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Blood-based systems biology biomarkers 
for next-generation clinical trials in 
Alzheimer’s disease
Harald Hampel, MD, PhD; Andrea Vergallo, MD; Mohammad Afshar, MD, PhD;  
Leyla Akman-Anderson, MD, PhD; Joaquín Arenas, PhD; Norbert Benda, MD;  
Richard Batrla, MD; Karl Broich, MD; Filippo Caraci, MD, PhD; A. Claudio Cuello, MD; 
Enzo Emanuele, MD, PhD; Marion Haberkamp, MD; Steven J. Kiddle, PhD;  
Alejandro Lucía, MD, PhD; Mark Mapstone, PhD; Steven R. Verdooner, MD;  
Janet Woodcock, MD; Simone Lista, PhD, for the Alzheimer Precision Medicine 
Initiative (APMI)

Alzheimer’s disease (AD)—a complex disease showing multiple pathomechanistic alterations—is triggered by nonlinear 
dynamic interactions of genetic/epigenetic and environmental risk factors, which, ultimately, converge into a biologically 
heterogeneous disease. To tackle the burden of AD during early preclinical stages, accessible blood-based biomarkers 
are currently being developed. Specifically, next-generation clinical trials are expected to integrate positive and negative 
predictive blood-based biomarkers into study designs to evaluate, at the individual level, target druggability and potential 
drug resistance mechanisms. In this scenario, systems biology holds promise to accelerate validation and qualification for 
clinical trial contexts of use—including proof-of-mechanism, patient selection, assessment of treatment efficacy and safety 
rates, and prognostic evaluation. Albeit in their infancy, systems biology-based approaches are poised to identify relevant 
AD “signatures” through multifactorial and interindividual variability, allowing us to decipher disease pathophysiology 
and etiology. Hopefully, innovative biomarker-drug codevelopment strategies will be the road ahead towards effective 
disease-modifying drugs.
© 2019, AICH – Servier Group Dialogues Clin Neurosci. 2019;21(2):177-191. doi:10.31887/DCNS.2019.21.2/hhampel

Keywords: Alzheimer’s disease; systems biology; precision medicine; blood-based biomarker; context of use;  
pathophysiology; clinical trial; predictive biomarker; biomarker-drug codevelopment 

Alzheimer’s disease: systems biology and  
blood multiomics data 

Recent years have witnessed an increasing understanding 
of the molecular and cellular underpinnings of Alzheimer’s 
disease (AD). Polygenic AD is a chronic neurodegenera-
tive disease with an intrinsic genomic susceptibility and a 
complex and heterogeneous pathophysiology. This involves 
complex and intertwined pathophysiological cascades that, 
ultimately, induce axonal degeneration and deterioration of 

synaptic integrity.1 AD is a multifactorial disease involving 
genomic/epigenomic, interactome, and environmental 
factors. Next-generation molecular and high-throughput 
technologies hold promise to elucidate the mechanisms and 
networks underlying the complexity of AD. Consequently, 
comprehensive holistic and systems-level approaches are 
needed to characterize a complex multifactorial disease such 
as AD.2 
The paradigm of systems biology aims: (i) to understand 
complex biological systems by integrating large multidi- C
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mensional quantitative datasets; and (ii) to examine the 
relationships between components using computational 
modeling.3 The analysis of large and heterogeneous data-
sets poses a novel data analytical and modeling challenge, 
where the number of observations (n) is significantly smaller 
than the number of attributes (p).4 This issue is even more 
prominent in systems biology using broad omic data. In this 
context, an unsupervised Formal Concept Analysis method, 
based on Galois lattices, may be used to extract all logical 
relations, and limit over-fitting issues.5 Systems biology is 

currently regarded as an exploration tool for neurodegenera-
tive diseases, including AD, that has the potential to discover 
new fundamental insights. While the current state of truly 
integrative systems-level semantic knowledge of preclinical 
AD is still in its infancy, when combined with valid and reli-
able biomarker discovery and validation, Systems biology 
will be a cornerstone for precision medicine.6-8

Notably, since AD shows peripheral manifestations, it may 
serve as an ideal use-case for systems biology. Multiple 
systems are affected in AD, including systemic immune 
response and inflammation,9,10 renal and hepatic clear-
ance,11,12 lipid and glucose metabolism,13-15 and xenobiotics 
from gut microbiome.16,17 Moreover, intercellular commu-
nication systems—including the glymphatic system18,19 
and extracellular vesicles20,21—have been reported. The 
study of peripheral blood—an easily accessible, informa-
tion-rich matrix in which these complex systems can be 
interrogated—is expected to expand our knowledge of the 
systems biology of AD.22,23

There are a growing number of studies investigating 
single omics levels (genomic/epigenomic, transcriptomic, 
proteomic, and metabolomic) of preclinical AD and many 
of these studies tell a consistent story within individual omic 
levels. Here, we attempt to concisely summarize the general 
convergent findings at each level. Since the initial identifi-
cation of the ε4 allele of the gene encoding apolipoprotein 
E (APOE ε4) as a risk gene variant for AD,24 numerous 
large-scale genome-wide association studies (GWAS) 
and meta-analyses of GWAS have been performed.25-27 
Moreover, recent studies using whole-exome sequencing, 
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prediction model for Individual Prognosis  
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whole-genome sequencing, and targeted sequencing have 
led to the identification of rare variants in other novel late-
onset AD genes.26 Besides the three identified causal gene 
mutations (amyloid precursor protein [APP], presenilin 1 
and 2 [PSEN1 and PSEN2]) for autosomal dominant early-
onset AD, more than 40 susceptibility genes/
loci have been identified for late-onset AD.26 
Most of these genes encode for functional 
pathways that are not obviously related to 
the primary amyloid β (Aβ) and tau prote-
opathy. Accordingly, they are involved 
in orthogonal pathways such as immune 
response and inflammation (eg, ATP-binding 
cassette transporter A7 [ABCA7]), synaptic 
function (eg, Myc box-dependent-inter-
acting protein 1 [BIN1]), and lipid metab-
olism (eg, phospholipase D3 [PLD3]). This 
list will surely be enlarged in the future 
as more genes/loci are discovered. For instance, a recent 
meta-analysis of AD on 9751 samples from Norway and 
the International Genomics of Alzheimer’s Project (IGAP) 
identified four novel risk loci: heparan sulfate-glucosamine 
3-dulfotransferase 1 (HS3ST1), immunoglobulin heavy 
variable 1-68 pseudogene (IGHV1-68), USP6 N-terminal 
like (USP6NL)/enoyl-CoA hydratase domain containing 3 
(ECHDC3), and benzodiazepine receptor associated protein 
1 (BZRAP1-AS).28

Transcriptomics involves the measurement and study 
of the complete set of RNA transcripts, produced by the 
genome, and affecting protein expression and other cellular 
operations.29 Whole-transcriptome sequencing (RNAseq) 
technology, using blood leukocytes, is a promising next- 
generation approach that has advantages for clinical 
trials. RNAseq is very efficient and has a broad range of 
detection.30 Transcript expression goes beyond genome 
expression, reflecting state dependent demands on the 
organism, including long-noncoding RNAs (lncRNAs) 
and micro RNAs (miRNAs). Transcriptomic analysis can 
provide greater biological resolution viewed as coexpres-
sion networks31 that may be more valid and reliable for 
measuring perturbations of AD-relevant metabolic path-
ways.32 To date, transcriptomic studies in AD revealed 
alterations in lncRNA and miRNA expression reflecting 
aging and AD-related alterations in synaptic function,33 
neurovascular coupling,34 immune response,35 and energy 
metabolism and mitochondrial function.36 

Proteins are the key functional molecules in biological 
systems providing structural, functional, and regulatory 
control of cells, tissues, organs, apparatuses, and systems. 
Proteins change in response to the demands of the organism 
in real time and, as a result, the proteome is dynamic. While 

early attempts at measuring the key prote-
opathy of AD have been disappointing,37 
recent attempts using newer technologies 
have been more successful.38 Accordingly, 
numerous studies showed consistent alter-
ations of immune,39 inflammatory,40 neuro-
trophic,41 and vascular-related proteins that 
may be promising candidates for proteomic 
blood biomarkers.

The metabolome consists of low-molecular 
weight compounds representing the end 
products of metabolism. With the advent 

of high-resolution mass spectrometry-based technologies 
over the past decade, numerous blood metabolomic AD 
markers have been reported, including those reflecting 
immune response,42 neurotransmitter biosynthesis43 lipid 
and energy metabolism,44 and oxidative stress.45

While the major findings highlighted above suggest several 
compelling lines of biological dysfunction, it is clear that 
integration across the multiple levels of inquiry will yield 
much more information about the global processes involved 
in the preclinical AD state. Consequently, there is scien-
tific rationale for creating multiomics panels which span 
multiple levels of systems biology to yield more reliable 
and informative properties. Although relevant approaches 
are emerging,46,47 the ultimate success of using systems-level 
biomarkers in clinical trials will depend on the construc-
tion of robust multiomic panels and their implementation 
by translational scientists.48

Contexts of use for blood-based biomarkers

Blood (plasma/serum) is unquestionably the most appro-
priate biological matrix for use in large exploratory studies. 
Given the benefits of blood-based biomarkers in terms of 
cost- and time-effectiveness, compared with the use of 
cerebrospinal fluid (CSF) or neuroimaging biomarkers, 
blood-based biomarkers can serve as the first step in a 
multistage approach similarly to the processes employed 
in other diseases (eg, cancer, cardiovascular disease, and 

Blood-based  
biomarkers may  

help tackle  
the burden of  

Alzheimer disease  
during early  

preclinical stages
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infectious disease). This multistep path can facilitate and 
optimize the early diagnosis of disease.49 The first steps 
necessary for developing blood-based biomarkers for AD 
diagnosis should aim at establishing the specific contexts 
of use (COUs), “a statement that describes the manner 
and purpose of use for the biomarker in drug develop-
ment”(Table I).50

Diagnostic
A diagnostic biomarker would help distinguish AD patients 
from individuals with normal cognitive aging. Ideally, it 
would differentiate AD and other dementias as well. 
Currently, this can be challenging without the use of lumbar 
puncture,51,52 expensive brain imaging,53 or post-mortem 
histopathology.54 It would also have to complement the 
diagnostic routines that are currently available in primary 
or in secondary health care. Each of these settings should 
be considered as two separate COUs due to differences in 
patients and routines. Diagnostic blood-based biomarkers 
for AD have been the most researched COU to date.50,55 
Despite primary health care being by far the largest potential 
application area, most study populations are not representa-
tive of this setting.49,50

Population screening
Screening for AD or for future risk of AD in the general 
population would have to meet the Wilson and Jungner 

general screening criteria,56 requiring, for example, that: 
(i) useful treatments exist; (ii) facilities for diagnosis and 
treatment exist; (iii) an agreed definition of on who to treat 
as a patient to avoid “diagnosis creep” exists57; (iv) the test 
is accurate enough so that the cost of false positives does 
not outweigh the benefits of the test. Presently, none of these 
criteria are fully addressed.

Stratification into clinical trials
Biomarkers that have been or could be accurately measured 
in blood are already used to define eligibility for prevention 
trials. For example, in familial AD, the presence of a disease-
causing mutation is an eligibility criteria for many trials.58,59 
Genetic variants associated with late-onset AD increase 
the overall disease prevalence, but have poor disease pene-
trance. Certain gene variants, however, including APOE 
ε4, significantly increase the probability of developing AD; 
they have been used as eligibility criteria for clinical trials 
(available at: http://clinicaltrials.gov/show/NCT02565511 
and http://clinicaltrials.gov/show/NCT03131453).

The idea is that selecting patients at high risk of cognitive 
decline in prevention trials can greatly increase power to 
detect treatment efficacy.60 In the future, more complex and 
accurate blood tests may be used for this purpose. Addition-
ally, target treatments tailored to specific genetic variants 
or blood profiles should be pursued to develop stratified 

SETTING(S) CONTEXT(S) OF USE

Drug research &  
development pipelines
(biomarker-drug  
codevelopment programs)

Selection of trial participants

Assessment of drug mechanism of action (proof of mechanism)

Dose optimization

Dose response monitoring

Efficacy maximization; minimization of toxicity and adverse events

Clinical management Screening subjects for existing AD pathophysiology (filtering the access to CSF and/or PET)

Predicting the clinical onset in subjects proven positive for AD pathophysiology to facilitate/
optimize enrollment in clinical trials and access to future disease-modifying therapies

Assessment of diagnosis, disease stage, and prognosis

Monitoring the disease progression

Table I. Biomarkers: context(s) of use within distinct settings.
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medicine approaches, either in prevention or dementia-stage 
trials, according to precision medicine. Current anti-Aβ trials 
require evidence of brain or CSF Aβ pathology as inclu-
sion criteri for AD patients.61 Emerging blood biomarker 
candidates showed promise for predicting the presence of 
Aβ pathology in the brain concordant with results shown 
by amyloid positron emission tomography (PET) inves-
tigations.38 These tests might be used to identify patients 
eligible for anti-Aβ trials, either directly or more likely as 
a prescreen. This approach is useful to target other aspects 
of AD pathophysiology, and, if biomarkers (and treatments) 
are being developed successfully, they could then serve to 
guide treatment decisions (ie, “biomarker-guided therapy” 
with “theragnostic” biomarkers).

Disease monitoring
Biological markers of reflecting core aspects of pathophys-
iology and pathology, including Aβ peptides, tau protein, 
and regional brain volumes, are currently employed in clin-
ical trials as secondary outcomes, since serial biomarker 
alterations can be standardized and precisely and objec-
tively quantified across short time intervals compared 
with complex measures of cognitive decline.62 If blood 
biomarkers were highly predictive of core pathophysiology 
and pathology, both cross-sectionally and longitudinally, 
they could also replace more established CSF and molecular 
neuroimaging biomarkers.

Treatment response monitoring
Disease monitoring biomarkers, accurately indicating the 
effect of therapy, should aid mapping of treatment response. 
In cases where they were required to evaluate safety and 
efficacy, they could be considered as companion diagnostic. 
The appealing notion that codevelopment of treatments and 
companion diagnostics will be required for successful AD 
trials needs to be further substantiated.

Recommendations
Across all potential COUs, 1039 studies have been 
performed to develop blood tests for AD and related pheno-
types.50 Most investigations were academic discovery stage 
studies, with no blood-based tests conclusively validated 
and qualified to any meaningful COU for AD. A growing 
number of promising candidates have been discovered 
and partly validated in independent studies and are going 
to be further tested,63 standardized, and qualified. It is not 
surprising, however, that a number of promising candidate 

tests have failed to replicate as well.64-67 For this reason, 
standardized reporting using the “Transparent Reporting 
of a multivariable prediction models for Individual Prog-
nosis Or Diagnosis” (TRIPOD)68 and preanalytical variable 
guidelines are recommended.69 Similarly, the release of all 
negative findings, prediction model coefficients, study data, 
and analysis scripts is advocated to reduce barriers to future 
research and replication.70

Finally, researchers are encouraged to follow the checklist 
for developing a clinically useful blood-based biomarker.50 
A key aspect of developing a blood test for AD is to decide 
on a COU and, then, to develop relevant evidence: this is 
designated as the “industrial approach.” However, most 
research in this area has followed the “academic approach,” 
that is, first developing a biomarker of disease status and 
then looking for other COUs (Figure 1). A problem with the 
latter approach is that the evidence needed to demonstrate 
utility in a COU might differ from that typically found in a 
case-control cohort (eg, the cohort might not be represen-
tative of the COU [amyloid prevalence, disease stage]), the 
cohort might not have all the relevant measures, or the best 
biomarkers for each COU might differ.49,70

Positive and negative predictive biomarkers 
detecting target druggability and drug- 
resistance mechanisms

Current drug therapies for AD are considered transiently 
(“symptomatic”) biologically effective and could not 
substantiate clinically meaningful disease-modifying 
outcomes.71-73 The US Food and Drug Administration 
(FDA) appealed for a new draft industrial guidance to 
develop AD drugs, including those for early-stage AD.74 
Thus, there is an urgent medical need for drugs slowing 
the progression of the pathophysiological cascade causing 
synaptic dysfunction and neurodegeneration in AD.75,76 
The identification of new molecular targets involved in 
AD pathophysiology represents the essential step to inves-
tigate possible disease-modifying drugs counteracting the 
progression of the disease. Nevertheless, when considering 
pharmacological validation of new AD drug candidates, the 
need to develop newer transgenic models with more trans-
lational value to the human condition should be considered. 
Effective drugs in currently available AD animal models 
do not necessarily translate as disease-modifying drugs in 
humans.77,78 The introduction of transgenic rodent models of 
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AD-like Aβ pathology represented a positive development 
in this direction.79,80 The repeated failures of several poten-
tial disease-modifying drugs in Phase III clinical trials led to 
question the right target and the Aβ hypothesis.81 However, 
it should be considered that, frequently, AD patients 
recruited for clinical trials were already at a too advanced 
and potentially irreversible (decompensated) clinical stage 
of the disease (systems failure) and were not precisely 
selected using validated and qualified biomarkers.75 Never-
theless, the case remains that late-stage therapies are likely 
bound to show only minimal effects or fail.82 Therefore, 
early preclinical disease stage therapeutic trials focusing 
on Aβ, tau protein, and other disease-aggravating targets 
would probably have a better chance of delaying/halting 
AD-related pathophysiology.

According to this scenario, defining and validating appro-
priate biomarkers is crucial for obtaining an early diagnosis 
of AD and assess the efficacy of disease-modifying drug 
treatments for AD,83,84 as stated by the FDA and by the Euro-

pean Medicines Agency (EMA).85 The recent revision of the 
diagnostic criteria developed by the National Institute on 
Aging and the Alzheimer’s Association (NIA-AA) Working 
Group shifts the definition of the AD “construct” from symp-
tomatic to biological and, specifically, introduces the use of 
biological markers—in the “A/T/N” classification scheme—
as the new criteria reflecting AD pathophysiology.86 The 
framework of the A/T/N scheme includes both a CSF and 
a neuroimaging biomarker in each of the three biomarker 
groups to identify the preclinical stage of AD and predict 
the following cognitive decline.86 In particular, “A” refers 
to biomarkers of Aβ pathology, ie, the 42-amino acid-long 
Aβ peptide (Aβ1-42) in the CSF or amyloid PET); “T” refers 
to biomarkers of tau pathology, ie, CSF phospho tau (p-tau) 
or tau PET; “N” refers to biomarkers of neurodegeneration 
or neuronal injury, ie, CSF total tau (t-tau), 18F-fluorodeoxy-
glucose [FDG]-PET (18F-FDG-PET), or structural magnetic 
resonance imaging (MRI). These advanced unbiased biolog-
ical criteria are required to better design clinical trials aimed 
at identifying disease-modifying compounds.86,87

Create case-control
cohort

Discover biomarker
correlation with

disease status

Examine correlation
with relevant clinical

end points

Key collaboration
point

Key collaboration
point

Source of relevant
expertise

Source of relevant
expertise

Academic
approach

Define purpose of
new biomarker

Identify fitness for
purpose of potential

biomarker

Industrial
approach

Identify 
methods

Examine fitness 
for purpose

Examine in clinical
context

Clinical use with
continual quality

improvement

Context of useContext of use

Reproduced with permission from ref 50: Blood-based biomarkers
for Alzheimer disease: mapping the road to the clinic. Nat Rev Neurol. 
2018;14(11):639-652. 
doi:10.1038/s41582-018-0079-7. 
Copyright © 2018 Springer Nature.

Figure 1. Potential collaboration points between academia and industry. Academic and industrial approaches to biomarker 
development are inherently different, but combining these approaches could be extremely useful. Close collaboration  
between industry and academia would allow sharing of expertise in product testing, access to cohorts and clinical data,  
and sharing of ideas and theories with regard to clinical end points and context. By merging the two approaches, a method 
whereby the context of use is the primary focus throughout the process can be established. This model enabled synergistic 
development of a new biomarker between academics and industrial partners, sharing a wealth of experience. 
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When referring to both drug development and clinical trials, 
high costs, insufficient accessibility, and invasiveness of 
CSF biomarkers need to be critically assessed compared 
with blood-based biomarkers.5 Once validated in indepen-
dent large-scale cohorts, blood-based biomarkers will likely 
play a critical role to recognize—as early as in primary 
care settings—individuals with high risk of an early AD 
stage and to send these individuals to specialized centers 
where a confirmatory diagnosis can be done and the “A+/
T+/N+ biomarker profile can be established.86 The useful-
ness of blood-based biomarkers further increases when we 
consider the possibility that disease-modifying compounds, 
currently in Phase II/III clinical trials (eg, BAN2401 [Eisai], 
Aducanumab [Biogen] or Gantenerumab [Hoffmann-La 
Roche], or anti-tau therapies), might be approved in the 
coming future. In this scenario, blood-based biomarkers will 
increase the probability to get access to these treatments and 
will provide a fast and cost-effective rapid test to detect AD 
and, then, establish the eligibility of patients for inclusion 
into new clinical trials with new “potential” disease-mod-
ifying drugs.

When considering the specific context in drug develop-
ment, blood-based biomarkers should be validated and 
qualified for a specific COU, including assessment of 
mechanism of action (target engagement), dose optimiza-
tion, efficacy maximization, and monitoring of both drug 
response and safety.50,85 Once a blood-based biomarker is 
validated for all or some of the above mentioned COUs, 
it can be implemented in clinical trials, designed to iden-
tify disease-modifying agents, and combined with specific 
neuropsychological tests assessing both episodic memory 
and other relevant cognitive domains (ie, executive dysfunc-
tion).76

Different blood-based biomarkers have been studied in the 
last 5 years, although preliminary evidence of validation is 
available only for the Aβ1-42/40-amino acid-long Aβ peptide 
(Aβ1-40) ratio, the β-site amyloid precursor protein cleaving 
enzyme 1 (BACE-1), t-tau, and p-tau.50

Recent studies using ultrasensitive analytical assays (Single 
Molecule Array [SiMoATM] platform) and fully automated 
immunoassays showed that plasma Aβ1-42 concentrations 
and, particularly, the Aβ1-42/Aβ1-40 ratio predict the risk 
of progression to mild cognitive impairment (MCI) or 
dementia in cognitively normal individuals.88 Recent studies 

showed that preconcentration of plasma Aβ peptides via 
immunoprecipitation substantially facilitated their immu-
nological measurements.89 Plasma Aβ1-42 concentrations 
and Aβ1-42/Aβ1-40 ratio correlate with conventional and 
validated AD biomarkers essential to detect an A+/T+/N+ 
biomarker profile,38,88,90,91 such as CSF Aβ1-42 concentra-
tions and brain Aβ deposition (as assessed by PET).88,90 The 
inverse correlation found between plasma Aβ1-42 reduction 
and brain Aβ deposition might be useful for future clin-
ical trials using monoclonal antibodies directed against Aβ 
(ie, Aducanumab). Indeed, the decrease of plasma Aβ1-42 
concentrations can predict Aβ positivity in subjective 
cognitive decline, MCI, and AD dementia.90 In this regard, 
decreased plasma Aβ1-42 and increased nerve growth factor 
precursor (proNGF) concentrations combined with inflam-
matory biomarkers predict the worsening of “latent” AD 
pathophysiology and the subsequent cognitive decline in 
Down syndrome.93 The ability of Aβ1-42/Aβ1-40 ratio to predict 
cognitive decline might be useful not only for early diag-
nosis, but also to monitor disease evolution differently from 
CSF Aβ1-42, which is stable over time and not useful for 
predicting disease progression.85,94 This novel evidence, 
when validated in long-term longitudinal (24 to 36 months) 
studies involving large cohorts, will be crucial to identify the 
specific COU of Aβ1-42/Aβ1-40 ratio as a novel biomarker to 
assess the mechanism of action of disease-modifying drugs 
on the target Aβ (target engagement). We can hypothesize 
that a disease-modifying drug able to bind Aβ will prevent 
both plasma Aβ1-42 reduction and brain Aβ deposition as well 
as related subsequent brain atrophy and cognitive decline.

Another approach is to demonstrate target engagement of 
drugs affecting Aβ processing such as γ-secretase modula-
tors or BACE-1 inhibitors.85 Plasma BACE-1 concentrations 
are higher in MCI individuals who progressed to AD, over 
a 3-year follow-up, compared with stable MCI.95,96 Plasma 
BACE-1 activity can predict disease progression; however, 
this novel COU needs to be validated in independent clinical 
trials.

When moving to the “tau scenario” of AD, recent highly 
sensitive immunoassays have been assessed for their 
potential in using plasma t-tau as a reliable blood-based 
biomarker for subject/patient selection (screening in 
primary setting) and AD prognosis.50,97-99 It is known that: 
(i) plasma t-tau concentrations are significantly increased 
in AD patients compared with controls100; (ii) blood-
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based p-tau is increased in AD patients and MCI individ-
uals compared with controls101-103 and plasma p-tau181 is a 
more sensitive and specific predictor of elevated brain Aβ 
deposition than t-tau104; (iii) high baseline concentrations 
of plasma t-tau in the Alzheimer’s Disease Neuroimaging 
Initiative (ADNI) cohort correlated with increased rates of 
atrophy (as assessed by MRI), hypometabolism (as assessed 
by 18F-FDG-PET), and the consequent cognitive decline98; 
(iv) higher baseline concentrations of plasma t-tau in MCI 
individuals are associated with greater cognitive decline 
at 15 months not correlating with brain Aβ deposition.105 
Whether the increased concentrations of plasma t-tau can be 
considered a specific biomarker for AD or just a prognostic 
marker for nonspecific cognitive decline is still debated.85 
Recently, Chen and colleagues, using a highly sensitive 
detection platform combined with antibodies directed 
against the N-terminus of tau protein, found that N-termi-
nal-detected tau (NT1) in plasma was able to discriminate 
between controls and AD or MCI-AD patients. Plasma NT1 
did not predict disease progression, but it could be consid-
ered a potential blood-based screening test for AD/AD-MCI 
useful to improve the selection of individuals eligible for 
clinical trials and to assess the clinical efficacy of tau-di-
rected immunotherapies.106 

Overall, the above considerations indicate a COU for blood-
based biomarkers for better patient selection in clinical trials 
designed to assess the efficacy of investigative disease-mod-
ifying drugs.50 This is a prospective scenario given the slow 
evolution of cognitive decline (12 to 24 months) in early 
AD, as indicated by psychometric test data. As a conse-
quence, well-validated blood-based biomarkers, integrated 
into a single panel, will help examine target druggability and 
resistance mechanisms, thus increasing the predictability of 
cognitive outcome changes in response to drug treatments. 
This innovation will enable to reduce costs and resources 
required by clinical trial pipelines.107

Regulatory viewpoint of biomarker-drug  
codevelopment towards individualized  
therapies for Alzheimer disease

CSF, as well as MRI and PET biomarkers, has been qual-
ified by the EMA for the enrichment of study populations 
in pivotal clinical trials.108 However, these diagnostic 
biomarkers are either considered invasive or expensive 
and there is a clear need for more practical, less invasive, 

and less costly blood-based biomarkers.86,109 Recently, 
plasma neurofilament light chain (NFL) protein emerged 
as a promising blood-based biomarker for neurodegener-
ation in neurodegenerative diseases as well as plasma Aβ 
measures.38,91,110,111 Whereas these examples for candidate 
blood-based biomarkers are considered promising, none of 
them can currently detect preclinical AD with reasonable 
diagnostic accuracy. Up to now, they have been mostly used 
as exploratory end points in clinical trials. However, their 
role as prescreening tools for selecting individuals (before 
more expensive and more invasive biomarkers are used) 
could be useful and, from a regulatory perspective, more 
qualification work in this direction is endorsed.112,113

Predictive biomarkers are used to identify treatment-re-
sponsive patient subgroups. The usefulness of a biomarker 
to identify patients eligible to be treated with a new drug 
depends on the statistical interaction between biomarker 
and drug, ie, on the difference in the effect size between 
biomarker-positive and -negative patients. The biomarker is 
called predictive with respect to a given drug if this differ-
ence is positive. Obviously, empirical demonstration that a 
biomarker is predictive in AD based on usual clinical data 
would require further corroboration in a well-powered clin-
ical trial. Biomarker-drug codevelopment has been useful in 
recent years, especially in oncology, but remains a difficult 
task in AD due to the slow course of the disease and the 
lack of validated end points or surrogates, especially if early 
treatment at prodromal stages is contemplated.

Investigating pathway-based targeted drugs simultaneously 
in different pathologies in innovative study designs, such 
as recently proposed master protocols, could contribute 
to more efficient development. However, much effort is 
still required to explore and confirm reasonable predictive 
biomarkers based on clinical end points that are believed 
to predict the treatment effect. More sensitive clinical tools 
that can detect changes during early and preclinical stages 
of AD need to be developed.114,115

The difficulties in demonstrating the predictivity of a 
biomarker create regulatory challenges. If only biomark-
er-positive patients are studied and there is inadequate 
external evidence for a differential treatment benefit, (for 
example, compelling mechanistic data or external control 
natural history information), the utility of the biomarker 
is unknown due to the lack of evidence in the nonselected 
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group. In such cases, studying both biomarker-positive and 
-negative patients will be necessary to obtain regulatory 
approval for the use of the drug only in a biomarker-iden-
tified subgroup.

To foster investigation of targeted therapies using predictive 
biomarkers, regulators are prepared to discuss and advise 
on new, more sensitive end points as well as on statistical 
and pharmacometric modeling. 

Industry viewpoint on the development of 
Alzheimer’s disease clinical trials focused on 
blood-based biomarkers 

Neurodegenerative diseases require a better understanding 
of their pathophysiology to precisely address the relevant 
altered pathways with compounds targeting the relevant 
molecules involved. 

This requires; (i) the identification of these pathophysiolog-
ical pathways underlying clinical phenotypes and breaking 
down one uniformly appearing clinical disease into disease 
subtypes characterized by biomarkers that are representative 
of the molecular phenotype. Such an approach has been 
successfully applied in oncology where biomarkers are 
used to differentiate subtypes of eg, breast cancer or lung 
cancer for better response rates.116 Furthermore, this may 
require (ii) monitoring of the pathophysiological response 
during treatment to understand whether a patient’s disease is 
initially responding to a treatment and whether it continues 
and sustains response or (iii) monitoring whether an escape 
mechanism has been activated and the patient requires a 
different treatment approach. 

In clinical trials for neurodegenerative diseases, this may 
require early identification of patients with an existing 
pathology but still absent of very discrete or unspecific 
symptoms, such as in AD, where biological indicators 
can precede the clinical symptoms by more than 10 to 15 
years.117 

In cases where a specific pathophysiological pathway 
defining a disease subgroup is targeted by a particular 
compound, a companion diagnostic approach may be 
required to test the status of biomarker(s) related to the 
molecular pathway(s) involved in order to provide safe 
and effective treatment options. Development of such 

companion diagnostics often requires exceptional commu-
nication and seamless collaboration between two companies 
(ie, diagnostics and drug companies) with distinct proficien-
cies and disparate teams which, in practice, may present 
serious challenges during all stages of codevelopment from 
design and execution of clinical trials to market access and 
reimbursement, including Institutional Review Board over-
sight, study management, monitoring and complex submis-
sions to regulatory agencies. Even though a companion 
diagnostic approach allows for personalized treatments and 
may reduce the incidence of adverse effects and overall costs 
via avoidance of unnecessary and/or inefficient treatments, 
it should also be recognized that there are several disadvan-
tages associated with a companion diagnostic approach as 
well. For instance, requirement of a specific diagnostic test 
to be performed before any treatment may be initiated, or 
requirement of continuous testing for monitoring purposes 
could actually add to the cost of individual patient care. 
In addition, lack of availability or limited accessibility of 
such a test for every individual potentially eligible for the 
drug may cause unwanted delays in access to the treatment. 
Similar to other in vitro diagnostic tests, companion diag-
nostics must be accurate, reliable, and provide essential 
insights to be of clinical utility (Figure 2). 

Implications and conclusions 

Early detection and diagnosis of AD and other primary 
neurodegenerative diseases is a basis of timely and effective 
treatment. CSF biomarkers (CSF Aβ1-42 and tau concentra-
tions) and neuroimaging biomarkers (PET imaging of Aβ 
and tau aggregates, 18F-FDG-PET, and structural MRI) are 
primarily used in academic expert clinical research centers 
and, therefore, not yet accessible as routine diagnostic tools 
in global primary care settings. There are international 
efforts to identify and validate innovative blood (plasma/
serum)-based biomarker candidates reflecting primary 
pathophysiological mechanisms associated with different 
neurodegenerative diseases, including AD.118 

Blood-based biomarker candidates have the potential to be 
regularly analyzed both in primary care settings and in the 
community. Repeated (serial) blood sampling is accessible 
and practical even in elderly individuals and frail patients. 
There is (i) an ongoing dynamic process to identify and 
validate blood biomarkers for early detection, diagnosis, 
and prognosis of AD; and (ii) an increasing confidence that 
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blood-based tests for AD detection and diagnosis will be 
rapidly available, inexpensive, and easy to implement.118 
Supporting the international Alzheimer Precision Medicine 
Initiative (APMI) (available at: https://www.apmiscience.
com/) and its cohort program (APMI-CP),119 the Blood-
Based Biomarker Interest Group (BBBIG) has been created 
to provide global standards and best practices for the assess-
ment of blood-based biomarkers. In a multistage diagnostic 
process, it is envisioned that blood-based biomarker tests 
would provide the screening entry point preceding further 
second-stage CSF analysis, MRI, and PET neuroimaging. 
Further profiling steps, based on genomic/epigenomic 
exploratory analyses, may be implemented as part of multi-
model interventions targeted to specific biologically defined 
patient subgroups.118

There are many potential COUs for AD biomarkers 
including, but not limited to, identification of AD risk, risk 
for progression from MCI to AD, population screening, 

stratification into clinical trials, disease monitoring, phar-
macodynamics, monitoring of individual safety and toler-
ability or treatment response monitoring.120 With regard to 
the heterogeneous AD spectrum, blood-based biomarkers 
are particularly useful to specifically select individuals 
with Aβ pathology, using the Aβ1-42/Aβ1-40 ratio.121 The FDA 
recently granted Breakthrough Device Designation for a 
brain amyloidosis blood test to screen for risk of AD.122 If 
approved, it would be the first blood-based screening test 
to predict brain amyloid PET scan results in adults with 
memory complaints or dementia.

It is conceivable that other blood-based biomarkers will 
indicate and identify individuals with more acute and 
faster disease progression (eg, NFL or tau and, possibly, 
an inflammatory biomarker, such as YKL-40).123 In this 
respect, the selection of individuals into a clinical trial 
will be enhanced using pathophysiological blood-based 
biomarkers identifying patients at risk for progression and 
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decline. This approach will likely be applied to anti-tau ther-
apies currently under development for the early AD, using 
NFL and tau protein, including different tau species and tau 
proteins phosphorylated at different phosphoepitopes. We 
envision the possibility to enter a novel era of next-gen-
eration biomarker-guided targeted therapies for different 
neurodegenerative diseases, including AD. n
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