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Quantum steering is a central resource for one-sided device-independent
quantum information. It is manipulated via one-way local operations and
classical communication, such as local filtering on the trusted party. Here, we
provide a necessary and sufficient condition for a steering assemblage to be
transformable into another via local filtering. We characterize the equivalence
classes with respect to filters in terms of the steering equivalent observables
(SEO), first proposed to connect the problem of steerability and measurement
incompatibility. We provide an efficient method to compute the extractable
steerability that is maximal via local filters and show that it coincides with the
incompatibility of the SEO. Moreover, we show that there always exists a
bipartite state that provides an assemblage with steerability equal to the
incompatibility of the measurements on the untrusted party. Finally, we
investigate the optimal success probability and rates for transformation pro-
tocols (distillation and dilution) in the single-shot scenario together with
examples.

" Check for updates

Einstein-Podolsky-Rosen steering' is a quantum correlation inter-
mediate between entanglement* and Bell nonlocality®®. A steering
experiment consists of a remote state preparation where one party
(Alice) prepares a local state for a distant party (Bob) by performing
local measurements on her half of a bipartite entangled state and
postselecting the outcome, which is communicated to Bob. As an
interpretation in terms of classically postselected shared states is
impossible, Alice seems to remotely steer the state of Bob.

In addition to being of foundational interest’™, due to the fact
that only Bob is characterized, steering is at the core of one-sided
(1S) device-independent (DI) quantum information processing”7¢. A
resource theory of steering was developed” to make sense of the
manipulation of such resources, i.e., steerable state assemblages, for
1S-DI quantum information processing. A central open question is

which state assemblages can be transformed into one another via
the free operations allowed by resource theory, namely, one-way
(IW) local operations and classical communication (LOCC). To date,
this problem has been solved only for pure-qubit assemblages,
which, in particular, has shown that there exist infinitely many
equivalence classes and no measure-independent maximally steer-
able assemblage”. To make a parallel, this is a central problem in
entanglement theory, where, e.g., entanglement distillation proto-
cols were devised**?, and more generally, one is interested in the
equivalence classes of entangled states reachable using stochastic
LOCC, or local filtering? . This classification is already nontrivial in
the three-qubit case, where two different classes arise®®, and infi-
nitely many classes arise in multipartite settings with sufficiently
high local dimension®-°.

Department of Physics and Center for Quantum Frontiers of Research & Technology (QFort), National Cheng Kung University, Tainan 701, Taiwan. 2Faculty of
Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria. ZInstitute for Quantum Optics and Quantum Information (IQOQI), Austrian Academy of
Sciences, Boltzmanngasse 3, 1090 Vienna, Austria. “ICFO - Institut de Ciéncies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels
08860, Spain. °Dahlem Center for Complex Quantum Systems, Freie Universitét Berlin, 14195 Berlin, Germany. ®Department of Physics, National Chung Hsing
University, Taichung 40227, Taiwan. - e-mail: andrew791006@gmail.com; shin.liang.chen@email.nchu.edu.tw; yuehnan@mail.ncku.edu.tw

Nature Communications | (2022)13:4973 1


http://orcid.org/0000-0003-1909-6703
http://orcid.org/0000-0003-1909-6703
http://orcid.org/0000-0003-1909-6703
http://orcid.org/0000-0003-1909-6703
http://orcid.org/0000-0003-1909-6703
http://orcid.org/0000-0002-2512-0274
http://orcid.org/0000-0002-2512-0274
http://orcid.org/0000-0002-2512-0274
http://orcid.org/0000-0002-2512-0274
http://orcid.org/0000-0002-2512-0274
http://orcid.org/0000-0002-3453-4794
http://orcid.org/0000-0002-3453-4794
http://orcid.org/0000-0002-3453-4794
http://orcid.org/0000-0002-3453-4794
http://orcid.org/0000-0002-3453-4794
http://orcid.org/0000-0002-2785-7675
http://orcid.org/0000-0002-2785-7675
http://orcid.org/0000-0002-2785-7675
http://orcid.org/0000-0002-2785-7675
http://orcid.org/0000-0002-2785-7675
http://orcid.org/0000-0002-6562-7862
http://orcid.org/0000-0002-6562-7862
http://orcid.org/0000-0002-6562-7862
http://orcid.org/0000-0002-6562-7862
http://orcid.org/0000-0002-6562-7862
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-32466-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-32466-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-32466-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-32466-y&domain=pdf
mailto:andrew791006@gmail.com
mailto:shin.liang.chen@email.nchu.edu.tw
mailto:yuehnan@mail.ncku.edu.tw

Article

https://doi.org/10.1038/s41467-022-32466-y

Recently, the steering distillation problem was theoretically and
experimentally addressed by Nery et al.*’. They showed how to trans-
form via local filtering a pure-qubit assemblage arising from mea-
surements of X and Z on a partially entangled pure two-qubit state into
another pure-qubit assemblage, arising from the same measurements
on a maximally entangled bipartite state.

Quite surprisingly, a key ingredient to solve the steering assem-
blage classification problem is given by the notion of measurement
incompatibility. Intuitively, measurement incompatibility refers to the
impossibility of measuring certain physical quantities simultaneously,
such as the position and momentum of a quantum particle (e.g., see
refs. 32,33). This property is at the foundation of many quantum
phenomena, such as uncertainty relations®, quantum
contextuality’**’, Bell nonlocality’®*, and steering***. In particular, it
has been shown that a state assemblage is unsteerable if and only if a
collection of measurements, called steering-equivalent-observable
measurement assemblage (SEO), is jointly measurable***,

In this work, we provide an even stronger quantitative connection:
(1) the SEO defines the equivalence classes of state assemblages and
their transformations via local filtering and (2) its incompatibility is the
maximal steerability over a class. With the concept of the equivalence
classes and Alice’s given measurements, a proper bipartite state pap
can be constructed such that the steerability of the resulting assem-
blage is the same as the incompatibility of such measurements. Finally,
we provide an efficient method to compute the filter, analyse the
success probability, and estimate the rate of the state assemblage
transformation in the single-shot scenario.

Results

Quantum steering, measurement incompatibility, and steering-
equivalent observables

We start with a brief summary of quantum steering, measurement
incompatibility, and their relation. Given a bipartite state pag shared
between Alice and Bob, in each round of the steering protocol, Alice
performs a measurement, labeled by x, on her half of the state and
obtains a measurement result labeled by a (see Fig. 1). The classical
information (x, a) is sent to Bob, who assigns this label to his state in that
round. In quantum theory, each of Alice’s measurements is represented
by a positive-operator valued measure (POVM) {Aax) o where Ag, 20
and > A, =1*. Bob’s state in each round can be computed as
Oa/tr(0gy), Where 0, :=try[(Ay, ® Dpsg]. The collection of
0={0y},, is called the state assemblage. Similarly, the collection of
POVMs A ={A,}, , is called the measurement assemblage.

A state assemblage o admits a local-hidden-state (LHS) model
when it can be written as o, = 2 sp(A)plalx, A)py; that s, itis obtained by
postprocessing {p(alx, 1)} on a fixed collection of states {p,} according
to the distributions {p(1)}. We denote the set of state assemblages
admitting an LHS model as LHS. State assemblages in LHS are
called unsteerable, and steerable otherwise. Steering can be
quantified via the steering robustness*® defined as SR(0):=
min{¢20 | 3§ assemblage and T € LHS s.t. (0 +£4,) /(A + ) =Ty,
va, x}, and efficiently computed via semidefinite programming (SDP)*’.

Similar notions arise in the context of quantum measurements.
Given a measurement assemblage {A,,} . it is said to be jointly
measurable (JM) when all measurement effects can be interpreted as
classical postprocessing of a single POVM {G,},, namely Aq, = 3 yp(alx,
A)G,. If that is not the case, it is said to be incompatible. A measure
of incompatibility, the incompatibility robustness****°, can be defined
as IR(A)= min{t >0 | 3N measurement assemblage and D € JM s.t.
(Age + ENg) /(1 +8) =Dy, ¥ a,x}, where JM denotes the set of jointly
measurable measurement assemblages.

These similarities are not accidental: It has been shown that there
exists a strong connection between steerability and incompatibility***
and even that there is a one-to-one mapping between the two math-
ematical problems*’ (see ref. 44 for the infinite-dimensional case). The
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Fig. 1| Schematic illustration of this work. In this work, we consider three fun-
damental quantum information scenarios: that is, distillation, convertibility, and
classification, in a steering-type scenario, where Alice measures her part of the
system on state pap and remotely projects Bob's systems into a collection of
(subnormalized) states gg,. a In the distillation scenario, one asks how much
steerability can be distilled by a local filter K, that maps o), to o,. b In the
convertibility scenario, one looks for the existence of a filter K’ mapping oaz‘; back
to o‘alli(. ¢ In the classification scenario, one classifies different assemblages into the
same class if they belong to the same steering-equivalent observable (SEO). By
showing the equivalence between the convertibility and classification problems
[scenarios (b) and (c)], we are able to obtain the optimal filter that distills the

maximal steerability from o), to o) [scenario (a)].

mathematical equivalence is introduced via the notion of steering-
equivalent-observable measurement assemblage (SEO)*: a state
assemblage o'is steerable if and only if the measurement assemblage of
its SEO B is incompatible. To define SEO B, we need to restrict the
reduced state pp: =3 ,04x to its range .#: =ran(pg) via the projection
Ny : #5 — A, where [T =1, and MM [T, is a Hermitian projector in
L(#g). Then, we define the reduced state and state assemblage
restricted to " as, respectively, pg:=Mgpgly and G,,:=Mgoy, Mg,
respectively. In the following, we use the notation ~ to denote an

assemblage restricted to the range of the corresponding
reduced state.
Then, B is defined as
~ 1. ~ -1
Ba|x::pB *0qxPp *- @)

This allows the SEO to be well-defined even when Pe is not full-rank*.
With a slight abuse of notation, we write pBZ. =pg g0 L, to denote
the embedding into the original space # = & #*, where * is the
orthogonal complement.

Transforming state assemblages via local filters

First, we introduce an equivalence relation between two state assem-
blages, 6 and ¢, based on their SEOs. We define the equivalence
relation ~sgo as follows:

def
0" 50 0% = By ® 0, = (B(Z)

ax

©0,,)U'vax, (2

where 7 = ran(pg)) fori=1, 2, and U is a unitary operator acting on
A'g. This definition requires that .#" ;) and 4" ) are isomorphic and that
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the two SEOs B® and B® are the same up to a local change of basis. It is
straightforward to see that ~sgo is an equivalence relation, namely, it is
reflexive, symmetric, and transitive. Hence, it gives rise to equivalence
classes, which we denote by [o].

We now introduce another type of steering class based on trans-
formation by local filters. Local filters on Bob’s side are modeled via the
map

Ok’

, vax, 3)

0a|xr—>
succ
where K satisfies K"K < I and pg,.: = tr[>,0,, K 'K]. In the case pgcc = 0,
one could define the output of the map as the operator 0. Of course,
the transformation makes sense only if ps,cc > 0, otherwise the trans-
formation is simply impossible. This corresponds to making a local
measurement and postselecting a specific outcome. In the language of
the one-way (IW) stochastic (S) local operations and classical
communication (LOCC), or IW-SLOCC operations'**°, these are the
most general local filters, which are denoted as LF; to emphasize that
they contain only one Kraus operator. See Supplementary Note 1 for a
self-contained summary. In addition, IW-SLOCC also contains a
classical pre and postprocessing on Alice’s side, which is not
considered here (also see Supplemental Note 1).
It is convenient to introduce some notation to denote the exis-
tence of such a transformation, we write

LF ) ) .
o™ = 6@ if ¢® transformable into ¢® via LF,. C))

Similar to SEO, LF, filters define an equivalence relation. We define -
as

def LF
oV 3

LF
¥ - 0? —50@ande® — o. S

Clearly, this is an equivalence relation, i.e., reflexive, symmetric, and
transitive. Hence, it gives rise to another set of equivalence classes. We
can now connect these two notions through the following theorem:

Theorem 1. Consider two assemblages ¢ and ¢®. Denote
their reduced states as p®:=Y,0}, their ranges as
A;:=ran(p?), and the dimensions as d; := dim(.%;), fori=1, 2.
Then, the following statements are equivalent

(i) 0" ~se00®

(") 0'(1) -LFlo'(Z)
Gi) 62 22 6" and d; = d.

Moreover, in the case 6® ~sg00®, the filter K can be explicitly
computed as a function of the reduced states p(“=Zaofl’|’X and the
unitary U appearing in Eq. (2). Such a filter can be constructed to have

the success probability
_ _ -1
Psucc = [Amax (pa) 2 U+p(1) UP(Z) 1/2)] ’ (6)

where U is the unitary appearing in Eq. (2) and A,,,(X) denotes the
maximum eigenvalue of the operator X. This value is provably optimal
if the initial assemblage contains sufficiently many linearly indepen-
dent states to perform channel tomography.

A detailed proof is presented in the Methods section.

Theorem 1 connects two seemingly distinct concepts: equivalence
classes with respect to SEO and with respect to LF;. Thus, they provide
a new physical interpretation of the SEOs beyond the one-to-one
mapping of steerability into incompatibility**: SEOs classify all assem-
blages with respect to LF, local filters in the sense that whether the two
assemblages can be converted to each other by LF; is determined by

their SEOs. Moreover, Theorem 1 provides a simple necessary and
sufficient condition for the existence of a reverse transformation.
Namely, given the transformation from 6 to ¢, the reverse trans-
formation from 6 to 6 exists if and only if the ranks of p* and p® are
the same. Thus, transformable assemblages of the same rank can
always be discussed in terms of equivalence classes with respect to
two-way transformations.

In this sense, we can define a canonical representative assemblage
of each equivalence class [a] as

ogp(: =By /d (7)

with B the SEO of ¢ and d = dim(ranp) the rank of the reduced state
P=Ya0q4 It is clear that all the assemblages in this class can be
transformed into the canonical-state assemblage with the transforma-
tion in Eq. (1). As we will demonstrate below, this interpretation can be
further expanded.

Maximal and minimal robustness within each class
Here we present a general result on the minimal and maximal
robustness that can be achieved via LF; local filters.

Theorem 2. Given a state assemblage @, its corresponding
SEO B, and its equivalence class [a] (W.r.t. - ¢ ), we have

SR**P([6]) := sup SR(¢")=IR(B),

00 ®)
SR ([a]) : = amf . SR(¢”)=0. )

Moreover, for any £> 0, one can efficiently find a filter (via SDP) that
transforms o into the assemblage o’ such that SR(¢") = IR(B) — ¢, as
in Eq. (8), and one that transforms it into the assemblage ¢" such that
SR(6) < ¢, as in Eq. (9), by a direct calculation.

A detailed proof of Theorem 2 can be found in the Methods sec-
tion, together with the description of the SDP. Intuitively, the result on
the sup comes from equating the SDP definition of IR(B) with opti-
mization over the SEO for SR(¢"), whereas the result on the inf comes
from the fact that one can transform any assemblage into one coming
from a pure state with arbitrary low entanglement. Notice the use of
sup/inf instead of max/min. Even though this is a fundamental dif-
ference at the mathematical level, in the sense that the exact bound
may be unreachable, every physical experiment will always have some
nonzero uncertainty, making this difference irrelevant. The same
argument applies to numerical computations, such as those of SDPs.

It is interesting to notice that the assemblage giving the maximal
steerability in a given equivalence class is not necessarily the canonical
representative @® of Eq. (7), which is generated by sharing a maximally
entangled state. A more detailed discussion is presented in Th.3 and an
explicit counterexample is provided in Supplementary Note 3.

The results of Theorem 2, combined with those of Theorem 1,
further extend the new interpretation of SEOs. In fact, they not only
characterize the equivalence classes w.r.t. LF; filters but also provide a
tight bound on the maximal steerability within each class. Moreover,
one can saturate the previous inequality SR(o) < IR(B), derived in ref. 51
(see also refs. 52,53), if local filters are allowed.

A second observation is that rather counterintuitively, the same
equivalence class contains assemblages that have maximal and arbi-
trarily small steerability. In one direction this may be obvious, as one
can always decrease steerability by means of local operation, e.g., by
decreasing the amount of entanglement in the initial state. In the other
direction, the physical soundness of this result is recovered by noticing
that even if an assemblage can be transformed into a maximally
steerable one, this happens with vanishing probability. This can be
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Fig. 2 | Results of the qutrit assemblage before and after the filter with the
success probability. a Steering robustness SR of the qutrit assemblages before the
filter. Here, the qutrit assemblages are generated by the purely entangled qutirt
state |p) = > lii) satisfying >;u? =1 and 1> ;> 0 V i with Alice's measurements
being two mutually unbiased bases in dimension three. b Success probability of
distilling qutrit assemblages using Eq. (11). After the filter protocol, the steering
robustness is 0.2679 V p, and p,. The white region represents the nonphysical case
because p? +p3 >1 cannot be satisfied.

seen, for instance, in the explicit construction used in the proof (see
Methods section and the example in Fig. 2).

Optimal state with a given measurement assemblage on the
untrusted side
We first state the main result:

Theorem 3. For any measurement assemblage A and any
£> 0, via SDP we can efficiently compute a bipartite state p5g,
that generates an assemblage 0, =trs[(Ag, ® D)pjig] satis-
fying SR(0) > IR(A4) - ¢.

Details of the proof and an explicit construction via SDP of the
bipartite state are presented in Supplementary Note 2. Interestingly,
the bipartite state providing maximum steerability is not necessarily
maximally entangled. In detail, given the maximally entangled state
and the measurement assemblage 4 used on Alice’s side to generate
Bob’s state assemblage o, we have the SEO B=A4 and the state
assemblage o=06®%. We present an explicit example such that
IR(B) > SR(@®) in Supplementary Note 3. It is also interesting to recall
the following inequality derived by ref. 51: SR(0) <IR(B) <IR(A).
Theorem 3, then, tells us that this bound is saturated, i.e., given a
measurement assemblage, we can always find a bipartite state such
that the steerability of the associated assemblage coincides with the
incompatibility of the original measurements. Finally, this result is
outside the 1S-DI framework, as it requires the knowledge of Alice’s
measurements and of the bipartite state. To highlight this differ-
ence, notice that given a state assemblage in the class associated
with an SEO B, such that IR(B) <IR(A4), there is no way to increase its
steering robustness up to IR(4) via LF; filters due to Theo-
rems 1and 2.

Conversion rates between assemblages

Local filter corresponds to a local measurement performed on Bob’s
system. In the case of a successful outcome, the system is kept;
otherwise, it is discarded. A key figure of merit is, thus, the rate at
which the target assemblages are produced. More precisely, the
rate r at which one transforms an assemblage ¢ into another
assemblage @ can be defined in terms of the existence of a
transformation®

o IW-SLOCC (@)™, (10)
with probability 1 in the limit of N> e and with 0 <r<1. In principle,
this definition allows for the use of global operations on multiple

copies of the assemblage, i.e., (6)®". However, our local filter method

(o

can be formulated for a single-shot scenario. In other words, given a
single copy of a state assemblage o, there is a nonzero probability of
transforming it into the target assemblage @'. In this case, the rate r is
the single-shot success probability:

r =psucc = tl‘[pBKTK], (11)
where pg = .04 is the reduced state on Bob’s side, and Kis the filter.
See Supplementary Note 4 for details.

Application to qutrit assemblages

The first observation is that the results of the pure-qubit case by ref.
31 are recovered through our formalism. For completeness, these
results are rederived in our language in Supplementary Note 5. Here,
we provide an example of a qutrit system with two inputs and three

outputs. Consider the two-qutrit state |) = Z?:lp,-ﬁi) with u?>0Vvi

and X7_, 12 =1. Denote the reduced state by 7= Y;_, p?|i)(i| and the
minimal eigenvalue of 7 by A.,;,(r) = min u?. We choose Alice’s mea-
surement assemblage to contain the measurements in the compu-
tational basis and its Fourier transform; namely, {4,,} ={|a)(al} and
{Agn} = {Fla)(a|F} with a=1{1, 2, 3}. Here, F is the three-dimensional
discrete Fourier transform. The corresponding measurement
bases are mutually unbiased. The initial assemblage is
Ogy =T2AL, T2 ¥ a,x. Via SDP one can compute the optimal
assemblage in this class, to obtain ¢ = A”/3. Consequently, the local
filter is K :=1/3A,in(T)T"Y/2. A conversion rate of r = pg.. = 3Ain(T) is
then obtained. We note that this optimal assemblage provides not
only the maximal steering robustness but also the maximal ran-
domness generation” in the sense that tr(g,,) =1/3V a. We visualize
the values of SR and success probability in Fig. 2. Finally, we recall
the discussion below Theorem 2. In this example, there exists an
assemblage with vanishing steerability that can be transformed into
the maximally steerable one in this class.

Discussion

This work investigated the convertibility between state assemblages
via local filters on the trusted party (Bob). These local filters, denoted
as LF;, are sufficient to generate the most general 1W-SLOCC opera-
tions when combined with classical pre and postprocessing on Alice’s
side'®. Note that local filters do not introduce any loophole in the
steering scenario. This is because a local filter can be performed as a
part of the state preparation, i.e., before the steering protocol starts
and any input is generated. The situation is analogous to that of local
filters in the Bell experiments®*. We showed that a seemingly abstract
concept, i.e. the steering-equivalent-observables measurement
assemblage, or SEO, introduced to formally map a steering problem
into an incompatibility one, has a direct physical interpretation. In fact,
the SEOs characterize equivalence classes with respect to LF, filters,
and its incompatibility corresponds to the maximal steerability,
quantified by the steering robustness, which can be extracted from a
given assemblage via local filters. Moreover, we showed that the
existence of an LF; transformation in one direction implies the exis-
tence of the reverse transformation. In addition, we showed that within
each equivalence class, steerability can range from (almost) zero to
this maximal value.

Our results include an efficient computation of the local filter via
SDP. Moreover, we showed that, given a measurement assemblage on
Alice’s side, there always exists a bipartite state (also efficiently com-
putable via SDP) such that the steerability of Bob’s state assemblage
coincides with the incompatibility of Alice’s measurement assemblage.
Interestingly, the state is not necessarily maximally entangled. These
results show that the previously known upper bounds for steerability,
i.e., SR(0) < IR(B) <IR(A)*”, where 4 is the measurement assemblage on
Alice’s side, ' is the corresponding state assemblage on Bob’s side, and
B is the SEO, can always be saturated.
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Since our filter protocol involves only local operations, we can
directly compute the asymptotic conversion rate between assemblages
in terms of the single-shot success probability of a single filter. We
recover the theoretical results of ref. 31 and answer the open question
formulated therein regarding the existence of steering dilution and the
reversibility of the transformation. Finally, an explicit example of a
qutrit steering distillation is also presented, which is experimentally
implementable with current technology, see, e.g., refs. 55,56.

Our results naturally suggest new research directions. For
instance, can we have a more general result on the quantitative rela-
tion between steerability and incompatibility within an SEO class, i.e.,
does the maximal steerable weight” in an SEO saturate the incompa-
tible weight®® of an SEO? Another observation is the following. Theo-
rem 1 requires a rank constraint to guarantee the existence of the
reverse transformation in LF;. As we have seen in Th. 2 and Th. 3, rank
constraints can be satisfied by admitting a small error, i.e., by sub-
stituting a low-rank assemblage with an arbitrarily close one of higher
rank. For a given filter K, the construction of an approximate filter K*
admitting an inverse for a given assemblage, however, is nontrivial, as
it is nontrivial in its physical and operational interpretation. We leave
the question of an extension of Th. 1, including approximate trans-
formations, to future investigation. Moreover, the conversion rate
defined in Eq. (10) allows for the possibility of global operations on
multiple copies of the assemblage, i.e., 6, as is the case in entan-
glement theory. How can the rate be improved by using global
operations? For instance, it is known that steering can be super acti-
vated when Alice performs collective measurements on many copies
of the initial state>**° (see also the superactivation of quantum steering
by two-sided local filters®). Therefore, our results may also be
applicable beyond the resource theory of steering, e.g., when also
Alice’s device is partially characterized. Finally, what happens when
moving from the bipartite to the multipartite scenario? It has been
shown that Greenberger-Horne-Zeilinger and W-type assemblages
generated by the corresponding multiparty-entangled types can be
distilled by local filters®2. Can our approach be generalized to recently
proposed steering networks®® or multiparty steering®*? All these
questions will be the object of future research.

Methods

Proof of Theorem 1

Proof.— First, we prove that (i) > (i), the properties of the corre-
sponding filter K and its success probability. We denote by p? the
reduced states for @, for i=1, 2, ie, p®=3,0%, and the corre-
sponding ranges by #;: =ran(p¥). Using the definition of SEOs, the
equivalence relation of Eq. (2), and the conventlonal notation of the
inverse square root operator, i.e., p~/2=p g0 .+, we can directly
write

(1) - p(DI/ZUp(Z) 1/20<2> ) p @~ I/ZUfpa)l/z,\m X, 12)

Although the above mapping provides the correct transformation
of 6® to 6 and is completely positive by construction, it may be
nonphysical since p(2>_1 £ 1, thus yielding a trace-increasing map. To
obtain the correct filtering operation, it is enough to properly insert a
suitable constant into the above expression. Let us first define the
operator

K:=p®'"2yp@~1?, 13)
We now define the local filter in the Kraus representation in terms of a
real normalization parameter « as

Ki=aK+1,.. (14)

Usmg the conglmon K'K <1, and denoting the maximal eigenvalue of
K'K by Amax(K K), we determine the constant as

2 1
==
Amax (K K)

IN

as)

Over all possible values, it makes sense to take a as real and maximal,
i.e., obtaining the equality sign in Eq. (15), in order to maximize the
success probability pg,.. :=tr[Z,05:K'K] of the filtering operation.
Such a probability can be directly calculated using that

KK =a2p® 2yutp0yp@ 2 4 Ly (16)

which, by the definition of ps,.c and the cyclicity of the trace, gives

-1/2 -1/2
Pouce=tr | SOk’ K]‘tr[p‘Z)K*K]=tr[p<2’a2p(2> Putpup® ]

=a’tr[pV] =a?
17)

which, together with Eq. (15) provides the optimal success probability.
We, then, have that

@ _ alx
ax — az

(2) gt
Ko K. (18)

Note that pg is properly normalized, since p? is a state and KK < 1.
Moreover, by construction p(Dl/ 2 Up@~ Y2 is zeroon 4 (iz), so the extra
identity operator does not play a role in the normalization. Also, this
local filter is a valid IW-SLOCC operation.

Finally, we notice that it is also possible to obtain an estimate of
the optimal success probability directly from the eigenvalues of the
reduced states p® and p®. Using the facts that unitaries preserve
eigenvalues [UT]I%“'U: L, in Eq. (2)] and that

V2 _

1 2 2
Amm (p(l)) ! p(l) A (p(l))l/ Ly A1y’ (19)

2712 2-1/2 o —1/2
Amax (p( )) A <p( )™ SAmin (p( )) IW}Z)’ (20)
where A;,>0 denotes the minimal nonzero eigenvalue, we can

directly obtain an estimate of Amax(f( 'K ) to show that

Amin (p(l)) /lmax (p(l))
L < < 21
/lmax (p(z)) Amax(K K) Amm ( (2)) ( )
This finally gives an estimate of the success probability as
/lmin (p(Z)) Amax (p(Z)) (22)

/lmax (p(l)) Spsucc < /lmin (p(l)) .

Let us now prove that (ii) = (iii). First, we recall the definition of
the canonical representative of the equivalence class associated with
the SEO B, namely

O =Byy/d, (23)

where d= dim(ranp). Then, by the definition of an SEO, we have

. LF, i i LF A . « .
0 =% ¢8° and 68" — 6® with B® denoting the SEO of the assem-
blage 6. Composing these transformation, we have the maps

o LF
a8’ % 68" for (i, N =@, 2),(2,1). Since all transformations are in LF;,

their composition is also in LF;. For convenience, we write everything
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in the global space #, as

KB2 /d,®0,. )K"
1 alx/ %2 A
B(a|)x/d1 @ 0“‘/(‘1. = @ @ Vax, and
pSUCC (24)
_ .t
KBY jdy®0,.)K
Bf‘))(/dz ®0,. = a 1(1) il vax,
2)
pSUCC

for some KKelF, and where pQ=tr[l, K 'K1/d, and
p.. = trl,, K K] /d, are the corresponding success probabilities. By
the conditions 3,8, = I -, , we have

K(I’/m/dz ® O'W}LZ) )KT

Ly, /d®0 s = pe) , and
Ka, /d Succo v @
#yy /A1 D 0t
]’7/(2)/(12 [+ Ot”/@ = H " i) ,
pSLICC
Using the fact that for any pair of linear maps A, B
dimran(AB) < min{dimran(4), dimran(B)}, we obtain the two

inequalities d» < d; and d; < d, since d;= dim ;= dim ran(I,/-(i)). This
implies d; = d, and concludes this part of the proof.
Let us now prove that (iii) = (i). By assumption, we have the

LF
transformation 6® — ¢, which, combined with the definition of

1

. . 2 LF
SEO as above, gives us the transformation 68~ —
tion, d; =d,, hence,

1
08", By assump-

K(Bo @0, )K" .

M _
Balx @ O.W‘ﬁl, - 2) ax, (26)
pSUCC
which, summing over a and splitting pZL., gives
K K
(27)

I, @ow=—(HW @ow)—.
21 Bt 2 2
BRYG S "\ Pk

Let us define the map V:=K| / p2., ie., K' renormalized and
restricted on the subspace (1()1.' We have that V: %, - ', is an
isometry, since VTV=]I%D. As an isometry, V is injective, and since
dy =d, itis also surjective. This implies that Vis a unitary between .,
and 7" 5. Similarly, one obtains that V' is a unitary from " ,, to #",.
Hence, V can then be extended to a global unitary U : # — s, simply
by completing it with a mapping from an orthonormal bases of %’é) to
an orthonormal basis 7" (Ll). We then have

BY 0, = U(B;ﬁ; ©0,,)U" vax, (28)
which concludes the proof of the implication (iii) = (i).

To conclude the proof, the only thing left to prove is that the
transformation is provably optimal if there are sufficient linearly
independent elements in the original state assemblage to completely
characterize the channel. The idea is relatively simple and is based on
the fact that, under this condition, the transformation is uniquely
defined. By contradiction, let us assume we have another optimal
transformation K, over LF;, mapping 62 > 6% and that {oﬁfl,)(} consists
of at least @ linearly independent elements. We have
KooSK})

o = Ro%ax

alx

=p®"2Up@ 262 p@ P ytp0 P v (29)

pSLICC
Since sufficient linearly independent subnormalized states ofp’( are
available in O{dzer to 1czharacterize the filter, this implies that
Ko/ /psucc=p<l)/ Up@ 72 In fact, note that KK : L(#) — L(#) is

a linear map from linear operators to linear operators. Thus, it is
completely characterized by its action on a basis, i.e., d® linearly
independent linear operators, where d is the dimension of # and,
thus, @ is the dimension of £(s#). Finally, since Ky is the filtering
maximizing the success probability, we have KOKI, <1I and KOKB £
(1 — ¢l for all > 0. This corresponds to the choice of the maximum a
in Eq. (15). This concludes the proof.

As a final note, since -sgo and -, are symmetric, the roles of o
and ¢ can be exchanged in Theorem 1 (iii).

Proof of Theorem 2
The first observation is that, up to an embedding and a change of local
basis (i.e., adding a 0. and a unitary U, as in Eq. (2)), a generic
element g in the equivalence class of the SEO B can be obtained by the
representative ¢® as

Ga\x = ql/zBa\xnl/z = dnl/zoglx’ll/zr (30)
for some full-rank reduced state . We can now proceed to prove
Theorem 2.

Proof of the supremum-—First, it is useful to recall the dual SDP
formulations of IR and SR (see respectively refs. 46,65):

Given B
Find maxtr (Z wa|xBa|x> =:1+IR(B)
w,1n ax (31)
st. Nz X D@apxDwg, VA,
ax
Wq, 20, tr(m) =1,
and
Given o
Find maxtr <Z Fa|x0a|x) =:1+SR(0)
Foo\ax (32)

st 12 3 D(alx, HF g, VA,
ax

Fgx20.

apx

Here, D(ajx, A) is the deterministic postprocessing of a with
respect to x, A appearing in the primal problem, i.e., 6, . Notice that
we can interpret n as a valid quantum state and @ and F as the
incompatibility witnesses and steering witnesses, respectively.

By Theorem 1, we can associate the SEO B to the equivalence class
[0], w.r.t. -i¢. This implies that 6~se00® and 6 - 6%, where 6° is
defined in Eq. (23). We also recall that a generic element of the
equivalence class can be written as Gg = 7"?Baudy”? for some full-rank
state n (see Eq. (30)).

By combining the definition of SR*P with Theorem 1and Eq. (32),
we can upper bound the maximal steering robustness over all SEO-
equivalent assemblages via the following optimization problem

Given B
Find max tr<Z Falxnl/zBalxrzl/2> =:1+0Q
F.n ax

(33)
st 12X D(alx, DF g, VA,
ax

Fae20, tr(n=1

Notice that the problem in Eq. (33) is no longer an SDP, since it contains
as an objective function that is nonlinear in 7 and F. Nevertheless, we
can now show that every feasible solution of the SDP in Eq. (31) is a
feasible solution of the problem in Eq. (33) and vice versa. In fact, given
w, 1 feasible solution of Eq. (31), we can define Fyp:=n"waa ™
which satisfies Fy, > 0 and 1232, ,D(a|x,A)F ., even when 1 is not full-
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rank and we invert it on just a subspace. Conversely, given F, i feasible
solution of Eq. (33), we can define wqy:=1"*Faudy”?, which satisfies
Wq20and n 23 5 D(alx, Dwqy. Again, no problem arises if  is not full-
rank. Finally, it is clear that this construction provides the same value
for the objective function in both directions. We have thus proven that
each solution to one problem provides a solution to the other, without
changing the objective function, which implies that the optimal value
is the same.

Finally, we need to verify that the optimal solution Q is indeed
the supremum over all assemblages in the same equivalence class,
i.e., Q=SR*"P([@]). The missing condition comes from the fact that if
the state 7 is not full-rank, then the constructed assemblage is not in
the same class as 6®. However, for any state 5, we can always find
another state 7 that is arbitrarily close to it. Let us define I, as the
projector on the range of n with rank r :=tr[l1,]<d. For any £>0,
there exists § such that we can approximate the solution of the
problem in Eq. (33) up to ¢ via the following construction. First, we
construct a full-rank 7, as

6
ne:=1-6)n+ m(l =), (34)

which approximates the optimal value Q in Eq. (33) as |Q(F, n) - Q(F,
n:)| < & Similarly, we define @3, = (1 — 6)wg, to preserve the condition
in Eq. (31). This guarantees that we still obtain a feasible solution.
This solution approximates the optimal value that follows directly
from the continuity of the objective function in Eq. (33). A concrete
estimate for 6 can be obtained by estimating the Hilbert-Schmidt

norm of the difference

1/2 1/2
N2y n'? — i Byny

1 !
=8| 2B = L (1= Bt o1 (1= 11) | + 087
(39)

and applying the Cauchy-Schwarz inequality to the objective function,
using also the fact that 0 < B,,,F ), < I to upper bound their norm. Itis
then clear that the SDP in Eq. (33) provides a vanishing upper bound in
the limit 6> O for the difference between the optimal value in the
problem and that obtained by the substitution n > .. This shows that
IR is indeed the supremum and concludes this part of the proof.

Proof of the infimum— To prove the infimum, we consider that for
every measurement assemblage A = B and any full-Schmidt-rank state
@)= >4 | plii), there exists an assemblage o such that*’

O =A[1Y) (YIBL, ® 11=T/2B, T2, (36)
where T denotes the transpose in the basis {|i)} appearing in the
Schmidt decomposition of |¢), and 7= Z?:luﬂi) (i] is the reduced state
of |). In other words, for any full-Schmidt-rank state |) and any
measurement assemblage B, we can obtain a state assemblage o that
gives B as its SEO. In particular, this implies that for any assemblage o,
we can find ¢’ such that 6 -6’ and @’ comes from a quantum state
) with arbitrarily low entanglement.

Now, we consider another fact about steering robustness*®,
namely, that ER,(|¢))2SR(6) with ER,(|¢)) being the generalized
entanglement robustness of [¢) (see ref. 66 for more details). In turn,
ERg(|([)>) is upper bounded by the random entanglement robustness
ER,(|¢)), obtained when mixing with the maximally mixed state. For
pure states, this has a simple expression in terms of the Schmidt
decomposition |¢) = Zf p;lii), where the vectors are ordered such that
2> 3 ... 2 0, namely®”:

ER,(1¢)) = ity dpdp. @37)

For any &>0, we can take |¢)=+/1-(d—-1)e|00)+e|ll)
+.../€ld - 1d - 1), with £ <e2/(d,dp)*. This gives ;= /1—€)<1
and p, =€ <g/(d,dp); hence, ER,(|¢))<e. Since ¢ is arbitrary, the
infimum is zero, which concludes the proof.

Data availability
Dataset sharing is not applicable to this article as no data sets were
generated or analyzed during this study.

Code availability
Source codes of the plots are available from the authors upon request.
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