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Abstract. In Machine Learning, Artificial Neural Networks (ANNs) are a very powerful tool, broadly used4
in many applications. Often, the selected (deep) architectures include many layers, and therefore5
a large amount of parameters, which makes training, storage and inference expensive. This mo-6
tivated a stream of research about compressing the original networks into smaller ones without7
excessively sacrificing performances. Among the many proposed compression approaches, one of the8
most popular is pruning, whereby entire elements of the ANN (links, nodes, channels, . . . ) and the9
corresponding weights are deleted. Since the nature of the problem is inherently combinatorial (what10
elements to prune and what not), we propose a new pruning method based on Operational Research11
tools. We start from a natural Mixed-Integer-Programming model for the problem, and we use12
the Perspective Reformulation technique to strengthen its continuous relaxation. Projecting away13
the indicator variables from this reformulation yields a new regularization term, which we call the14
Structured Perspective Regularization, that leads to structured pruning of the initial architecture.15
We test our method on some ResNet architectures applied to CIFAR-10, CIFAR-100 and ImageNet16
datasets, obtaining competitive performances w.r.t. the state of the art for structured pruning.17
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1. Introduction. The striking practical success of Artificial Neural Networks (ANN) has20

been initially driven by the ability of adding more and more parameters to the models, which21

has led to vastly increased accuracy. This brute-force approach, however, has numerous22

drawbacks: besides the ever-present risk of overfitting, massive models are costly to store and23

run. This clashes with the ever increasing push towards edge computing of ANN, whereby24

neural models have to be run on low power devices such as smart phones, smart watches, and25

wireless base stations [29, 52, 43]. While one may just resort to smaller models, the fact that26

a large model trained even for a few epochs performs better than smaller ones trained for27

much longer lends credence to the claim [34] that the best strategy is to initially train large28

and over-parameterized models and then shrink them through techniques such as pruning and29

low-bit quantization.30

Loosely speaking, pruning requires finding the best compromise between removing some31

of the elements of the ANN (weights, channels, filters, layers, blocks, . . . ) and the decrease in32

accuracy that this could bring [35, 30, 26]. Pruning can be performed while training or after33
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training. The advantage of the latter is the ability of using standard training techniques un-34

modified, which may lead to better peformances. On the other hand, pruning while training35

automatically adapts the values of the weights to the new architecture, dispensing with the36

need to re-train the pruned ANN.37

A relevant aspect of the process is the choice of the elements to be pruned. Owing to38

the fact that both ANN training and inference is nowadays mostly GPU-based, pruning an39

individual weight may yield little to no benefit in case other weights in the same “compu-40

tational block” are retained, as the vector processing nature of GPUs may not be able to41

exploit un-structured forms of sparsity. Therefore, in order to be effective pruning has to be42

achieved simultaneously on all the weights of a given element, like a channel or a filter, so43

that the element can be deleted entirely. The choice of the elements to be pruned therefore44

depends on the target ANN architecture, an issue that has not been very clearly discussed in45

the literature so far. This motivates a specific feature of our development whereby we allow46

to arbitrarily partition the weight vector and measure the sparsity in terms of the number of47

partitions that are eliminated, as opposed to just the number of weights.48

In this work, we develop a novel method to perform structured pruning during train-49

ing through the introduction of a Structured Perspective Regularization (SPR) term. More50

specifically, we start from a natural exact Mixed-Integer Programming (MIP) model of the51

sparsity-aware training problem where we consider, in addition to the loss and ℓ2 regulariza-52

tion, also the ℓ0 norm of the structured set of weights. A novel application of the Perspective53

Reformulation technique leads to a tighter continuous relaxation of the original MIP model54

and ultimately to the definition of the SPR term. Our approach is therefore principled, being55

grounded on an exact model rather than based on heuristic score functions to decide what56

entities to prune as prevalent in the literature so far. It is also flexible as it can be adapted57

to any kind of structured pruning, provided that the prunable entities are known before the58

training starts, and the final expected amount of pruning is controlled by the hyper-parameter59

providing the weight of the ℓ0 term in the original MIP model. While our approach currently60

only solves a relaxation of the integer problem, it would clearly be possible to exploit estab-61

lished Operations Research techniques to improve on the quality of the solution, and therefore62

of the pruning. Yet, the experimental results show that our approach is already competitive63

with, and often significantly better than, the state of the art. Furthermore, since we per-64

form pruning during training by just changing the regularization term, our approach can use65

standard training techniques and its cost is not significantly higher than the usual training66

without sparsification.67

2. Related works. The field of pruning is experiencing a growing interest in the Machine68

Learning (ML) community, starting from the seminal work [28] that obtained unexpectedly69

good results from a trivial magnitude-based approach. The same magnitude-based approach70

was extended in [22] with a re-training phase where the non-pruned weights are re-initialized71

to their starting values. Moreover, in [51] the authors claim that, for most pruning methods,72

the most important result is the final structure of the pruned ANN, while the final values of73

the weights or their original initialization are not crucial.74

A multitude of pruning approaches has been developed over the years, including but not75

limited to Bayesian methods [56, 7, 53, 79], regularization methods [72, 48], and combinations76
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of pruning with other compression techniques [3, 55, 23]. Part of the literature [6, 27, 10, 76]77

focuses on pruning without modifying the model outputs or at least trying to minimize the78

output change. This approach can be effective when the model is highly over-parameterized79

or when very few parameters need to be pruned, but it is sub-optimal otherwise.80

Another possibility is adding to the network parameters a scaling factor for each prunable81

entity, multiplying all the corresponding parameters; then, sparsity is enforced by adding the82

ℓ1 norm of the scaling factors vector, as done for example in [50]. In [61] a pruning mask is83

defined, i.e., a differentiable approximation of a thresholding function that pushes the scaling84

factors to 0 when they are lower than a fixed threshold, avoiding numerical issues. Other85

methods that use a similar approach are [54, 71, 49].86

Most recently-published state-of-the-art pruning methods either use a magnitude-based87

approach to identify prunable parameters [70, 45, 12, 78, 25, 40, 55, 11], or try to estimate the88

impact of a parameter removal [13, 41, 63, 75, 60, 24, 15, 42, 57, 58, 74]. In both cases, they89

rely on heuristic rules to compute the importance of an element of the ANN, mostly based90

just on its l2 norm. This is arguably sub-optimal in general, and we aim at improving on this91

by using a principled approach. The need for a more theoretically grounded approach has92

been clearly been felt already, as proven by the proposals [77, 9, 54, 56] that, like ours, start93

from an exact theoretical model of the pruning problem formulated through the l0 norm. A94

significant difference, that has a profound impact on the developed technique, is that all these95

previous proposals do not focus on structured pruning.96

Elsewhere, MIP techniques have been successfully used in the ANN context, but mostly97

in applications unrelated to pruning, such as the construction of adversarial examples (with98

fixed weights) [18]. In [4], the approach is extended to a larger class of activation functions99

and stronger formulations are defined. An exception is [16], where a score function is defined100

to assess the importance of a neuron and then a MIP is used to minimize the number of101

neurons that need to be kept at each layer to avoid large accuracy drops. In [62] a MIP is102

used first to derive bounds on the output of each neuron, which is then used in another MIP103

model of the entire network to find equivalent networks, local approximations, and global104

linear approximations with fewer neurons of the original network. Since MIPs are NP-hard,105

these techniques may have difficulties scaling to large ANNs. Indeed, the pruning method106

developed in [1, 2] rather solves a simpler convex program for each layer to identify prunable107

entities in such a way that the inputs and outputs of the layer are still consistent with the108

original one. This layer-wise approach does not take into account the whole network at once109

as our own does.110

The link between Perspective Reformulation techniques and sparsification has been pre-111

viously recognized [14, 5], but typically in the context of regression problems that are much112

simpler than ANNs. In particular, all the above papers count (the equivalent of) each weight113

individually, and therefore they do not consider structured pruning of sets of related weights as114

it is required for ANNs. Furthermore, the sparsification approach is applied to input variables115

selection in settings that typically have orders of magnitude fewer elements to be sparsified116

than the present one.117

3. Mathematical model. We are given a dataset X, an ANN model architecture whose118

set of parameters W = {wj | j ∈ I } includes prunable entities, that is, disjoint subsets {Wi =119
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[wj ]j∈Ei }i∈N for disjoint subsets of indices {Ei }i∈N s.t. I ⊇ ∪i∈NEi, and a loss function120

L(·). If the value of a parameter wj is zero it could be eliminated from the model (pruned)121

but, for the reasons discussed above, we are only interested in pruning the entities Ei, which122

corresponds to wj = 0 for all j ∈ Ei. We therefore face a three-objective optimization problem123

which aims at: i) minimize the loss, ii) minimize some standard regularization term aiming124

a improving the model’s generalization capabilities, and iii) maximize the number of pruned125

entities Ei. As customary in this setting, we approach this by scaling the three objective126

functions by means of hyperparameters whose optimal values are found by standard grid-127

search techniques. Employing the usual ℓ2 regularization, the problem can be cast as the128

MIP129

min L(X,W ) + λ[α∥W ∥22 + (1− α)
∑

i∈N yi ](3.1)130

−Myi ≤ wj ≤Myi wj ∈ Ei i ∈ N(3.2)131

yi ∈ {0, 1} i ∈ N(3.3)132133

where α ∈ [ 0 , 1 ] and λ > 0 are scalar hyper-parameters while M is an upper bound on the134

absolute value of the parameters. The binary variable yi is 0 if the corresponding prunable135

entity is pruned, 1 if it is not. The standard “big-M” constraints (3.2) ensure that if yi = 0136

then 0 ≤ wj ≤ 0 for all parameters in the entity Ei, while if yi = 1 the parameters can take137

any possible useful value (since M is an upper bound). Hence, the term “
∑

i∈N yi” in the138

objective (3.1) represents the ℓ0 norm of the structured set of weights. In the unstructured139

case, i.e., when each Ei is a singleton, the standard sparsification approach is to substitute the140

ℓ0 norm with the ℓ1 one; this allows to do away with the yi variables entirely, replacing the141

corresponding term in the objective with ∥W ∥1. This elastic net regularization [81] combines142

the properties of the ridge/Tikhonov (ℓ2) and Lasso (ℓ1) regularizations; it has also been143

extended to different forms, like the Huber regularization [33, 59] where the ℓ2 and ℓ1 norms,144

rather than being summed, are applied to different subsets of the space. The choice of the145

ℓ1 norm is motivated by it being the best possible convex approximation of the nonconvex146

(and not even continuous) ℓ0 one. However, these arguments do not readily carry over to the147

structured case.148

3.1. The Perspective Reformulation. Basically all known strategies to solve MIPs like149

(3.1)–(3.3), be them exact or heuristic, start from considering its continuous relaxation whereby150

(3.3) is relaxed to yi ∈ [ 0 , 1 ]. Such a problem is significantly easier than the original MIP, in151

the sense that a locally optimal solution (w̄, ȳ) is efficiently obtainable using standard tech-152

niques for ANN training. However, it is well-known that such a solution can be rather different153

from the optimal solution (w∗, y∗) of (3.1)–(3.3), in both the y and w variables, due to the154

rather crude approximation of the nonconvex constraints (3.3) by means of their convex coun-155

terpart yi ∈ [ 0 , 1 ]. This would hold even if the (w̄, ȳ) were globally optimal, which happens,156

e.g., if L(X, ·) is convex (not typical in the ANN context), save in the fortunate case where157

w̄ happens to satisfy (3.3). Since w̄ is typically what one could use to decide what entities158

to remove, this could lead to inefficient prunings. We therefore we seek a different relaxation159

that can provide us with higher quality solutions. In principle, an “exact” convex relaxation160

exists, which is obtained by constructing the convex envelope of the objective function (3.1)161

on the set of integer solutions, i.e., its best possible convex approximation (technically, the162
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convex function with smallest epigraph containing that of the original function). However,163

constructing the convex envelope of a function is in general NP-hard, even in much less de-164

manding settings than (3.1)–(3.3). A strategy that has proved successful is to devise convex165

envelope formulæ of fragments of the problems with specific structure; while the combination166

of these is typically not equivalent to the true convex envelope, it is often a much better167

approximation, leading to much better continuous relaxation solutions and therefore more168

efficient computational approaches. We can rewrite (3.1)-(3.3) as the following unconstrained169

optimization problem,170

min
{
L(X,W ) + λ[

∑
i∈N hi(Wi, yi) ]

}
,171

where172

hi(Wi, yi) =


0 if yi = 0 and wj = 0 ∀j ∈ Ei

α
∑

j∈Ei
w2
j + (1− α) if yi = 1 and |wj | ≤M ∀ j ∈ Ei

+∞ otherwise.

173

The (clearly, nonconvex) function hi(·, ·) belongs to a class of functions whose convex envelope174

can be explicitly computed: following [20], the convex envelope of hi can be proven to be175

ĥi(Wi, yi) =


0 if yi = 0 and wj = 0 ∀j ∈ Ei

α
∑

j∈Ei

w2
j

yi
+ (1− α)yi if |wj | ≤ yiM ∀j ∈ Ei and yi ∈ (0, 1]

+∞ otherwise.

176

This leads to the new formulation of problem (3.1)–(3.3)177

(3.4) min
{
L(X,W ) + λ

∑
i∈N

[
α
∑

j∈Ei

w2
j

yi
+ (1− α)yi

]
: (3.2) , (3.3)

}
178

known in the literature as Perspective Reformulation (PR), that is easily seen to have the179

same integer optimal solution (w∗, y∗) as the original problem but a continuous relaxation180

(the Perspective Relaxation) that is “better” in a well-defined mathematical sense: its optimal181

objective value is (much) closer to the true optimal value of (3.1)–(3.3), which typically implies182

that its optimal solution (w̄, ȳ) is more similar to the true optimal solution (w∗, y∗). Indeed,183

ĥi(Wi, yi) can be seen to have larger value than hi(Wi, yi), the more so the more yi is close184

to 0.5, i.e., “farther from being integer” [20], thereby discouraging highly fractional values in185

y∗. This has been already shown to leading to much better performances of both exact and186

heuristic approaches, w.r.t. using the standard continuous relaxation, for other MIPs with187

similar structure.188

3.2. Eliminating the y variables. While one can expect that the solution (w̄, ȳ) of the189

Perspective Relaxation can provide a better guide to the pruning procedure, the presence of190

the explicit variables y makes it more difficult to apply standard training techniques to obtain191

it. Following the lead of [21, 19], we proceed at simplifying the PR model by projecting away192

the y variables. This amounts to computing a closed formula ỹ(w) for the optimal value of193

This manuscript is for review purposes only.



6 M. CACCIOLA, A. FRANGIONI, X. LI, A. LODI

the y variables in the continuous relaxation of (3.4) assuming that w are fixed: the problem194

then decomposes over the Ei subsets, and therefore we only need to consider each fragment195

fi(Wi, yi) = λ
[
α
∑

j∈Ei
w2
j/yi + (1− α)yi

]
196

separately. Since fi is convex in yi if yi > 0, we just need to find the root of the derivative197

∂fi(Wi, yi)

∂yi
= λ

−α∑
wj∈Ei

w2
j

y2i
+ (1− α)

 = 0 ,198

that is199

yi =

√
α
∑

wj∈Ei
w2
j

1− α
200

(we are only interested in positive y), and then project it on the domain. Note that, technically,201

fi(Wi, yi) is nondifferentiable for yi = 0 but that value is only achieved when Wj = 0, in which202

case the choice is obviously optimal. The constraints that defines the domain of yi can be203

rewritten as yi ≥ |wj |/M for all j ∈ Ei, together with yi ∈ [0, 1]; putting everything together,204

we obtain205

(3.5) ỹi(w) = min
{
max

{
{ |wj |/M : j ∈ Ei} ,

√
α
∑

j∈Ei
w2
j/(1− α)

}
, 1

}
206

where we note that we do not need to enforce positivity since all the quantities are positive.207

Replacing yi with ỹi(Wi) in the objective function of (3.4) we can rewrite the continuous208

relaxation of (3.4) as209

(3.6) min
{
L(X,W ) + λ

∑N
i=1 zi(Wi;α,M)

}
,210

where211

zi(Wi;α,M) =


α
∑

j∈Ei

√
(1−α)w2

j√
α
∑

j∈Ei
w2

j

+ (1− α)

√
α
∑

j∈Ei
w2

j

(1−α) if ∥Wi∥∞
M ≤

√
α
∑

j∈Ei
w2

j

1−α ≤ 1

α
∑

j∈Ei

w2
jM

∥Wi∥∞ + (1− α)∥Wi∥∞
M if

√
α
∑

j∈Ei
w2

j

1−α ≤ ∥Wi∥∞
M ≤ 1

α
∑

j∈Ei
w2
j + (1− α) otherwise,

212

=


√
(1− α)α||Wi||2 +

√
(1− α)α||Wi||2 if ||Wi||∞

M ≤
√

α
1−α ||Wi||2 ≤ 1

αM
||Wi||∞ ||Wi||22 + (1− α) ||Wi||∞

M if
√

α
1−α ||Wi||2 ≤ ||Wi||∞

M ≤ 1

α||Wi||22 + (1− α) otherwise,

213

=


2
√

(1− α)α||Wi||2 if ||Wi||∞
M ≤

√
α

1−α ||Wi||2 ≤ 1

αM
||Wi||∞ ||Wi||22 + (1− α) ||Wi||∞

M if
√

α
1−α ||Wi||2 ≤ ||Wi||∞

M ≤ 1

α||Wi||22 + (1− α) otherwise.

(3.7)214

215
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We call zi(Wi;α,M) the Structured Perspective Regularization (SPR) w.r.t. the structure216

specified by the sets Ei. It is easily seen that the SPR behaves like the ordinary ℓ2 regulariza-217

tion in parts of the space but it is significantly different in others. Due to being derived from218

(3.4), we can expect, all other things being equal, the SPR to promote sparsity—in terms of219

the sets Ej—better than the ℓ2 norm. Indeed, SPR for i ∈ I depends on the ℓ∞ norm of220

Wi. This means that it penalizes entities on the ground of their maximum non-zero compo-221

nent, regardless to how many wj have the maximum value. This arguably better promotes222

structured sparsity, as required by our application, w.r.t., say, using the ordinary ℓ1 norm223

that rather promotes sparsity on each weight individually. This intuition is substantiated in224

the next § 3.3 where a more detailed discussion about the properties of the SPR regularizer225

can be found. Yet, all of the usual algorithms for training ANNs (SGD, Adam, etc.) can be226

employed for the solution of (3.6), which therefore should not, in principle, be more costly227

than non-sparsity-inducing training or unstructured sparsity-inducing terms like the ℓ1 norm.228

It is perhaps useful to remark that the Lasso/elastic net regularization can be seen as the229

application of an analogous process in the non-structured case. Indeed, assume W is fixed in230

(3.1)–(3.3): the optimal value of the y variables in the continuous relaxation of the problem231

solves (independently for each i)232

min{ (1− α)yi : (3.2) , yi ∈ [ 0 , 1 ] }233

where the constraints are of course equivalent to yi ≥ |wi|/M : hence, y∗i = |wi|/M , which234

leads to the replacing of the ℓ0 norm with the ℓ1 one. Thus, our approach can be seen as a235

generalization of the standard one, but with two meaningful differences: i) it takes into account236

the effect of the quadratic regularization term, and ii) it applies the PR to the problem before237

doing the projection. Note that the first point is crucial to the second, because the PR of238

a linear function is easily seen to be the original function itself: in other words, the PR has239

no effect on linear problems. It is interesting to remark what happens to the SPR term in240

the context of unstructured pruning. In this case, the vector Wi in (3.7) is just a scalar,241

so ∥Wi∥∞ = ∥Wi∥2 = |Wi| and the formula becomes much simpler. First, we only get two242

possible cases: if 1/M ≤
√

α/(1− α), then the second case is never possible; otherwise, it is243

the first case that never verifies. Moreover, both the first and the second cases of (3.7) become244

equal to the l1 norm times a constant. This yield the known Berhu (reverse Huber) penalty245

[39], which has already been shown to be effective. However, doing this in the structured case246

is novel, and yields the SPR term that is significantly more complex than what was previously247

known, as better illustrated next.248

3.3. Intuition on our new regularization term. We now provide a discussion on the249

shape of the SPR term, focussing on the features that could be linked to its better struc-250

tured sparsification properties. We remark that, unlike what was done with the heuristic251

approaches in the literature, we did not develop the SPR in order to obtain such properties:252

instead, they were the natural results of constructing a better continuous approximation of the253

inherently combinatorial (and, therefore, hard) exact training-with-structured-sparsification254

problem (3.1)–(3.3).255

First, we notice that SPR is not differentiable in zero. Since the gradient does not vanish256

in points close to the origin, this is known to increase the amount of parameters that are257
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effectively zero after training is completed; indeed, this is the effect underlying the Lasso (l1)258

regularizer for unstructured sparsity. This property is likely crucial, and in fact it is common259

to basically all other regularization-based approaches to structured sparsification, many of260

which use the non-squared ℓ2 norm (also known as l2/l1 norm [11, 48]). Again, this feature261

was not planned, but it emerged as a result of our principled approach.262

Out of 0, the behaviour of the SPR is different in different zones of the space. In particular,263

when the norm of a prunable entity is “large” (more precisely, when at least one among264

∥Wi∥∞ ≥ M and ∥Wi∥2 ≥
√

(1− α)/α holds, the white region of Figure 1), then SPR is265

equivalent to the standard ridge/Tikhonov (ℓ2) regularization. Intuitively, the SPR identifies266

the entities that are “not likely” to be pruned, and, since no structured regularization needs267

to be applied there, the usual regularization is used which is still needed for generalization268

purposes. This is similar to the (much simpler) Berhu regularization [39] (for the unstructured269

case) that coincides with the l2 norm “far from 0”, while rather being the (nondifferentiable)270

l1 norm “close to 0”. Again, we did not explicitly plan for this to happen, and such a behavior271

is not foreseen in the popular regularizers employed in the sparsification literature.272

If an entity is “still within pruning range”, SPR has a complex behavior organized around273

two different kinds of regions of the space. The first is the one in which a few parameters of274

an entity have disproportional larger absolute value compared to the others in the same entity275

(more precisely when ∥Wi∥∞ ≥
√

α/(1− α)M∥Wi∥2, blue region of Figure 1). There the SPR276

is close to the infinity norm, and therefore the learning process focuses on reducing precisely the277

largest entries, since the infinity norm gradient is non-zero only in the entries corresponding to278

the coordinates in which the norm is reached (the ones with maximum absolute value). From279

a structured pruning point of view, entities with unbalanced parameters are not ideal since280

they may have many “small” (even possibly 0) weights, that therefore likely provide small (or281

null) benefit in terms of loss reduction, and yet they can not be removed due to a “few” large282

weights. The SPR identifies such entities and promotes the reduction of the disproportion283

among the weight magnitudes, possibly leading to the final removal.284

In fact, when instead an entity has parameters with similar magnitudes (more precisely285

when ∥Wi∥∞ ≤
√
α/(1− α)M∥Wi∥2, grey region of Figure 1), a sparse gradient could cause286

convergence speed problems. In this case, the SPR is equal to the (non-squared) l2 norm287

whose gradient is not sparse; thus, the SPR promotes the simultaneous reduction of all the288

parameters, hopefully finally leading to the pruning of the entity.289

A pictorial representation of the previous discussion is provided in Figure 1 for a two-290

dimensional entity, with the left panels highlighting the regions where each case of the SPR291

occurs, while the right panels show the level sets of the SPR term that induces structured292

sparsity (that is, the term that multiplies (1 − α) in (3.7)). Different plots corresponding to293

different choices of α (for fixed and M) are given to illustrate the complexity of the term294

as a function of its hyperparameters, and therefore its flexibility. A three-dimensional plot295

of the SPR term that induces structured sparsity is reported in Figure 2, illustrating how296

it transitions between different regions. Arguably, such a complex behaviour would have297

been rather complex to engineer; yet, it naturally emerged from our use of sophisticated298

mathematical optimization techniques.299
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(a) M = 0.9, α = 0.5
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(b) M = 0.9, α = 0.55
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(c) M = 0.9, α = 0.4

Figure 1: Left, regions in which the SPR changes definition, right level sets of the structured
sparsity term of the SPR

3.4. Minor improvements. Remarkably, the SPR depends on the choice of M , which is,300

in principle, nontrivial. Indeed, all previous attempts of using PR techniques for promoting301

This manuscript is for review purposes only.



10 M. CACCIOLA, A. FRANGIONI, X. LI, A. LODI

Figure 2: 3-dimensional plot of the structured sparsity term of the SPR. When the norm of
the entity is big enough, the term is constant. Otherwise, it is more similar to the l2 or l∞
norm, based on how are distributed the weights in the entity.

(non-structured, i.e., Ei = { i }) sparsity [14, 5] have been using the “abstract” nonlinear form302

(1 − yi)wi = 0 of (3.2). This still yields the same Perspective Reformulation, but it is not303

conducive to projecting away the y variables as required by our approach. While M could in304

principle be treated as another hyperparameter, in a (deep) ANN, different layers can have305

rather different optimal upper bounds on the weights; hence, using a single constant M for306

all the prunable entities is sub-optimal. The ideal choice would be to compute one constant307

Mi for each entity Ei; however, entities in the same layer are often similar to each other, so308

we only computed a different constant for each layer of the network, as detailed in §4.1, and309

used it for all entities belonging to that layer.310

Furthermore, all the development so far has assumed that all prunable entities Ei are311

equally important. However, this may not be true, since different entities can have different312

number of parameters and therefore impact differently on the overall memory and computa-313

tional cost. To take this feature into account, we modify our regularization terms as314

λ
∑
i∈N

ui∑
i∈N ui

zi(Wi;α,M),315

where ui is the number of parameters belonging to entity Ei.316

Finally, we perform a fine-tuning phase. After the ANN has been trained with the SPR,317

we prune all the entities Wi where 99.5% of the weights are smaller than the tolerance which318

is found using Algorithm 3.1. The threshold value 99.5% has been obtained through simple319

preliminary experiments. Though it could be treated as an hyperparameter and tuned ac-320

cordingly, we did not deem this necessary since the experiments have shown that it plays a321

limited role in the final performances. We re-train the compressed network with the standard322

ℓ2 regularization, starting from the value of the weights (for the non-pruned entities) obtained323
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at the end of the previous phase rather than re-initializing them.324

Algorithm 3.1 performs a binary search in a given interval to find the highest possible325

pruning threshold that does not heavily affect the accuracy of the model. At each iteration,326

the candidate threshold is set to the medium point of the current interval, the ANN is pruned327

with such threshold and the new training accuracy is computed. If there was a drop in the328

accuracy larger than a given tolerance, the threshold is discarded and the first half of the329

interval becomes the interval for the next iteration. Otherwise, the threshold is accepted and330

the new interval is the second half of the current one. In our experiments we used N = 10,331

a = 0, b = 1e-1 and δ = 5e-2.332

Algorithm 3.1 Given a trained ANN with ρ∗ training accuracy, the algorithm searches for
the highest threshold in the interval [a, b] such that the ANN compressed with such threshold
does not lose more than δ accuracy.

Require: N , ρ∗, δ and [a, b]
ϵ∗ ← a
for i = 1, . . . , N do
ϵ← (a+ b)/2
compress the network with the threshold ϵ and compute the current training accuracy ρ
if ρ ≥ ρ∗ − δ then a← ϵ∗ ← ϵ
else b← ϵ end if

end for
return ϵ∗

4. Experiments. We tested our method on the task of filter pruning in Deep Convolutional333

Neural Networks; that is, the prunable entities are the filters of the convolutional layers. More334

specifically, the weights in a convolutional layer with ninp input channels, nout output channels335

and k × k kernels is a tensor with four dimensions (ninp, nout, k, k): our prunable entities336

correspond to the sub-tensors with the second coordinate fixed, and therefore have ninp×k×k337

parameters. Following [11], we include in the each prunable entity the corresponding bias and338

weight parameter belonging to the following batch normalization layer.339

The code used to run the experiments was written starting from the public repository340

https://github.com/akamaster/pytorch resnet cifar10 and https://github.com/pytorch/examples/341

tree/master/imagenet.342

4.1. Datasets, architectures and general setup. For our experiments, we used 3 very343

popular datasets: CIFAR-10, CIFAR-100 [36] and ImageNet [37]. As architectures, we focused344

on ResNet [31] and Vgg [65]; in particular, we used ResNet-18, ResNet-20, Resnet50, ResNet-345

56 and Vgg-16 for the CIFAR 10 dataset, ResNet-20 for the Cifar-100 dataset and ResNet-18346

for the ImageNet dataset. We chose these dataset-architecture pairs since they were among347

the most common in the literature.348

For all the experiments, we used Pytorch (1.12.1) with Cuda, the CrossEntropyLoss and349

the SGD optimizer with 0.9 momentum. The Mi values were set as the maximum absolute350

values of the weights for each layer of a network with the same architecture but trained without351

our regularization term (for ResNet-20 and ResNet-56 we trained it, for ResNet-18 we used352
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Table 1: Results of our algorithm on CIFAR-10 using ResNet-20

L-rate λ α Acc. Pruned pars (%) FLOPs (%)

0.1 1.9 0.5 85.63 242424 (89.88) 12.70M (31.31)
0.1 1.6 0.5 86.81 232409 (86.17) 13.77M (33.96)
0.1 1.3 0.5 88.00 228094 (84.57) 16.62M (40.99)
0.1 1.3 0.1 89.46 213958 (79.33) 15.01M (37.02)
0.1 1.3 1e-4 90.03 203154 (75.32) 18.09M (44.62)
0.1 0.8 0.1 91.22 172658 (64.01) 24.86M (61.30)
0.1 0.5 1e-3 92.23 115620 (42.87) 29.69M (73.23)

Original model 92.03 0 (0.00) 40.56M (100.00)

Table 2: Results of our algorithm on CIFAR-100 using ResNet-20

L-rate λ α Acc. Pruned pars (%) FLOPs (%)

0.10 0.50 0.50 65.64 160394 (58.20) 23.89M (58.90)
0.01 1.30 0.50 67.53 102944 (37.36) 33.98M (83.78)
0.10 0.30 0.60 68.22 79720 (28.93) 29.94M (73.83)
0.10 0.30 0.15 68.57 61515 (22.32) 29.60M (72.98)
0.01 1.25 0.15 69.13 42009 (15.24) 37.88M (93.39)

Original model 68.55 0 (0.00) 40.56M (100.00)

the pretrained version available from torchvision).353

Additional details are provided in the appendix.354

4.2. Results on CIFAR-10 and CIFAR-100. These experiments were performed on a355

single GPU, either a TESLA V100 32GB or NVIDIA Ampere A100 40GB. The model was356

trained for 300 epochs and then fine tuned for 200 ones. The dataset was normalized, then we357

performed data augmentation through random crop and horizontal flip. Mini batches of size358

128 (64 for CIFAR-100) were used for training. The learning rate was initialized to either 0.1359

or 0.01 and then it was divided by 10 at epochs 100 (200 for CIFAR-100), 250, 350, 400 and360

450. We performed grid search on the crucial hyperparameters λ and α as detailed in §A.3.361

Since the learning-with-structured-pruning problem is a multi-objective one, there is no362

overall best solution: rather, we report a representative selection of the non-dominated so-363

lutions on the efficient frontier (the best pruning corresponding to any achieved level of ac-364

curacy), together with the hyperparameters achieving it. An example of the pareto curve365

obtained through our experiments is reported in §A.4. We also report the number of floating366

point operations (FLOPs) necessary to perform inference for each model.367

Table 1 shows the results of training ResNet-20 on CIFAR-10: we were able to prune more368

than 42% of the parameters by still increasing the accuracy of the original model, while we369
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Table 3: Results of our algorithm on CIFAR-10 using ResNet-56

L-rate λ α Acc. Pruned pars (%) FLOPs (%)

0.1 1.9 0.01 90.62 762869 (89.43) 30.10M (23.99)
0.1 1.0 5e-3 91.85 726717 (85.19) 38.94M (31.03)
0.1 0.7 0.01 92.42 677433 (79.42) 42.65M (33.98)
0.1 0.4 0.10 92.76 612038 (71.75) 44.08M (35.13)
0.1 0.4 0.50 93.48 553821 (64.92) 50.90M (40.57)
0.1 0.2 0.50 93.96 395478 (46.36) 83.58M (66.60)

Original model 93.35 0 (0.00) 125.48M (100.00)

could prune more than 75% of the model by still preserving more than 90% accuracy. With370

the same architecture on the more challenging CIFAR-100 dataset (Table 2) we could prune371

more than 15% of parameters while improving the accuracy of the original model, but pruning372

many parameters resulted in a significant accuracy loss: we could still achieve more than 67%373

accuracy by pruning a few less than 40% of the parameters, but accuracy dropped to less than374

66% if pruning more.375

Table 3 reports results on training the ResNet-56 architecture on CIFAR-10: once again376

pruning about 65% of the parameters improved accuracy and we could keep more than 92%377

accuracy while pruning almost 80% of the network.378

Finally, Tables 4, 5 and 6 report results on the CIFAR-10 dataset of models Resnet-18,379

ResNet-50, and Vgg-16 (respectively), which have a much larger number of parameters than380

the previous ones: in these cases we were able to prune the vast majority of the parameters381

(from 89% to more than 90%) without really affecting the accuracy of the ANN, sometimes382

even increasing it.383

4.3. Results on ImageNet. These experiments were performed on single TITAN V 8GB384

GPU. The model was trained for 150 epochs and fine tuned for 50 ones. The preprocessing385

was the same as for the CIFAR datasets. We used mini batches of 256 and 0.1 learning rate386

that was divided by 10 every 35 epochs, and the grid search detailed in §A.3. As usual for387

datasets with so many classes, we report also the top5 accuracy, i.e., the percentage of samples388

where the correct label was on the 5 higher scored classes by the model.389

Table 4: Results of our algorithm on
CIFAR-10 using ResNet-18

L-rate λ α Acc. Pruned pars (%) FLOPs (%)

0.1 2.8 0.5 94.38 10691286 (95.29) 101.53M (18.28)
0.1 2.5 0.5 94.50 10555810 (94.08) 118.51M (21.33)
0.1 1.9 0.5 94.81 10451461 (93.15) 143.45M (25.82)
0.1 1.3 0.5 95.34 10059742 (89.66) 192.39M (34.64)

Original model 95.15 0 (0.00) 555.47M (100.00)

Table 5: Results of our algorithm on
CIFAR-10 using ResNet-50

L-rate λ α Acc. Pruned pars (%) FLOPs (%)

0.1 1.6 1e-4 93.49 23197453 (97.86) 62.43M (4.81)
0.1 1.6 1e-3 93.80 22977664 (96.93) 103.97M (8.01)
0.1 1.3 1e-4 94.36 22931931 (96.74) 166.30M (12.81)
0.1 1.0 1e-4 94.51 22745124 (95.95) 175.85M (13.55)
0.1 1.0 0.5 94.96 21800173 (91.96) 258.10M (19.88)

Original model 94.83 0 (0.00) 1.30B (100.00)

Results using ResNet-18 are reported in Table 7, and show that even in a very large and390
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Table 6: Results of our algorithm on
CIFAR-10 using Vgg-16

L-rate λ α Acc. Pruned pars (%) FLOPs (%)

0.1 1.6 1e-4 93.44 14266694 (96.87) 82.00M (26.18)
0.1 1.6 0.1 93.56 14179500 (96.27) 89.61M (28.61)
0.1 1.0 0.5 93.93 13647661 (92.66) 126.74M (40.47)
0.1 0.1 0.5 94.31 12044579 (81.78) 186.67M (59.60)

Original model 94.12 0 (0.00) 313.20M (100.00)

Table 7: Results of our algorithm on Ima-
geNet using ResNet-18

L-rate λ α top1 top5 Pruned pars (%) FLOPs (%)

0.1 0.75 0.1 70.26 89.66 1992131 (17.04) 2.20B (92.84)
0.1 1.0 0.1 69.27 89.06 3811382 (32.61) 2.07B (87.58)
0.1 1.1 0.1 68.87 88.72 4481715 (38.34) 2.03B (85.57)
0.1 1.0 0.3 66.20 87.15 7406308 (63.36) 1.83B (77.31)

Original model 69.76 89.08 0 (0.00) 2.37B (100.00)

difficult dataset our method was able to improve the original model results while pruning more391

than 17% of the parameters, and basically tie with it while pruning 30% of the parameters.392

Pruning almost 40% of the network caused a drop of only 0.5% in the accuracy, while a more393

consistent decrease resulted when we pruned about 60% of the parameters.394

4.4. Comparison with state-of-the-art methods. In this section, we compare our results395

(denoted as SPR) with some of the state-of-the-art algorithms for structured pruning. We396

report results from [32] (denoted by SSS), [64] (denoted by EPFS), [68] (denoted by L2PF),397

[44] (denoted by PFFEC), [73] (denoted as RSNI), [47] (denoted as HRANK), [69] (denoted as398

PFC), [66] (denoted by CHIP), [38] (denoted as DNR), [11] (denoted as OTO), [45] (denoted as399

DHP), [74] (denoted as NISP), [80] (denoted as DCP), [67] (denoted as SCOP) , [46] (denoted400

as PFPE) and [17] (denoted by HFP).401

Since not all the above papers reported the results for all our metrics (for example, some402

works only reported the percentage of parameters pruned), in some cases we had to do some403

conversions that naturally came with some mild approximation. Moreover, in [32], only plots404

were presented, so we had to approximately deduce the data from some points of the figures405

(Figure 2(a) and Figure 2(c) of [32], we denote the points as P1, P2, etc.). For ImageNet the406

top5 accuracy is not reported in [17], so we marked the corresponding field in our table with407

a “N/A”. Finally, we report results for different settings of each method as they were given408

in the original papers; however, it should be remarked that not all of them are structured409

pruning methods as our own (in particular, pruning at the filter level), hence the results may410

not be completely equivalent, although in general they should be comparable.411

Regarding ResNet-20 on CIFAR-10, our approach (shown in Table 8) outperforms all the412

other methods, meaning that we could reach equal or better accuracy while pruning a larger413

amount of parameters. For instance, L2PF achieved 89.9% accuracy with 73.96% sparsity,414

while we achieved higher sparsity (79.33%) and a little more accuracy (90.03%)415

On CIFAR-100 using ResNet-20, the results in Table 9 clearly show that we outperform416

SSS, as we could achieve more than 68.5% accuracy while pruning more than 22% of param-417

eters while SSS could prune only 14.81% to obtain a little bit more than 67% accuracy. In418

Table 10, we can observe a similar situation to ResNet-20 on CIFAR-10 for ResNet-56 on the419

same dataset. One of the few results we did not outperform was the CHIP 94.16 accuracy420

with 42.8% sparsity but we could obtain a little bit more sparsity (46.36%) with a comparable421

accuracy (93.96%).422

The results reported in Tables 11 and 12 show that our approach is very competitive423

with respect to the very recent state-of-the-art methods such as OTO and DNR, sometimes424
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Table 8: Results of state of the art method on CIFAR-10 using ResNet-20

Method Setting Acc. Pruned pars (%)

SSS

P1 90.80 120000 (44.44)
P2 91.60 40000 (14.81)
P3 92.00 10000 (3.70)
P4 92.50 0 (0.00)

EPFS

B-0.6 91.91 70000 (24.60)
B-0.8 91.50 100000 (36.90)
F-0,05 90.83 130000 (51.10)

C-0.6-0.05 90.98 150000 (56.00)

L2PF LW 89.90 199687 (73.96)

PFC P1 90.55 135000 (50.00)

DHP 50 91.54 118327 (43.87)

SCOP P1 90.75 151853 (56.30)

PFPE P1 90.91 169035 (62.67)

RSNI
model A 90.9 104708 (38.82)
model B 88.8 190800 (70.74)

SPR
λ 1.3 - α 0.1 90.03 213958 (79.33)
λ 0.8 - α 0.1 91.22 172658 (64.01)
λ 0.5 - α 1e-3 92.23 115620 (42.87)

being able to improve them significantly. For example, DNR can only prune less than 82%425

of ResNet-18 achieving 94.64% accuracy, while our method reach more than 95% accuracy426

pruning more than 89% of the network. The only result that is somehow stronger than SPR427

is that obtained by the Adaptive version of DCP, see the corresponding entries in Tables 10428

and 13. However, the difference in performance is not large in all cases, which confirms that429

SPR is at least competitive with all the alternative approaches we could compare it to.430

Similarly, when training Vgg-16 on Cifar-10, our method beats all the state-of-the-art ones431

but the Adaptive DCP. For example, CHIP can never prune more than 88% of the ANN but432

our algorithm prunes consistently more than 92% achieving similar or better accuracy (Table433

13).434

On ImageNet using ResNet-18, the results in Table 14 show that even if our method does435

not outperform all the other ones, we were able to achieve very competitive results. Likely436

some additional parameter tuning could lead us to even more competitive results.437

5. Conclusions and future directions. Based on an exact MIP model for the problem438

of training-with-structured-pruning of ANNs, we proposed a new regularization term, based439

on the projected Perspective Reformulation, designed to promote structured sparsity. The440
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Table 9: Results of state of the art method on CIFAR-100 using ResNet-20

Method Setting Acc. Pruned pars (%)

SSS

P1 65.50 120000 (44.44)
P2 67.10 40000 (14.81)
P3 68.10 10000 (3.70)
P4 69.20 0 (0.00)

SPR
λ0.5-α0.5 65.64 160394 (58.20)

λ 0.3 - α 0.15 68.57 61515 (22.32)
λ 1.25 - α 0.15 69.13 42009 (15.24)

proposed method is able to prune any kind of structures, and the amount of pruning can be441

tuned by appropriate hyper-parameters. We tested our method on some classical datasets442

and architectures and we compared the results with some of the state-of-the-art structured443

pruning methods, proving that our method is competitive, and often outperforms existing444

ones.445

These results are even more promising in view of the fact that further improvements should446

be possible. Indeed, we are currently solving the continuous relaxation of our proposed exact447

model, albeit a “tight” one due to the use of the Perspective Reformulation technique. By448

a tighter integration with other well-established MIP techniques, further improvements are449

foreseeable.450

Appendix A. Appendix.451

A.1. SPR regularity. In the following, we prove that the SPR term defined in (3.7) is452

continuous, differentiable almost everywhere, and non-convex but quasi-convex. Continuity453

of the SPR could be established by proving equality of the limits of the distinct segments454

defined within (3.7) at the points where the function undergoes a change in its definition, but455

a more concise argument uses the fact that the definition (3.7) is equivalent to the composition456

of (3.4) with the optimal solution formula for the optimal w variables (3.5), which is easily seen457

to be a continuous function of w. Furthermore, while (3.4) would seem not to be continuous458

in zero, it is easy to see that459

lim
yi→0

∑
j∈Ei

w2
j

yi
≤ lim

yi→0

∑
j∈Ei

y2iM
2

yi
= 0,460

on feasible solutions (yi, wi), i.e., when (3.2) are satified. Thus, (3.4) can be continuously461

extended at zero, and therefore (3.7) is a composition of continuous functions and hence462

continuous itself.463

The fact that the SPR term is differentiable almost everywhere comes from the differ-464

entiability (almost everywhere) of the functions that define (3.7) and from the fact that the465

set where the SPR changes definition has zero mass. However, the previous pictures clearly466

show that the function can indeed be nondifferentiable there. In particular, since both the467
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Table 10: Results of state of the art method on CIFAR-10 using ResNet-56

Method Setting Acc. Pruned pars (%)

PFFEC
A 93.10 80000 (9.40)
B 93.06 120000 (13.70)

EPFS

B-0.6 92.89 240000 (27.70)
B-0.8 92.34 500000 (58.60)
F-0.01 92.96 170000 (20.00)
F-0.05 92.09 510000 (60.10)

C-0.6-0.05 92.53 570000 (67.10)

HFP
0.5 93.30 425000 (50.00)
0.7 92.31 608430 (71.58)

HRank
P1 90.72 580000 (68.10)
P2 93.17 360000 (42.40)
P3 93.52 140000 (16.80)

PFC P1 93.05 425000 (50.00)

DHP 50 93.58 354685 (41.58)
38 92.94 510958 (59.90)

SCOP P1 93.64 480249 (56.30)

PFPE P1 92.67 759015 (88.98)

CHIP
P1 92.05 600000 (71.80)
P2 94.16 360000 (42.80)

NISP P1 93.32 363386 (42.6)

DCP
P1 93.49 420014 (49.24)

Adapt 93.81 599897 (70.33)

SPR
λ 0.7 - α 0.01 92.42 677433 (79.42)
λ 0.4 - α 0.1 92.76 612038 (71.75)
λ 0.4 - α 0.5 93.48 553821 (64.92)
λ 0.2 - α 0.5 93.96 395478 (46.36)

l1 norm and the l∞ norm are not differentiable in zero, the SPR is not differentiable in468

zero, as expected from a sparsity-inducing regularization term. It is easy to see by draw-469

ing a few examples that the SPR is in general not convex. For an algebraic proof consider470

α = 0.65, M = 0.4, W1 = (0.3, 0, .., 0) and W2 = (0.5, 0, .., 0); then z(W1) = 0.3405, z(W2) =471

0.5125, z(12W1 +
1
2W2) = 0.4540, 1

2z(W1) +
1
2z(W2) = 0.4265, where z(·) is defined in (3.7).472

We have just shown that z(12W1+
1
2W2) >

1
2z(W1)+

1
2z(W2), i.e., that the SPR is not convex.473

Yet, the function defined in (3.5) is clearly quasi-convex and (3.4) is non-decreasing in the y474
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Table 11: Results of state of the art
method on CIFAR-10 using ResNet-18

Method Setting Acc. Pruned pars (%)

DNR P1 94.64 9233284 (82.36)

SPR
λ 1.3 - α 0.5 95.34 10059742 (89.66)
λ 1.9 - α 0.5 94.81 10451461 (93.15)

Table 12: Results of state of the art
method on CIFAR-10 using ResNet-50

Method Setting Acc. Pruned pars (%)

OTO P1 94.40 21570653 (91.20)

SPR
λ 1.0 -α 0.5 94.96 21800173 (91.96)

λ 1.3 -α 1e-4 94.36 22931931 (96.74)

Table 13: Results of state of the art method on CIFAR-10 using Vgg-16

Method Setting Acc. Pruned pars (%)

PFC P1 93.63 7357792 (50.00)

EPSF
F-0.005 94.67 10305584 (69.10)
F-0.001 93.61 8225584 (56.70)

PFEEC P1 93.40 9315584 (64.00)

HRANK
P1 93.43 12205584 (82.90)
P2 92.34 12075584 (82.10)
P3 91.23 12935584 (92.00)

CHIP
P1 93.86 11955584 (81.60)
P2 93.72 12215584 (83.30)
P3 93.18 12815584 (87.30)

DNR P1 92.00 13560314 (92.07)

PFPE P1 92.39 13891701 (94.32)

OTO P1 93.30 13918211 (94.50)

DCP
P1 94.16 7057294 (47.92)

Adapt 94.57 13782934 (93.58)

SPR
λ 1.6 - α 1e-4 93.44 14266694 (96.87)
λ 1.6 - α 0.1 93.56 14179500 (96.27)
λ 1.0 - α 0.5 93.93 13647661 (92.66)
λ 0.1 - α 0.5 94.31 12044579 (81.78)

variable, so the SPR is quasi-convex.475

A.2. Time complexity study. During the first step of our method, in which the SPR term476

and its (sub)gradient have to be computed, an extra computational cost is incurred w.r.t. the477

standard “simple” regularizations; note that this does not happen during the fine-tuning478

phase, where the standard ridge/Tikhonov (ℓ2) regularization is used instead. The impact of479

the SPR term is shown Table 15, which compares the cost per epoch with and without the480

SPR regularization. For easier data sets (small input size), our regularization term roughly481
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Table 14: Results of state-of-the-art method on ImageNet using ResNet-18

Method Setting top1 top5 Pruned pars (%)

EPFS F-0.05 67.81 88.37 3690000 (34.60)

HFP
0.20 69.15 N/A 2354869 (22.07)
0.35 68.53 N/A 3976709 (37.27)

SCOP
A 69.18 88.89 4593978 (39.30)
B 68.62 88.45 5084938 (43.50)

SPR
λ 0.75 - α 0.1 70.26 89.66 1992131 (17.04)
λ 1.0 - α 0.1 69.27 89.06 3811382 (32.61)
λ 1.1 - α 0.1 68.87 88.72 4481715 (38.34)

doubles the cost per epoch, while for the hardest data set (more relevant to real applications)482

the two costs are almost the same, which proves that our approach is, generally speaking,483

computationally viable.484

Table 15: Average computation times (seconds) for one epoch with and without the SPR term

Architecture and data set time SPR time without SPR

ResNet-20 on CIFAR-10 13.05 6.51
ResNet-56 on CIFAR-10 36.58 16.99
ResNet-20 on CIFAR-100 22.99 11.26
ResNet-18 on ImageNet 2,433.14 2,401.05

A.3. Detail on grid search. As we stated in the first paragraph of Section 3, α and λ485

hyperparameters are found through adaptive grid search. We tested 36 pairs with λ ∈ [0.1, 3.0]486

and α ∈ [1e-4, 0.6] for all the experiments with the Cifar-10 dataset. For the Cifar-100487

experiments, the intervals for λ and α were kept the same and 70 pairs were tested. Finally,488

we used 12 pairs with λ ∈ [0.5, 1.2] and α ∈ [1e-1, 0.6] for the experiments with the Imagenet489

dataset.490

Finally, we report an observation on the importance of the fine-tuning phase. From Table491

16, we can see that this step is crucial when the pruning caused a significant accuracy drop,492

while is less relevant (as one could expect) when the accuracy remains high despite the pruning.493

A.4. Pareto curve. In Figure 3 we plot all the accuracy-sparsity pairs obtained with our494

experiments using the ResNet-20 model on the Cifar-10 dataset. Although the curve is not495

fully complete, it gives a good insight on how pruning affect the accuracy of the model.496

A.5. Observation on the structure of the pruned network. From the experiments, we497

noticed that our algorithm heavily prunes the last layers of the network. This is due to the498
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Table 16: Accuracy before and after the fine-tuning phase (ResNet-18 on CIFAR.10)

λ α Accuracy before Accuracy after

1.1 0.01 82.40 85.56
1.7 0.30 85.28 87.33
1.1 0.30 88.22 89.47
0.5 0.30 90.62 91.23
0.2 0.30 92.46 92.69

Original model 92.03 -

Figure 3: Pareto curve for ResNet-20 on Cifar-10. Different points correspond to different
values of α and λ.

fact that the gain in sparsity is larger for these last layers, since their filters contain way499

more parameters than those belonging to the earliest layers. When the hyperparameters500

favor heavy pruning even at the cost of a consistent accuracy drop, or when the model is so501

over-parametrized that even pruning many of parameters only slightly affects the accuracy,502

basically all final layers are fully pruned. When, instead, less parameters are pruned then the503

final layers that are not fully pruned tend to be always the same for different configurations of504

the hyperparameters: for example, for ResNet-18 on ImageNet, the layer with the last residual505

connection is almost never pruned. This indicates that our pruning approach is successful in506

identifying the essential structures of the model that need be retained.507

A.6. Results in the unstructured setting. As mentioned in the main body of this work,508

to effectively reduce the computational endeavor of GPU computations through pruning,509

it is necessary to remove entire structures of the network. However, we acknowledge that510

unstructured pruning retains its relevance in certain contexts and enables cleaner comparisons511
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with other methods. Consequently, we have chosen to include results within the unstructured512

pruning setting to provide a comprehensive perspective, although it is important to note that513

the primary emphasis of this study lies in the structured pruning scenario.514

When the prunable entities Ei described in (3.7) consist of singletons, the SPR term515

exhibits a strong resemblance to the Berhu regularization. While the Berhu regularization516

has found successful application in robust regression [39], its performance in the context of517

pruning remains unexplored. In the following, we present numerical results pertaining to518

unstructured pruning scenarios involving ResNet-32 and ResNet-56, on the Cifar10 dataset.519

We compare our results with two baseline methods that use regularization to prune Neural520

Networks and with one relevant literature method. The first baseline method is the simple ℓ1521

regularization, known to produce sparser networks compared to the conventional ℓ2 squared522

regularization. The second one is the well-known Elastic Net [81], which uses a linear com-523

bination of ℓ1 and ℓ2 squared regularizations. Formally, the utilization of ℓ1 regularization524

yields the following optimization problem:525

minL(X,W ) + λ∥W∥1.526

While the Elastic Net problem is defined by527

minL(X,W ) + λ[α∥W∥22 + (1− α)∥W∥1].528

As the ℓ1 regularization can be regarded as a limit case of the Elastic Net with the specific529

parameter α set to 0, we have aggregated their outcomes in the next section for the sake of530

conciseness and clarity.531

Moreover, we performed a comparative evaluation alongside a more complex state-of-532

the-art technique developed in [9]. This method, although originating from an optimization533

problem akin to (3.1)-(3.3), subsequently integrates alternating learning and compression534

phases to systematically achieve pruning in the Neural Network.535

We directly report the results from [9], while for all the other methods under comparison,536

we conducted a systematic grid search, following a similar configuration as detailed in Sec-537

tion 4.1. In Tables 17 and 18, we report only the most relevant non-dominated results of the538

grid search.539

Tables 17 and 18 present clear evidence of SPR’s superiority over the baseline methods.540

Our approach achieves a reduction of over 90% in the number of parameters for ResNet-32 and541

nearly 94% for ResNet-56, while maintaining an accuracy of over 92% for both architectures.542

Notably, ℓ1 regularization competes closely with Elastic Net when applied to ResNet-32 prun-543

ing, producing results that are non-dominated and reported in Table 17. Conversely, when544

pruning ResNet-56, Elastic Net consistently outperforms ℓ1 regularization, occasionally achiev-545

ing results that are competitive with SPR. Regarding the comparison with [9], the outcomes546

presented in Tables 17 and 18 highlight that, despite its relative simplicity compared to the547

competition, our approach remains competitive within the existing literature. Notably, when548

pruning ResNet-32, we successfully remove more than 90% of the parameters while achieving549

nearly identical accuracy compared to the state-of-the-art method that prunes exactly 90% of550

the network. However, our results are less favorable when pruning ResNet-56. This suggests551
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Table 17: Result on CIFAR-10 using ResNet-32 in the unstructured setting.

Method Setting Acc. Pruned pars (%)

Elastic Net

λ 15 - α 0.2 92.73 334791 (72.48)
λ 20 - α 0 92.05 369338 (79.96)
λ 25 - α 0 91.31 384277 (83.20)

λ 35 - α 1e-2 90.35 413674 (89.56)

[9]

P-15 92.68 392601 (85.00)
P-10 92.12 415694 (90.00)
P-5 90.74 438788 (95.00)
P-3 89.26 448025 (97.00)

SPR
λ 10 - α 5e-2 93.14 349601 (75.69)
λ 25 - α 0.2 92.46 405541 (87.80)
λ 10 - α 0.8 92.11 416428 (90.16)
λ 35 - α 0.2 90.85 436795 (94.57)
λ 35 - α 0.6 89.95 441673 (95.62)

Table 18: Results on CIFAR-10 using ResNet-56 in the unstructured setting.

Method Setting Acc. Pruned pars (%)

Elastic Net

λ 20 - α 0.6 93.41 604445 (70.86)
λ 20 - α 5e-2 93.22 693854 (81.34)
λ 25 - α 5e-2 92.77 727884 (85.33)
λ 35 - α 5e-2 91.75 751298 (88.08)

[9]

P-15 93.08 725676 (85.00)
P-10 93.33 768123 (90.00)
P-5 92.49 810570 (95.00)
P-3 91.79 827549 (97.00)

SPR
λ 30 - α 1e-2 93.90 631012 (73.97)
λ 20 - α 5e-2 92.94 736483 (86.34)
λ 25 - α 0.2 92.14 799059 (93.67)
λ 25 - α 0.6 91.34 806005 (94.49)

that employing a more complex optimization algorithm may be crucial for larger architectures552

or that further hyper-parameter tuning is needed in such scenarios.553

Appendix B. Discussion on the M hyper-parameter. In this section, we discuss the554

importance of the M parameter appearing in the SPR definition and some considerations555

surrounding its selection.556

This manuscript is for review purposes only.



DEEP NEURAL NETWORKS PRUNING VIA THE STRUCTURED PERSPECTIVE REGULARIZATION23

The value of M is used when projecting away the y variables in (3.4), and it conveys557

important information for the SPR. As partially explained in Section 3.3, the M parameter558

is used to assess if a weight is “large” or not: indeed, the SPR term changes its form based559

on the quantity ∥w∥/M .560

Ideally, the value of M could be chosen such that the weights will naturally stay below561

such value. In practice, this ideal M is not computable and we had to choose M empirically562

as explained in Section 4.1. It is crucial to grasp that opting for an excessively large M563

is detrimental. Intuitively, this is due to the previously mentioned SPR mechanism that564

dynamically adapts the definition of the SPR term based on the value of M . Theoretically,565

it is well documented in the MIP literature that, in formulations that contain constraints566

such as (3.2), an excessively large M value has a rather negative effect on the quality of567

the continuous relaxation of the MIP formulation [8]. This continuous relaxation forms the568

foundation of our approach and it is what we aim to strengthen when using the Perspective569

function in Section 3.1. The practical irrelevance of an excessively large value for M becomes570

evident when considering the limit where M approaches infinity. In fact, in this limit, the571

SPR term essentially converges to being almost identical to the ℓ2 norm.572
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