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Complete classification of steerability under
local filters and its relation with measure-
ment incompatibility

Huan-Yu Ku 1,2,3, Chung-Yun Hsieh 4 , Shin-Liang Chen 1,5,6 ,
Yueh-Nan Chen 1 & Costantino Budroni 2,3

Quantum steering is a central resource for one-sided device-independent
quantum information. It is manipulated via one-way local operations and
classical communication, such as local filtering on the trusted party. Here, we
provide a necessary and sufficient condition for a steering assemblage to be
transformable into another via local filtering. We characterize the equivalence
classes with respect to filters in terms of the steering equivalent observables
(SEO), first proposed to connect the problem of steerability andmeasurement
incompatibility. We provide an efficient method to compute the extractable
steerability that is maximal via local filters and show that it coincides with the
incompatibility of the SEO. Moreover, we show that there always exists a
bipartite state that provides an assemblage with steerability equal to the
incompatibility of the measurements on the untrusted party. Finally, we
investigate the optimal success probability and rates for transformation pro-
tocols (distillation and dilution) in the single-shot scenario together with
examples.

Einstein-Podolsky-Rosen steering1–3 is a quantum correlation inter-
mediate between entanglement4 and Bell nonlocality5,6. A steering
experiment consists of a remote state preparation where one party
(Alice) prepares a local state for a distant party (Bob) by performing
local measurements on her half of a bipartite entangled state and
postselecting the outcome, which is communicated to Bob. As an
interpretation in terms of classically postselected shared states is
impossible, Alice seems to remotely steer the state of Bob.

In addition to being of foundational interest7–14, due to the fact
that only Bob is characterized, steering is at the core of one-sided
(1S) device-independent (DI) quantum information processing15–18. A
resource theory of steering was developed19 to make sense of the
manipulation of such resources, i.e., steerable state assemblages, for
1S-DI quantum information processing. A central open question is

which state assemblages can be transformed into one another via
the free operations allowed by resource theory, namely, one-way
(1W) local operations and classical communication (LOCC). To date,
this problem has been solved only for pure-qubit assemblages,
which, in particular, has shown that there exist infinitely many
equivalence classes and no measure-independent maximally steer-
able assemblage19. To make a parallel, this is a central problem in
entanglement theory, where, e.g., entanglement distillation proto-
cols were devised20–22, and more generally, one is interested in the
equivalence classes of entangled states reachable using stochastic
LOCC, or local filtering22–27. This classification is already nontrivial in
the three-qubit case, where two different classes arise28, and infi-
nitely many classes arise in multipartite settings with sufficiently
high local dimension29,30.
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Recently, the steering distillation problem was theoretically and
experimentally addressed by Nery et al.31. They showed how to trans-
form via local filtering a pure-qubit assemblage arising from mea-
surements of X and Z on a partially entangled pure two-qubit state into
another pure-qubit assemblage, arising from the same measurements
on a maximally entangled bipartite state.

Quite surprisingly, a key ingredient to solve the steering assem-
blage classification problem is given by the notion of measurement
incompatibility. Intuitively, measurement incompatibility refers to the
impossibility of measuring certain physical quantities simultaneously,
such as the position and momentum of a quantum particle (e.g., see
refs. 32,33). This property is at the foundation of many quantum
phenomena, such as uncertainty relations34, quantum
contextuality35–37, Bell nonlocality38,39, and steering40–42. In particular, it
has been shown that a state assemblage is unsteerable if and only if a
collection of measurements, called steering-equivalent-observable
measurement assemblage (SEO), is jointly measurable43,44.

In thiswork,weprovide an even stronger quantitative connection:
(1) the SEO defines the equivalence classes of state assemblages and
their transformations via local filtering and (2) its incompatibility is the
maximal steerability over a class. With the concept of the equivalence
classes and Alice’s given measurements, a proper bipartite state ρAB
can be constructed such that the steerability of the resulting assem-
blage is the same as the incompatibility of suchmeasurements. Finally,
we provide an efficient method to compute the filter, analyse the
success probability, and estimate the rate of the state assemblage
transformation in the single-shot scenario.

Results
Quantum steering, measurement incompatibility, and steering-
equivalent observables
We start with a brief summary of quantum steering, measurement
incompatibility, and their relation. Given a bipartite state ρAB shared
between Alice and Bob, in each round of the steering protocol, Alice
performs a measurement, labeled by x, on her half of the state and
obtains a measurement result labeled by a (see Fig. 1). The classical
information (x,a) is sent toBob,whoassigns this label tohis state in that
round. In quantum theory, each of Alice’smeasurements is represented
by a positive-operator valued measure (POVM) fAa∣xga, where Aa∣x ≥0
and ∑aAa∣x = I

45. Bob’s state in each round can be computed as
σa∣x=trðσa∣xÞ, where σa∣x := trA ðAa∣x � IÞρAB

� �
. The collection of

σ = fσa∣xga,x is called the state assemblage. Similarly, the collection of
POVMs A= fAa∣xga,x is called the measurement assemblage.

A state assemblage σ admits a local-hidden-state (LHS) model
when it canbewritten asσa∣x =∑λp(λ)p(a∣x, λ)ρλ; that is, it is obtainedby
postprocessing {p(a∣x, λ)} on a fixed collection of states {ρλ} according
to the distributions {p(λ)}. We denote the set of state assemblages
admitting an LHS model as LHS. State assemblages in LHS are
called unsteerable, and steerable otherwise. Steering can be
quantified via the steering robustness46 defined as SRðσÞ:=
minft ≥0 ∣ 9ξ assemblage and τ 2 LHS s.t. ðσa∣x + tξa∣xÞ=ð1 + tÞ= τa∣x
8a, xg, and efficiently computed via semidefinite programming (SDP)47.

Similar notions arise in the context of quantum measurements.
Given a measurement assemblage fAa∣xga,x , it is said to be jointly
measurable (JM) when all measurement effects can be interpreted as
classical postprocessing of a single POVM fGλgλ, namely Aa∣x =∑λp(a∣x,
λ)Gλ. If that is not the case, it is said to be incompatible. A measure
of incompatibility, the incompatibility robustness43,48,49, canbe defined
as IRðAÞ= minft ≥0 ∣ 9N measurement assemblage and D 2 JM s.t.
ðAa∣x + tNa∣xÞ=ð1 + tÞ=Da∣x 8a,xg, where JM denotes the set of jointly
measurable measurement assemblages.

These similarities are not accidental: It has been shown that there
exists a strong connection between steerability and incompatibility40,41

and even that there is a one-to-one mapping between the two math-
ematical problems43 (see ref. 44 for the infinite-dimensional case). The

mathematical equivalence is introduced via the notion of steering-
equivalent-observable measurement assemblage (SEO)43: a state
assemblageσ is steerable if andonly if themeasurement assemblageof
its SEO B is incompatible. To define SEO B, we need to restrict the
reduced state ρB : =∑aσa∣x to its range K:= ranðρBÞ via the projection
ΠB : HB ! K, where ΠBΠ

*
B = IK and Π*

BΠB is a Hermitian projector in
LðHBÞ. Then, we define the reduced state and state assemblage
restricted to K as, respectively, ~ρB:=ΠBρBΠ

*
B and ~σa∣x :=ΠBσa∣xΠ

*
B,

respectively. In the following, we use the notation ~ to denote an
assemblage restricted to the range of the corresponding
reduced state.

Then, B is defined as

Ba∣x := ~ρB
�1

2~σa∣x~ρB
�1

2: ð1Þ

This allows the SEO to be well-defined even when ρB is not full-rank43.
With a slight abuse of notation, we write ρ

�1
2

B := ~ρB
�1

2 � 0K? , to denote
the embedding into the original space HB =K�K?, where ⊥ is the
orthogonal complement.

Transforming state assemblages via local filters
First, we introduce an equivalence relation between two state assem-
blages, σ(1) and σ(2), based on their SEOs. We define the equivalence
relation ~SEO as follows:

σð1Þ ~SEO σð2Þ def
() Bð1Þ

a∣x � 0K?
ð1Þ
=U Bð2Þ

a∣x � 0K?
ð2Þ

� �
Uy 8a, x, ð2Þ

where KðiÞ:= ranðρðiÞ
B Þ for i = 1, 2, and U is a unitary operator acting on

HB. This definition requires thatKð1Þ andKð2Þ are isomorphic and that

Fig. 1 | Schematic illustration of this work. In this work, we consider three fun-
damental quantum information scenarios: that is, distillation, convertibility, and
classification, in a steering-type scenario, where Alice measures her part of the
system on state ρAB and remotely projects Bob's systems into a collection of
(subnormalized) states σa∣x. a In the distillation scenario, one asks how much
steerability can be distilled by a local filter K, that maps σð1Þ

a∣x to σð2Þ
a∣x . b In the

convertibility scenario, one looks for the existence of a filter K 0 mapping σð2Þ
a∣x back

to σð1Þ
a∣x . c In the classification scenario, one classifies different assemblages into the

same class if they belong to the same steering-equivalent observable (SEO). By
showing the equivalence between the convertibility and classification problems
[scenarios (b) and (c)], we are able to obtain the optimal filter that distills the
maximal steerability from σð1Þ

a∣x to σð2Þ
a∣x [scenario (a)].
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the two SEOs B(1) andB(2) are the same up to a local change of basis. It is
straightforward to see that ~SEO is an equivalence relation, namely, it is
reflexive, symmetric, and transitive. Hence, it gives rise to equivalence
classes, which we denote by [σ].

We now introduce another type of steering class based on trans-
formation by local filters. Localfilters onBob’s side aremodeled via the
map

σa∣x 7!
Kσa∣xK

y

psucc
, 8a,x, ð3Þ

whereK satisfiesKyK ≤ I andpsucc:= tr½∑aσa∣xK
yK �. In the casepsucc = 0,

one could define the output of the map as the operator 0. Of course,
the transformation makes sense only if psucc > 0, otherwise the trans-
formation is simply impossible. This corresponds to making a local
measurement and postselecting a specific outcome. In the language of
the one-way (1W) stochastic (S) local operations and classical
communication (LOCC), or 1W-SLOCC operations19,50, these are the
most general local filters, which are denoted as LF1 to emphasize that
they contain only one Kraus operator. See Supplementary Note 1 for a
self-contained summary. In addition, 1W-SLOCC also contains a
classical pre and postprocessing on Alice’s side, which is not
considered here (also see Supplemental Note 1).

It is convenient to introduce some notation to denote the exis-
tence of such a transformation, we write

σð1Þ �!LF1 σð2Þ if σð1Þ transformable intoσð2Þ via LF1: ð4Þ

Similar to SEO, LF1 filters define an equivalence relation.We define ~LF1
as

σð1Þ ~LF1σ
ð2Þ def

() σð1Þ �!LF1 σð2Þ andσð2Þ �!LF1 σð1Þ: ð5Þ

Clearly, this is an equivalence relation, i.e., reflexive, symmetric, and
transitive. Hence, it gives rise to another set of equivalence classes.We
can now connect these two notions through the following theorem:

Theorem 1. Consider two assemblages σ(1) and σ(2). Denote
their reduced states as ρðiÞ:=∑aσ

ðiÞ
a∣x, their ranges as

Ki := ranðρðiÞÞ, and the dimensions as di := dimðKiÞ, for i = 1, 2.
Then, the following statements are equivalent
(i) σ(1) ~SEOσ

(2)

(ii) σð1Þ ~LF1σ
ð2Þ

(iii) σ(2) �!LF1 σ(1) and d1 = d2.

Moreover, in the case σ(1) ~SEOσ
(2), the filter K can be explicitly

computed as a function of the reduced states ρðiÞ =∑aσ
ðiÞ
a∣x and the

unitary U appearing in Eq. (2). Such a filter can be constructed to have
the success probability

psucc = λmax ρð2Þ�1=2
Uyρð1ÞUρð2Þ�1=2

� �h i�1
, ð6Þ

where U is the unitary appearing in Eq. (2) and λmaxðX Þ denotes the
maximum eigenvalue of the operator X. This value is provably optimal
if the initial assemblage contains sufficiently many linearly indepen-
dent states to perform channel tomography.

A detailed proof is presented in the Methods section.
Theorem1 connects two seemingly distinct concepts: equivalence

classes with respect to SEO and with respect to LF1. Thus, they provide
a new physical interpretation of the SEOs beyond the one-to-one
mapping of steerability into incompatibility43: SEOs classify all assem-
blages with respect to LF1 localfilters in the sense thatwhether the two
assemblages can be converted to each other by LF1 is determined by

their SEOs. Moreover, Theorem 1 provides a simple necessary and
sufficient condition for the existence of a reverse transformation.
Namely, given the transformation from σ(2) to σ(1), the reverse trans-
formation from σ(1) to σ(2) exists if and only if the ranks of ρ(1) and ρ(2) are
the same. Thus, transformable assemblages of the same rank can
always be discussed in terms of equivalence classes with respect to
two-way transformations.

In this sense, we candefine a canonical representative assemblage
of each equivalence class [σ] as

σB
a∣x :=Ba∣x=d ð7Þ

with B the SEO of σ and d = dimðranρÞ the rank of the reduced state
ρ =∑aσa∣x. It is clear that all the assemblages in this class can be
transformed into the canonical-state assemblage with the transforma-
tion in Eq. (1). As wewill demonstrate below, this interpretation can be
further expanded.

Maximal and minimal robustness within each class
Here we present a general result on the minimal and maximal
robustness that can be achieved via LF1 local filters.

Theorem 2. Given a state assemblage σ, its corresponding
SEO B, and its equivalence class [σ] (w.r.t. ~LF1 ), we have

SRsupð½σ�Þ := sup
σ 0 ~LF1σ

SRðσ 0Þ= IRðBÞ, ð8Þ

SRinf ð½σ�Þ := inf
σ 00 ~LF1σ

SRðσ 00Þ=0: ð9Þ

Moreover, for any ε > 0, one can efficiently find a filter (via SDP) that
transforms σ into the assemblage σ 0 such that SRðσ 0Þ≥ IRðBÞ � ε, as
in Eq. (8), and one that transforms it into the assemblage σ″ such that
SR(σ″) ≤ ε, as in Eq. (9), by a direct calculation.

A detailed proof of Theorem 2 can be found in the Methods sec-
tion, together with the description of the SDP. Intuitively, the result on
the sup comes from equating the SDP definition of IR(B) with opti-
mization over the SEO for SRðσ 0Þ, whereas the result on the inf comes
from the fact that one can transform any assemblage into one coming
from a pure state with arbitrary low entanglement. Notice the use of
sup=inf instead of max=min. Even though this is a fundamental dif-
ference at the mathematical level, in the sense that the exact bound
may be unreachable, every physical experiment will always have some
nonzero uncertainty, making this difference irrelevant. The same
argument applies to numerical computations, such as those of SDPs.

It is interesting to notice that the assemblage giving the maximal
steerability in a given equivalence class is not necessarily the canonical
representative σB of Eq. (7), which is generated by sharing a maximally
entangled state. Amoredetaileddiscussion is presented inTh. 3 and an
explicit counterexample is provided in Supplementary Note 3.

The results of Theorem 2, combined with those of Theorem 1,
further extend the new interpretation of SEOs. In fact, they not only
characterize the equivalence classes w.r.t. LF1 filters but also provide a
tight bound on the maximal steerability within each class. Moreover,
one can saturate the previous inequality SR(σ) ≤ IR(B), derived in ref. 51
(see also refs. 52,53), if local filters are allowed.

A second observation is that rather counterintuitively, the same
equivalence class contains assemblages that have maximal and arbi-
trarily small steerability. In one direction this may be obvious, as one
can always decrease steerability by means of local operation, e.g., by
decreasing the amount of entanglement in the initial state. In the other
direction, the physical soundnessof this result is recoveredbynoticing
that even if an assemblage can be transformed into a maximally
steerable one, this happens with vanishing probability. This can be
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seen, for instance, in the explicit construction used in the proof (see
Methods section and the example in Fig. 2).

Optimal state with a given measurement assemblage on the
untrusted side
We first state the main result:

Theorem 3. For any measurement assemblage A and any
ε >0, via SDPwe can efficiently compute a bipartite state ρε

AB,
that generates an assemblage σa∣x:= trA½ðAa∣x � IÞρε

AB� satis-
fying SR(σ) ≥ IR(A) − ε.

Details of the proof and an explicit construction via SDP of the
bipartite state are presented in Supplementary Note 2. Interestingly,
the bipartite state providingmaximum steerability is not necessarily
maximally entangled. In detail, given the maximally entangled state
and the measurement assemblage A used on Alice’s side to generate
Bob’s state assemblage σ, we have the SEO B = A and the state
assemblage σ = σB. We present an explicit example such that
IR(B) > SR(σB) in Supplementary Note 3. It is also interesting to recall
the following inequality derived by ref. 51: SR(σ) ≤ IR(B) ≤ IR(A).
Theorem 3, then, tells us that this bound is saturated, i.e., given a
measurement assemblage, we can always find a bipartite state such
that the steerability of the associated assemblage coincides with the
incompatibility of the original measurements. Finally, this result is
outside the 1S-DI framework, as it requires the knowledge of Alice’s
measurements and of the bipartite state. To highlight this differ-
ence, notice that given a state assemblage in the class associated
with an SEO B, such that IR(B) < IR(A), there is no way to increase its
steering robustness up to IR(A) via LF1 filters due to Theo-
rems 1 and 2.

Conversion rates between assemblages
Local filter corresponds to a local measurement performed on Bob’s
system. In the case of a successful outcome, the system is kept;
otherwise, it is discarded. A key figure of merit is, thus, the rate at
which the target assemblages are produced. More precisely, the
rate r at which one transforms an assemblage σ into another
assemblage σ* can be defined in terms of the existence of a
transformation31

σð Þ�N ���������!1W-SLOCC
σ*� ��rN

, ð10Þ

with probability 1 in the limit of N→∞ and with 0 < r ≤ 1. In principle,
this definition allows for the use of global operations on multiple
copies of the assemblage, i.e., σð Þ�N . However, our local filter method

can be formulated for a single-shot scenario. In other words, given a
single copy of a state assemblage σ, there is a nonzero probability of
transforming it into the target assemblage σ*. In this case, the rate r is
the single-shot success probability:

r =psucc = tr½ρBK
yK�, ð11Þ

where ρB =∑aσa∣x is the reduced state on Bob’s side, and K is the filter.
See Supplementary Note 4 for details.

Application to qutrit assemblages
The first observation is that the results of the pure-qubit case by ref.
31 are recovered through our formalism. For completeness, these
results are rederived in our language in Supplementary Note 5. Here,
we provide an example of a qutrit system with two inputs and three
outputs. Consider the two-qutrit state ∣ψ

�
= ∑3

i= 1 μi∣iii with μ2
i >08 i

and ∑3
i= 1 μ

2
i = 1. Denote the reduced state by τ = ∑3

i = 1 μ
2
i ∣ii ih ∣ and the

minimal eigenvalue of τ by λminðτÞ= min
i

μ2
i . We choose Alice’s mea-

surement assemblage to contain the measurements in the compu-
tational basis and its Fourier transform; namely, fAa∣0g= f∣ai ah ∣g and
fAa∣1g= fF ∣ai ah ∣Fyg with a = {1, 2, 3}. Here, F is the three-dimensional
discrete Fourier transform. The corresponding measurement
bases are mutually unbiased. The initial assemblage is
σa∣x = τ

1=2AT
a∣xτ

1=2 8 a,x. Via SDP one can compute the optimal
assemblage in this class, to obtain σ* = AT/3. Consequently, the local
filter is K :=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3λminðτÞ

p
τ�1=2. A conversion rate of r =psucc = 3λminðτÞ is

then obtained. We note that this optimal assemblage provides not
only the maximal steering robustness but also the maximal ran-
domness generation17 in the sense that trðσa∣1Þ= 1=3 8a. We visualize
the values of SR and success probability in Fig. 2. Finally, we recall
the discussion below Theorem 2. In this example, there exists an
assemblage with vanishing steerability that can be transformed into
the maximally steerable one in this class.

Discussion
This work investigated the convertibility between state assemblages
via local filters on the trusted party (Bob). These local filters, denoted
as LF1, are sufficient to generate the most general 1W-SLOCC opera-
tions when combined with classical pre and postprocessing on Alice’s
side19. Note that local filters do not introduce any loophole in the
steering scenario. This is because a local filter can be performed as a
part of the state preparation, i.e., before the steering protocol starts
and any input is generated. The situation is analogous to that of local
filters in the Bell experiments54. We showed that a seemingly abstract
concept, i.e., the steering-equivalent-observables measurement
assemblage, or SEO, introduced to formally map a steering problem
into an incompatibility one, has a direct physical interpretation. In fact,
the SEOs characterize equivalence classes with respect to LF1 filters,
and its incompatibility corresponds to the maximal steerability,
quantified by the steering robustness, which can be extracted from a
given assemblage via local filters. Moreover, we showed that the
existence of an LF1 transformation in one direction implies the exis-
tenceof the reverse transformation. In addition,we showed thatwithin
each equivalence class, steerability can range from (almost) zero to
this maximal value.

Our results include an efficient computation of the local filter via
SDP. Moreover, we showed that, given a measurement assemblage on
Alice’s side, there always exists a bipartite state (also efficiently com-
putable via SDP) such that the steerability of Bob’s state assemblage
coincideswith the incompatibility of Alice’smeasurement assemblage.
Interestingly, the state is not necessarily maximally entangled. These
results show that the previously known upper bounds for steerability,
i.e., SR(σ) ≤ IR(B) ≤ IR(A)51, where A is the measurement assemblage on
Alice’s side, σ is the corresponding state assemblage on Bob’s side, and
B is the SEO, can always be saturated.

Fig. 2 | Results of the qutrit assemblage before and after the filter with the
success probability. a Steering robustness SRof the qutrit assemblages before the
filter. Here, the qutrit assemblages are generated by the purely entangled qutirt
state ∣ψ

�
=∑iμi∣iii satisfying ∑iμ

2
i = 1 and 1 > μi >0∀ i with Alice's measurements

being two mutually unbiased bases in dimension three. b Success probability of
distilling qutrit assemblages using Eq. (11). After the filter protocol, the steering
robustness is 0.2679∀ μ1, and μ2. Thewhite region represents the nonphysical case
because μ2

1 +μ
2
2 ≥ 1 cannot be satisfied.
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Since our filter protocol involves only local operations, we can
directly compute the asymptotic conversion rate between assemblages
in terms of the single-shot success probability of a single filter. We
recover the theoretical results of ref. 31 and answer the open question
formulated therein regarding the existence of steering dilution and the
reversibility of the transformation. Finally, an explicit example of a
qutrit steering distillation is also presented, which is experimentally
implementable with current technology, see, e.g., refs. 55,56.

Our results naturally suggest new research directions. For
instance, can we have a more general result on the quantitative rela-
tion between steerability and incompatibility within an SEO class, i.e.,
does the maximal steerable weight57 in an SEO saturate the incompa-
tible weight58 of an SEO? Another observation is the following. Theo-
rem 1 requires a rank constraint to guarantee the existence of the
reverse transformation in LF1. As we have seen in Th. 2 and Th. 3, rank
constraints can be satisfied by admitting a small error, i.e., by sub-
stituting a low-rank assemblage with an arbitrarily close one of higher
rank. For a given filter K, the construction of an approximate filter Kε

admitting an inverse for a given assemblage, however, is nontrivial, as
it is nontrivial in its physical and operational interpretation. We leave
the question of an extension of Th. 1, including approximate trans-
formations, to future investigation. Moreover, the conversion rate
defined in Eq. (10) allows for the possibility of global operations on
multiple copies of the assemblage, i.e., σ⊗N, as is the case in entan-
glement theory. How can the rate be improved by using global
operations? For instance, it is known that steering can be super acti-
vated when Alice performs collective measurements on many copies
of the initial state59,60 (see also the superactivation of quantum steering
by two-sided local filters61). Therefore, our results may also be
applicable beyond the resource theory of steering, e.g., when also
Alice’s device is partially characterized. Finally, what happens when
moving from the bipartite to the multipartite scenario? It has been
shown that Greenberger–Horne–Zeilinger and W-type assemblages
generated by the corresponding multiparty-entangled types can be
distilled by local filters62. Can our approach be generalized to recently
proposed steering networks63 or multiparty steering64? All these
questions will be the object of future research.

Methods
Proof of Theorem 1
Proof.— First, we prove that (i)→ (ii), the properties of the corre-
sponding filter K and its success probability. We denote by ρ(i) the
reduced states for σ(i), for i = 1, 2, i.e., ρðiÞ =∑aσ

ðiÞ
a∣x and the corre-

sponding ranges by KðiÞ:= ranðρðiÞÞ. Using the definition of SEOs, the
equivalence relation of Eq. (2), and the conventional notation of the
inverse square root operator, i.e., ρ�1=2 = ~ρ�1

2 � 0K? , we can directly
write

σð1Þ
a∣x =ρ

ð1Þ1=2Uρð2Þ�1=2
σð2Þ
a∣xρ

ð2Þ�1=2
Uyρð1Þ1=2,8a,x: ð12Þ

Although the abovemapping provides the correct transformation
of σ(1) to σ(2) and is completely positive by construction, it may be
nonphysical since ρð2Þ�1 6≤ I, thus yielding a trace-increasing map. To
obtain the correct filtering operation, it is enough to properly insert a
suitable constant into the above expression. Let us first define the
operator

eK:=ρð1Þ1=2Uρð2Þ�1=2
: ð13Þ

We now define the local filter in the Kraus representation in terms of a
real normalization parameter α as

K :=αeK + IK?
ð2Þ
: ð14Þ

Using the condition KyK ≤ I, and denoting the maximal eigenvalue ofeKyeK by λmaxðeKyeKÞ, we determine the constant as

α2 ≤
1

λmaxðeKyeKÞ : ð15Þ

Over all possible values, it makes sense to take α as real and maximal,
i.e., obtaining the equality sign in Eq. (15), in order to maximize the
success probability psucc := tr½∑aσ

ð2Þ
a∣xK

yK� of the filtering operation.
Such a probability can be directly calculated using that

KyK =α2ρð2Þ�1=2
Uyρð1ÞUρð2Þ�1=2

+ IK?
ð2Þ
, ð16Þ

which, by the definition of psucc and the cyclicity of the trace, gives

psucc = tr ∑
a
σð2Þ
a∣xK

yK

 �

= tr ρð2ÞKyK
� �

= tr ρð2Þα2ρð2Þ�1=2
Uyρð1ÞUρð2Þ�1=2

h i
=α2tr ρð1Þ� �

=α2,

ð17Þ

which, together with Eq. (15) provides the optimal success probability.
We, then, have that

σð1Þ
a∣x =

Kσð2Þ
a∣xK

y

α2 : ð18Þ

Note that psucc is properly normalized, since ρ(2) is a state and KyK ≤ I.
Moreover, by construction ρð1Þ1=2Uρð2Þ�1=2

is zero onK?
ð2Þ, so the extra

identity operator does not play a role in the normalization. Also, this
local filter is a valid 1W-SLOCC operation.

Finally, we notice that it is also possible to obtain an estimate of
the optimal success probability directly from the eigenvalues of the
reduced states ρ(1) and ρ(2). Using the facts that unitaries preserve
eigenvalues [UyIKð1Þ

U = IKð2Þ
in Eq. (2)] and that

λmin ρð1Þ� �1=2
IKð1Þ

≤ρð1Þ1=2 ≤ λmax ρð1Þ� �1=2
IKð1Þ

, ð19Þ

λmax ρð2Þ� ��1=2
IKð2Þ

≤ρð2Þ�1=2
≤ λmin ρð2Þ� ��1=2

IKð2Þ
, ð20Þ

where λmin >0 denotes the minimal nonzero eigenvalue, we can
directly obtain an estimate of λmaxðeKyeKÞ to show that

λmin ρð1Þ� �
λmax ρð2Þ� � ≤ λmaxðeKyeKÞ≤ λmax ρð1Þ� �

λmin ρð2Þ� � : ð21Þ

This finally gives an estimate of the success probability as

λmin ρð2Þ� �
λmax ρð1Þ� � ≤psucc ≤

λmax ρð2Þ� �
λmin ρð1Þ� � : ð22Þ

Let us now prove that (ii)⇒ (iii). First, we recall the definition of
the canonical representative of the equivalence class associated with
the SEO B, namely

σB
a∣x :=Ba∣x=d, ð23Þ

where d = dimðranρÞ. Then, by the definition of an SEO, we have

σðiÞ �!LF1 σBðiÞ
and σBðiÞ �!LF1 σðiÞ with B(i) denoting the SEO of the assem-

blage σ(i). Composing these transformation, we have the maps

σBðiÞ �!LF1 σBðjÞ
for (i, j) = (1, 2), (2, 1). Since all transformations are in LF1,

their composition is also in LF1. For convenience, we write everything
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in the global space H, as

Bð1Þ
a∣x=d1 � 0K?

ð1Þ
=
KðBð2Þ

a∣x=d2 � 0K?
ð2Þ
ÞKy

pð2Þ
succ

8a,x, and

Bð2Þ
a∣x=d2 � 0K?

ð2Þ
=
eKðBð1Þ

a∣x=d1 � 0K?
ð1Þ
ÞeKy

pð1Þ
succ

8a,x,

ð24Þ

for some K ,eK 2 LF1 and where pð1Þ
succ = tr½IKð1Þ

eKyeK �=d1 and
pð2Þ
succ = tr½IKð2Þ

KyK�=d2 are the corresponding success probabilities. By
the conditions ∑aB

ðiÞ
a∣x = IKðiÞ

, we have

IKð1Þ
=d1 � 0K?

ð1Þ
=
KðIKð2Þ

=d2 � 0K?
ð2Þ
ÞKy

pð2Þ
succ

, and

IKð2Þ
=d2 � 0K?

ð2Þ
=
eKðIKð1Þ

=d1 � 0K?
ð1Þ
ÞeKy

pð1Þ
succ

,

ð25Þ

Using the fact that for any pair of linear maps A, B
dim ranðABÞ≤ minfdim ranðAÞ, dim ranðBÞg, we obtain the two
inequalities d2 ≤ d1 and d1 ≤ d2, since di = dimKi = dimranðIKðiÞ

Þ. This
implies d1 = d2 and concludes this part of the proof.

Let us now prove that (iii)⇒ (i). By assumption, we have the

transformation σ(2) �!LF1 σ(1), which, combined with the definition of

SEO as above, gives us the transformation σBð2Þ �!LF1 σBð1Þ
. By assump-

tion, d1 = d2, hence,

Bð1Þ
a∣x � 0K?

ð1Þ
=
K Bð2Þ

a∣x � 0K?
ð2Þ

� �
Ky

pð2Þ
succ

8a,x, ð26Þ

which, summing over a and splitting pð2Þ
succ, gives

IKð1Þ
� 0K?

ð1Þ
=

Kffiffiffiffiffiffiffiffiffiffi
pð2Þ
succ

q IKð2Þ
� 0K?

ð2Þ

� � Kyffiffiffiffiffiffiffiffiffiffi
pð2Þ
succ

q : ð27Þ

Let us define the map V :=Ky
∣Kð1Þ

=

ffiffiffiffiffiffiffiffiffiffi
pð2Þ
succ

q
, i.e., K† renormalized and

restricted on the subspace Kð1Þ. We have that V : K1 ! K2 is an
isometry, since V yV = IKð1Þ

. As an isometry, V is injective, and since
d1 = d2 it is also surjective. This implies that V is a unitary betweenKð1Þ
and Kð2Þ. Similarly, one obtains that V† is a unitary from Kð2Þ to Kð1Þ.
Hence, V can then be extended to a global unitaryU : H ! H, simply
by completing it with amapping from anorthonormal bases ofK?

ð2Þ to
an orthonormal basis K?

ð1Þ. We then have

Bð1Þ
a∣x � 0K?

ð1Þ
=U Bð2Þ

a∣x � 0K?
ð2Þ

� �
Uy 8a,x, ð28Þ

which concludes the proof of the implication (iii)⇒ (i).
To conclude the proof, the only thing left to prove is that the

transformation is provably optimal if there are sufficient linearly
independent elements in the original state assemblage to completely
characterize the channel. The idea is relatively simple and is based on
the fact that, under this condition, the transformation is uniquely
defined. By contradiction, let us assume we have another optimal
transformation K0 over LF1, mapping σ(2)→ σ(1) and that fσð2Þ

a∣xg consists
of at least d2 linearly independent elements. We have

σð1Þ
a∣x =

K0σ
ð2Þ
a∣xK

y
0

psucc
=ρð1Þ1=2Uρð2Þ�1=2

σð2Þ
a∣xρ

ð2Þ�1=2
Uyρð1Þ1=2,8a,x: ð29Þ

Since sufficient linearly independent subnormalized states σð2Þ
a∣x are

available in order to characterize the filter, this implies that
K0=

ffiffiffiffiffiffiffiffiffiffi
psucc

p
= ρð1Þ1=2Uρð2Þ�1=2

. In fact, note that Kð�ÞKy : LðHÞ ! LðHÞ is

a linear map from linear operators to linear operators. Thus, it is
completely characterized by its action on a basis, i.e., d2 linearly
independent linear operators, where d is the dimension of H and,
thus, d2 is the dimension of LðHÞ. Finally, since K0 is the filtering
maximizing the success probability, we have K0K

y
0 ≤ I and K0K

y
0 6≤

ð1� εÞI for all ε >0. This corresponds to the choice of the maximum α
in Eq. (15). This concludes the proof.

As a final note, since ~SEO and ~LF1 are symmetric, the roles of σ(1)

and σ(2) can be exchanged in Theorem 1 (iii).

Proof of Theorem 2
The first observation is that, up to an embedding and a change of local
basis (i.e., adding a �0K? and a unitary U, as in Eq. (2)), a generic
element σ in the equivalence class of the SEO B can be obtained by the
representative σB as

σa∣x = η
1=2Ba∣xη

1=2 =dη1=2σB
a∣xη

1=2, ð30Þ

for some full-rank reduced state η. We can now proceed to prove
Theorem 2.

Proof of the supremum—First, it is useful to recall the dual SDP
formulations of IR and SR (see respectively refs. 46,65):

Given B

Find max
ω,η

tr ∑
a,x

ωa∣xBa∣x

� 

= : 1 + IRðBÞ

s.t. η ≥ ∑
a,x

Dða∣x,λÞωa∣x ,8λ,
ωa∣x ≥0, tr ηð Þ= 1,

ð31Þ

and

Given σ

Find max
F

tr ∑
a,x

Fa∣xσa∣x

� 

= : 1 + SRðσÞ

s.t. I≥ ∑
a,x

Dða∣x, λÞFa∣x ,8λ,
Fa∣x ≥0:

ð32Þ

Here, D(a∣x, λ) is the deterministic postprocessing of a with
respect to x, λ appearing in the primal problem, i.e., δa,λx

. Notice that
we can interpret η as a valid quantum state and ω and F as the
incompatibility witnesses and steering witnesses, respectively.

By Theorem 1, we can associate the SEO B to the equivalence class
[σ], w.r.t. ~LF1 . This implies that σ ~SEOσ

B and σ ~LF1σ
B, where σB is

defined in Eq. (23). We also recall that a generic element of the
equivalence class can be written as σa∣x = η1/2Ba∣xη1/2 for some full-rank
state η (see Eq. (30)).

By combining the definition of SRsup with Theorem 1 and Eq. (32),
we can upper bound the maximal steering robustness over all SEO-
equivalent assemblages via the following optimization problem

Given B

Find max
F ,η

tr ∑
a,x

Fa∣xη
1=2Ba∣xη

1=2

� 

= : 1 +Ω

s.t. I≥ ∑
a,x

Dða∣x, λÞFa∣x ,8λ,
Fa∣x ≥0, trðηÞ= 1:

ð33Þ

Notice that theproblem in Eq. (33) is no longer an SDP, since it contains
as an objective function that is nonlinear in η and F. Nevertheless, we
can now show that every feasible solution of the SDP in Eq. (31) is a
feasible solution of the problem in Eq. (33) and vice versa. In fact, given
ω, η feasible solution of Eq. (31), we can define Fa∣x : = η−1/2ωa∣xη

−1/2,
which satisfies Fa∣x ≥0 and I≥∑a,xDða∣x,λÞFa∣x , even when η is not full-
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rank andwe invert it on just a subspace. Conversely, given F, η feasible
solution of Eq. (33), we can define ωa∣x : = η1/2Fa∣xη1/2, which satisfies
ωa∣x ≥0and η ≥∑a,xD(a∣x, λ)ωa∣x. Again, noproblemarises ifη is not full-
rank. Finally, it is clear that this construction provides the same value
for the objective function in both directions.We have thus proven that
each solution to one problemprovides a solution to the other, without
changing the objective function, which implies that the optimal value
is the same.

Finally, we need to verify that the optimal solution Ω is indeed
the supremum over all assemblages in the same equivalence class,
i.e., Ω= SRsupð½σ�Þ. The missing condition comes from the fact that if
the state η is not full-rank, then the constructed assemblage is not in
the same class as σB. However, for any state η, we can always find
another state eη that is arbitrarily close to it. Let us define Πη as the
projector on the range of η with rank r := tr½Πη�<d. For any ε > 0,
there exists δ such that we can approximate the solution of the
problem in Eq. (33) up to ε via the following construction. First, we
construct a full-rank ηε as

ηε := ð1� δÞη+ δ
ðd � rÞ ðI� ΠηÞ, ð34Þ

which approximates the optimal value Ω in Eq. (33) as ∣Ω(F, η) −Ω(F,
ηε)∣ ≤ ε. Similarly, we define ωε

a∣x = ð1� δÞωa∣x to preserve the condition
in Eq. (31). This guarantees that we still obtain a feasible solution.

This solution approximates the optimal value that follows directly
from the continuity of the objective function in Eq. (33). A concrete
estimate for δ can be obtained by estimating the Hilbert–Schmidt
norm of the difference

η1=2Ba∣xη
1=2 � η1=2

ε Ba∣xη
1=2
ε

= δ η1=2Ba∣xη
1=2 � 1

d � r
ðI� ΠηÞBa∣xη

1=2 +η1=2Ba∣xðI� ΠηÞ
� �
 �

+Oðδ2Þ,

ð35Þ

and applying theCauchy–Schwarz inequality to the objective function,
using also the fact that 0≤Ba∣x ,Fa∣x ≤ I to upper bound their norm. It is
then clear that the SDP in Eq. (33) provides a vanishing upper bound in
the limit δ→0 for the difference between the optimal value in the
problem and that obtained by the substitution η→ ηε. This shows that
IR is indeed the supremum and concludes this part of the proof.

Proof of the infimum— Toprove the infimum,we consider that for
everymeasurement assemblage A =BT and any full-Schmidt-rank state
∣ψ
�
= ∑d

i = 1 μi∣iii, there exists an assemblage σ such that43

σa∣x = trA½∣ψ
�
ψ
�

∣BT
a∣x � I�= τ1=2Ba∣xτ

1=2, ð36Þ

where T denotes the transpose in the basis f∣iig appearing in the
Schmidt decomposition of ∣ψ

�
, and τ = ∑d

i = 1 μ
2
i ∣ii ih ∣ is the reduced state

of ∣ψ
�
. In other words, for any full-Schmidt-rank state ∣ψ

�
and any

measurement assemblage BT, we can obtain a state assemblage σ that
gives B as its SEO. In particular, this implies that for any assemblage σ,
we can find σ 0 such that σ ~SEOσ

0 and σ 0 comes from a quantum state
∣ψ
�
with arbitrarily low entanglement.
Now, we consider another fact about steering robustness46,

namely, that ERg ð∣ψ
�Þ≥ SRðσÞ with ERg ð∣ψ

�Þ being the generalized
entanglement robustness of ∣ψ

�
(see ref. 66 for more details). In turn,

ERg ð∣ψ
�Þ is upper bounded by the random entanglement robustness

ERrð∣ψ
�Þ, obtained when mixing with the maximally mixed state. For

pure states, this has a simple expression in terms of the Schmidt
decomposition ∣ψ

�
= ∑d

i μi∣iii, where the vectors are ordered such that
μ1 ≥ μ2 ≥ μ3… ≥0, namely67:

ERr ð∣ψ
�Þ=μ1μ2dAdB: ð37Þ

For any ε >0, we can take ∣ψ
�
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðd � 1Þε0

p
∣00i+ ffiffiffiffi

ε0
p

∣11i
+ . . .

ffiffiffiffi
ε0

p
∣d � 1,d � 1

�
, with ε0 < ε2=ðdAdBÞ2. This gives μ1 =

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ε0Þ

p
< 1

and μ2 =
ffiffiffiffi
ε0

p
< ε=ðdAdBÞ; hence, ERrð∣ψ

�Þ≤ ε. Since ε is arbitrary, the
infimum is zero, which concludes the proof.
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