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Deep Neural Networks pruning via the Structured Perspective Regularization*

Matteo Cacciola®, Antonio Frangioni ¥, Xinlin Li¥, and Andrea Lodi ¥

Abstract. In Machine Learning, Artificial Neural Networks (ANNs) are a very powerful tool, broadly used
in many applications. Often, the selected (deep) architectures include many layers, and therefore
a large amount of parameters, which makes training, storage and inference expensive. This mo-
tivated a stream of research about compressing the original networks into smaller ones without
excessively sacrificing performances. Among the many proposed compression approaches, one of the
most popular is pruning, whereby entire elements of the ANN (links, nodes, channels, ...) and the
corresponding weights are deleted. Since the nature of the problem is inherently combinatorial (what
elements to prune and what not), we propose a new pruning method based on Operational Research
tools. We start from a natural Mixed-Integer-Programming model for the problem, and we use
the Perspective Reformulation technique to strengthen its continuous relaxation. Projecting away
the indicator variables from this reformulation yields a new regularization term, which we call the
Structured Perspective Regularization, that leads to structured pruning of the initial architecture.
We test our method on some ResNet architectures applied to CIFAR-10, CIFAR-100 and ImageNet
datasets, obtaining competitive performances w.r.t. the state of the art for structured pruning.

Key words. Compression, Artificial Neural Networks, Optimization
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1. Introduction. The striking practical success of Artificial Neural Networks (ANN) has
been initially driven by the ability of adding more and more parameters to the models, which
has led to vastly increased accuracy. This brute-force approach, however, has numerous
drawbacks: besides the ever-present risk of overfitting, massive models are costly to store and
run. This clashes with the ever increasing push towards edge computing of ANN, whereby
neural models have to be run on low power devices such as smart phones, smart watches, and
wireless base stations [29, 52, 43]. While one may just resort to smaller models, the fact that
a large model trained even for a few epochs performs better than smaller ones trained for
much longer lends credence to the claim [34] that the best strategy is to initially train large
and over-parameterized models and then shrink them through techniques such as pruning and
low-bit quantization.

Loosely speaking, pruning requires finding the best compromise between removing some
of the elements of the ANN (weights, channels, filters, layers, blocks, ...) and the decrease in
accuracy that this could bring [35, 30, 26]. Pruning can be performed while training or after

*Submitted to the editors DATE.
Funding: This work has been supported by the NSERC Alliance grant 544900~ 19 in collaboration with Huawei-

Canada

TCERC, Polytechnique Montréal,
Montréal, QC, Canada (matteo.cacciola@polymtl.ca).

University of Pisa, Pisa, PI, Italy (frangio@di.unipi.it).

SHuawei Montreal Research Centre, Montreal, QC, Canada (xinlin.lil@huawei.com).

YCERC, Polytechnique Montréal, Montréal, QC, Canada, and Jacobs Technion-Cornell Institute, Cornell Tech
and Technion - IIT, New York, NY, USA (andrea.lodi@cornell.edu).

1

This manuscript is for review purposes only.


mailto:matteo.cacciola@polymtl.ca
mailto:frangio@di.unipi.it
mailto:xinlin.li1@huawei.com
mailto:andrea.lodi@cornell.edu

W N

© 00 = O Ot

> v Ot Ot Ot Ot Ot Ot Ot Ot Ut
: Y 5

=)

68
69

=

Ot = W N =

~ 1 1 \! -J

C
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training. The advantage of the latter is the ability of using standard training techniques un-
modified, which may lead to better peformances. On the other hand, pruning while training
automatically adapts the values of the weights to the new architecture, dispensing with the
need to re-train the pruned ANN.

A relevant aspect of the process is the choice of the elements to be pruned. Owing to
the fact that both ANN training and inference is nowadays mostly GPU-based, pruning an
individual weight may yield little to no benefit in case other weights in the same “compu-
tational block” are retained, as the vector processing nature of GPUs may not be able to
exploit un-structured forms of sparsity. Therefore, in order to be effective pruning has to be
achieved simultaneously on all the weights of a given element, like a channel or a filter, so
that the element can be deleted entirely. The choice of the elements to be pruned therefore
depends on the target ANN architecture, an issue that has not been very clearly discussed in
the literature so far. This motivates a specific feature of our development whereby we allow
to arbitrarily partition the weight vector and measure the sparsity in terms of the number of
partitions that are eliminated, as opposed to just the number of weights.

In this work, we develop a novel method to perform structured pruning during train-
ing through the introduction of a Structured Perspective Regularization (SPR) term. More
specifically, we start from a natural exact Mixed-Integer Programming (MIP) model of the
sparsity-aware training problem where we consider, in addition to the loss and ¢ regulariza-
tion, also the £y norm of the structured set of weights. A novel application of the Perspective
Reformulation technique leads to a tighter continuous relaxation of the original MIP model
and ultimately to the definition of the SPR term. Our approach is therefore principled, being
grounded on an exact model rather than based on heuristic score functions to decide what
entities to prune as prevalent in the literature so far. It is also flexible as it can be adapted
to any kind of structured pruning, provided that the prunable entities are known before the
training starts, and the final expected amount of pruning is controlled by the hyper-parameter
providing the weight of the £y term in the original MIP model. While our approach currently
only solves a relaxation of the integer problem, it would clearly be possible to exploit estab-
lished Operations Research techniques to improve on the quality of the solution, and therefore
of the pruning. Yet, the experimental results show that our approach is already competitive
with, and often significantly better than, the state of the art. Furthermore, since we per-
form pruning during training by just changing the regularization term, our approach can use
standard training techniques and its cost is not significantly higher than the usual training
without sparsification.

2. Related works. The field of pruning is experiencing a growing interest in the Machine
Learning (ML) community, starting from the seminal work [28] that obtained unexpectedly
good results from a trivial magnitude-based approach. The same magnitude-based approach
was extended in [22] with a re-training phase where the non-pruned weights are re-initialized
to their starting values. Moreover, in [51] the authors claim that, for most pruning methods,
the most important result is the final structure of the pruned ANN, while the final values of
the weights or their original initialization are not crucial.

A multitude of pruning approaches has been developed over the years, including but not
limited to Bayesian methods [56, 7, 53, 79], regularization methods [72, 48], and combinations
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DEEP NEURAL NETWORKS PRUNING VIA THE STRUCTURED PERSPECTIVE REGULARIZATION 3

of pruning with other compression techniques [3, 55, 23]. Part of the literature [6, 27, 10, 76]
focuses on pruning without modifying the model outputs or at least trying to minimize the
output change. This approach can be effective when the model is highly over-parameterized
or when very few parameters need to be pruned, but it is sub-optimal otherwise.

Another possibility is adding to the network parameters a scaling factor for each prunable
entity, multiplying all the corresponding parameters; then, sparsity is enforced by adding the
/1 norm of the scaling factors vector, as done for example in [50]. In [61] a pruning mask is
defined, i.e., a differentiable approximation of a thresholding function that pushes the scaling
factors to 0 when they are lower than a fixed threshold, avoiding numerical issues. Other
methods that use a similar approach are [54, 71, 49].

Most recently-published state-of-the-art pruning methods either use a magnitude-based
approach to identify prunable parameters [70, 45, 12, 78, 25, 40, 55, 11], or try to estimate the
impact of a parameter removal [13, 41, 63, 75, 60, 24, 15, 42, 57, 58, 74]. In both cases, they
rely on heuristic rules to compute the importance of an element of the ANN, mostly based
just on its lo norm. This is arguably sub-optimal in general, and we aim at improving on this
by using a principled approach. The need for a more theoretically grounded approach has
been clearly been felt already, as proven by the proposals [77, 9, 54, 56] that, like ours, start
from an exact theoretical model of the pruning problem formulated through the Iy norm. A
significant difference, that has a profound impact on the developed technique, is that all these
previous proposals do not focus on structured pruning.

Elsewhere, MIP techniques have been successfully used in the ANN context, but mostly
in applications unrelated to pruning, such as the construction of adversarial examples (with
fixed weights) [18]. In [4], the approach is extended to a larger class of activation functions
and stronger formulations are defined. An exception is [16], where a score function is defined
to assess the importance of a neuron and then a MIP is used to minimize the number of
neurons that need to be kept at each layer to avoid large accuracy drops. In [62] a MIP is
used first to derive bounds on the output of each neuron, which is then used in another MIP
model of the entire network to find equivalent networks, local approximations, and global
linear approximations with fewer neurons of the original network. Since MIPs are A/P-hard,
these techniques may have difficulties scaling to large ANNs. Indeed, the pruning method
developed in [1, 2] rather solves a simpler convex program for each layer to identify prunable
entities in such a way that the inputs and outputs of the layer are still consistent with the
original one. This layer-wise approach does not take into account the whole network at once
as our own does.

The link between Perspective Reformulation techniques and sparsification has been pre-
viously recognized [14, 5], but typically in the context of regression problems that are much
simpler than ANNs. In particular, all the above papers count (the equivalent of) each weight
individually, and therefore they do not consider structured pruning of sets of related weights as
it is required for ANNs. Furthermore, the sparsification approach is applied to input variables
selection in settings that typically have orders of magnitude fewer elements to be sparsified
than the present one.

3. Mathematical model. We are given a dataset X, an ANN model architecture whose
set of parameters W = {w; | j € I } includes prunable entities, that is, disjoint subsets { W; =
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4 M. CACCIOLA, A. FRANGIONI, X. LI, A. LODI

[wj]jer,; tien for disjoint subsets of indices { E; }ien s.t. I O UjenE;, and a loss function
L(-). If the value of a parameter w; is zero it could be eliminated from the model (pruned)
but, for the reasons discussed above, we are only interested in pruning the entities E;, which
corresponds to w; = 0 for all j € E;. We therefore face a three-objective optimization problem
which aims at: i) minimize the loss, ii) minimize some standard regularization term aiming
a improving the model’s generalization capabilities, and iii) maximize the number of pruned
entities F;. As customary in this setting, we approach this by scaling the three objective
functions by means of hyperparameters whose optimal values are found by standard grid-
search techniques. Employing the usual ¢ regularization, the problem can be cast as the
MIP

(3.1) min L(X, W) + Alal| W5+ (1 — @) Y n vi]
(32) —MylSU)JSMyZ ijEi 1€ N
(3.3) yi € {0,1} i€N

where « € [0, 1] and A > 0 are scalar hyper-parameters while M is an upper bound on the
absolute value of the parameters. The binary variable y; is 0 if the corresponding prunable
entity is pruned, 1 if it is not. The standard “big-M” constraints (3.2) ensure that if y; = 0
then 0 < w; < 0 for all parameters in the entity F;, while if y; = 1 the parameters can take
any possible useful value (since M is an upper bound). Hence, the term “} . %" in the
objective (3.1) represents the ¢y norm of the structured set of weights. In the unstructured
case, i.e., when each FEj; is a singleton, the standard sparsification approach is to substitute the
£y norm with the ¢; one; this allows to do away with the y; variables entirely, replacing the
corresponding term in the objective with || W ||;. This elastic net regularization [81] combines
the properties of the ridge/Tikhonov (f3) and Lasso (/1) regularizations; it has also been
extended to different forms, like the Huber regularization [33, 59] where the ¢5 and ¢; norms,
rather than being summed, are applied to different subsets of the space. The choice of the
£1 norm is motivated by it being the best possible convex approximation of the nonconvex
(and not even continuous) ¢y one. However, these arguments do not readily carry over to the
structured case.

3.1. The Perspective Reformulation. Basically all known strategies to solve MIPs like
(3.1)—(3.3), be them exact or heuristic, start from considering its continuous relazation wherebyf]
(3.3) is relaxed to y; € [0, 1]. Such a problem is significantly easier than the original MIP, in
the sense that a locally optimal solution (w,y) is efficiently obtainable using standard tech-
niques for ANN training. However, it is well-known that such a solution can be rather different
from the optimal solution (w*,y*) of (3.1)—(3.3), in both the y and w variables, due to the
rather crude approximation of the nonconvex constraints (3.3) by means of their convex coun-
terpart y; € [0, 1]. This would hold even if the (w,y) were globally optimal, which happens,
e.g., if L(X,-) is convex (not typical in the ANN context), save in the fortunate case where
w happens to satisfy (3.3). Since w is typically what one could use to decide what entities
to remove, this could lead to inefficient prunings. We therefore we seek a different relaxation
that can provide us with higher quality solutions. In principle, an “exact” convex relaxation
exists, which is obtained by constructing the convez envelope of the objective function (3.1)
on the set of integer solutions, i.e., its best possible convex approximation (technically, the
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DEEP NEURAL NETWORKS PRUNING VIA THE STRUCTURED PERSPECTIVE REGULARIZATION 5

convex function with smallest epigraph containing that of the original function). However,
constructing the convex envelope of a function is in general N'P-hard, even in much less de-
manding settings than (3.1)—(3.3). A strategy that has proved successful is to devise convex
envelope formula of fragments of the problems with specific structure; while the combination
of these is typically not equivalent to the true convex envelope, it is often a much better
approximation, leading to much better continuous relaxation solutions and therefore more
efficient computational approaches. We can rewrite (3.1)-(3.3) as the following unconstrained
optimization problem,

min {L(X, W) + Ay hi(Wi,vi) 1},

where
0 ify; =0andw; =0 Vj € E;
hi(Wi,y;) = O‘ZjeEi wjz +(1-a) ify;=1and |wj| <MVjekE
400 otherwise.

The (clearly, nonconvex) function h;(-, -) belongs to a class of functions whose convex envelope
can be explicitly computed: following [20], the convex envelope of h; can be proven to be

0 1fyl:Oande:O VjeE;

~ 2

hi(Wi,yi) = ik, % +(1—-a)y if|wj| <yMVjeE;andy; € (0,1]
+00 otherwise.

This leads to the new formulation of problem (3.1)—(3.3)

(3.4) min { LOX, W)+ A en [a Zjeg%jz +1—a)u]: (32), (3.3) }

known in the literature as Perspective Reformulation (PR), that is easily seen to have the
same integer optimal solution (w*,y*) as the original problem but a continuous relaxation
(the Perspective Relazation) that is “better” in a well-defined mathematical sense: its optimal
objective value is (much) closer to the true optimal value of (3.1)—(3.3), which typically implies
that its optimal solution (w,¥) is more similar to the true optimal solution (w*,y*). Indeed,
izi(Wi, y;) can be seen to have larger value than h;(W;,y;), the more so the more y; is close
to 0.5, i.e., “farther from being integer” [20], thereby discouraging highly fractional values in
y*. This has been already shown to leading to much better performances of both exact and
heuristic approaches, w.r.t. using the standard continuous relaxation, for other MIPs with

similar structure.

3.2. Eliminating the y variables. While one can expect that the solution (w,y) of the
Perspective Relaxation can provide a better guide to the pruning procedure, the presence of
the explicit variables y makes it more difficult to apply standard training techniques to obtain
it. Following the lead of [21, 19], we proceed at simplifying the PR model by projecting away
the y variables. This amounts to computing a closed formula g(w) for the optimal value of

This manuscript is for review purposes only.



194
195

196

197

198

199

200

201
202
203
204
205
206
207
208
209

210

213

214

215

6 M. CACCIOLA, A. FRANGIONI, X. LI, A. LODI

the y variables in the continuous relaxation of (3.4) assuming that w are fixed: the problem
then decomposes over the FE; subsets, and therefore we only need to consider each fragment

JiWi, yi) = )‘[O‘ZjeE,- w]?/yl +(1—a)y]

separately. Since f; is convex in y; if y; > 0, we just need to find the root of the derivative

afz(Wuyz az

0, 2—1—1—&) =0,
]

w;€E; Y

« ijGEi w?
Y=\ ———
\/ 11—«

(we are only interested in positive y), and then project it on the domain. Note that, technically,
fi(Wi, y;) is nondifferentiable for y; = 0 but that value is only achieved when W; = 0, in which
case the choice is obviously optimal. The constraints that defines the domain of y; can be
rewritten as y; > |w; |/M for all j € E;, together with y; € [0, 1]; putting everything together,
we obtain

(3.5) Ji(w) = mm{ max{{ wil/M : j € B}, \JaXep w3/ (1 - a) } 1}

that is

where we note that we do not need to enforce positivity since all the quantities are positive.
Replacing y; with g;(W;) in the objective function of (3.4) we can rewrite the continuous
relaxation of (3.4) as

(3.6) min { L(X, W) + XXX, z(Wis o, M) },
where
mw?’ O‘Z]‘GE»W? Al azjeE‘wz
. —Y——— —_— 3 2 || OO < 7 J <
OzZ;eEi m + (1 a) —a) if e < - <1
zi(Wis o, M) = wiM w; . ay W
adier; HW|| + (1)l 1(4”“’ if {Efj ] < 2”00 <1
a e wj +(1-a) otherwise,
V= a)alWills + /T = a)alWillo it M= <\ [razjiwifls <1
= A ll3 + (1 - o) g if ) /e liwille < M= <1
al[Will3 + (1 — ) otherwise,
(2,/(1 = a)al|Wi|2 if Willee < \/THW||2 <1
= Wi|oo Willoo
37) =\ A IVl + (1 — o) =it fuwu < M= <1
La|[Will3 + (1 — @) otherwise.
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We call z;(W;; o, M) the Structured Perspective Regularization (SPR) w.r.t. the structure
specified by the sets E;. It is easily seen that the SPR behaves like the ordinary ¢5 regulariza-
tion in parts of the space but it is significantly different in others. Due to being derived from
(3.4), we can expect, all other things being equal, the SPR to promote sparsity—in terms of
the sets Fj—Dbetter than the fo norm. Indeed, SPR for i € I depends on the o, norm of
W;. This means that it penalizes entities on the ground of their maximum non-zero compo-
nent, regardless to how many w; have the maximum value. This arguably better promotes
structured sparsity, as required by our application, w.r.t., say, using the ordinary ¢; norm
that rather promotes sparsity on each weight individually. This intuition is substantiated in
the next § 3.3 where a more detailed discussion about the properties of the SPR regularizer
can be found. Yet, all of the usual algorithms for training ANNs (SGD, Adam, etc.) can be
employed for the solution of (3.6), which therefore should not, in principle, be more costly
than non-sparsity-inducing training or unstructured sparsity-inducing terms like the ¢; norm.

It is perhaps useful to remark that the Lasso/elastic net regularization can be seen as the
application of an analogous process in the non-structured case. Indeed, assume W is fixed in
(3.1)—(3.3): the optimal value of the y variables in the continuous relaxation of the problem
solves (independently for each 1)

min{ (1 —a)y; : (3.2),y;,€[0,1]}

where the constraints are of course equivalent to y; > |w;|/M: hence, y; = |w;|/M, which
leads to the replacing of the £y norm with the ¢; one. Thus, our approach can be seen as a
generalization of the standard one, but with two meaningful differences: i) it takes into account
the effect of the quadratic regularization term, and ii) it applies the PR to the problem before
doing the projection. Note that the first point is crucial to the second, because the PR of
a linear function is easily seen to be the original function itself: in other words, the PR has
no effect on linear problems. It is interesting to remark what happens to the SPR term in
the context of unstructured pruning. In this case, the vector W; in (3.7) is just a scalar,
50 |[Willeo = [|[Will2 = |W;| and the formula becomes much simpler. First, we only get two
possible cases: if 1/M < \/a/(1 — «), then the second case is never possible; otherwise, it is
the first case that never verifies. Moreover, both the first and the second cases of (3.7) become
equal to the /; norm times a constant. This yield the known Berhu (reverse Huber) penalty
[39], which has already been shown to be effective. However, doing this in the structured case
is novel, and yields the SPR term that is significantly more complex than what was previously
known, as better illustrated next.

3.3. Intuition on our new regularization term. We now provide a discussion on the
shape of the SPR term, focussing on the features that could be linked to its better struc-
tured sparsification properties. We remark that, unlike what was done with the heuristic
approaches in the literature, we did not develop the SPR in order to obtain such properties:
instead, they were the natural results of constructing a better continuous approximation of the
inherently combinatorial (and, therefore, hard) exact training-with-structured-sparsification
problem (3.1)—(3.3).

First, we notice that SPR is not differentiable in zero. Since the gradient does not vanish
in points close to the origin, this is known to increase the amount of parameters that are
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8 M. CACCIOLA, A. FRANGIONI, X. LI, A. LODI

effectively zero after training is completed; indeed, this is the effect underlying the Lasso (I1)
regularizer for unstructured sparsity. This property is likely crucial, and in fact it is common
to basically all other regularization-based approaches to structured sparsification, many of
which use the non-squared ¢ norm (also known as lo/l; norm [11, 48]). Again, this feature
was not planned, but it emerged as a result of our principled approach.

Out of 0, the behaviour of the SPR is different in different zones of the space. In particular,
when the norm of a prunable entity is “large” (more precisely, when at least one among
[Willoo > M and [|[W;||2 > /(1 —a)/a holds, the white region of Figure 1), then SPR is
equivalent to the standard ridge/Tikhonov (¢2) regularization. Intuitively, the SPR identifies
the entities that are “not likely” to be pruned, and, since no structured regularization needs
to be applied there, the usual regularization is used which is still needed for generalization
purposes. This is similar to the (much simpler) Berhu regularization [39] (for the unstructured
case) that coincides with the lo norm “far from 0”7, while rather being the (nondifferentiable)
1 norm “close to 0”. Again, we did not explicitly plan for this to happen, and such a behavior
is not foreseen in the popular regularizers employed in the sparsification literature.

If an entity is “still within pruning range”, SPR has a complex behavior organized around
two different kinds of regions of the space. The first is the one in which a few parameters of
an entity have disproportional larger absolute value compared to the others in the same entity
(more precisely when |W;]|s > v/ /(1 — a)M||W;]|2, blue region of Figure 1). There the SPR
is close to the infinity norm, and therefore the learning process focuses on reducing precisely the
largest entries, since the infinity norm gradient is non-zero only in the entries corresponding to
the coordinates in which the norm is reached (the ones with maximum absolute value). From
a structured pruning point of view, entities with unbalanced parameters are not ideal since
they may have many “small” (even possibly 0) weights, that therefore likely provide small (or
null) benefit in terms of loss reduction, and yet they can not be removed due to a “few” large
weights. The SPR identifies such entities and promotes the reduction of the disproportion
among the weight magnitudes, possibly leading to the final removal.

In fact, when instead an entity has parameters with similar magnitudes (more precisely
when |[|[W;||oo < v/a/(1 —a)M||W;l2, grey region of Figure 1), a sparse gradient could cause
convergence speed problems. In this case, the SPR is equal to the (non-squared) Il norm
whose gradient is not sparse; thus, the SPR promotes the simultaneous reduction of all the
parameters, hopefully finally leading to the pruning of the entity.

A pictorial representation of the previous discussion is provided in Figure 1 for a two-
dimensional entity, with the left panels highlighting the regions where each case of the SPR
occurs, while the right panels show the level sets of the SPR term that induces structured
sparsity (that is, the term that multiplies (1 — «) in (3.7)). Different plots corresponding to
different choices of « (for fixed and M) are given to illustrate the complexity of the term
as a function of its hyperparameters, and therefore its flexibility. A three-dimensional plot
of the SPR term that induces structured sparsity is reported in Figure 2, illustrating how
it transitions between different regions. Arguably, such a complex behaviour would have
been rather complex to engineer; yet, it naturally emerged from our use of sophisticated
mathematical optimization techniques.

This manuscript is for review purposes only.
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(c) M =09, =04

Figure 1: Left, regions in which the SPR changes definition, right level sets of the structured
sparsity term of the SPR

300 3.4. Minor improvements. Remarkably, the SPR depends on the choice of M, which is,
301 in principle, nontrivial. Indeed, all previous attempts of using PR techniques for promoting
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Figure 2: 3-dimensional plot of the structured sparsity term of the SPR. When the norm of
the entity is big enough, the term is constant. Otherwise, it is more similar to the Iy or I
norm, based on how are distributed the weights in the entity.

(non-structured, i.e., E; = {14 }) sparsity [14, 5] have been using the “abstract” nonlinear form
(1 —yi)w; = 0 of (3.2). This still yields the same Perspective Reformulation, but it is not
conducive to projecting away the y variables as required by our approach. While M could in
principle be treated as another hyperparameter, in a (deep) ANN, different layers can have
rather different optimal upper bounds on the weights; hence, using a single constant M for
all the prunable entities is sub-optimal. The ideal choice would be to compute one constant
M; for each entity E;; however, entities in the same layer are often similar to each other, so
we only computed a different constant for each layer of the network, as detailed in §4.1, and
used it for all entities belonging to that layer.

Furthermore, all the development so far has assumed that all prunable entities F; are
equally important. However, this may not be true, since different entities can have different
number of parameters and therefore impact differently on the overall memory and computa-
tional cost. To take this feature into account, we modify our regularization terms as

A —_ Wi a, M),
> T
where u; is the number of parameters belonging to entity FE;.

Finally, we perform a fine-tuning phase. After the ANN has been trained with the SPR,
we prune all the entities W; where 99.5% of the weights are smaller than the tolerance which
is found using Algorithm 3.1. The threshold value 99.5% has been obtained through simple
preliminary experiments. Though it could be treated as an hyperparameter and tuned ac-
cordingly, we did not deem this necessary since the experiments have shown that it plays a
limited role in the final performances. We re-train the compressed network with the standard
{5 regularization, starting from the value of the weights (for the non-pruned entities) obtained
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324 at the end of the previous phase rather than re-initializing them.

325 Algorithm 3.1 performs a binary search in a given interval to find the highest possible
326 pruning threshold that does not heavily affect the accuracy of the model. At each iteration,
327 the candidate threshold is set to the medium point of the current interval, the ANN is pruned
328 with such threshold and the new training accuracy is computed. If there was a drop in the
329 accuracy larger than a given tolerance, the threshold is discarded and the first half of the
330 interval becomes the interval for the next iteration. Otherwise, the threshold is accepted and
331 the new interval is the second half of the current one. In our experiments we used N = 10,
332 a=0,b=1e-1 and § = He-2.

Algorithm 3.1 Given a trained ANN with p* training accuracy, the algorithm searches for
the highest threshold in the interval [a, b] such that the ANN compressed with such threshold
does not lose more than § accuracy.

Require: N, p*, § and [a, b]

€ —a
fori=1,...,N do
€< (a+0b)/2

compress the network with the threshold ¢ and compute the current training accuracy p
if p>p"—dthena<+ € ¢
else b < ¢ end if

end for

return €*

333 4. Experiments. We tested our method on the task of filter pruning in Deep Convolutional

334 Neural Networks; that is, the prunable entities are the filters of the convolutional layers. More

335 specifically, the weights in a convolutional layer with n,, input channels, n,; output channels

336 and k x k kernels is a tensor with four dimensions (ninp, Nout, k, k): our prunable entities

337 correspond to the sub-tensors with the second coordinate fixed, and therefore have n;p, x k < k

338 parameters. Following [11], we include in the each prunable entity the corresponding bias and

339  weight parameter belonging to the following batch normalization layer.

340 The code used to run the experiments was written starting from the public repository

341 https://github.com/akamaster/pytorch_resnet_cifar10 and https://github.com/pytorch/examples/|]
342 tree/master/imagenet.

343 4.1. Datasets, architectures and general setup. For our experiments, we used 3 very
344 popular datasets: CIFAR-10, CIFAR-100 [36] and ImageNet [37]. As architectures, we focused
345 on ResNet [31] and Vgg [65]; in particular, we used ResNet-18, ResNet-20, Resnet50, ResNet-
346 56 and Vgg-16 for the CIFAR 10 dataset, ResNet-20 for the Cifar-100 dataset and ResNet-18
347 for the ImageNet dataset. We chose these dataset-architecture pairs since they were among
348  the most common in the literature.

349 For all the experiments, we used Pytorch (1.12.1) with Cuda, the CrossEntropyLoss and
350 the SGD optimizer with 0.9 momentum. The M; values were set as the maximum absolute
351 values of the weights for each layer of a network with the same architecture but trained without
352 our regularization term (for ResNet-20 and ResNet-56 we trained it, for ResNet-18 we used
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12 M. CACCIOLA, A. FRANGIONI, X. LI, A. LODI

Table 1: Results of our algorithm on CIFAR-10 using ResNet-20

L-rate A a  Acc. Pruned pars (%) FLOPs (%)
0.1 1.9 05 8563 242424 (89.88) 12.70M  (31.31)
0.1 1.6 05 86.81 232409 (86.17) 13.77M  (33.96)
0.1 1.3 05 83.00 228094 (84.57) 16.62M  (40.99)
0.1 1.3 0.1 89.46 213958 (79.33) 15.01M  (37.02)
0.1 1.3 le-d 90.03 203154 (75.32) 18.00M  (44.62)
0.1 08 0.1 91.22 172658 (64.01) 24.86M  (61.30)
0.1 05 le-3 92.23 115620 (42.87) 29.69M  (73.23)
Original model ~ 92.03 0 (0.00) 40.56M (100.00)

Table 2: Results of our algorithm on CIFAR-100 using ResNet-20

L-rate A a Acc. Pruned pars (%

) (
0.10 0.50 0.50 65.64 160394 (58.20) 23.80M  (58.90)
001 1.30 0.50 67.53 102944 (37.36) 33.98M  (83.78)
0.10 0.30 0.60 68.22 79720 (28.93) 29.94M  (73.83)
0.10 030 0.15 68.57 61515 (22.32) 29.60M  (72.98)
(15.24) (93.39)
) )

FLOPs (%)

0.01 1.25 0.15 69.13 42009 37.88M 93.39
Original model 68.55 0 (0.00) 40.56M  (100.00

the pretrained version available from torchvision).
Additional details are provided in the appendix.

4.2. Results on CIFAR-10 and CIFAR-100. These experiments were performed on a
single GPU, either a TESLA V100 32GB or NVIDIA Ampere A100 40GB. The model was
trained for 300 epochs and then fine tuned for 200 ones. The dataset was normalized, then we
performed data augmentation through random crop and horizontal flip. Mini batches of size
128 (64 for CIFAR-100) were used for training. The learning rate was initialized to either 0.1
or 0.01 and then it was divided by 10 at epochs 100 (200 for CIFAR-100), 250, 350, 400 and
450. We performed grid search on the crucial hyperparameters A and « as detailed in §A.3.

Since the learning-with-structured-pruning problem is a multi-objective one, there is no
overall best solution: rather, we report a representative selection of the non-dominated so-
lutions on the efficient frontier (the best pruning corresponding to any achieved level of ac-
curacy), together with the hyperparameters achieving it. An example of the pareto curve
obtained through our experiments is reported in §A.4. We also report the number of floating
point operations (FLOPSs) necessary to perform inference for each model.

Table 1 shows the results of training ResNet-20 on CIFAR-10: we were able to prune more
than 42% of the parameters by still increasing the accuracy of the original model, while we
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Table 3: Results of our algorithm on CIFAR-10 using ResNet-56

L-rate A a Acc. Pruned pars (%

0.1 19 0.01 90.62 762869 (89.43
0.1 1.0 5e-3 91.85 726717 38.94M
0.1 0.7 001 9242 677433 42.66M

) FLOPs (%)

) (23.99)

(85.19) (31.03)

(79.42) (33.98)

01 04 0.10 92.76 612038 (71.75) 44.08M  (35.13)
(64.92) (40.57)

(46.36) (66.60)

) )

30.10M

0.1 04 050 9348 553821 50.90M
0.1 0.2 050 93.96 395478 83.58M

Original model  93.35 0 (0.00) 125.48M (100.00

could prune more than 75% of the model by still preserving more than 90% accuracy. With
the same architecture on the more challenging CIFAR-100 dataset (Table 2) we could prune
more than 15% of parameters while improving the accuracy of the original model, but pruning
many parameters resulted in a significant accuracy loss: we could still achieve more than 67%
accuracy by pruning a few less than 40% of the parameters, but accuracy dropped to less than
66% if pruning more.

Table 3 reports results on training the ResNet-56 architecture on CIFAR-10: once again
pruning about 65% of the parameters improved accuracy and we could keep more than 92%
accuracy while pruning almost 80% of the network.

Finally, Tables 4, 5 and 6 report results on the CIFAR-10 dataset of models Resnet-18,
ResNet-50, and Vgg-16 (respectively), which have a much larger number of parameters than
the previous ones: in these cases we were able to prune the vast majority of the parameters
(from 89% to more than 90%) without really affecting the accuracy of the ANN, sometimes
even increasing it.

4.3. Results on ImageNet. These experiments were performed on single TITAN V 8GB
GPU. The model was trained for 150 epochs and fine tuned for 50 ones. The preprocessing
was the same as for the CIFAR datasets. We used mini batches of 256 and 0.1 learning rate
that was divided by 10 every 35 epochs, and the grid search detailed in §A.3. As usual for
datasets with so many classes, we report also the topb accuracy, i.e., the percentage of samples
where the correct label was on the 5 higher scored classes by the model.

Table 4: Results of our algorithm on Table 5: Results of our algorithm on
CIFAR-10 using ResNet-18 CIFAR-10 using ResNet-50
L-rate A et Acc. Pruned pars (%) FLOPs (%) L-rate A a  Acc. Pruned pars (%) FLOPs (%)
0.1 28 05 9438 10691286 (95.29) 101.53M  (18.28) 01 1.6 led 9349 23197453 (97.86)  62.43M (4.81)
0.1 25 05 94,50 10555810 (94.08) 118.51M (21.33) 0.1 1.6 le-3 93.80 22977664 (96.93) 103.97M (8.01)
0.1 1.9 0.5 9481 10451461 (93.15) 143.45M (25.82) 0.1 1.3 le-4 9436 22931931 (96.74) 166.30M (12.81)
0.1 1.3 05 9534 10059742 (89.66) 192.39M (34.64) 0.1 1.0 1led 9451 22745124 (95.95) 175.85M (13.55)
— 0.1 1.0 05 9496 21800173 (91.96) 258.10M  (19.88)
Original model 95.15 0 (0.00)  555.47TM  (100.00)
Original model 94.83 0 (0.00) 1.30B  (100.00)

Results using ResNet-18 are reported in Table 7, and show that even in a very large and
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Table 6: Results of our algorithm on Table 7: Results of our algorithm on Ima-

CIFAR-10 using Vgg-16 geNet using ResNet-18

L-rate A a Acc. Pruned pars (%) FLOPs (%) L-rate A a  topl topd>  Pruned pars (%) FLOPs (%)
0.1 1.6 le-d 93.44 14266694 (96.87) 82.00M (26.18) 0.1 0.75 0.1 7026 89.66 1992131 (17.04) 2.20B (92.84)
01 16 01 9356 14179500 (96.27)  89.61M  (28.61) 01 10 01 69.27 89.06 3811382 (32.61) 207B  (87.58)
01 1.0 0.5 9393 13647661 (92.66) 126.74M  (40.47) 01 11 01 6887 8872 4481715 (38.34) 2.03B  (85.57)
01 01 05 9431 12044579 (81.78) 186.67M  (59.60) 01 1.0 03 6620 8715 7406308 (63.36) 1838  (77.31)
Original model 0412 0 (000) 31320M (100.00) Original model 69.76  89.08 0 (0.00) 2.37B  (100.00)

difficult dataset our method was able to improve the original model results while pruning more
than 17% of the parameters, and basically tie with it while pruning 30% of the parameters.
Pruning almost 40% of the network caused a drop of only 0.5% in the accuracy, while a more
consistent decrease resulted when we pruned about 60% of the parameters.

4.4. Comparison with state-of-the-art methods. In this section, we compare our results
(denoted as SPR) with some of the state-of-the-art algorithms for structured pruning. We
report results from [32] (denoted by SSS), [64] (denoted by EPFS), [68] (denoted by L2PF),
[44] (denoted by PFFEC), [73] (denoted as RSNI), [47] (denoted as HRANK), [69] (denoted as
PFC), [66] (denoted by CHIP), [38] (denoted as DNR), [11] (denoted as OTO), [45] (denoted as
DHP), [74] (denoted as NISP), [80] (denoted as DCP), [67] (denoted as SCOP) , [46] (denoted
as PFPE) and [17] (denoted by HFP).

Since not all the above papers reported the results for all our metrics (for example, some
works only reported the percentage of parameters pruned), in some cases we had to do some
conversions that naturally came with some mild approximation. Moreover, in [32], only plots
were presented, so we had to approximately deduce the data from some points of the figures
(Figure 2(a) and Figure 2(c) of [32], we denote the points as P1, P2, etc.). For ImageNet the
toph accuracy is not reported in [17], so we marked the corresponding field in our table with
a “N/A”. Finally, we report results for different settings of each method as they were given
in the original papers; however, it should be remarked that not all of them are structured
pruning methods as our own (in particular, pruning at the filter level), hence the results may
not be completely equivalent, although in general they should be comparable.

Regarding ResNet-20 on CIFAR-10, our approach (shown in Table 8) outperforms all the
other methods, meaning that we could reach equal or better accuracy while pruning a larger
amount of parameters. For instance, L2PF achieved 89.9% accuracy with 73.96% sparsity,
while we achieved higher sparsity (79.33%) and a little more accuracy (90.03%)

On CIFAR-100 using ResNet-20, the results in Table 9 clearly show that we outperform
SSS, as we could achieve more than 68.5% accuracy while pruning more than 22% of param-
eters while SSS could prune only 14.81% to obtain a little bit more than 67% accuracy. In
Table 10, we can observe a similar situation to ResNet-20 on CIFAR-10 for ResNet-56 on the
same dataset. One of the few results we did not outperform was the CHIP 94.16 accuracy
with 42.8% sparsity but we could obtain a little bit more sparsity (46.36%) with a comparable
accuracy (93.96%).

The results reported in Tables 11 and 12 show that our approach is very competitive
with respect to the very recent state-of-the-art methods such as OTO and DNR, sometimes
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Table 8: Results of state of the art method on CIFAR-10 using ResNet-20

Method Setting  Acc. Pruned pars (%)
Pl 90.80 120000 (44.44)

538 P2 91.60 40000 (14.81)
P3 92.00 10000 (3.70)

P4 92.50 0 (0.00)

B-0.6 91.91 70000 (24.60)

B-0.8 91.50 100000 (36.90)

EPFS F-0,05 90.83 130000 (51.10)
C-0.6-0.05 90.98 150000 (56.00)

L2PF LW 89.90 199687 (73.96)
PFC P1 90.55 135000 (50.00)
DHP 50 91.54 118327  (43.87)
SCOP P1 90.75 151853 (56.30)
PFPE P1 90.91 169035 (62.67)
RSN model A 90.9 104708 (38.82)
model B 88.8 190800  (70.74)

A1l3-a0.1 90.03 213958 (79.33)

SPR A08-a0.1 91.22 172658 (64.01)
A0.5-ale3 9223 115620 (42.87)

125 being able to improve them significantly. For example, DNR can only prune less than 82%
426 of ResNet-18 achieving 94.64% accuracy, while our method reach more than 95% accuracy
127 pruning more than 89% of the network. The only result that is somehow stronger than SPR
428 is that obtained by the Adaptive version of DCP, see the corresponding entries in Tables 10
429 and 13. However, the difference in performance is not large in all cases, which confirms that
430 SPR is at least competitive with all the alternative approaches we could compare it to.

431 Similarly, when training Vgg-16 on Cifar-10, our method beats all the state-of-the-art ones
432 but the Adaptive DCP. For example, CHIP can never prune more than 88% of the ANN but
433 our algorithm prunes consistently more than 92% achieving similar or better accuracy (Table
434 13).

435 On ImageNet using ResNet-18, the results in Table 14 show that even if our method does
136 not outperform all the other ones, we were able to achieve very competitive results. Likely
437 some additional parameter tuning could lead us to even more competitive results.

138 5. Conclusions and future directions. Based on an exact MIP model for the problem
439  of training-with-structured-pruning of ANNs, we proposed a new regularization term, based
440 on the projected Perspective Reformulation, designed to promote structured sparsity. The
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Table 9: Results of state of the art method on CIFAR-100 using ResNet-20

Method Setting  Acc. Pruned pars (%)
Pl 6550 120000 (44.44)

595 P2 67.10 40000 (14.81)

P3 68.10 10000  (3.70)

P4 69.20 0 (0.00)

A0.5-a0.5 65.64 160394 (58.20)

SPR A 03-«0.15 6857 61515 (22.32)
A1.25-a0.15 69.13 42009 (15.24)

proposed method is able to prune any kind of structures, and the amount of pruning can be
tuned by appropriate hyper-parameters. We tested our method on some classical datasets
and architectures and we compared the results with some of the state-of-the-art structured
pruning methods, proving that our method is competitive, and often outperforms existing
ones.

These results are even more promising in view of the fact that further improvements should
be possible. Indeed, we are currently solving the continuous relaxation of our proposed exact
model, albeit a “tight” one due to the use of the Perspective Reformulation technique. By
a tighter integration with other well-established MIP techniques, further improvements are
foreseeable.

Appendix A. Appendix.

A.1. SPR regularity. In the following, we prove that the SPR term defined in (3.7) is
continuous, differentiable almost everywhere, and non-convex but quasi-convex. Continuity
of the SPR could be established by proving equality of the limits of the distinct segments
defined within (3.7) at the points where the function undergoes a change in its definition, but
a more concise argument uses the fact that the definition (3.7) is equivalent to the composition
of (3.4) with the optimal solution formula for the optimal w variables (3.5), which is easily seen
to be a continuous function of w. Furthermore, while (3.4) would seem not to be continuous
in zero, it is easy to see that

2 2112
w5 “ M
im 3" < lim Y E <,
Y;—0 ; y;—0 “ ;
JEE; J

on feasible solutions (y;,w;), i.e., when (3.2) are satified. Thus, (3.4) can be continuously
extended at zero, and therefore (3.7) is a composition of continuous functions and hence
continuous itself.

The fact that the SPR term is differentiable almost everywhere comes from the differ-
entiability (almost everywhere) of the functions that define (3.7) and from the fact that the
set where the SPR changes definition has zero mass. However, the previous pictures clearly
show that the function can indeed be nondifferentiable there. In particular, since both the
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Table 10: Results of state of the art method on CIFAR-10 using ResNet-56

Method Setting  Acc. Pruned pars (%)
A 9310 80000  (9.40)

PFFEC B 93.06 120000 (13.70)
B-0.6 92.89 240000 (27.70)

B-0.8 92.34 500000 (58.60)

EPFS F-0.01 92.96 170000 (20.00)
F-0.05 92.09 510000 (60.10)

C-0.6-0.05 92.53 570000 (67.10)

HEP 0.5 93.30 425000 (50.00)
0.7 9231 608430 (71.58)

P1 90.72 580000 (68.10)

HRank P2 93.17 360000 (42.40)
P3 93.52 140000 (16.80)

PFC P1 93.05 425000 (50.00)
DHP 50 93.58 354685 (41.58)
38 92,94 510958 (59.90)

SCOP Pl 93.64 480249 (56.30)
PFPE P1 92.67 759015 (88.98)
P1 92.05 600000 (71.80)

CHIP P2 94.16 360000 (42.80)
NISP P1 93.32 363386 (42.6)
Dep Pl 9349 420014 (49.24)
Adapt 93.81 599807 (70.33)

A0.7-a 001 9242 677433 (79.42)

SPR A04-«a0.1 9276 612038 (71.75)
A04-a05 9348 553821 (64.92)
A0.2-a05 93.96 395478 (46.36)

[1 norm and the [, norm are not differentiable in zero, the SPR is not differentiable in
zero, as expected from a sparsity-inducing regularization term. It is easy to see by draw-
ing a few examples that the SPR is in general not convex. For an algebraic proof consider
a=0.65 M =04, W; =(0.3,0,..,0) and W = (0.5,0,..,0); then z(W;) = 0.3405, z(W3) =
0.5125, 2(3 W1 + 3Wa) = 0.4540, S2(W1) + 32(Wa) = 0.4265, where z(-) is defined in (3.7).
We have just shown that z($W1 +5Wa) > 22(W1) + 32(W2), i.e., that the SPR is not convex.
Yet, the function defined in (3.5) is clearly quasi-convex and (3.4) is non-decreasing in the y
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Table 11: Results of state of the art Table 12: Results of state of the art
method on CIFAR-10 using ResNet-18 method on CIFAR-10 using ResNet-50
Method Setting  Acc. Pruned pars (%) Method Setting  Acc. Pruned pars (%)
DNR Pl 9464 9233284 (82.36) OTO Pl 9440 21570653  (91.20)
gpr A 1-3-a05 9531 10059742  (89.66) gpr A 10-a05 9496 21800173  (91.96)
A1.9-a 05 9481 10451461  (93.15) A1.3-aled 9436 22031931  (96.74)

Table 13: Results of state of the art method on CIFAR-10 using Vgg-16

Method Setting  Acc.  Pruned pars (%)
PFC P1 93.63 7357792 (50.00)
EPSF F-0.005 94.67 10305584 (69.10)
F-0.001 93.61 8225584 (56.70)
PFEEC P1 93.40 9315584 (64.00)
P1 93.43 12205584 (82.90)
HRANK P2 9234 12075584 (82.10)
P3 91.23 12935584 (92.00)
P1 93.86 11955584 (81.60)
CHIP P2 93.72 12215584 (83.30)
P3 93.18 12815584 (87.30)

DNR P1 92.00 13560314 (92.07)
PFPE P1 92.39 13801701 (94.32)
OTO P1 93.30 13918211 (94.50)
bep Pl 94.16 7057294 (47.92)
Adapt 94.57 13782034 (93.58)

A1.6-aled 9344 14266694 (96.87)

SPR A16-a0.1 9356 14179500 (96.27)
AL0-a05 93.93 13647661 (92.66)
A01-a05 9431 12044579 (81.78)

variable, so the SPR is quasi-convex.

A.2. Time complexity study. During the first step of our method, in which the SPR term
and its (sub)gradient have to be computed, an extra computational cost is incurred w.r.t. the
standard “simple” regularizations; note that this does not happen during the fine-tuning
phase, where the standard ridge/Tikhonov (¢2) regularization is used instead. The impact of
the SPR term is shown Table 15, which compares the cost per epoch with and without the
SPR regularization. For easier data sets (small input size), our regularization term roughly
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Table 14: Results of state-of-the-art method on ImageNet using ResNet-18

Method Setting topl top5 Pruned pars (%)
EPFS F-0.05 67.81 88.37 3690000 (34.60

0.20 69.15 N/A 2354869
0.35 68.53 N/A 3976709

)
(22.07)
(37.27)

A 69.18 88.89 4593978 (39.30)
B 68.62 88.45 5084938 (43.50)
(17.04)
(32.61)
(38.34)

HFP

SCOP

A0.75-a 0.1 7026 89.66 1992131
SPR A1.0-a0.1 69.27 89.06 3811382
All-a01 68.87 88.72 4481715

doubles the cost per epoch, while for the hardest data set (more relevant to real applications)
the two costs are almost the same, which proves that our approach is, generally speaking,
computationally viable.

Table 15: Average computation times (seconds) for one epoch with and without the SPR term

Architecture and data set time SPR time without SPR

ResNet-20 on CIFAR-10 13.05 6.51
ResNet-56 on CIFAR-10 36.58 16.99
ResNet-20 on CIFAR-100 22.99 11.26
ResNet-18 on ImageNet 2,433.14 2,401.05

A.3. Detail on grid search. As we stated in the first paragraph of Section 3, @ and A
hyperparameters are found through adaptive grid search. We tested 36 pairs with A € [0.1, 3.0]
and o € [le-4,0.6] for all the experiments with the Cifar-10 dataset. For the Cifar-100
experiments, the intervals for A and a were kept the same and 70 pairs were tested. Finally,
we used 12 pairs with A € [0.5,1.2] and « € [le-1,0.6] for the experiments with the Imagenet
dataset.

Finally, we report an observation on the importance of the fine-tuning phase. From Table
16, we can see that this step is crucial when the pruning caused a significant accuracy drop,
while is less relevant (as one could expect) when the accuracy remains high despite the pruning.

A.4. Pareto curve. In Figure 3 we plot all the accuracy-sparsity pairs obtained with our
experiments using the ResNet-20 model on the Cifar-10 dataset. Although the curve is not
fully complete, it gives a good insight on how pruning affect the accuracy of the model.

A.5. Observation on the structure of the pruned network. From the experiments, we
noticed that our algorithm heavily prunes the last layers of the network. This is due to the
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Table 16: Accuracy before and after the fine-tuning phase (ResNet-18 on CIFAR.10)

A a  Accuracy before Accuracy after
1.1 0.01 82.40 85.56
1.7 0.30 85.28 87.33
1.1 0.30 88.22 89.47
0.5 0.30 90.62 91.23
0.2 0.30 92.46 92.69
Original model 92.03 -
94,00
9200 ® ® .
| ]
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Figure 3: Pareto curve for ResNet-20 on Cifar-10. Different points correspond to different
values of o and A.

fact that the gain in sparsity is larger for these last layers, since their filters contain way
more parameters than those belonging to the earliest layers. When the hyperparameters
favor heavy pruning even at the cost of a consistent accuracy drop, or when the model is so
over-parametrized that even pruning many of parameters only slightly affects the accuracy,
basically all final layers are fully pruned. When, instead, less parameters are pruned then the
final layers that are not fully pruned tend to be always the same for different configurations of
the hyperparameters: for example, for ResNet-18 on ImageNet, the layer with the last residual
connection is almost never pruned. This indicates that our pruning approach is successful in
identifying the essential structures of the model that need be retained.

A.6. Results in the unstructured setting. As mentioned in the main body of this work,
to effectively reduce the computational endeavor of GPU computations through pruning,
it is necessary to remove entire structures of the network. However, we acknowledge that
unstructured pruning retains its relevance in certain contexts and enables cleaner comparisons
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with other methods. Consequently, we have chosen to include results within the unstructured
pruning setting to provide a comprehensive perspective, although it is important to note that
the primary emphasis of this study lies in the structured pruning scenario.

When the prunable entities E; described in (3.7) consist of singletons, the SPR term
exhibits a strong resemblance to the Berhu regularization. While the Berhu regularization
has found successful application in robust regression [39], its performance in the context of
pruning remains unexplored. In the following, we present numerical results pertaining to
unstructured pruning scenarios involving ResNet-32 and ResNet-56, on the Cifarl0 dataset.

We compare our results with two baseline methods that use regularization to prune Neural
Networks and with one relevant literature method. The first baseline method is the simple /1
regularization, known to produce sparser networks compared to the conventional ¢y squared
regularization. The second one is the well-known Elastic Net [81], which uses a linear com-
bination of ¢; and {5 squared regularizations. Formally, the utilization of ¢; regularization
yields the following optimization problem:

min L(X, W) + X|W|[;.
While the Elastic Net problem is defined by

min L(X, W) 4+ Aa||[W||2 + (1 — a)|W|1].

As the ¢ regularization can be regarded as a limit case of the Elastic Net with the specific
parameter « set to 0, we have aggregated their outcomes in the next section for the sake of
conciseness and clarity.

Moreover, we performed a comparative evaluation alongside a more complex state-of-
the-art technique developed in [9]. This method, although originating from an optimization
problem akin to (3.1)-(3.3), subsequently integrates alternating learning and compression
phases to systematically achieve pruning in the Neural Network.

We directly report the results from [9], while for all the other methods under comparison,
we conducted a systematic grid search, following a similar configuration as detailed in Sec-
tion 4.1. In Tables 17 and 18, we report only the most relevant non-dominated results of the
grid search.

Tables 17 and 18 present clear evidence of SPR’s superiority over the baseline methods.
Our approach achieves a reduction of over 90% in the number of parameters for ResNet-32 and
nearly 94% for ResNet-56, while maintaining an accuracy of over 92% for both architectures.
Notably, ¢ regularization competes closely with Elastic Net when applied to ResNet-32 prun-
ing, producing results that are non-dominated and reported in Table 17. Conversely, when
pruning ResNet-56, Elastic Net consistently outperforms ¢; regularization, occasionally achiev-
ing results that are competitive with SPR. Regarding the comparison with [9], the outcomes
presented in Tables 17 and 18 highlight that, despite its relative simplicity compared to the
competition, our approach remains competitive within the existing literature. Notably, when
pruning ResNet-32, we successfully remove more than 90% of the parameters while achieving
nearly identical accuracy compared to the state-of-the-art method that prunes exactly 90% of
the network. However, our results are less favorable when pruning ResNet-56. This suggests
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Table 17: Result on CIFAR-10 using ResNet-32 in the unstructured setting.

Method Setting  Acc. Pruned pars (%)
A15- @02 9273 334791 (72.48)

. A20-a0 9205 369338 (79.96)
Elastic Net 3 or 00 9131 384277  (83.20)
A35-ale2 90.35 413674 (89.56)

P-15 92.68 392601 (85.00)

0 P-10 92.12 415694  (90.00)

P-5 90.74 438788 (95.00)

P-3 89.26 448025 (97.00)

A10-a5e2 9314 349601  (75.69)

SPR A25-a02 9246 405541 (87.80)
A10- @08 9211 416428 (90.16)
A35-a02 90.85 436795 (94.57)

A35-a 0.6 89.95 441673 (95.62)

Method Setting  Acc. Pruned pars (%)
A20- @06 9341 604445 (70.86)

. A20- 52 9322 693854 (81.34)
Elastic Net o5 o 5e2 9277 727884  (85.33)
A35-abe2 91.75 751298 (88.08)

P-15 93.08 725676 (85.00)

0 P-10 93.33 768123  (90.00)

P-5 9249 810570 (95.00)

P-3 91.79 827549  (97.00)

A30-ale2 93.90 631012 (73.97)

SPR A20-abe2 9294 736483 (86.34)
A25-@ 0.2 9214 799059 (93.67)

A25-a 06 91.34 806005 (94.49)

that employing a more complex optimization algorithm may be crucial for larger architectures
or that further hyper-parameter tuning is needed in such scenarios.

Appendix B. Discussion on the M hyper-parameter. In this section, we discuss the
importance of the M parameter appearing in the SPR definition and some considerations
surrounding its selection.
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The value of M is used when projecting away the y variables in (3.4), and it conveys
important information for the SPR. As partially explained in Section 3.3, the M parameter
is used to assess if a weight is “large” or not: indeed, the SPR term changes its form based
on the quantity ||w||/M.

Ideally, the value of M could be chosen such that the weights will naturally stay below
such value. In practice, this ideal M is not computable and we had to choose M empirically
as explained in Section 4.1. It is crucial to grasp that opting for an excessively large M
is detrimental. Intuitively, this is due to the previously mentioned SPR mechanism that
dynamically adapts the definition of the SPR term based on the value of M. Theoretically,
it is well documented in the MIP literature that, in formulations that contain constraints
such as (3.2), an excessively large M value has a rather negative effect on the quality of
the continuous relaxation of the MIP formulation [8]. This continuous relaxation forms the
foundation of our approach and it is what we aim to strengthen when using the Perspective
function in Section 3.1. The practical irrelevance of an excessively large value for M becomes
evident when considering the limit where M approaches infinity. In fact, in this limit, the
SPR term essentially converges to being almost identical to the ¢5 norm.
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