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its interaction with the
plant extract
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of Pisa, Pisa, Italy
Introduction: Bituminaria bituminosa is a medicinal plant recognized for its

phytochemicals, such as furanocoumarins, pterocarpans, and flavonoids. Since

the secondary metabolism is influenced by the plant-endophyte interactions,

the endophytic bacterial community of B. bituminosa was explored and the

possible interactions with the plant were described.

Materials and methods: Different bacterial strains were isolated from different

organs of in vitro plants as shoots, roots, and seeds. The bacterial strains were

identified and phenotypically characterized for different traits; strains were also

exposed to different concentrations of B. bituminosa plant extract showing

different susceptibility, probably determined by different secondarymetabolites

produced by the plant in the different organs (i.e. aerial parts and roots).

Results and discussion: Bacterial strains showed different phenotypic

characteristics; the 6 detected haplotypes were dominated by a single

species related to Stenotrophomonas rhizophila. Endophytes isolated from

the aerial parts produced a higher indole-3-acetic acid (IAA) amount than those

of the roots, while all strains were unable to produce biosurfactants and

antagonistic activity toward the other strains. The research opens new

perspectives for future analysis addressed to test the susceptibility of the

endophytic bacterial community of B. bituminosa toward the pure

compounds extracted from the plants, and to investigate the role of these

compounds on the distribution of endophytes within the different plant tissues.

KEYWORDS

in vitro cultures, endophytes, indole 3-acetic acid, antagonism, UHPLC-MS, pterocarpans,
furanocoumarins, prenylated flavonoids
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1 Introduction

Endophytes are fungal and bacterial microorganisms inhabiting

the inner tissues of plants, whose importance for the host plant

species has been largely investigated for decades (Reinhold-Hurek

and Hurek, 2011). Endophytic bacterial strains might help the plant

in its development by producing secondary metabolites with

growth-promoting (Plant Growth Promotion, PGP) activity

(Santoyo et al., 2016). Indole-3-acetic acid (IAA), is a molecule of

bacterial origin considered important for plant-growth promotion.

It is one of the most important phytohormones, also playing a role

in alleviating different biotic and abiotic stresses in the plant species

(Shahzad et al., 2017). IAA production varies among bacterial

species and strains (Rashid et al., 2012). Other than PGP traits,

the plant endophytic community can have a role in the plant

defense inducing secondary metabolite production with an

antimicrobial effect, which might be useful to the plant in the

defense against other putative phytopathogenic microorganisms

(Dini-Andreote, 2020; Mengistu, 2020). Finally, the plant

endophytic community might have a role in the plant adaptation

to hostile environments, such as soil enriched withmetals (Ma et al.,

2016) or hydrocarbons (Marchut-Mikolajczyk et al., 2018),

producing molecules – i.e. biosurfactants, siderophores, etc. - that

“decontaminate” the soil microenvironment around the plant

rhizosphere, helping plants to adapt to biotic and abiotic stress

conditions of their habitat. On the other hand the plant itself might

offer the endophytic microorganisms a safe and protected

environment to grow in, as well as nutrient availability (Bacon

and Hinton, 2006).

Recent studies evidenced a kind of plant-endophytic

community communication by demonstrating that the plant

might induce a kind of compartmentalization among the

different plant organs (Rossmann et al., 2017). In particular,

antagonistic interactions among the strains seem to play a role in

shaping the endophytic community within the plant species

(Maida et al., 2016), together with other bacterial phenotypic

characteristics (Mengoni et al., 2014; Maggini et al., 2018).

Interestingly, in vitro studies suggested that endophytic

bacterial strains might contribute to the therapeutic properties

of medicinal plants since the plant’s secondary metabolism is

affected by the plant-endophyte interactions (Maggini et al.,

2017). Accordingly, endophytic microorganisms can produce

high-value bioactive molecules, and contribute to the medicinal

properties of the plants (Venugopalan and Srivastava, 2015).

Moreover, endophytic microorganisms may produce secondary

metabolites promoting plant growth, affecting the uptake or

redistribution of resources which, in turn, can improve the

health of the host plant and consequently the accumulation of

the bioactive metabolites (Ye et al., 2021). Finally, recent

advances in the study of endophytic communities reveal that

bacterial endophytes can produce molecules with antibacterial

activity against human pathogenic bacteria (Chiellini et al., 2017;

Presta et al., 2017), opening new perspectives for further
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produced by endophytes, to evaluate their possible application

for biotechnological purposes, with a particular interest in the

therapeutic field.

Bituminaria bituminosa (L.) C.H. Stirt. (syn. Psoralea

bituminosa L.), belonging to the Fabaceae family is a

xerophytic shrub widely distributed in the coastal

Mediterranean area, with a potential role in the protection of

coastal soil from erosion (Andreu et al., 1995); the plant is

commonly used as hay and forage for herbivores, mainly goats

(Sternberg et al., 2006). Another typical role is the

phytostabilization of former mining zone contaminated by

heavy metals (Martıńez-Fernández et al., 2011; Pistelli et al.,

2017). B. bituminosa is recognized for its peculiar foliar smell of

bitumen, due to the combination of phenolics, sulphurated

compounds, sesquiterpenes, and probably short-chain

hydrocarbons (Tava et al., 2007). The plant is known as a

source of several phytochemicals, mainly furanocoumarins,

pterocarpans, and flavonoids. The furanocoumarins are

phytoalexins, synthesized against fungal infection and insects.

Psoralen and its angular form angelicin are the furanocoumarins

found in several organs of B. bituminosa wild plants and in vitro

culture (Innocenti et al., 1997; D’Angiolillo et al., 2014; Pistelli

et al., 2017). Psoralen is used in dermatology to treat human skin

diseases, while angelicin shows calmative, sedative, and

anticonvulsant activities. Erybraedin C and bitucarpin A are

the main pterocarpans detected for the first time in B.

bituminosa aerial parts (Pistelli et al., 2003). These metabolites

show anti-inflammatory, antiviral, antiproliferative, and

apoptotic (anti-tumor) activities (Maurich et al., 2006; Noccioli

et al., 2014). Other secondary metabolites detected in B.

bituminosa are flavonoids, documented for their antibacterial

activity (Azzouzi et al., 2014; Ramli et al., 2022).

Former studies highlighted the diversity of secondary

metabolite content in several organs, both in wild plants and in

vitro organs such as calli, hairy roots, shoots, and roots

(D’Angiolillo et al., 2014; D’Angiolillo et al., 2017). The in vitro

culture demonstrated different production of metabolites: callus

cultures and hairy roots produced mainly the isoflavone daidzein,

and young roots furanocoumarins, while in vitro shoots showed

the same production of adult plants, even though at very low

concentration (D’Angiolillo et al., 2014; D’Angiolillo et al., 2017;

Pistelli et al., 2017). Young plants inoculated with Arbuscular

Mycorrhizal Fungi (AMF) showed the presence of all the above-

mentioned secondary metabolites, although their concentrations

were different between the vegetative and reproductive phases

(Pistelli et al., 2017). The influence of AMF led to investigate if also

endophytic bacteria could play a role in the production or activity

of secondary metabolites.

In this work, the endophytic community of B. bituminosa

plants grown in vitro in sterile conditions for 40 days was

explored for the first time. Both molecular and phenotypic

characterization of the strains isolated from roots, aerial parts,
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and seeds were performed. The stress resistance of the bacterial

strains toward different conditions (i.e., salinity, water,

antibiotics, and oxidative stress) was evaluated as well,

together with the antagonistic activity among isolates. Finally,

the growth of the bacterial strains in presence of the B.

bituminosa wild plant extracts was evaluated to verify their

eventual susceptibility. Overall, the bacterial community

characterization of B. bituminosa and the possible interactions

with the plant were explored and described.
2 Materials and methods

2.1 Chemicals

Analytical grade chloroform used for the extract preparation

was purchased from Merck (Darmstadt, Germany), while

UHPLC grade methanol, formic acid, and water were supplied

from Romil-Deltek (Pozzuoli, Italy).
2.2 Plant materials

Bituminaria bituminosa (L.) C.H. Stirt. aerial parts were

collected from the field in Elba Island in April 2022. Mature

seeds were collected during the summer 2021. A voucher

specimen was authenticated by S. Maccioni (Department of

Biology of the University of Pisa) and deposited at the

Botanical Garden of the University of Pisa (HHP-new

acquisitions 3703/9).
2.3 Seeds germination and shoot growth

Seeds were sterilized as already published (D’Angiolillo et al.,

2014) and transferred for germination and growth in full

strength salts and vitamins Murashige and Skoog medium

(MS0, Murashige and Skoog, 1962), containing 3% sucrose (w/

v), agar 0.8%, plant preservative mixture (PPM) 0.05%, and

adjusted to pH 5.8 before autoclaving. The explants were

maintained in Magenta vessels at 22 ± 1°C, under 16/8

photoperiod conditions at the irradiance 50 mmol/m2 s (cool

white fluorescent tubes, Phillips, Holland), until use (40 days).
2.4 Isolation of bacterial endophytes
from seeds

Bacterial endophytes were first isolated from the seeds of B.

bituminosa. Briefly, seeds were kept in concentrated H2SO4 for

50 min to remove external coats, and washed 3 times with

distilled water. The sterilization proceeded with a solution 20%

(v/v) of commercial sodium hypochlorite (final active Chlorite
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water. The seeds were kept in water in the dark for 2 days at 25°C

to permit germination.

Fifteen seeds were disrupted in a sterile mortar with a 10 mL

saline solution previously autoclaved (0.9% NaCl). Serial

dilutions of the homogenized seeds were performed in a saline

solution; 100 µL of each dilution (1:10, 1:100, and not diluted)

were plated in triplicate in Tryptone Soy Agar (TSA) plates. The

water obtained from the last washing in the seed sterilization

protocol was plated as well, to evaluate the sterility and to check

the absence of any microbial growth. Plates were monitored over

2 weeks; a single bacterial colony was grown and isolated in TSA

medium as further described.
2.5 Isolation of bacterial strains from
plants grown in vitro and ARDRA
screening for haplotype attribution

After 40 days of in vitro growth, the absence of

contamination was observed in all the magenta vessel tests.

Ten plants were picked up in sterile conditions and for each

one, the roots were separated from the aerial parts with a sterile

scalpel. Roots and aerial parts were treated separately as a pool

for the 10 plants. Each pool was homogenized in a sterile mortar

with sterile saline solution and serial dilutions were performed.

100 µL of each dilution (1:10, 1:100, and not diluted) were plated

in duplicate in TSA plates and monitored over 4 days. Bacterial

plate counts were performed after 48 and 96 h and reported as

results after 96 h in this work.

After 96 h, 21 isolated colonies were randomly chosen from

the aerial parts; 21 isolates were recovered from the plates in

which roots were plated.

A total of 43 isolates (21 from aerial parts, 21 from roots, and

1 from seeds) were analysed through ARDRA screening,

following the protocol described in Gabriele et al (2022).

Fragments showing an identical electrophoresis pattern were

grouped in the same haplotype. According to Chiellini et al.

(2018), Chao-1, Shannon, and Evenness diversity indices were

calculated on the haplotypes obtained for each plant tissue using

PAST3 software (HammerDavid A.T. and Ryan, 2001)
2.6 Molecular characterization of the
isolated strains and phylogenetic analysis

Once the haplotype attribution was completed, one strain for

each haplotype was chosen for the molecular characterization

through 16S rRNA amplification and sequencing. The DNA was

obtained from each bacterial strain through thermal lysis and the

16S amplification was conducted in the same conditions

described in Gabriele et al (2022). The obtained amplicons

were purified through ethanol precipitation and sent to
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Mycrosynth company (Germany) for sequencing. The obtained

sequences were processed as described in Gabriele et al (2022).

The phylogenetic analysis was conducted with the Maximum

Likelihood method on a total of 77 sequences (71 high-quality

sequences selected from international databases and 6 sequences

belonging to our endophytic isolates).
2.7 Cross streaking, biosurfactant
production, and IAA production assay in
isolated endophytes

All the isolated bacterial endophytes were analysed for their

ability in inhibiting the growth of each other. In particular, the

ability of root endophytes was tested against the ones isolated

from the aerial parts, according to the cross streak method

described in Chiellini et al (2019), using the TSA agar medium

and incubating the plates for 48 h at 22°C. A bacterial growth

comparable to that of the control test (target strains without

tester strains) was indicated as “+”; a slightly lower growth of

target strains with respect to the control test was indicated as

“+-”, a low growth respect to control test was indicated as “+–”

while the total absence of growth was indicated as “-”.

The ability of all the isolated strains in producing

biosurfactants was assessed through the Mineral Salts Agar

medium method, as described in Siegmund and Wagner

(1991), incubating the plates for 1 week at 22°C.

The IAA production was assessed in the liquid medium,

according to the protocol of the estimation by the Salkowski

reagent, with a colorimetric assay and a spectrophotometric

quantification, as described in Gabriele et al. (2022). The

quantification of the produced IAA was calculated through the

construction of a standard curve using IAA at concentrations of

0, 1, 2, 5, and 10 µg/mL, diluted in the culture medium of the

bacterial strains. The quantification of IAA produced by each

strain was normalized on the base of the number of bacterial

cells calculated in each test, as previously performed (Gabriele

et al., 2022). The number of bacterial cells was estimated through

the optical density of each liquid culture measured at 600 nm.

The results are expressed as µg of IAA produced by 1.5 x 108

bacterial cells, corresponding to the McFarland Standard n° 0.5

(Mc Farland, 1907).
2.8 Bacterial stress resistance assay

According to Li et al. (2021), the bacterial resistance pattern

toward a panel of five different stresses was assessed for one

representative strain for each detected haplotype, as performed

by Gabriele et al. (2022). Isolated yeasts were not included in

these analyses. The five conditions (Li et al., 2021) were 0.0025%

H2O2 (oxidative stress), 15% polyethylene glycol (PEG)−6000
Frontiers in Plant Science 04
(water potential stress), 2% NaCl (salt stress), 1 µg/mL

streptomycin and 5 µg/mL penicillin. According to Li et al.

(2021), the two antibiotics were selected on the base of the

antibiotics commonly produced by rhizosphere microorganisms

as indicators of biotic stress resistance. The tests were conducted

in 96-well microplates in triplicate for each tested substance,

according to Chiellini et al. (2018), in Mueller Hinton Broth

(MHB) and a total volume of 100 µL. Both a positive control (the

bacterial inoculum in MHB medium) and a negative control

(MHBmedium) were set up. Bacterial growth was determined as

optical density at 600 nm (OD600), after 48 h of growth at 27 °C

without shaking. According to Chiellini et al. (2018), the OD600

value measured for the positive control was considered as 100%

of the growth value; the other measured values were reported as

the percentage of growth in proportion to the positive control.

As each test was conducted in triplicate, the average value was

considered for the results and discussion.
2.9 Preparation of plant extract

The B. bituminosa fresh aerial parts were extracted with

chloroform (w:v, 1:10) by ultrasound-assisted extraction using a

Labsonic LBS2 ultrasonic bath (52 Hz) for 1 h at 30° C and then

kept under stirring for 24 h. The extraction process was repeated

three times. The extract solutions were filtered through filter

paper, combined, and then dried by a rotatory evaporator and

kept at -20°C until analyses. The dried chloroformic extract was

dissolved in methanol to obtain a solution with a concentration

of 2 mg/mL for chemical and biological analyses.
2.10 Ultra-high performance liquid
chromatography-high resolution
orbitrap/mass spectrometry (UHPLC-HR-
Orbitrap/MS)

The chemical analysis of the chloroform extract obtained

from the aerial parts of B. bituminosa wild plant was performed

using an ultra-high performance liquid chromatography

(UHPLC, Vanquish Flex Binary pump) coupled with an

electrospray ionization (ESI) source high-resolution mass

spectrometer (HR-MS) Q Exactive Plus Orbitrap-based FT-MS

system (Thermo Fischer Scientific Inc., Bremen, Germany).

The dried chloroform extract was dissolved in methanol (2

mg/mL), centrifuged at 4000 rpm for 10 min and 5 µL of the

supernatant was injected in the UHPLC-MS system equipped

with a C-18 Kinetex® Biphenyl column (100 × 2.1 mm, 2.6 µm

particle size) provided of a Security Guard TM Ultra Cartridge

(Phenomenex, Bologna, Italy). The elution was performed with a

mixture of methanol acidified with formic acid 0.1% (solvent A)

and H2O acidified with formic acid 0.1% (solvent B) using a

solvent gradient 30-85% A in 22 min, at a flow rate of 0.5 mL/
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min. Column and autosampler temperatures were maintained at

35 and 4°C, respectively. The acquisition of HR mass spectra was

done in a scan range of m/z 135-2000 in ESI positive ionization

mode, operating in full (70000 resolution, 220 ms maximum

injection time) and data dependent-MS/MS scan (17500

resolution, 60 ms maximum injection time). Ionization

parameters were optimized as previously reported (Pieracci

et al., 2022). Data were elaborated using the Xcalibur™ software.
2.11 Disk-diffusion assay to test the
antibacterial activity of the plant extract

The plant extract was tested against six bacterial strains (one

representative strain for each detected haplotype) and against

two bacterial strains present in the laboratory collection of the

Institute of Agricultural Biology and Biotechnology of the

National Research Council located in Pisa. These two strains

were: Pseudomonas stutzeriDSM 5190 from the Leibniz Institute

DSMZ-German Collection of Microorganisms and Cell Cultures

(https://www.dsmz.de/ ) and the Stenotrophomonas rhizophila

strain A, isolated from a Chlorella-like microalga and published

in Serra et al. (2022) Isolated yeasts were not included in these

analyses. The test was conducted to evaluate whether the plants

might assert an effect in the control of its endophytic bacterial

population. The agar disk diffusion assay based on the Kirby-

Bauer test (Bauer et al., 1966) was performed by testing 10 µL of

four different concentrations of the plant extract (0.2, 0.4, 0.8,

and 2 mg/mL), together with 10 µg of streptomycin (control)

and 10 µL of 96% ethanol (Merck). Each substance was dropped

on sterile Whatman paper disks of 6 mm diameter and put on

the surface of the agar plate inoculated with the overnight grown

bacterial culture. The test was conducted on Mueller Hinton

Agar (MHA) medium, in triplicate. Results were expressed as the
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average measure of the diameters of the halo surrounding each

paper disk in the Petri dishes when the inhibition was present.
3 Results

3.1 Isolation of bacterial strains from
plants grown in vitro and ARDRA
screening for haplotype attribution

The growth of the bacterial colonies in the TSA plates made

with serial dilutions, revealed that the lower dilutions exhibited

lower bacterial load, while the higher dilutions, showed greater

bacterial colonies both in the aerial parts and in the roots (data

not shown). A total of 43 isolates were successfully recovered

from the seeds and from the plants grown in vitro. Only one

isolated bacterial strain was recovered from the seeds; 21

bacterial isolates were recovered from the plant aerial parts

and 21 isolates from the roots (5 yeasts and 15 bacteria).

ARDRA screening was performed on the 38 bacterial isolates,

on the amplified 16S rRNA gene.

Results of the ARDRA screening (Table 1) revealed the

presence of 6 different haplotypes among the bacterial

endophytes. The 21 bacteria isolated from the aerial parts were

divided into 3 haplotypes, two of which were co-dominant,

hosting 10 strains each. The 16 bacteria isolated from the roots

were distributed in 5 different haplotypes, one (haplotype B) was

dominant with 8 isolates. The only strain isolated from the seed

showed a different haplotype (haplotype E), not shared by the

other bacteria isolated in the plant compartments.

Considering that in the seeds only one bacterium was

retrieved and cultivated, the diversity indices calculated on the

base of the ARDRA haplotypes distribution (Table 2)

highlighted the highest Shannon and Chao-1 values in roots
TABLE 1 ARDRA screening results on the 38 bacterial isolated strains.

Haplotype ID N° of bacteria from the aerial
parts

N° of bacteria from the
roots

N° of bacteria from the
seeds

Total
bacterial
isolates

A 10 3 0 13

B 0 8 0 8

C 10 3 0 13

D 1 1 0 2

E 0 1 0 1

F 0 0 1 1

Total bacterial
isolates

21 16 1 38
fr
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(1.321 and 6, respectively), and the highest Evenness index value

in the aerial part of the plants (0.7811).
3.2 Molecular identification of isolated
bacterial strains

One representative strain for each haplotype was taxonomically

identified through amplification and sequencing of the 16S rRNA

gene (Table 3). Results highlighted that the majority of our isolated

strains is closely related to the species Stenotrophomonas rhizophila.

These strains are those grouped into the haplotypes A, B, C, and D.

Interestingly, the first described species that are more like our

strains, are not the same in the four isolates, and it is possible to

individuate three different Stenotrophomonas rhizophila close

relatives (Acc. Nrs MT631997.1, KC790262.1, and MN753976.1).

Strain Pso_R21 showed a 99.9% similarity with Kocuria rhizophila,

and the only strain isolated from seeds is phylogenetic related to

Micrococcus luteus. The phylogenetic analysis of these sequences

(Figure 1) revealed that the four sequences related to S. rhizophila

and representative of 95.3% of the total isolated strains (41 strains of

43 total), cluster together within the clade of Stenotrophomonas

rhizophila. The analysis evidenced a high similarity between strains

Pso_L1, Pso_L3, and Pso_R3 (haplotypes B, C, and D), and a slight

separation of strain Pso_L2 (haplotype A) showing basal position

concerning the previous three strains in the tree topology.

According to BLAST analysis, strain Pso_R21 is part of the

Kocuria sp. clade, closely related with K. rhizophila. On the other
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side, despite strain Pso_Seed_1 falling within the clade of

Micrococcus sp., it seems very closely related to Micrococcus

yunnanensis (Figure 1).
3.3 Phenotypic characterization of the
bacterial isolates

3.3.1 Antagonism among endophytes and
biosurfactant production assay

The antagonism assay through the cross-streaking method

was performed on both bacterial and yeast isolates. Results are

shown in Supplementary Table S1 and highlight that there is not

any antagonistic effect asserted by the isolates from roots and

seeds, nor against those isolated from the aerial part of the plants

and the seeds. Accordingly, all the target strains (aerial parts and

seeds) were able to grow in presence of each tester strain (roots

and seeds), after 48 h. An example of the executed test is

reported in Supplementary Figure S1, where it is possible to

observe that the growth of the strains in the test is analogous to

that of the control plates (Supplementary Figure S2).

In addition, the biosurfactant production revealed that any

of the isolated strains were able to produce biosurfactants since

no blue color appeared in the agar plates with the Mineral Salts

Agar medium. Accordingly, only the five isolated yeasts were

able to grow in such a medium, without producing any

biosurfactant molecule (Supplementary Figure S3).
TABLE 2 Diversity indices (Chao-1, Shannon and Evenness) calculated on the haplotypes obtained from ARDRA screening for each plant compartment.

Aerial part Roots Seeds

Shannon_H 0.8516 1.321 0

Evenness_e^H/S 0.7811 0.7493 1

Chao-1 3 6 1
fronti
TABLE 3 Taxonomic affiliation of the bacterial isolates according to BLAST analysis.

Isolate Haplotype Length
(bp)

Accession
number

Similarity 1 blast Similarity first described

Pso_L1 D 870
OP389135

MT631997.1 Stenotrophomonas rhizophila strain
LA-3 16S 100%

Pso_L2 A 1139
OP389136

KC790262.1 Stenotrophomonas rhizophila strain PN8
99.65%

Pso_L3 C 1056
OP389137

MT239544.1 Stenotrophomonas sp.
99.91%

MN753976.1 Stenotrophomonas rhizophila strain
KR2-13 99.91%

Pso_R3 B 1083
OP389138

KC790262.1 Stenotrophomonas rhizophila strain PN8
100%

Pso_R21 E 1024 OP389139 MN704426.1 Kocuria rhizophila strain EGI111 99.9%

Pso_Seed_1 F 1169 OP389140 CP041689.1 Micrococcus luteus strain 10240 99.4%
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3.3.2 IAA production assay
The IAA production assay performed on all the isolates,

expressed as µg IAA in 1.5 x 108 bacterial cells, is reported in

Table 4. Results revealed that isolates Pso_L7, Pso_L16, and

Pso_L19 from the aerial part, as well as strains Pso_R11 and
Frontiers in Plant Science 07
Pso_R12 from the roots and Seed_Pso1 from the seeds, were able

to produce the highest amount of IAA, higher than 1 µg for 108

cells. The lowest values of the produced IAA were measured for a

strain isolated from the roots, Pso_R21 accounting for less than

0.1 µg IAA for 108 cells. Overall, among the strains isolated from
FIGURE 1

Phylogenetic tree reconstruction based on the 16S rRNA gene, obtained with maximum likelihood method on a total of 77 sequences, 6 of
them belonging to our strains (highlighted in bold) and 71 high quality sequences selected among those most similar to our isolated bacteria.
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TABLE 4 Haplotype attribution, taxonomy, plant source, and IAA production of the endophytic bacterial strains isolated from the plants.

Strain Plant source Organism µg IAA/1.5 x 108 cells ARDRA haplotype - 16S Taxonomic affiliation

Pso_L1 Aerial part Bacterium 0.14 D Stenotrophomonas rhizophila

Pso_L2 Aerial part Bacterium 0.65 A Stenotrophomonas rhizophila

Pso_L3 Aerial part Bacterium 0.36 C Stenotrophomonas rhizophila

Pso_L4 Aerial part Bacterium 0.69 A Stenotrophomonas rhizophila

Pso_L5 Aerial part Bacterium 0.77 C Stenotrophomonas rhizophila

Pso_L6 Aerial part Bacterium 0.28 C Stenotrophomonas rhizophila

Pso_L7 Aerial part Bacterium 1.02 C Stenotrophomonas rhizophila

Pso_L8 Aerial part Bacterium 0.77 A Stenotrophomonas rhizophila

Pso_L9 Aerial part Bacterium 0.35 C Stenotrophomonas rhizophila

Pso_L10 Aerial part Bacterium 0.59 C Stenotrophomonas rhizophila

Pso_L11 Aerial part Bacterium 0.36 A Stenotrophomonas rhizophila

Pso_L12 Aerial part Bacterium 0.72 C Stenotrophomonas rhizophila

Pso_L13 Aerial part Bacterium 0.63 A Stenotrophomonas rhizophila

Pso_L14 Aerial part Bacterium 0.41 C Stenotrophomonas rhizophila

Pso_L15 Aerial part Bacterium 0.77 A Stenotrophomonas rhizophila

Pso_L16 Aerial part Bacterium 1.31 A Stenotrophomonas rhizophila

Pso_L17 Aerial part Bacterium 0.36 A Stenotrophomonas rhizophila

Pso_L18 Aerial part Bacterium 0.47 A Stenotrophomonas rhizophila

Pso_L19 Aerial part Bacterium 1.47 C Stenotrophomonas rhizophila

Pso_L20 Aerial part Bacterium 0.27 A Stenotrophomonas rhizophila

Pso_L21 Aerial part Bacterium 0.63 C Stenotrophomonas rhizophila

Pso_R1 Roots Bacterium 0.33 C Stenotrophomonas rhizophila

Pso_R2 Roots Bacterium 0.43 A Stenotrophomonas rhizophila

Pso_R3 Roots Bacterium 0.43 B Stenotrophomonas rhizophila

Pso_R4 Roots Bacterium 0.39 B Stenotrophomonas rhizophila

Pso_R5 Roots Bacterium 0.37 B Stenotrophomonas rhizophila

Pso_R6 Roots Bacterium 0.54 B Stenotrophomonas rhizophila

Pso_R7 Roots Bacterium 0.43 B Stenotrophomonas rhizophila

Pso_R8 Roots Bacterium 0.91 A Stenotrophomonas rhizophila

Pso_R9 Roots Bacterium 0.28 C Stenotrophomonas rhizophila

Pso_R10 Roots Bacterium 0.55 C Stenotrophomonas rhizophila

Pso_R11 Roots Bacterium 1.02 A Stenotrophomonas rhizophila

Pso_R12 Roots Bacterium 1.01 D Stenotrophomonas rhizophila

Pso_R13 Roots Bacterium 0.35 B Stenotrophomonas rhizophila

Pso_R14 Roots Bacterium 0.55 B Stenotrophomonas rhizophila

Pso_R16 Roots Bacterium 0.54 B Stenotrophomonas rhizophila

(Continued)
F
rontiers in Plant S
cience
 08
 frontiersin.org

https://doi.org/10.3389/fpls.2022.1076573
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Chiellini et al. 10.3389/fpls.2022.1076573
the aerial part of the plants, 11 were able to produce an amount

of IAA for 108 cells greater than 0.6 µg (Pso_L2, L4, L5, L7, L8,

L12, L13, L15, L16, L19, L21, corresponding to more than 50% of

the isolates from this plant compartment), while only 3 strains

isolated from the roots were able to produce the same amount of

IAA (Pso_R8, R11, R12, corresponding to about 18.75% of the

bacterial roots isolates). Also, the single isolated strain from the

seeds (Pso_Seed_1) was included among those strains with a

high IAA production.
3.4 Stress tolerance test and
susceptibility to the plant extract

The tolerance stress against five different conditions (Table 5)

revealed three distinct patterns. Strains Pso_L1, Pso_L2, Pso_L3,

and Pso_R3, representatives of haplotypes A, B, C, and D, showed a

complete tolerance against both the tested antibiotics, weak growth

in the presence of NaCl and PEG 6000, and high sensitivity in

presence of oxidative stress. Strain Pso_R21, the only representative

of haplotype E, showed resistance only in presence of streptomycin,

and a slightly reduced growth in presence of PEG 6000, together

with a moderate growth in presence of the three remaining stresses.

Finally, the only strain isolated from seeds and representative of

haplotype F showed resistance only in presence of streptomycin and

a total sensitivity in presence of all the other four conditions.

The agar disk diffusion assay conducted on the six strains

representative of each haplotype revealed that the solvent used

for the dilution of the plant extract (ethanol 96%) does not have

any effect on the strain growth/survival (Table 6). All the strains

except for the one isolated from the seeds are sensitive to
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streptomycin (10 µg), that in this test was used at a higher

concentration with respect to the stress tolerance test, in which

they were all resistant. Strain Pso_L3 representative of haplotype

C is the most sensitive to the plant extract, even at the lowest

tested concentration. Strain Pso_R3 is slightly sensitive to the

highest concentration (2 mg/mL of plant extract) while all the

other strains are not sensitive. S. rhizophila strain A isolated

from the phycosphere of a microalga, as well as the P. stutzeri

strain DSM 5190, are not sensitive to the tested concentration of

the plant extract.
3.5 Chemical characterization of B.
bituminosa chloroform extract

The chemical composition of the chloroform extract of B.

bituminosa wild plant was established through UHPLC-HR-ESI-

MS/Orbitrap analysis. The chromatogram obtained operating in

positive ionization mode is reported in Figure 2. All compounds

were identified based on their elution order, full and

fragmentation MS data (Table 7) compared with the literature

data, considering an accepted mass error <5 ppm. The extract

was characterized by four main chemical classes of compounds;

furanocoumarins were the most represented, with the two

isomers psoralen (peak 1) and angelicin (peak 2) detected as

the main components ([M+H]+ at m/z 187.0389), according to

previous studies demonstrating their occurrence in B.

bituminosa (Innocenti et al., 1997; Pistelli et al., 2017), as well

as in Psoralea genus (Zhao et al., 2005). Proceeding in the elution

order, the hydroxycinnamic acid plicatin B (peak 3, [M+H]+ at

m/z 247.1327) was tentatively identified, as it was previously
TABLE 4 Continued

Strain Plant source Organism µg IAA/1.5 x 108 cells ARDRA haplotype - 16S Taxonomic affiliation

Pso_R21 Roots Bacterium 0.03 E Kocuria rhizophila

Pso_Seed_1 Seeds Bacterium 1.31 F Micrococcus luteus

Yeast strains Pso_R15, 17, 18, 19, and 20 are removed from the analysis.
TABLE 5 Stress tolerance patterns against 5 µg/mL penicillin, 1 µg/mL streptomycin, 2% NaCl, 15% PEG−6000, and 0.0025% H2O2, for the six
strains representing the six detected haplotypes.

Haplotype Pen 5 mg/mL Strept 1 mg/mL NaCl 2% PEG 6000 15% H2O2 0.0025%

Pso_L1 D

Pso_L2 A

Pso_L3 C

Pso_R3 B

Pso_R21 E

Pso_Seed_1 F

Growth values below 10% are indicated with red colour and correspond to “absence of growth”; growth values between 10 and 50% are evidenced in orange colour, and correspond to
“weak growth”; values between 50 and 75% indicated in yellow, correspond to “growth”, and values greater than 75% (green colour) correspond to “complete growth”.
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reported as B. bituminosa component by Pistelli et al. (2003).

Peaks 4 and 5, showing the same protonated molecular ion

[M+H]+ atm/z 325.1431, were two prenylated flavanone isomers

commonly found in Psoralea genus, tentatively identified as (iso)

bavachin and (iso)bavachalcon, respectively, based on mass

fragmentation pathways (Zhao et al., 2005). Two additional

prenylated flavanones (peak 6, [M+H]+ at m/z 339.1225; peak

7, [M+H]+ at m/z 339.1588), were identified as corylifol C and

bavachinin, a methylated form of bavachin, respectively (Zhao

et al., 2005). To the best of our knowledge, prenylated flavanones

were herein detected for the first time in B. bituminosa. Finally,

as expected based on literature evidence (Pistelli et al., 2003),

prenylated pterocarpans were detected and identified as

erybraedin C (peak 8, [M+H]+ at m/z 393.2055) and

bitucarpin A (peak 9, [M+H]+ at m/z 353.1743). Peak 10 and

other minor peaks remained unidentified.
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4 Discussion

Endophytes include beneficial microorganisms exerting

well-known growth-promoting activities in plants, such as seed

germination, growth support, nutrient supply, stimulation in

metabolite production, and resistance against biotic and abiotic

stress factors (Berg, 2014). Bacterial endophytes are most often

located within the plant’s intercellular spaces, which are rich in

carbohydrates, amino acids, and inorganic nutrients; they are

present in all the plant tissues, including roots, leaves, stems,

flowers, and also in seeds (Taulé et al., 2021). Interestingly,

endophytes can affect the plant phenotype determining its

phytochemical profile and mediating the expression of the

plant functional traits too (Harrison and Griffin, 2020).

In this work, we isolated and characterized for the first time

the bacterial endophytes from seeds and from the tissues of 40-

day plants of B. bituminosa grown in vitro. Endophytes isolated

from both roots and aerial parts showed differences in the

composition and the phenotypic traits of the isolated strains.

The highest values of Shannon and Chao-1 diversity indices

calculated on the basis of the haplotype distribution were

retrieved in roots; the highest Evenness index value was

highlighted in the aerial parts of the plants. According to the

definition of the Shannon index, the higher value observed in the

roots compartment (1.321) with respect to the aerial part

(0.8515) and the seeds (0), suggested a higher genetic diversity

of the bacterial isolates in this compartment. A similar

observation was evidenced by the analysis of the Chao-1

index, giving indications about the species richness in a

sample, which showed higher values for the root community

(6) rather than for the aerial parts (3) and the seeds (1). This

observation was in agreement with many previous works

(Chiellini et al., 2014), showing a greater culturable bacterial

diversity in root endophytes compared to the leave community.
FIGURE 2

UHPLC-HR-ESI- Orbitrap/MS chromatogram (positive ionization
mode) of (B) bituminosa chloroform extract wild plant. Peak data
are shown in Table 7.
TABLE 6 The measure of the halo diameter (mm) produced by the lack of growth of the bacterial strains in the presence of different
concentrations of the tested plant extract.

Plant extract concentration (mg/mL)

Haplotype Streptomycin EtOH 96% 0.2 0.4 0.8 2

Pso_L_1 D 12 0 0 0 0 0

Pso_L_2 A 11 0 0 0 0 0

Pso_L_3 C 11 0 8 8 10 9

Pso_R_3 B 11 0 0 0 0 8

Pso_R_21 E 21 0 0 0 0 0

Pso_Seed_1 F 0 0 0 0 0 0

A_S. rhizophila – 9 0 0 0 0 0

DSM 5190 – 11 0 0 0 0 0

Streptomycin was tested as the control antibiotic and EtOH 96% was tested as it was used as a solvent for the plant extract.
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It is worth noticing that only one bacterial endophyte closely

related to the species Micrococcus was isolated from the seeds.

All other strains isolated from both roots and aerial parts were

not retrieved in seeds. This aspect might find different

explanations from the available literature. The cultivation of

seed endophytes is challenging because of the specific habitat of

origin and a large fraction of the bacterial endophytic population

in seeds probably has unknown cultivation conditions (Truyens

et al., 2015). Moreover, the culturable seed microbial

communities are considered to be limited in their size (Mundt

and Hinkle, 1976; Shade et al., 2017) and many strains of the

seed microbiota may be inactive or dormant (Vriezen et al.,

2012; Jiang et al., 2016), or are in a viable but not-culturable state

(Truyens et al., 2015). Therefore, we cannot exclude that the

bacterial strains found in roots and aerial parts might have not

been retrieved in the seeds for these reasons. Bacterial plate

counts revealed that the highest number of bacterial colonies

were retrieved in the most diluted samples and at the same time

the lowest counts were detected in the most concentrated

samples(Data not shown). This result might suggest the

presence of some molecules produced by the plant, which

might assert a kind of “control” on the endophytic population,

acting on the viability and number of individuals.

The aerial parts of wild B. bituminosa plants have been

extensively examined either for the characterization of their

peculiar bitumen smell (Bertoli et al., 2004; Tava et al., 2007)
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and other phytochemicals (Pistelli et al., 2003; Pecetti et al., 2016;

Pistelli et al., 2017; Ramli et al., 2022). The plant extract, herein

examined by the UHPLC-HR-ESI-Orbitrap/MS, showed the

presence of secondary metabolites previously recognized in

other samples Pistelli et al., 2017). The furanocoumarins

psoralen and angelicin, representing the main chemical

compounds found in the analysed extract, were reported by

Baig (2022) to have significant antibacterial activity against

different gram-positive and gram-negative bacteria. The

effectiveness of different prenylated flavonoids, isolated from

Psoralea corylifolia L., on Escherichia coli and Staphylococcus

aureus was also investigated. Among these molecules,

bavachalcone and isobavacalchone have been shown to be

more effective on the gram-positive bacteria (S. aureus) than

on the gram-negative ones (E. coli). However, for both bacterial

strains, these compounds showed a good IC50 value, better than

the furanocoumarins previously mentioned (Baig, 2022).

Likewise, Yin et al. (2004) evidenced remarkable inhibitory

properties on S. aureus and S. epidermidis of some of the

prenylated flavonoids found in the present extract, especially

bavachalcone, isobavachalcone, bavachin, and bavachinin.

Prenylated flavonoids have recently gained increasing attention

due to their activity against different bacteria strains, showing

good to strong antibacterial power (Pistelli and Giorgi, 2012).

Their activity was strictly connected to their chemical structure;

indeed, as reported by Pistelli and Giorgi (2012), the presence of
TABLE 7 Chromatographic and mass spectrometry data of compounds tentatively identified in B. bituminosa chloroform extract by
UHPLC-HR-Orbitrap/MS.

Peak Compounda tR
(min)

[M+H]+ MS/MS ions
(m/z)b

Molecular Formula Mass Error (ppm)

Furanocoumarins

1 Psoralen 8.9 187.0389 115.05, 131.05, 143.05 C11H6O3 -0.64

2 Angelicin (isopsoralen) 9.7 187.0389 115.05, 131.05, 143.05, 159.04 C11H6O3 -0.43

Hydroxycinnamic acid

3 Plicatin B 13.3 247.1327 69.07, 191.07, 215.11 C15H18O3 -0.53

Prenylated flavanones

4 (Iso)bavachin 14.1 325.1431 269.08, 191.11, 135.04, 123.04 C20H20O4 -0.92

5 (Iso)bavacalchone 14.2 325.1431 269.08, 191.11, 149.06, 123.04 C20H20O4 -0.92

6 Corylifol C 14.8 339.1225 283.06, 255.07, C20H18O5 -0.59

7 Bavachinin 17.5 339.1588 283.10, 191.11, 137.06 C21H22O4 -0.88

Pterocarpans

8 Erybraedin C 18.5 393.2055 69.00, 135.04, 191.11 C25H28O4 -1.27

9 Bitucarpin A 20.3 353.1743 137.06, 149.06, 205.12 C22H24O4 -1.36

Unknown

10 Unidentified 21.0 371.3153 101.06, 129.05, 147.07 − −

aCompound numbers correspond to those in Figure 2. bThe base ion peak is indicated in bold.
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a prenyl group at the A-ring in the chalcone derivatives made the

compounds active, as in the case of isobavachalcone. On the

contrary, if the prenyl group at A-ring is oxygenated or/and

further cyclized, the compounds become inactive, while the

presence of a 7-methoxy group makes a molecule more active

than the analogs with a 7-hydroxy group (Pistelli and

Giorgi, 2012).

Other compounds found in the aerial parts were the

pterocarpans, known as biologically active isoflavonoids able

to work as phytoalexins, antimicrobial molecules with the ability

in plant defense against pathogens (Selvam et al., 2017).

However, little has been reported in the literature concerning

the antibacterial properties of erybraedin C and bitucarpin A. All

the secondary metabolites could contribute to the determination

of a specific relationship with the different bacterial haplotypes.

Noteworthily, the distribution of metabolites during plant

development can be different (Bertoli et al., 2004; Pistelli

et al., 2017).

Interestingly, results on the sensitivity of isolated endophytes

to the plant extract revealed that two strains, Pso_L3 and Pso_R3

representing haplotypes C and B, respectively, are the most

sensitive to the tested plant extract. In particular, the strain

Pso_L3 (haplotype C) is sensitive to all the tested concentrations

and Pso_R3 (haplotype B) to the highest one. It is worth noticing

that haplotype C is composed of most of the strains isolated from

the aerial part (10 out of 13 total isolates) while, haplotype B is

composed only of strains isolated from the roots. This result

might suggest a differential sensitivity of our strains to different

compounds, thus lead to the presence of a kind of control

exerted by the plant in the endophytic population and its

distribution at the very early stages of development. In light of

this hypothesis, future analysis will be addressed to test the pure

compounds extracted from the plants for their inhibitory effect

against the isolated bacterial endophytes.

One of the factors affecting the distribution of endophytic

bacterial communities within the plant tissues might be the

antagonistic interactions among strains (Maida et al., 2016;

Maggini et al., 2018). This observation was not valid for our

40-day plants of B. bituminosa, whose endophytic community

did not show any antagonism among strains. However, we have

to consider that our analysis was performed at the earliest stages

of the plant growth, differently from the previously cited works

(Maida et al., 2016; Maggini et al., 2018). Accordingly, we cannot

exclude that the shaping of the endophytic community within

the B. bituminosa plant tissues due to antagonistic interactions

among strains, might occur at the later stages of the plant

development. Indeed, during its life and growth, the plant

selects the endophytic community from different “sources”

(Frank et al., 2017). Soil represents the first initial inoculum of

endophytic microorganisms for plants and the native soil

composition is considered important for endophyte

recruitment (Compant et al., 2016). At the rhizospheric level,

plants release significant amounts of substances, especially
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through root exudates, influencing the rhizospheric microbial

communities. Our research was conducted using in vitro plants,

so we cannot exclude that most of the interactions among

endophytes might occur in the late stages of plant

development, at least when the endophytic bacterial

community is already selected by the plant.

Antagonism is not the only factor shaping endophytic

communities within plant tissues because of the localization of

bacterial endophytes in the intercellular spaces (Taulé et al.,

2021). Bacterial endophytes are most often located within the

plant intercellular spaces but can be found in all plant tissues

(Taulé et al., 2021). Consequently, also the plant genotype has a

central role in endophyte selection/colonization (Kandel et al.,

2017). The presence of different kinds and different amounts of

substances produced by the plant in its tissues, might have a role

in the shaping of the endophytic bacterial community too.

According to the literature, several investigations were

performed to characterize the metabolomic profile of B.

bituminosa aerial parts. The volatile profile has been

determined as a pool of compounds with peculiar behavior

depending on organs and developmental phase (Bertoli et al.,

2004; Tava et al., 2007). Also, proteins and sugars were

determined in adult plants because of their contribution to the

nutritional value of B. bituminosa aerial parts (Ventura

et al., 2000).

The phenotypic characterization of the bacterial strains

revealed different characteristics and peculiar patterns of each

strain that was not always related to the taxonomy, nor the plant

compartment of “origin”. The IAA quantification revealed a

higher production from the endophytes isolated from the aerial

parts and a lower production from those of the roots.

Interestingly, the only isolated strain from the seed is among

those producing the highest IAA amount. According to our data,

the IAA production ability in the endophytes seems to be

somehow related to the plant compartment.

The tolerance stress against five different conditions revealed

three distinct patterns. Strains Pso_L_1, Pso_L_2, Pso_L_3, and

Pso_R_3, representatives of haplotypes A, B, C, and D, showed

complete tolerance against both tested antibiotic, weak growth in

presence of NaCl and PEG 6000, and high sensitivity in presence

of oxidative stress. Interestingly, these three strains belong to the

same bacterial species, even though ARDRA screening attributed

them to three different haplotypes. The strain isolated from the

seeds and strain Pso_R_21 have their peculiar tolerance pattern.

These two strains were also taxonomically related to different

bacterial species. The strain isolated from the seeds showed the

lowest resistance toward the tested environmental stresses.

Overall, stress analysis patterns revealed that the differences

among strains seem to be mainly related to taxonomy and the

plant compartment.

Our data did not reveal any ability of our isolated strains in

producing biosurfactants. Despite these results, we cannot

exclude any ability to produce biosurfactant molecules
frontiersin.org

https://doi.org/10.3389/fpls.2022.1076573
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Chiellini et al. 10.3389/fpls.2022.1076573
different from that specifically detected by the test that we chose

in our research. Indeed, the Mineral Salts Agar medium method

test is specific for anionic biosurfactants and, in particular, it was

developed to detect rhamnolipids.
5 Conclusions

The bacterial culturable endophytic community was isolated

from different organs of in vitro plants at 40-day growth, for the

first time. Bacterial strains were identified and characterized for

different phenotypic traits, such as the IAA and biosurfactants

production ability, the resistance to different biotic and abiotic

stresses, the antagonistic ability among each other. Interestingly,

strains were exposed to different concentrations of B. bituminosa

plant extract showing different susceptibility, probably

determined by different secondary metabolites produced by

the plant and depending on the isolation source (aerial parts

and roots). Bacterial strains were subdivided into 6 haplotypes,

dominated by a single species related to Stenotrophomonas

rhizophila and showing different phenotypic characteristics.

The obtained results open new perspectives for future analysis

addressed to test the sensitivity of bacterial endophytes towards

the pure compounds extracted from B. bituminosa, and to

investigate the role of these compounds on the distribution of

endophytes within the different plant tissues.
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