®

Check for
updates

Exploiting Adjoints in Property Directed
Reachability Analysis

, Flavio Ascari®*®, Filippo Bonchi®®, Roberto Bruni®®,

Roberta Gori®@®, and Ichiro Hasuo'2

1,2(=)

Mayuko Kori
CAV

Artifact
Evaluation

! National Institute of Informatics, Tokyo, Japan
* {mkori,hasuo}@nii.ac.jp
2 The Graduate University for Advanced Studies
(SOKENDALI), Hayama, Japan
3 Dipartimento di Informatica, Universita di Pisa, Pisa, Italy
flavio.ascari@phd.unipi.it,
{filippo.bonchi,roberto.bruni,roberta.gori}@unipi.it

Abstract. We formulate, in lattice-theoretic terms, two novel algo-
rithms inspired by Bradley’s property directed reachability algorithm.
For finding safe invariants or counterexamples, the first algorithm
exploits over-approximations of both forward and backward transition
relations, expressed abstractly by the notion of adjoints. In the absence
of adjoints, one can use the second algorithm, which exploits lower sets
and their principals. As a notable example of application, we consider
quantitative reachability problems for Markov Decision Processes.

Keywords: PDR - Lattice theory - Adjoints - MDPs -
Over-approximation

1 Introduction

Property directed reachability analysis (PDR) refers to a class of verification
algorithms for solving safety problems of transition systems [5,12]. Its essence
consists of 1) interleaving the construction of an inductive invariant (a positive
chain) with that of a counterexample (a negative sequence), and 2) making the
two sequences interact, with one narrowing down the search space for the other.
PDR algorithms have shown impressive performance both in hardware and
software verification, leading to active research [15,18,28,29] going far beyond
its original scope. For instance, an abstract domain [8] capturing the over-
approximation exploited by PDR has been recently introduced in [13], while
PrIC3 [3] extended PDR for quantitative verification of probabilistic systems.

Research supported by MIUR PRIN Project 201784YSZ5 ASPRA, by JST ERATO
HASUO Metamathematics for Systems Design Project JPMJER1603, by JST CREST
Grant JPMJCR2012, by JSPS DC KAKENHI Grant 22J21742 and by EU Next-
GenerationEU (NRRP) SPOKE 10, Mission 4, Component 2, Investment N. 1.4, CUP
N. 153C22000690001.

© The Author(s) 2023
C. Enea and A. Lal (Eds.): CAV 2023, LNCS 13965, pp. 41-63, 2023.
https://doi.org/10.1007/978-3-031-37703-7_3

https://doi.org/10.6084/m9.figshare.22707718.v6
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37703-7_3&domain=pdf
http://orcid.org/0000-0002-8495-5925
http://orcid.org/0000-0003-4624-9752
http://orcid.org/0000-0002-3433-723X
http://orcid.org/0000-0002-7771-4154
http://orcid.org/0000-0002-7424-9576
http://orcid.org/0000-0002-8300-4650
https://doi.org/10.1007/978-3-031-37703-7_3

42 M. Kori et al.

To uncover the abstract principles behind PDR and its extensions, Kori et
al. proposed LT-PDR [19], a generalisation of PDR in terms of lattice/category
theory. LT-PDR can be instantiated using domain-specific heuristics to create
effective algorithms for different kinds of systems such as Kripke structures,
Markov Decision Processes (MDPs), and Markov reward models. However, the
theory in [19] does not offer guidance on devising concrete heuristics.

Adjoints in PDR. Our approach shares the same vision of LT-PDR, but we
identify different principles: adjunctions are the core of our toolset.
An adjunction f - g is one of the central concepts in category !
. . . . s
theory [23]. It is prevalent in various fields of computer science, A_ 1 C
too, such as abstract interpretation [8] and functional program- g

ming [22]. Our use of adjoints in this work comes in the following two flavours.

— (forward-backward adjoint) f describes the forward semantics of a transition
system, while ¢ is the backward one, where we typically have A = C.

— (abstraction-concretization adjoint) C' is a concrete semantic domain, and A
is an abstract one, much like in abstract interpretation. An adjoint enables
us to convert a fixed-point problem in C to that in A.

Our Algorithms. The problem we address is the standard lattice theoretical
formulation of safety problems, namely whether the least fixed point of a con-
tinuous map b over a complete lattice (L, C) is below a given element p € L. In
symbols pb C» p. We present two algorithms.

The first one, named AdjointPDR, assumes to have an ele- f\
ment ¢ € L and two adjoints f 4 ¢g: L — L, representing respec- L ii-,a L
tively initial states, forward semantics and backward semantics g

(see right) such that b(z) = f(x) Ui for all € L. Under this assumption, we
have the following equivalences (they follow from the Knaster-Tarski theorem,
see §2):

wCp < p(fui)Cp < 1Cv(gMp),

where pu(f U4) and v(g Mp) are, by the Kleene theorem, the limits of the initial
and final chains illustrated below.

LEiCfHUIE- - - Cglp)NpEpC T

As positive chain, PDR exploits an over-approximation of the initial chain: it is
made greater to accelerate convergence; still it has to be below p.

The distinguishing feature of AdjointPDR is to take as a negative sequence
(that is a sequential construction of potential counterexamples) an over-
approximation of the final chain. This crucially differs from the negative sequence
of LT-PDR, namely an under-approximation of the computed positive chain.

We prove that AdjointPDR is sound (Theorem 5) and does not loop (Propo-
sition 7) but since, the problem ub C+ p is not always decidable, we cannot prove
termination. Nevertheless, AdjointPDR allows for a formal theory of heuris-
tics that are essential when instantiating the algorithm to concrete problems.

Exploiting Adjoints in PDR 43

The theory prescribes the choices to obtain the boundary executions, using
initial and final chains (Proposition 10); it thus identifies a class of heuristics
guaranteeing termination when answers are negative (Theorem 12).

AdjointPDR’s assumption of a forward-backward adjoint f - g, however, does
not hold very often, especially in probabilistic settings. Our second algorithm
AdjointPDR! circumvents this problem by extending the lattice for the negative
sequence, from L to the lattice L' of lower sets in L.

Specifically, by using the second form of T
adjoints, namely an abstraction-concretization —
pair, the problem pub C7 p in L can be trans- bOLi}—«% L le_{bi
lated to an equivalent problem on b in L', for =)
which an adjoint bt - b} is guaranteed. This allows one to run AdjointPDR in
the lattice L'. We then notice that the search for a positive chain can be con-
veniently restricted to principals in L', which have representatives in L. The
resulting algorithm, using L for positive chains and L' for negative sequences,
is AdjointPDR!.

The use of lower sets for the negative sequence is a key advantage. It not
only avoids the restrictive assumption on forward-backward adjoints f - g, but
also enables a more thorough search for counterexamples. AdjointPDR! can sim-
ulate step-by-step LT-PDR (Theorem 17), while the reverse is not possible due
to a single negative sequence in AdjointPDR! potentially representing multiple
(Proposition 18) or even all (Proposition 19) negative sequences in LT-PDR.

Concrete Instances. Our lattice-theoretic algorithms yield many concrete
instances: the original IC3/PDR [5,12] as well as Reverse PDR [27] are instances
of AdjointPDR with L being the powerset of the state space; since LT-PDR can
be simulated by AdjointPDR!, the latter generalizes all instances in [19].

As a notable instance, we apply AdjointPDR! to MDPs, specifically to decide
if the maximum reachability probability [1] is below a given threshold. Here
the lattice L = [0,1]° is that of fuzzy predicates over the state space S. Our
theory provides guidance to devise two heuristics, for which we prove negative
termination (Corollary 20). We present its implementation in Haskell, and its
experimental evaluation, where comparison is made against existing probabilistic
PDR algorithms (PrIC3 [3], LT-PDR [19]) and a non-PDR one (Storm [11]). The
performance of AdjointPDR! is encouraging—it supports the potential of PDR
algorithms in probabilistic model checking. The experiments also indicate the
importance of having a variety of heuristics, and thus the value of our adjoint
framework that helps coming up with those.

Additionally, we found that abstraction features of Haskell allows us to code
lattice-theoretic algorithms almost literally (~100 lines). Implementing a few
heuristics takes another ~240 lines. This way, we found that mathematical
abstraction can directly help easing implementation effort.

Related Work. Reverse PDR [27] applies PDR from unsafe states using a back-
ward transition relation T and tries to prove that initial states are unreachable.
Our right adjoint g is also backward, but it differs from T in the presence of
nondeterminism: roughly, T(X) is the set of states which can reach X in one

44 M. Kori et al.

step, while g(X) are states which only reach X in one step. foPDR [28,29] runs
PDR and Reverse PDR in parallel with shared information. Our work uses both
forward and backward directions (the pair f - g), too, but approximate differ-
ently: Reverse PDR over-approximates the set of states that can reach an unsafe
state, while we over-approximate the set of states that only reach safe states.

The comparison with LT-PDR [19] is extensively discussed in Sect.4.2.
PrIC3 [3] extended PDR to MDPs, which are our main experimental ground:
Sect. 6 compares the performances of PrIC3, LT-PDR and AdjointPDR!.

We remark that PDR has been applied to other settings, such as soft-
ware model checking using theories and SMT-solvers [6,21] or automated plan-
ning [30]. Most of them (e.g., software model checking) fall already in the gen-
erality of LT-PDR and thus they can be embedded in our framework.

It is also worth to mention that, in the context of abstract interpretation, the
use of adjoints to construct initial and final chains and exploit the interaction
between their approximations has been investigated in several works, e.g., [7].

Structure of the Paper. After recalling some preliminaries in Sect.2, we
present AdjointPDR in Sect. 3 and AdjointPDR! in Sect. 4. In Sect. 5 we introduce
the heuristics for the max reachability problems of MDPs, that are experimen-
tally tested in Sect. 6.

2 Preliminaries and Notation

We assume that the reader is familiar with lattice theory, see, e.g., [10]. We use
(L,D), (L1,C4), (L2, C2) to range over complete lattices and z,y, z to range over
their elements. We omit subscripts and order relations whenever clear from the
context. As usual, | | and [| denote least upper bound and greatest lower bound,
L and M denote join and meet, T and L top and bottom. Hereafter we will tacitly
assume that all maps are monotone. Obviously, the identity map ¢d: L — L
and the composition f o g: L1 — L3 of two monotone maps ¢g: L1 — Lo and
f: Ly — L3 are monotone. For a map f: L — L, we inductively define f° = id
and f*! = f o f*. Given l: L1 — Ly and 7: Ly — L1, we say that [is the
left adjoint of r, or equivalently that r is the right adjoint of [, written [- r,
when it holds that I(z) Cy y iff T r(y) for all x € Ly and y € L. Given a
map f: L — L, the element x € L is a post-fized point iff x C f(x), a pre-fized
point iff f(z) C z and a fized point iff x = f(x). Pre, post and fixed points form
complete lattices: we write uf and v f for the least and greatest fixed point.
Several problems relevant to computer science can be reduced to check if
wb C p for a monotone map b: L — L on a complete lattice L. The Knaster-
Tarski fixed-point theorem characterises ub as the least upper bound of all pre-
fixed points of b and vb as the greatest lower bound of all its post-fixed points:

b = |_|{x | b(z) C =} vb = |_|{ac |z Cb(x)} .

This immediately leads to two proof principles, illustrated below:

dz, b(z) CaxCp Jz, i C a2 C b(x)
ubCp i Cvb

Exploiting Adjoints in PDR 45

S Q — S
e

Fig. 1. The transition system of Example 1, with S = {so,...s6} and I = {so}.

S0

By means of (KT), one can prove ub C p by finding some pre-fixed point x, often
called invariant, such that * C p. However, automatically finding invariants
might be rather complicated, so most of the algorithms rely on another fixed-
point theorem, usually attributed to Kleene. It characterises ub and vb as the
least upper bound and the greatest lower bound, of the initial and final chains:

1LChL)Cv*(L)C--- and ---CH(T)CH(T)C T. Thatis, (KI)
pb= | | o™ (1), vb=[]b"(T).
neN neN

The assumptions are stronger than for Knaster-Tarski: for the leftmost state-
ment, it requires the map b to be w-continuous (i.e., it preserves | | of w-chains)
and, for the rightmost w-co-continuous (similar but for []). Observe that every
left adjoint is continuous and every right adjoint is co-continuous (see e.g. [23]).

As explained in [19], property directed reachability (PDR) algorithms [5]
exploits (KT) to try to prove the inequation and (K1) to refute it. In the algo-
rithm we introduce in the next section, we further assume that b is of the form
f Ui for some element ¢ € L and map f: L — L, namely b(x) = f(z) Ui for all
x € L. Moreover we require f to have a right adjoint g: L — L. In this case

p(fui)Cp iff iCw(gNp) (1)

(which is easily shown using the Knaster-Tarski theorem) and (fU+4) and (gMp)
are guaranteed to be (co)continuous. Since f - g and left and right adjoints
preserve, resp., arbitrary joins and meets, then for all n € N

(fud)™(L) =U;c, 7)) (gMp)™(T) =2, ¢’ (p) (2)
which by (K1) provide useful characterisations of least and greatest fixed points.
p(fUi) = Upew 179 v(9Mp) = [Npen 9" () (K1)

We conclude this section with an example that we will often revisit. It also
provides a justification for the intuitive terminology that we sporadically use.

Ezample 1 (Safety problem for transition systems). A transition system consists
of a triple (S, I,d) where S is a set of states, I C S is a set of initial states, and
6: S — PS is a transition relation. Here P.S denotes the powerset of S, which

46 M. Kori et al.

wo=1 (I0) Ify #¢ then pC yp s (N1)
l<sk<n (1) Vi € kv — 2], 9(ys41) C (N2)
Vje0,n—2], z; Cajp (12)

vj € [k,n—1], z; Ly; (PN)
Vi€ 0,n—1], (U (L) Ca; C(gnp)" "I(T) (A1)
Vi€ l,n—1], 2,1 Cg" " (p) (A2)

iCax (P

Tp—o2 Cp (P2)

Vji€[0,n—2], f(z;) Czjpr (P3)
Vi€ o,n—2], z; Cglzj1) (P3a) Vjelkn—1,g"" "/ (p) Cy; (A3)

Fig. 2. Invariants of AdjointPDR.

forms a complete lattice ordered by inclusion C. By defining F': PS — PS as
F(X) def Usex d(s) for all X € PS, one has that pu(F U I) is the set of all
states reachable from I. Therefore, for any P € PS, representing some safety
property, u(F U I) C P holds iff all reachable states are safe. It is worth to

remark that F' has a right adjoint G: PS — PS defined for all X € PS as

G(X) Y {s]6(s) C X}. Thus by (1), u(FUTI) C Piff I C (G N P).

Consider the transition system in Fig.1. Hereafter we write S; for the set
of states {sg,s1,...,s;} and we fix the set of safe states to be P = S;. It is
immediate to see that u(F' U I) =S4 C P. Automatically, this can be checked
with the initial chains of (F U I) or with the final chain of (G N P) displayed
below on the left and on the right, respectively.

PCICS CSC8C8C: - e C 8 C8CPCS

The (j + 1)-th element of the initial chain contains all the states that can be
reached by I in at most j transitions, while (j 4+ 1)-th element of the final chain
contains all the states that in at most j transitions reach safe states only.

3 Adjoint PDR

In this section we present AdjointPDR, an algorithm that takes in input a tuple
(i, f,9,p) with i,p € L and f 4 ¢g: L — L and, if it terminates, it returns true
whenever p(f U4) C p and false otherwise.

The algorithm manipulates two sequences of elements of L: « def TQyeves L1

of length n and y def Yk, - - - Yn—1 Of length n — k. These satisfy, through the

executions of AdjointPDR, the invariants in Fig.2. Observe that, by (Al), z;
over-approximates the j-th element of the initial chain, namely (fLi)7 (L) C z;,
while, by (A3), the j-indexed element y; of y over-approximates g"~7~1(p) that,
borrowing the terminology of Example 1, is the set of states which are safe in
n — j — 1 transitions. Moreover, by (PN), the element y; witnesses that z; is
unsafe, i.e., that z; Z ¢g"~'77(p) or equivalently f"~7=1(z;) £ p. Notably, = is
a positive chain and y a negative sequence, according to the definitions below.

Exploiting Adjoints in PDR 47

<INITIALISATION>
@[Y)ne = (L Tle)22
<ITERATION> % x,y not conclusive
case (x||y)n,x of
y=c and xp—1 Cp : % (Unfold)
(wlly)mk = (w’THE)71+l,n+l
y=c and Tn—1Zp : %(Candidate)
choose 2z € L such that x,-1Z 2z and pC z;
@Y = (@D
y#e and f(zr—1) LZyr : %(Decide)
choose z € L such that xp—1 Zz and g(yx) C z;
I S Y P
y#e and f(zr-—1) Cyp : %(Conflict)
choose z € L such that zC yx and (fUd)(zk—1Mz)C 2;
@[y 1= (@ 2ltail(y))nsin
endcase
<TERMINATION>
if 3j€[0,n—2].2;41 Cz; then return true % @« conclusive
if iZy; then return false % Yy conclusive

Fig. 3. AdjointPDR algorithm checking u(f L%) C p.

Definition 2 (positive chain). A positive chain for u(f U4) C p is a finite
chain ©o C -+ C 2,1 in L of length n > 2 which satisfies (P1), (P2), (P3) in
Fig. 2. 1t is conclusive if x; 41 C x; for some j <n —2.

In a conclusive positive chain, x;,1 provides an invariant for f L7 and thus,
by (KT), u(fU1) E p holds. So, when @ is conclusive, AdjointPDR returns true.

Definition 3 (negative sequence). A negative sequence for pu(f U1i) C p is
a finite sequence Y, - .. ,Yn—1 n L with 1 < k < n which satisfies (N1) and (N2)
in Fig. 2. It is conclusive if k =1 and i £ y;.

When y is conclusive, AdjointPDR returns false as y; provides a counterex-
ample: (N1) and (N2) entail (A3) and thus i« Z y; 2 ¢" 2(p). By (KIH),
9" *(p) A v(gMp) and thus i Z v(gMp). By (1), p(fUi) £ p.

The pseudocode of the algorithm is displayed in Fig.3, where we write
(z||y)n.k to compactly represents the state of the algorithm: the pair (n, k) is
called the index of the state, with @ of length n and y of length n — k. When
k = n, y is the empty sequence . For any z € L, we write x, z for the chain
To,...,Tn_1,2 of length n + 1 and z,y for the sequence z, yg, . ..y,_1 of length
n—(k—1). Moreover, we write Mz for the chain 2oMz,...,z;M2, Tj41,. .., Tp1.

Finally, tail(y) stands for the tail of y, namely yxy1, ... yn—1 of length n— (k+1).

The algorithm starts in the initial state sg &ef (L, Tlle)2,2 and, unless one

of x and y is conclusive, iteratively applies one of the four mutually exclusive
rules: (Unfold), (Candidate), (Decide) and (Conflict). The rule (Unfold) extends
the positive chain by one element when the negative sequence is empty and the
positive chain is under p; since the element introduced by (Unfold) is T, its
application typically triggers rule (Candidate) that starts the negative sequence

48 M. Kori et al.

with an over-approximation of p. Recall that the role of y; is to witness that
x; is unsafe. After (Candidate) either (Decide) or (Conflict) are possible: if yy
witnesses that, besides xy, also f(zr—1) is unsafe, then (Decide) is used to further
extend the negative sequence to witness that xp_, is unsafe; otherwise, the rule
(Conflict) improves the precision of the positive chain in such a way that y no
longer witnesses x Iz unsafe and, thus, the negative sequence is shortened.
Note that, in (Candidate), (Decide) and (Conflict), the element z € L is
chosen among a set of possibilities, thus AdjointPDR is nondeterministic.

To illustrate the executions of the algorithm, we adopt a labeled transition

system notation. Let S def {@||Y)nr |n>2k<n zcL”andy e L" %} be

the set of all possible states of AdjointPDR. We call (||y)n kx € S conclusive if
x or y are such. When s € § is not conclusive, we write s2 to mean that s

satisfies the guards in the rule (Decide), and s, s’ to mean that, being (Decide)
applicable, AdjointPDR moves from state s to s’ by choosing z. Similarly for the
other rules: the labels Ca, Co and U stands for (Candidate), (Conflict) and
(Unfold), respectively. When irrelevant we omit to specify labels and choices

and we just write s — s’. As usual —7 stands for the transitive closure of —
while —* stands for the reflexive and transitive closure of —.

Ezample 4. Consider the safety problem in Example 1. Below we illustrate two
possible computations of AdjointPDR that differ for the choice of z in (Conflict).
The first run is conveniently represented as the following series of transitions.

(0, 5]le)22 Zp (0, S11P)21 1 0, 1)z = (8,1, S]€)ss Zp (8,1, 5] P)a

gsg (0,1,852]|e)s,3 L%, (0,1,52,5(|P)as 253 (0,1,852,Ss|€)a,4 L%, (0,1,82,83,S||P)s,a
g54((2),I, S2, S3,54]€)s,5 L% (0,1,52,Ss,84,S||P)s,s gS4 (0,1,852,53,854,S4|€)6,6

The last state returns true since z4 = x5 = S4. Observe that the elements of
x, with the exception of the last element x,_1, are those of the initial chain of
(F UI), namely, x; is the set of states reachable in at most j — 1 steps. In the
second computation, the elements of & are roughly those of the final chain of
(GNP). More precisely, after (Unfold) or (Candidate), x,—; for j < n—1 is the
set of states which only reach safe states within j steps.

(0,222 Sp (0,S1P)2n Zp (0, Ple)2a
L0, P,S|P)s2 B, (0, P,S|Sa, P)sy s, (0,84, 5 P)s2 Sp (0, 84, Plle)s s

LEp (0,84, P, S| P)as s, (0,81, P, S|[Ss, P)az Ss, (0,84, 54, 5] P)as

Observe that, by invariant (A1), the values of & in the two runs are, respectively,
the least and the greatest values for all possible computations of AdjointPDR.

Theorem 5.1 follows by invariants (12), (P1), (P3) and (KT); Theorem 5.2
by (N1), (N2) and (KlH). Note that both results hold for any choice of z.

Theorem 5 (Soundness). AdjointPDR is sound. Namely,

1. If AdjointPDR returns true then pu(fUi) C p.
2. If AdjointPDR returns false then u(f U1) £ p.

Exploiting Adjoints in PDR 49

3.1 Progression

It is necessary to prove that in any step of the execution, if the algorithm does
not return true or false, then it can progress to a new state, not yet visited.
To this aim we must deal with the subtleties of the non-deterministic choice of
the element z in (Candidate), (Decide) and (Conflict). The following proposition
ensures that, for any of these three rules, there is always a possible choice.

Proposition 6 (Canonical choices). The following are always possible:
1. in (Candidate) z = p; 3. in (Conflict) z = yi;

2. in (Decide) z = g(yr); 4. in (Conflict) z = (fUd)(zp_1).
Thus, for all non-conclusive s € S, if sg —* s then s —.

Then, Proposition 7 ensures that AdjointPDR always traverses new states.
Proposition 7 (Impossibility of loops). If so —* s =1 &', then s # 5.

Observe that the above propositions entail that AdjointPDR terminates
whenever the lattice L is finite, since the set of reachable states is finite in
this case.

Ezample 8. For (I, F,G,P) as in Example 1, AdjointPDR behaves essentially
as IC3/PDR [5], solving reachability problems for transition systems with finite
state space S. Since the lattice PSS is also finite, AdjointPDR always terminates.

3.2 Heuristics

The nondeterministic choices of the algorithm can be resolved by using heuristics.
Intuitively, a heuristic chooses for any states s € S an element z € L to be
possibly used in (Candidate), (Decide) or (Conflict), so it is just a function
h: & — L. When defining a heuristic, we will avoid to specify its values on
conclusive states or in those performing (Unfold), as they are clearly irrelevant.

With a heuristic, one can instantiate AdjointPDR by making the choice
of z as prescribed by h. Syntactically, this means to erase from the code of
Fig. 3 the three lines of choose and replace them by z:= h((x||¢), k). We call
AdjointPDR, the resulting deterministic algorithm and write s—,s’ to mean
that AdjointPDR;, moves from state s to s’. We let S* & {s € §| so—},s} be
the sets of all states reachable by AdjointPDRy,.

Definition 9 (legit heuristic). A heuristic h: S — L is called legit whenever
for all s,s" € S, if s—, ' then s — s'.

When #h is legit, the only execution of the deterministic algorithm AdjointPDRy,
is one of the possible executions of the non-deterministic algorithm AdjointPDR.

The canonical choices provide two legit heuristics: first, we call simple any
legit heuristic h that chooses z in (Candidate) and (Decide) as in Proposition 6:

Ca

TR P NP s

50 M. Kori et al.

Then, if the choice in (Conflict) is like in Proposition 6.4, we call h initial; if
it is like in Proposition 6.3, we call h final. Shortly, the two legit heuristics are:

simple initial ‘ (3) and (z||y)nr — (fU)(xp—1) if (z|y)nr € Co

simple final (3) and (x||Y)n.k — Yk if (||y)n,x € Co
Interestingly, with any simple heuristic, the sequence y takes a familiar shape:

Proposition 10. Let h: S — L be any simple heuristic. For all (z|/y),r € S,
invariant (A3) holds as an equality, namely for all j € [k,n—1], y; = "7 (p).

By the above proposition and (A3), the negative sequence y occurring in the
execution of AdjointPDRy,, for a simple heuristic h, is the least amongst all the
negative sequences occurring in any execution of AdjointPDR.

Instead, invariant (A1) informs us that the positive chain @ is always in
between the initial chain of f LI¢ and the final chain of g M p. Such values of x
are obtained by, respectively, simple initial and simple final heuristic.

Example 11. Consider the two runs of AdjointPDR in Example 4. The first one
exploits the simple initial heuristic and indeed, the positive chain x coincides
with the initial chain. Analogously, the second run uses the simple final heuristic.

3.3 Negative Termination

When the lattice L is not finite, AdjointPDR may not terminate, since checking
w(f Ui) C pis not always decidable. In this section, we show that the use of
certain heuristics can guarantee termination whenever p(f L17) IZ p.

The key insight is the following: if u(f U i) Z p then by (K1), there should
exist some 7 € N such that (f Ui)"(L) Z p. By (A1), the rule (Unfold) can be
applied only when (f Ui)""!(L) C x,_1 C p. Since (Unfold) increases n and n
is never decreased by other rules, then (Unfold) can be applied at most 72 times.

The elements of negative sequences are introduced by rules (Candidate) and
(Decide). If we guarantee that for any index (n, k) the heuristic in such cases
returns a finite number of values for z, then one can prove termination. To make
this formal, we fix CaD" , ' {(@[|ly)ns € 8" | (@|y)np & or @|y)nr 2},
i.e., the set of all (n,k)-indexed states reachable by AdjointPDR;, that trigger

(Candidate) or (Decide), and h(CaDZ’k) & {h(s)|se€ C'CLDZ’,C}7 i.e., the set of
all possible values returned by h in such states.

Theorem 12 (Negative termination). Let h be a legit heuristic. If
h(CaDZ7k) is finite for all n,k and p(f U4) £ p, then AdjointPDRy, terminates.

Corollary 13. Let h be a simple heuristic. If p(f Ui) Z p, then AdjointPDRy,
terminates.

Note that this corollary ensures negative termination whenever we use the
canonical choices in (Candidate) and (Decide) irrespective of the choice for (Con-
flict), therefore it holds for both simple initial and simple final heuristics.

Exploiting Adjoints in PDR 51
4 Recovering Adjoints with Lower Sets

In the previous section, we have introduced an algorithm for checking pub C p
whenever b is of the form f L7 for an element i € L and a left-adjoint f: L — L.
This, unfortunately, is not the case for several interesting problems, like the max
reachability problem [1] that we will illustrate in Sect. 5.

The next result informs us that, under standard assumptions, one can transfer
the problem of checking ub C p to lower sets, where adjoints can always be
defined. Recall that, for a lattice (L, C), a lower set is a subset X C L such that
if r € X and 2/ C x then 2’ € X; the set of lower sets of L forms a complete
lattice (L', C) with joins and meets given by union and intersection; as expected
Lis @ and T is L. Given b: L — L, one can define two functions bt,b}: L+ — L!

as b1 (X) (X)) and bL(X) X {2 | b(z) € X}. It holds that bt - bl.

U
bC(L,E):(LL,Q)Qbiﬂ;}, (4)
(=)*

In the diagram above, (—)': x + {2/ | 2’ C 2} and | |: L' — L maps a lower set
X into | {z | z € X}. The maps | | and (=)' form a Galois insertion, namely
L]+ (=)} and | J(—)! = id, and thus one can think of (4) in terms of abstract
interpretation [8,9]: L' represents the concrete domain, L the abstract domain
and b is a sound abstraction of b'. Most importantly, it turns out that b is
forward-complete [4,14] w.r.t. b', namely the following equation holds.

(—)fob=bto(-)! (5)

Proposition 14. Let (L,C) be a complete lattice, p € L and b: L — L be a
w-continuous map. Then ub C p iff p(bt U LL) C pt.

By means of Proposition 14, we can thus solve pub T p in L by run-
ning AdjointPDR on (J_l,bi,bi,pi). Hereafter, we tacitly assume that b is w-
continuous.

4.1 AdjointPDR!: Positive Chain in L, Negative Sequence in Lt

While AdjointPDR on (L', b, bk pt) might be computationally expensive, it
is the first step toward the definition of an efficient algorithm that exploits a
convenient form of the positive chain.

A lower set X € L' is said to be a principal if X = z! for some z € L.
Observe that the top of the lattice (L', C) is a principal, namely T, and that
the meet (intersection) of two principals 2! and y! is the principal (z My)!.

Suppose now that, in (Conflict), AdjointPDR(L!,b!, bl, pt) always chooses
principals rather than arbitrary lower sets. This suffices to guarantee that all the
elements of @ are principals (with the only exception of 2y which is constantly
the bottom element of L' that, note, is () and not L}). In fact, the elements of

52 M. Kori et al.

AdjointPDR* (b, p)

<INITIALISATION>
(@Y)nk = (0,1, Tlle)ss
<ITERATION>
case (2||Y)n,x of % «,Y not conclusive
Y=¢ and -1 Cp : % (Unfold)
@Y)nn 1= (2, Tlle)n+1,n41
Y=¢cand xpn_1Zp : % (Candidate)

choose Z € L% such that zn_1 &7 and p€ Z;
(@Y)ns := (@ Z)nn

Y #¢ and b(zi-1) €Y : % (Decide)
choose Z € L* such that z 1 € Z and bﬁ(Yk) Cc Z;
(@Y)np = (22, Y)nr

Y #¢e and b(xp—_1) €Yy : %(Conflict)

choose z € L such that z€Yy and b(xr—1M2z2) C z;
(:E”Y),,,Yk := (CE Mk z\|tai|(Y)),L_k+1

endcase

<TERMINATION>
if 3j€[0,n—2].2;41 C2z; then return true % = conclusive
if Y1 =0 then return false % Y conclusive

Fig. 4. The algorithm AdjointPDR! for checking pub T p: the elements of negative
sequence are in L', while those of the positive chain are in L, with the only exception
of xp which is constantly the bottom lower set (). For xo, we fix b(zo) = L.

x are all obtained by (Unfold), that adds the principal T+, and by (Conflict),
that takes their meets with the chosen principal.

Since principals are in bijective correspondence with the elements of L, by
imposing to AdjointPDR(L!, bt b, pl) to choose a principal in (Conflict), we
obtain an algorithm, named AdjointPDR!, where the elements of the positive
chain are drawn from L, while the negative sequence is taken in L!. The algo-
rithm is reported in Fig.4 where we use the notation (z|Y), to emphasize
that the elements of the negative sequence are lower sets of elements in L.

All definitions and results illustrated in Sect. 3 for AdjointPDR are inherited®
by AdjointPDR}, with the only exception of Proposition 6.3. The latter does not
hold, as it prescribes a choice for (Conflict) that may not be a principal. In
contrast, the choice in Proposition 6.4 is, thanks to (5), a principal. This means
in particular that the simple initial heuristic is always applicable.

Theorem 15. All results in Sect. 3, but Proposition 6.3, hold for AdjointPDR'.

4.2 AdjointPDR! Simulates LT-PDR

The closest approach to AdjointPDR and AdjointPDR! is the lattice-theoretic
extension of the original PDR, called LT-PDR [19]. While these algorithms
exploit essentially the same positive chain to find an invariant, the main differ-
ence lies in the sequence used to witness the existence of some counterexamples.

! Up to a suitable renaming: the domain is (L', C) instead of (L, C), the parameters
are Lt bY bl pt instead of i, f, g, p and the negative sequence is Y instead of y.

Exploiting Adjoints in PDR 53

Definition 16 (Kleene sequence, from [19]). A sequence ¢ = ci,...,cn—1 Of
elements of L is a Kleene sequence if the conditions (C1) and (C2) below hold.
It is conclusive if also condition (CO) holds.

(C0) c1 T b(L), (C1) en-1 ¥ p, (C2) Vj € [k,n—2]. ¢j11 T b(cy).

LT-PDR tries to construct an under-approximation ¢,_; of b"~2(L) that
violates the property p. The Kleene sequence is constructed by trial and error,
starting by some arbitrary choice of ¢, _;.

AdjointPDR crucially differs from LT-PDR in the search for counterex-
amples: LT-PDR under-approximates the final chain while AdjointPDR over-
approximates it. The algorithms are thus incomparable. However, we can draw
a formal correspondence between AdjointPDR! and LT-PDR by showing that
AdjointPDR! simulates LT-PDR, but cannot be simulated by LT-PDR. In
fact, AdjointPDR! exploits the existence of the adjoint to start from an over-
approximation Y;,_; of p' and computes backward an over-approximation of the
set of safe states. Thus, the key difference comes from the strategy to look for
a counterexample: to prove ub [Z p, AdjointPDR! tries to find Y, _; satisfying
p € Y, 1 and ub € Y, 1 while LT-PDR tries to find ¢,_1 s.t. ¢,—1 Z p and
Cn—1 Mb

Theorem 17 below states that any execution of LT-PDR can be mimicked
by AdjointPDR!. The proof exploits a map from LT-PDR’s Kleene sequences ¢
to AdjointPDR!’s negative sequences meg(c) of a particular form. Let (LT, D)
be the complete lattice of upper sets, namely subsets X C L such that
X=x% {#/ € L|3z € X .2 C 2'}. There is an isomorphism —: (L', D) «—
(L', C) mapping each X C S into its complement. For a Kleene sequence
c=ck,...,cn—1 of LT-PDR, the sequence neg(c) &f =({ex}), s~ ({en1}h)
is a negative sequence, in the sense of Definition 3, for AdjointPDR!. Most impor-
tantly, the assignment ¢ — meg(c) extends to a function, from the states of
LT-PDR to those of AdjointPDR!, that is proved to be a strong simulation [24].

Theorem 17. AdjointPDR! simulates LT-PDR.

Remarkably, AdjointPDR!’s negative sequences are not limited to the images
of LT-PDR’s Kleene sequences: they are more general than the complement
of the upper closure of a singleton. In fact, a single negative sequence of
AdjointPDR! can represent multiple Kleene sequences of LT-PDR at once. Intu-
itively, this means that a single execution of AdjointPDR! can correspond to
multiple runs of LT-PDR. We can make this formal by means of the following
result.

Proposition 18. Let {c™ },,car be a family of Kleene sequences. Then its point-
wise intersection (), neg(c™) is a negative sequence.

The above intersection is pointwise in the sense that, for all j € [k,n — 1],
. def .
it holds (1,0, 1eg(™); 2 M, car(neg(e™)); = ~({er | m € MY intu-
itively, this is (up to neg(+)) a set containing all the M counterexamples. Note

54 M. Kori et al.

that, if the negative sequence of AdjointPDR! makes (A3) hold as an equality, as
it is possible with any simple heuristic (see Proposition 10), then its complement
contains all Kleene sequences possibly computed by LT-PDR.

Proposition 19. Let c be a Kleene sequence and'Y be the negative sequence s.t.
Y; = (b1)" 179 (pl) for all j € [kyn —1]. Then c¢; € =(Y;) for all j € [k,n — 1].

While the previous result suggests that simple heuristics are always the best
in theory, as they can carry all counterexamples, this is often not the case in
practice, since they might be computationally hard and outperformed by some
smart over-approximations. An example is given by (6) in the next section.

5 Instantiating AdjointPDR} for MDPs

In this section we illustrate how to use AdjointPDR! to address the max reach-
ability problem [1] for Markov Decision Processes.

A Markov Decision Process (MDP) is a tuple (4,5, s,,d) where A is a set of
labels, S is a set of states, s, € S is an initial state, and §: S x A — DS+ 1is a
transition function. Here DS is the set of probability distributions over S, namely
functions d: S — [0, 1] such that) s d(s) = 1, and DS+ 1 is the disjoint union
of DS and 1 = {x}. The transition function § assigns to every label a € A and
to every state s € S either a distribution of states or * € 1. We assume that

both S and A are finite sets and that the set Act(s) &t {a € A|d(s,a) # *} of
actions enabled at s is non-empty for all states.

Intuitively, the max reachability problem requires to check whether the proba-
bility of reaching some bad states § C S is less than or equal to a given threshold
A € [0,1]. Formally, it can be expressed in lattice theoretic terms, by consider-
ing the lattice ([0,1],<) of all functions d: S — [0, 1], often called frames,
ordered pointwise. The max reachability problem consists in checking ub < p for
p € [0,1]% and b: [0,1]° — [0,1]°, defined for all d € [0,1] and s € S, as

1 if s € 3,

det | A ifs=s, def
p(s) = . b(d)(s) = " N
{1 if s # s, aerggcit)%s) q,esd(s)-8(s,a)(s") if s & 0.

The reader is referred to [1] for all details.

Since b is not of the form f U for a left adjoint f (see e.g. [19]), rather
than using AdjointPDR, one can exploit AdjointPDR!. Beyond the simple ini-
tial heuristic, which is always applicable and enjoys negative termination, we
illustrate now two additional heuristics that are experimentally tested in Sect. 6.

The two novel heuristics make the same choices in (Candidate) and (Decide).
They exploit functions a: S — A, also known as memoryless schedulers, and the
function b, : [0,1]° — [0,1]° defined for all d € [0,1]° and s € S as follows:

ba d)(s d:ef ! if s € ﬂ’
@ie) {Zs/es d(s") - 8(s,a(s))(s’) otherwise.

Exploiting Adjoints in PDR 55

Since for all D € ([0,1]%)%, bX(D) = {d | b(d) € D} = N {d | ba(d) € D} and
since AdjointPDR! executes (Decide) only when b(z_1) ¢ Y%, there should exist
some « such that b, (zk—1) ¢ Yi. One can thus fix

Ca

l .
@Y) {p pelY ©)
{d|bal(d) € Yi} if (@Y)np =
Intuitively, such choices are smart refinements of those in (3): for (Candidate)
they are exactly the same; for (Decide) rather than taking bl (Y%), we consider a
larger lower-set determined by the labels chosen by «. This allows to represent
each Y; as a set of d € [0, 1] satisfying a single linear inequality, while using
bL(Y:) would yield a systems of possibly exponentially many inequalities (see
Example 21 below). Moreover, from Theorem 12, it follows that such choices
ensures negative termination.

Corollary 20. Let h be a legit heuristic defined for (Candidate) and (Decide)
as in (6). If ub £ p, then AdjointPDR';, terminates.

Ezxample 21. Consider the maximum reachability problem with threshold A = i
and 8 = {s3} for the following MDP on alphabet A = {a,b} and s, = so.

b,1 a5 a.l
S W J— o)
So¢ TS0 _____5S1 %533%1)
a,é b% > a,%

Hereafter we write d € [0, 1]5 as column vectors with four entries vg...v3 and
we will use - for the usual matrix multiplication. With this notation, the lower
set pt € ([0,1]%)! and b: [0,1]% — [0,1]° can be written as

vo+va
2
vo
1

:) max(¥1Etv2 vot2va,
l ZO ’ZO . ZO 2 K 3
p= {H [[roo]H <[t} and b([uz]) =l]
v3 v3 v3

Amongst the several memoryless schedulers, only two are relevant for us: ¢ def
def
(so—a, s1—a, ss—b, s3—a)and & = (sg— b, s1 — a, so— b, s3+— a).
By using the definition of b,: [0,1]° — [0, 1]°, we have that

! vy fvg ! vo+2vg
vy vo o o vot:
bg([ué]) =053 and bg([véjl) =052

v3 Ulo v3 Ulo

It is immediate to see that the problem has negative answer, since using ¢ in
4 steps or less, so can reach s3 already with probability % + %.

To illustrate the advantages of (6), we run AdjointPDR! with the simple
initial heuristic and with the heuristic that only differs for the choice in (Decide),
taken as in (6). For both heuristics, the first iterations are the same: several

56 M. Kori et al.

0w i P
‘F - {v2 |[1000]' vo S[Z}}

Frl s |[?é§8]' v S[g}

vo 3001 vo 1
def)
el
2 4020 2 4
v3 vg 1
3 3 -
0
vo vo 3
3 def) 2 111 b
FrEL A2 o 2 3 0]S]2
2 6032 2 8
v3 2 220 v3 3
10 8
3 030 1
aer| [0 1000] [vo 0
4 def| ol oy 0100 |vg oy _
F _{112|0010'112§U}_{
w3 000 1| |vg 0
def
FP 0

Fig. 5. The elements of the negative sequences computed by AdjointPDR! for the MDP
in Example 21. In the central column, these elements are computed by means of the
simple initial heuristics, that is F* = (b})*(p'). In the rightmost column, these elements
are computed using the heuristic in (6). In particular F* = {d | b¢(d) € F*~'} fori < 3,
while for i > 4 these are computed as F* = {d | be(d) € F~'}.

repetitions of (Candidate), (Conflict) and (Unfold) exploiting elements of the
positive chain that form the initial chain (except for the last element x,,_1).

=]

In the latter state the algorithm has to perform (Decide), since b(zs) ¢ p'.
Now the choice of z in (Decide) is different for the two heuristics: the former uses
bi(p') = {d | b(d) € p'}, the latter uses {d | b(d) € p'}. Despite the different
choices, both the heuristics proceed with 6 steps of (Decide):

R I

The element of the negative sequence F* are illustrated in Fig. 5 for both the
heuristics. In both cases, F° = () and thus AdjointPDR! returns false.

To appreciate the advantages provided by (6), it is enough to compare the
two columns for the F* in Fig. 5: in the central column, the number of inequalities
defining F? significantly grows, while in the rightmost column is always 1.

cooco
cooco
~ooo
cooo
~ooo
s

U CaCo U CaCo U CaCo U Ca

]Hpi)?,&

171

2121
‘|r§‘|r§‘|ri:|”f57]:47f37f2>-7_—17f0)7,1
1

1

cocoo
~oo0o
=lN =]
[ENIRI
cocoo
=1N =]

1
1

]Hf%m 222228 (@[

Whenever Y}, is generated by a single linear inequality, we observe that Y, =
{d €[0,1]% | 3 cq(rs - d(s)) < r} for suitable non-negative real numbers r and
rs for all s € S. The convex set Y} is generated by finitely many d € [0,1]°
enjoying a convenient property: d(s) is different from 0 and 1 only for at most
one s € S. The set of its generators, denoted by Gy, can thus be easily computed.

Exploiting Adjoints in PDR 57

We exploit this property to resolve the choice for (Conflict). We consider its sub
set 2, {d € Gy, | b(zx_1) < d} and define zp, 201 € [0,1]° for all s € S as

(7)

b(xk—1)(s) otherwise zp(s) otherwise

def | (NZk)(s) ifrs #0,2, #0 det) [2B(s)] ifrs =0,2, #0
zp(s) = 201(s) =

where, for u € [0,1], [u] denotes 0 if w = 0 and 1 otherwise. We call hCoB and
hCo01 the heuristics defined as in (6) for (Candidate) and (Decide) and as zp,
respectively zo1, for (Conflict). The heuristics hCoO1 can be seen as a Boolean
modification of hCoB, rounding up positive values to 1 to accelerate convergence.

Proposition 22. The heuristics hCoB and hCoO1 are legit.

By Corollary 20, AdjointPDR! terminates for negative answers with both
hCoB and hCo01. We conclude this section with a last example.

Ezample 23. Consider the following MDP with alphabet A = {a, b} and s, = s

(D a2
'3
aJC — () N 81 4)833 a,l
2 b

i) 1

12

and the max reachability problem with threshold A = 2 and 8 = {s3}. The
lower set pt € ([0,1]%)! and b: [0,1]% — [0,1]° can be written as

I V0o o ' vo ln1x5)1)0+2“i¢2)
p = (EieeesEl<m ma o] - i

With the simple initial heuristic, AdjointPDR! does not terminate. With the
heuristic hCo01, it returns true in 14 steps, while with hCoB in 8. The first 4
steps, common to both hCoB and hCo01, are illustrated below.

i A
i Wl]

Observe that in the first (Conflict) zg = zp1, while in the second zp1(s1) = 1
and zp(s1) = %, leading to the two different states prefixed by vertical lines.

cooo
[Ey——
cooo
= O ouln
)
—
w

w0

l=

lQ

&
cocoo
cooo
= O oulny
= OURUIN

= O ouly

—y

e

[T
v
e

6 Implementation and Experiments

We first developed, using Haskell and exploiting its abstraction features, a com-
mon template that accommodates both AdjointPDR and AdjointPDR!. It is a

58 M. Kori et al.

program parametrized by two lattices—used for positive chains and negative
sequences, respectively—and by a heuristic.

For our experiments, we instantiated the template to AdjointPDR! for MDPs
(letting L = [0, 1]%), with three different heuristics: hCoB and hCo01 from Propo-
sition 22; and hCoS introduced below. Besides the template (~100 lines), we
needed ~140 lines to account for hCoB and hCoO1, and additional ~100 lines
to further obtain hCoS. All this indicates a clear benefit of our abstract the-
ory: a general template can itself be coded succinctly; instantiation to concrete
problems is easy, too, thanks to an explicitly specified interface of heuristics.

Our implementation accepts MDPs expressed in a symbolic format inspired
by Prism models [20], in which states are variable valuations and transitions are
described by symbolic functions (they can be segmented with symbolic guards
{guard;};). We use rational arithmetic (Rational in Haskell) for probabilities
to limit the impact of rounding errors.

Heuristics. The three heuristics (hCoB, hCo01, hCoS) use the same choices in
(Candidate) and (Decide), as defined in (6), but different ones in (Conflict).
The third heuristics hCoS is a symbolic variant of hCoB; it relies on our sym-
bolic model format. It uses zg for z in (Conflict), where zg(s) = zp(s) if rs #0
or Zj = (. The definition of z5(s) otherwise is notable: we use a piecewise affine
function (t;-s+u;); for zg(s), where the affine functions (¢; - s +u;); are guarded
by the same guards {guard, }; of the MDP’s transition function. We let the SMT
solver Z3 [25] search for the values of the coefficients ¢;, u;, so that zg satisfies
the requirements of (Conflict) (namely b(zr—1)(s) < zs(s) < 1 for each s € S
with ry = 0), together with the condition b(zg) < zg for faster convergence. If
the search is unsuccessful, we give up hCoS and fall back on the heuristic hCoB.
As a task common to the three heuristics, we need to calculate Z;, = {d € Gy, |
b(xi—1) < d} in (Conflict) (see (7)). Rather than computing the whole set G,
of generating points of the linear inequality that defines Y}, we implemented an
ad-hoc algorithm that crucially exploits the condition b(zx—1) < d for pruning.

Experiment Settings. We conducted the experiments on Ubuntu 18.04 and
AWS t2.xlarge (4 CPUs, 16 GB memory, up to 3.0 GHz Intel Scalable Processor).
We used several Markov chain (MC) benchmarks and a couple of MDP ones.

Research Questions. We wish to address the following questions.

RQ1 Does AdjointPDR! advance the state-of-the-art performance of PDR algo-
rithms for probabilistic model checking?

RQ2 How does AdjointPDR!’s performance compare against non-PDR algo-
rithms for probabilistic model checking?

RQ3 Does the theoretical framework of AdjointPDR! successfully guide the
discovery of various heuristics with practical performance?

RQ4 Does AdjointPDR! successfully manage nondeterminism in MDPs (that
is absent in MCs)?

Experiments on MCs (Table 1). We used six benchmarks: Haddad-Monmege
is from [17]; the others are from [3,19]. We compared AdjointPDR! (with three

Exploiting Adjoints in PDR 59

Table 1. Experimental results on MC benchmarks. |S| is the number of states, P
is the reachability probability (calculated by manual inspection), A is the threshold
in the problem P <; X (shaded if the answer is no). The other columns show the
average execution time in seconds; TO is timeout (900s); MO is out-of-memory. For
AdjointPDR! and LT-PDR we used the tasty-bench Haskell package and repeated
executions until std. dev. is < 5% (at least three execs). For PrIC3 and Storm, we
made five executions. Storm’s execution does not depend on A: it seems to answer
queries of the form P <» A by calculating P. We observed a wrong answer for the
entry with (f) (Storm, sp.-num., Haddad-Monmege); see the discussion of RQ2.

Benchmark || P A AdjointPDR! LT-PDR PriC3 Storm

hCoB hCoO1 hCoS none lin. pol. hyb. sp.-num. sp.rat. sp.-sd.

. 0.01: .022 .6 341 1.383 23.301 M M
102 0.033 0.3 013 0.0 0659 0343 383 330 0 0 0.010 0.010 0.010
Grid 0.2 0.013 0.031 0.657 0.519 1.571 26.668 TO MO

10° <0.001 0.3 1.156 2187 5.633 126.441 TO TO TO MO 0.010 0017 0011
0.2 1.146 2133 5.632 161.667 TO TO TO MO

0.1 12909 7.969 55.788 TO TO TO MO MO
BRP 10° 0.035 0.01 1.977 8111 5.645 21.078 60.738 626.052 524.373 823.082 0.012 0.018 0.011
0.005 0.604 2261 2.709 1.429 12,171 254.000 197.940 318.840

0.9 1.217 68.937 0.196 TO 19.765 136.491 0.630 0.468

0.75 1.223 68.394 0.636 TO 19.782 132.780 0.602 0.467
10> 05 ° ! 0010 0.018 0.011

0.52 1.228 60.024 0.739 TO 19.852 136.533 0.608 0.474

Zero- 0.45 <0.001 0.001 0.001 <0.001 0.035 0.043 0.043 0.043
Conf

09 MO TO 7443 TO TO TO 0602 0465
75 M TO 15223 T T T 5 4

w05 0T © O 15.223 ° 0 O 05990470 har 969,103 0.031
052 MO TO TO TO TO TO 0488 0475

0.45 0.108 0.119 0.169 0.016 0.035 0.040 0.040 0.040

0.9 36.083 TO 0.478 TO 269.801 TO 0.938 0.686
3 0.4 35.961 TO 394.955 TO 271.885 TO 0.920 TO

Chain 10° 0.394 > 0.010 0.014 0.011
0.35 101.351 TO 454.892 435.199 238.613 TO TO TO

0.3 62.036 463.981 120.557 209.346 124.829 746.595 TO TO

09 12122 7318 TO TO TO TO 1878 2.053
Double- qga (g5 03 12120 204240 TO TO TO TO L9 2058 oo oo
Chain 0.216 12.096 19.540 TO TO TO TO 172170 TO

0.15 12.344 16.172 TO 16.963 TO TO TO TO

9 0.004 0.009 528 T 1.1 31915 T MO
Haddad- 41 0.7 0 004 0.009 85 o 88 3LIL5 o 0.011 0.011 1.560
Mo 0.75 0.004 0011 2357 TO 1209 32143 TO 712.086

mege

, 0.9 59721 61777 TO TO TO TO TO TO
10° 07 0.013 (1) 0.043 TO
075 60.413 63.050 TO TO TO TO TO TO

heuristics) against LT-PDR [19], PrIC3 (with four heuristics none, lin., pol.,
hyb., see [3]), and Storm 1.5 [11]. Storm is a recent comprehensive toolsuite
that implements different algorithms and solvers. Among them, our comparison
is against sparse-numeric, sparse-rational, and sparse-sound. The sparse engine
uses explicit state space representation by sparse matrices; this is unlike another
representative dd engine that uses symbolic BDDs. (We did not use dd since it
often reported errors, and was overall slower than sparse.) Sparse-numeric is a
value-iteration (VI) algorithm; sparse-rational solves linear (in)equations using
rational arithmetic; sparse-sound is a sound VI algorithm [26].2

2 There are another two sound algorithms in Storm: one that utilizes interval iter-
ation [2] and the other does optimistic VI [16]. We have excluded them from the
results since we observed that they returned incorrect answers.

60 M. Kori et al.

Table 2. Experimental results on MDP benchmarks. The legend is the same as Table 1,
except that P is now the maximum reachability probability.

Benchmark |5 P A AdjointPDR! Storm

hCoB hCo0O1 hCoS sp.-num sp.-rat. sp.-sd.

0.9 MO 0.172 TO
CDrive2 38 0.865 0.75 MO 0.068 TO 0.019 0.019 0.018
0.5 0.015 0.029 86.798

0.9 MO 3346 TO
TireWorld 8670 0.233 0.75 MO 3.337 TO
0.5 MO 6.928 TO
0.2 4.246 24.538 TO

0.070 0.164 0.069

Experiments on MDPs (Table 2). We used two benchmarks from [17]. We
compared AdjointPDR! only against Storm, since RQ1 is already addressed using
MCs (besides, PrIC3 did not run for MDPs).

Discussion. The experimental results suggest the following answers to the RQs.

RQ1. The performance advantage of AdjointPDR!, over both LT-PDR and
PrIC3, was clearly observed throughout the benchmarks. AdjointPDR! out-
performed LT-PDR, thus confirming empirically the theoretical observation in
Sect. 4.2. The profit is particularly evident in those instances whose answer is
positive. AdjointPDR! generally outperformed PrIC3, too. Exceptions are in
ZeroConf, Chain and DoubleChain, where PrIC3 with polynomial (pol.) and
hybrid (hyb.) heuristics performs well. This seems to be thanks to the expres-
sivity of the polynomial template in PrIC3, which is a possible enhancement we
are yet to implement (currently our symbolic heuristic hCoS uses only the affine
template).

RQ2. The comparison with Storm is interesting. Note first that Storm’s sparse-
numeric algorithm is a VI algorithm that gives a guaranteed lower bound without
guaranteed convergence. Therefore its positive answer to P <; A may not be
correct. Indeed, for Haddad-Monmege with |S| ~ 103, it answered P = 0.5
which is wrong (() in Table1). This is in contrast with PDR algorithms that
discovers an explicit witness for P < X via their positive chain.

Storm’s sparse-rational algorithm is precise. It was faster than PDR algo-
rithms in many benchmarks, although AdjointPDR! was better or comparable
in ZeroConf (10*) and Haddad-Monmege (41), for A such that P < X is true.
We believe this suggests a general advantage of PDR algorithms, namely to
accelerate the search for an invariant-like witness for safety.

Storm’s sparse-sound algorithm is a sound VI algorithm that returns cor-
rect answers aside numerical errors. Its performance was similar to that of
sparse-numeric, except for the two instances of Haddad-Monmege: sparse-sound

Exploiting Adjoints in PDR 61

returned correct answers but was much slower than sparse-numeric. For these
two instances, AdjointPDR} outperformed sparse-sound.

It seems that a big part of Storm’s good performance is attributed to the
sparsity of state representation. This is notable in the comparison of the two
instances of Haddad-Monmege (41 vs. 103): while Storm handles both of them
easily, AdjointPDR! struggles a bit in the bigger instance. Our implementation
can be extended to use sparse representation, too; this is future work.

RQ3. We derived the three heuristics (hCoB, hCo01, hCoS) exploiting the theory
of AdjointPDR!. The experiments show that each heuristic has its own strength.
For example, hCo01 is slower than hCoB for MCs, but it is much better for MDPs.
In general, there is no silver bullet heuristic, so coming up with a variety of them
is important. The experiments suggest that our theory of AdjointPDR} provides
great help in doing so.

RQ4. Table 2 shows that AdjointPDR! can handle nondeterminism well: once a
suitable heuristic is chosen, its performances on MDPs and on MCs of similar
size are comparable. It is also interesting that better-performing heuristics vary,
as we discussed above.

Summary. AdjointPDR! clearly outperforms existing probabilistic PDR algo-
rithms in many benchmarks. It also compares well with Storm—a highly sophis-
ticated toolsuite—in a couple of benchmarks. These are notable especially given
that AdjointPDR! currently lacks enhancing features such as richer symbolic
templates and sparse representation (adding which is future work). Overall, we
believe that AdjointPDR! confirms the potential of PDR algorithms in proba-
bilistic model checking. Through the three heuristics, we also observed the value
of an abstract general theory in devising heuristics in PDR, which is probably
true of verification algorithms in general besides PDR.

References

1. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press (2008)

2. Baier, C., Klein, J., Leuschner, L., Parker, D., Wunderlich, S.: Ensuring the reli-
ability of your model checker: interval iteration for Markov decision processes.
In: Majumdar, R., Kuncak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 160—-180.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_8

3. Batz, K., et al.: PrIC3: property directed reachability for MDPs. In: Lahiri, S.K.,
Wang, C. (eds.) CAV 2020. LNCS, vol. 12225, pp. 512-538. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-53291-8_27

4. Bonchi, F., Ganty, P., Giacobazzi, R., Pavlovic, D.: Sound up-to techniques and
complete abstract domains. In: Dawar, A., Gradel, E. (eds.) Proceedings of LICS
2018, pp. 175-184. ACM (2018). https://doi.org/10.1145/3209108.3209169

5. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R.,
Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70-87. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-18275-4_7

6. Cimatti, A., Griggio, A.: Software model checking via IC3. In: Madhusudan, P.,
Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 277-293. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-31424-7_23

https://doi.org/10.1007/978-3-319-63387-9_8
https://doi.org/10.1007/978-3-030-53291-8_27
https://doi.org/10.1145/3209108.3209169
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/978-3-642-31424-7_23

62

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

M. Kori et al.

Cousot, P.: Partial completeness of abstract fixpoint checking. In: Choueiry, B.Y.,
Walsh, T. (eds.) SARA 2000. LNCS (LNAI), vol. 1864, pp. 1-25. Springer, Heidel-
berg (2000). https://doi.org/10.1007/3-540-44914-0_1

Cousot, P.: Principles of Abstract Interpretation. MIT Press (2021)

Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of POPL 1977, pp. 238-252. ACM (1977). https://doi.org/10.1145/512950.512973
Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order, 2nd Edn. Cam-
bridge University Press (2002)

Dehnert, C., Junges, S., Katoen, J.-P.; Volk, M.: A storm is coming: a modern prob-
abilistic model checker. In: Majumdar, R., Kuné¢ak, V. (eds.) CAV 2017. LNCS,
vol. 10427, pp. 592-600. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63390-9_31

Eén, N., Mishchenko, A., Brayton, R.K.: Efficient implementation of property
directed reachability. In: Bjesse, P., Slobodova, A. (eds.) Proc. of FMCAD 2011.
pp- 125-134. FMCAD Inc. (2011). http://dl.acm.org/citation.cfm?id=2157675
Feldman, Y.M.Y., Sagiv, M., Shoham, S., Wilcox, J.R.: Property-directed reach-
ability as abstract interpretation in the monotone theory. Proc. ACM Program.
Lang. 6(POPL), 1-31 (2022). https://doi.org/10.1145/3498676

Giacobazzi, R., Ranzato, F., Scozzari, F.: Making abstract interpretations com-
plete. J. ACM 47(2), 361-416 (2000). https://doi.org/10.1145/333979.333989
Gurfinkel, A.: IC3, PDR, and friends (2015). https://arieg.bitbucket.io/pdf/
gurfinkel_ssft15.pdf

Hartmanns, A., Kaminski, B.L.: Optimistic value iteration. In: Lahiri, S.K., Wang,
C. (eds.) CAV 2020. LNCS, vol. 12225, pp. 488-511. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-53291-8_26

Hartmanns, A., Klauck, M., Parker, D., Quatmann, T., Ruijters, E.: The quanti-
tative verification benchmark set. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019.
LNCS, vol. 11427, pp. 344-350. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17462-0-20

Hoder, K., Bjgrner, N.: Generalized property directed reachability. In: Cimatti, A.,
Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 157-171. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-31612-8_13

Kori, M., Urabe, N., Katsumata, S., Suenaga, K., Hasuo, I.: The lattice-theoretic
essence of property directed reachability analysis. In: Shoham, S., Vizel, Y. (eds.)
Proceedings of CAV 2022, Part I. Lecture Notes in Computer Science, vol.
13371, pp. 235-256. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-
031-13185-1_12

Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585-591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-147

Lange, T., Neuhaufler, M.R., Noll, T., Katoen, J.-P.: IC3 software model checking.
Int. J. Softw. Tools Technol. Trans. 22(2), 135-161 (2019). https://doi.org/10.
1007/s10009-019-00547-x

Levy, P.B.: Call-By-Push-Value: A Functional/Imperative Synthesis, Semantics
Structures in Computation, vol. 2. Springer, Dordrecht (2004). https://doi.org/
10.1007/978-94-007-0954-6

MacLane, S.: Categories for the Working Mathematician. Graduate Texts in Math-
ematics, vol. 5. Springer-Verlag, New York (1971)

https://doi.org/10.1007/3-540-44914-0_1
https://doi.org/10.1145/512950.512973
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31
http://dl.acm.org/citation.cfm?id=2157675
https://doi.org/10.1145/3498676
https://doi.org/10.1145/333979.333989
https://arieg.bitbucket.io/pdf/gurfinkel_ssft15.pdf
https://arieg.bitbucket.io/pdf/gurfinkel_ssft15.pdf
https://doi.org/10.1007/978-3-030-53291-8_26
https://doi.org/10.1007/978-3-030-17462-0_20
https://doi.org/10.1007/978-3-030-17462-0_20
https://doi.org/10.1007/978-3-642-31612-8_13
https://doi.org/10.1007/978-3-031-13185-1_12
https://doi.org/10.1007/978-3-031-13185-1_12
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/s10009-019-00547-x
https://doi.org/10.1007/s10009-019-00547-x
https://doi.org/10.1007/978-94-007-0954-6
https://doi.org/10.1007/978-94-007-0954-6

24.
25.

26.

27.

28.

29.

30.

Exploiting Adjoints in PDR 63

Milner, R.: Communication and Concurrency. Prentice-Hall Inc, USA (1989)

de Moura, L., Bjgrner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337-340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78300-3_24

Quatmann, T., Katoen, J.-P.: Sound value iteration. In: Chockler, H., Weis-
senbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 643-661. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-96145-3_37

Seufert, T., Scholl, C.: Sequential verification using reverse PDR. In: Grofle, D.,
Drechsler, R. (eds.) Proceedings of MBMV 2017, pp. 79-90. Shaker Verlag (2017)
Seufert, T., Scholl, C.: Combining PDR and reverse PDR for hardware model
checking. In: Madsen, J., Coskun, A.K. (eds.) Proceedings of DATE 2018, pp.
49-54. IEEE (2018). https://doi.org/10.23919/DATE.2018.8341978

Seufert, T., Scholl, C.: fbPDR: In-depth combination of forward and backward
analysis in property directed reachability. In: Teich, J., Fummi, F. (eds.) Proceed-
ings of DATE 2019, pp. 456—461. IEEE (2019). https://doi.org/10.23919/DATE.
2019.8714819

Suda, M.: Property directed reachability for automated planning. In: Chien, S.A.,
Do, M.B., Fern, A., Ruml, W. (eds.) Proceedings of ICAPS 2014. AAAI (2014).
https://doi.org/10.1613/jair.4231

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-319-96145-3_37
https://doi.org/10.23919/DATE.2018.8341978
https://doi.org/10.23919/DATE.2019.8714819
https://doi.org/10.23919/DATE.2019.8714819
https://doi.org/10.1613/jair.4231
http://creativecommons.org/licenses/by/4.0/

	Exploiting Adjoints in Property Directed Reachability Analysis
	1 Introduction
	2 Preliminaries and Notation
	3 Adjoint PDR
	3.1 Progression
	3.2 Heuristics
	3.3 Negative Termination

	4 Recovering Adjoints with Lower Sets
	4.1 AdjointPDR"3223379 : Positive Chain in L, Negative Sequence in L"3223379
	4.2 AdjointPDR"3223379 Simulates LT-PDR

	5 Instantiating AdjointPDR"3223379 for MDPs
	6 Implementation and Experiments
	References

