of production processes. The opportunity to transform materials whose disposal
involves costs and risks for the environment and population into a source of raw materials
could be crucial in those regions, such as the internal areas of South Italy, which are
still underdeveloped economically. From this point of view, the possible recovery of
pomegranate production chain waste seems to have all the optimal characteristics to be
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carried out in a productive and advantageous way. Indeed, the main pomegranate by-
product is the pericarp of the fruit, and several studies have suggested these peels as a
source of bioactive phytocomplexes [29] and proposed their use for several applications
[30,31]. However, in order to achieve real feasibility of a waste recovery process aimed
at obtaining extracts rich in bioactive molecules, it is advisable that the recovery cost be
compatible with the extraction process yield and the quality of the obtained products. Since
multiple factors (for example, genetic, geographic, and climatic) have critical effects on
the production of secondary metabolites [32,33], it is important to evaluate their effect
on the characteristics and quality of by-products. Many studies support the antioxidant
and anti-inflammatory effects of the phytochemicals from different P. granatum cultivated
varieties [34,35]. In this report, the results of a study aimed at evaluating the possibility
of using pomegranate peels from South Italy’s internal areas as a source of extracts with
antioxidant and anti-inflammatory activities were pointed out. The rich phenolic compound
composition obtained didn’t show a great deal of variability among different pomegranate
accessions (Table 1), suggesting that environmental conditions, such as climate or soil
composition (clayey or sandy), slightly affect their secondary metabolism. In fact, the
comparison of the phenolic compound composition within the different cultivars and
accessions of pomegranate and the literature data could be a tricky process due to various
factors such as cultivar type, weather conditions, soil composition, and ripeness [33]. Our
analyses have confirmed that pomegranate peels contain secondary metabolites of great
interest for health and chemoprevention, nutritional, or cosmetic use, such as ellagitannins,
flavonoids, and anthocyanins [36]. As expected, the presence of these molecules provided
the extracts with a significant antioxidant capacity, appreciable both through in vitro assays
and studies on human cells.

The inflammation provokes a condition of oxidative stress that reduces the antioxidant
capacity of cells, causing cellular damage. This process is mediated by a variety of factors
that contribute to both the release of cytokines and the expression of pro-inflammatory
mediators, contributing to the exacerbation of the pro-inflammatory process [7]. Thus,
the anti-inflammatory activity of the peel extracts was investigated in cells. Firstly, all the
extracts were assayed by the MTT test on THP-1 and HaCat cell lines to verify they did
not affect cell viability. Among the factors involved in the inflammation process cytokines
play a pivotal role; thus, the secretion of three typical markers, IL-1β, IL-6, and TNF-α,
in cells treated with pomegranate peel extracts were investigated. The high modulation
of IL-1β, exerted by the majority of the extracts is of high interest due to the critical role
of this cytokine in the pathogenic mechanism. However, the modulation of IL-6 is also
critical, especially in the systemic manifestations in the acute phase of the inflammatory
process [27]. Therefore, the observed ability of pomegranate peel extract to inhibit IL-1β
and IL-6 secretion supports their possible use to address inflammation at different stages.
On the other hand, the obtained results corroborate the idea that these cytokines could
be considered as putative targets for an early intervention on inflammatory pathologies,
such as rheumatoid arthritis [7]. A comparison between the peels did not allow us to
highlight substantial differences with regards the composition of secondary metabolites of
the respective extracts and, consequently, no statistically significant differences in biological
activity were observed between the various samples. In fact, different approaches to
statistical and multivariate analysis of the various experimental data collected, failed
to identify a clear tendency between pomegranate varieties and bioactivities. However,
using correlation analyses of chemical composition and bioactivity data, it was possible to
highlight, for some metabolites, a potential positive contribution to the detected activities,
either at antioxidant or anti-inflammatory levels. This evidence confirms once again
the importance of using suitable bioinformatics tools to study complex systems such as
phytocomplexes, whose characteristics cannot be considered as the mere average of the
properties of the individual components [37].
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5. Conclusions

Eight cultivars of pomegranate peel, collected from different South Italian accessions
in the same harvesting year, were chemically compared. The composition of their bioactive
specialized metabolites was investigated, with a focus on ellagitannins and flavonoids,
including anthocyanins. The main components were also quantified. Qualitative profiles
obtained for both ellagitannins and flavonoids were almost superimposable; on the other
hand, the quantitative analysis showed some variability. Antioxidant data were generally
good for the majority of the accessions. Results of anti-inflammatory activity confirmed
that pomegranate by-product extracts could be particularly interesting for the prevention
of inflammation since they strongly inhibited IL-1β, while reducing IL-6 secretion. Overall,
these data suggested a potential synergic antioxidant and anti-inflammatory effect of
the pomegranate peel extracts. PCA analysis highlighted punicalagin a and b, granatin,
trisgalloyl iso 2, and galloyl pentoside as the metabolites mainly responsible for the total
variance, whereas HCL evidenced the presence of two distinct groups, with M4 and
M10 varieties showing a divergent attitude. Finally, a series of compounds, including
galloyl- and ellagic acid-based were found to be highly correlated with antioxidant and
anti-inflammatory activities. These results open the possibility for the introduction of
pomegranate peels into the South Italian by-circular economy in order to reduce their
quantity and environmental impact while increasing the cultivation in these unexploited
areas. Particularly, the M5 accession, ‘Granato di Aiello del Sabato’, investigated here for
the first time, having one of the highest phenolic content and one of the highest ability
in reducing IL-1β and IL-6 secretion from macrophages, could be the autochthonous
internal areas of Campania region cultivar most suitable for an extensive exploitation.
This investigation could ensure the transmission to the farmers and the sustainability
and conservation of this genetic material, making it a peculiarity for local companies and
obtaining its germplasm protection and constant propagation.
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