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Abstract
Despite their controversial ontological status, the discussion on arbitrary objects has
been reignited in recent years. According to the supporting views, they present inter-
esting and unique qualities. Among those, two define their nature: their assuming of
values, and the way in which they present properties. Leon Horsten has advanced a
particular view on arbitrary objects which thoroughly describes the earlier, arguing
they assume values according to a sui generis modality, which he calls afthairetic. In
this paper, we offer a general method for defining the minimal system of this modality
for any given first-order theory, and possible extensions of it that incorporate fur-
ther aspects of Horsten’s account. The minimal system presents an unconventional
inference rule, which deals with two different notions of derivability. For this reason
and the failure of the Necessitation rule, in its full generality, the resulting system is
non-normal. Then, we provide conditional soundness and completeness results for the
minimal system and its extensions.

Keywords Arbitrary objects · Nonnormal modal logics · Actual world
Mathematics Subject Classification (2010) 03B45 · 00A30

1 Introduction

Indefinite descriptions or locutions composed by words such as “arbitrary" – e.g.
“a whale," “an arbitrary man" – are commonly used, both in natural language and in
mathematical practice. For example, wemight say “A star fuses elements together into
heavier elements," or “Consider an arbitrary natural number; it has a unique prime
factorization," by which we seem to be inferring qualities of objects of a certain class
from the consideration of a distinguished object, which is designated by this kind of
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expression. According to many views, any such object may be dispensed in favour
of a lighter ontology, and thus there would be no need for a theory of such objects.1

However, there is a notable minority for which there are, in some sense, objects of that
sort: arbitrary objects.2 These new objects stand in opposition to specific objects (or,
in Fine’s terminology, individual), the objects of our daily, ordinary life. In a manner
familiar to mathematical practice, they may also be called “variables" – when not
understood as purely linguistic objects –, or be taken to be the designata of variable
expressions. For instance, according to Leon Horsten:

Arbitrary objects of a given kind F are abstract entities that can be in a state that
belongs to the state space associated with F . For instance, an arbitrary person
is an abstract entity that can take any value taken from the class of all specific
people3

Arbitrary objects (henceforthA-objects), as have been described in the recent litera-
ture, seem to have two distinguished and essential characteristics, according to the two
most prominent accounts of them: following Horsten’s account, they assume values in
every state they may be in, and following Kit Fine’s account, they present properties
according to the way their possible values present them. The relation between the
presenting of properties, for Fine, is governed by the Principle of Generic Attribution
(henceforth PGA), according to which an A-object presents a property iff each object
they may assume as a value does so. This assuming of values, for Horsten, is captured
by a sui generismodality, which he calls afthairetic. We shall present a framework for
working with this modality.

In [8], Horsten and Stanislav Speranski offer an account of the generic ω-sequence,
by considering the arbitrary natural numbers – which is later expanded in [7]. They
introduce a predicate Sp for being specific, a modal operator ♦, which is supposed to
behave S5-like, and change the interpretation of =, so that x = y means x and y coin-
cide in the state in consideration, in order to describe the structure of natural numbers
and the way A-objects behave there. Our framework is supposed to be different in that
we not only generalise it to talk about any non-modal first-order theory, but in that it
is possible to talk about both A-objects and specific objects, and there is no collapse
between specific objects and the constant A-objects (those which assume the same
value in every possible state).

More concretely, for each theory T, we offer an extension of it which is supposed to
be the theory of the afthairetic modality of T, and which therefore is able to describe
the A-objects of T. The framework is equipped with an axiomatic system and a seman-
tics, which present not only soundness and completeness – if T does so –, but are also
conservative over the theory T. The framework does not reflect Horsten’s particular
characterisation of A-objects as choice functions, and therefore cannot be claimed, in
any way, to be the system for Horsten’s account. It, nevertheless, reflects the function-
ing of A-objects as choice functions, and translates naturally Horsten’s description

1 See [1, 2, 6, 11, 12], to name a few.
2 Most notably [4] and [7].
3 [7], p. 44.
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of the characteristics of afthairetic modality, and of the concepts introduced in the
extensions. Later, in Section 4, we attempt to connect Horsten’s view with the PGA.

The paper is structured as follows. In Section 2, we introduce the language and
the Hilbert-style axiomatic system. In Section 3, we define extended models, with
designated worlds, and show the soundness and completeness of the basic axiomatic
systems. In Section 4, we show a few extensions of the minimal systems, which
reflect Horsten’s criterion of identity for arbitrary objects, a comprehension scheme
concerning their abundance, how to extend functions from the original theories to the
new domain, and a principle to extend predicates from specific objects to A-objects,
which allows us to address Fine’s PGA. Finally, we conclude with some general
remarks in Section 5.

We present here a few notational conventions we shall use throughout the paper.We
write n,m, k for natural numbers, i, j for indexes, x, y, z for variables, c for constants,
w, u, v for states in a relationalmodel, e, r , s, t for terms in general, f , g for functions,
P, Q for predicates, a, b for A-objects, and o for objects in general; we write {ti } for a
collection of terms t1, t2, ..., and also ti for a certain term in that collection; if t1, ..., tn
is a n-ary sequence of terms, we write �t – for example, instead of Pt1...tn , we write
P�t ; if ϕ is a formula in which a sequence of terms t1, ..., tn may or may not occur, we
write ϕ

r1,...,rn
t1,...,tn for the formula which is just like ϕ, except each free occurrence of ti is

replaced by an occurrence of ri , respectively.

2 Language and Hilbert Style System

We wish to describe how A-objects assume states, so we need two distinguished
predicates to represent arbitrariness and the fact of being in a state. Thus, we must
have a unary predicate A, with the intended meaning of Ax being that x is arbitrary,
and a binary predicate S, with the intended meaning of Sxy being y is the value of x
– if there is such a thing –, in the sense that if x is an A-object, then y is the value it
assumes, and if x is a specific object, then y is x itself. Our goal would be to see how
the A-objects of any (first-order) theory behave, but each theory has its own signature.
For now, we restrict ourselves to first-order theories whose signatures are composed
by proper predicates, function, and constant symbols – and therefore, as expressed
earlier, are non-modal. So, if L is the language of a certain first-order theory, we add
to it the equality symbol = (in case the language is not already equipped with it), the
modal operator symbol �, and the predicates A and S, obtaining L�a f , the language
of its afthairetic modality extension (henceforth AM-extension). Let AtomL be the
set of atomic formulas of L, and T ermL, of terms. Let t ∈ T ermL. The formulas of
L�a f are then:

ϕ:: = ϕ ∈ AtomL | t = t | At | Stt | ¬ϕ | ϕ ∧ ϕ | ∀xϕ | �ϕ

The operators∨,→,↔,♦, and quantifier ∃x may all be defined in the usualmanner.
Horsten’s account of A-objects introduces a new and peculiar modal profile for A-

objects, in which the corresponding modality is brand new: the afthairetic modality.
In that modality, A-objects may always assume a state, but never actually do so.
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An arbitrary F might have been in the state of being this specific F and might
have been in the state of being that specific F , but isn’t actually in any of those.
For instance, it makes no sense to ask who the person on (an arbitrary) omnibus
actually is. All we can (loosely) say is that it could be this or that specific person;
it could be you, and it could be me.4

In general, an arbitrary natural number does not have any specific natural number
as its determinate value. There is no determinatematter of fact, for instance, about
whether the value of our mathematician’s arbitrary number a is 23 - remember:
this is loose talk. There can be a determinate fact about whether an arbitrary
number x is numerically identical with an arbitrary number y. [...] When an
arbitrary natural number does not determinately have somegiven specific number
as its value, there is a sense in which it can be the specific number in question.
Thus we say that arbitrary numbers can be in different specific states. There is,
however, no actual state in which the arbitrary number is.5

The view suggests that in formalizing this modality we need to introduce a distinct
actual world: the one in which A-objects never take values. Moreover, since we are
dealing with extensions of first-order theories, just as the languages vary, so do the
axiomatic systems, but the principles guiding afthairetic modality should be the same
in all of their extensions. Therefore, each theory should be supplementedwith a similar
set of axioms.

From now on, let us call by T�a f the target theory of the afthairetic modality of
a first-order theory T. Concerning the proper axioms of each first-order theory T, we
should have in mind that, if we are introducing new (arbitrary) objects to each theory,
the domain of quantification is extended. Therefore, a universally quantified formula
which is true (or derivable) in Tmay no longer be true (or derivable) in T�a f . However,
whatever is true (or derivable) about the objects of T should still be true (or derivable)
in T�a f . We shall accommodate this issue by having the T�a f inherit the axioms and
inference rules of T after an appropriate translation.

Let L be the language of T, and L�a f that of T�a f . We first define the following
translation αT : FormL → FormL�a f :

αT(Pt1...tn) = Pt1...tn ;
αT(t1 = t2) = t1 = t2;
αT(¬ϕ) = ¬αT(ϕ);
αT(ϕ ∧ ψ) = αT(ϕ) ∧ αT(ψ);
αT(∀xϕ) = ∀x(¬Ax → αT(ϕ)).

We can now define the syntactic part of afthairetic modality theories. We start by
their axioms. Let Ai be the proper axioms of T. Having the considerations above
in mind, αT(Ai ) are axioms of T�a f . Furthermore, an AM-extension is still a first-
order modal logic theory, so, as such, all of the axioms of first-order modal logic
with identity should be axioms of it.6 However, we cannot assume all terms, in the
extended theory, to designate. The reason for that is twofold. First, when moving from

4 [7], p. 50.
5 [7], p. 62.
6 For an axiomatisation of first-order modal logic with identity, the reader may consult [9] or [5].
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a first-order theory to the theory of its A-objects, functions which are originally total
may not remain so – for example, it is, in principle, uncertain if the sum of 2 and an
arbitrary even is defined at all.7 Moreover, many theories which are to be extendedmay
already have non-designating terms – such as any with partial functions. Therefore,
we shall work with free first-order modal logic (henceforth FFOML) – that is, with
the following modification:

UI f ∀xϕ → (∃y(y = t) → ϕ[t/x]),
where UI f takes the place of the axiom of universal instantiation. As it shall be

important in the completeness proof, we note this variation makes the law of necessity
of identity apply to all terms – so that, for example, ∀x(c = x → �c = x) will be a
theorem. That ensures constants and functions have constant interpretations through-
out states, so that they designate rigidly. This consequence is desirable. Consider cM
to be the object designated by a constant c in the actual world and a be the designator
of an A-object aM, and suppose we want to represent the fact that, in a possible state,
aM assumes the value cM. From the perspective of the actual world, it should be
safe to express that by ♦Sac. If constants do not designate rigidly, then ♦Sac says,
instead, that the object designated by a – which, in some possible state, may be dis-
tinct from aM – assumes the value of the object designated by c – which is likewise
possibly distinct from cM. If a constant designates non-rigidly, whenever it is inside
the scope of a modal operator, the interpretation of a name shifts from the state of
evaluation of a sentence to a (in our case, different) possible state, and therefore we
loose the ability to make reference across possible states – something that is desired in
the case of afthairetic modality. We may extend the argument to functions if we treat
function-terms as complex names.

Since the purpose is to model the assuming of values of A-objects, we presume
there areA-objects, and since there are such objects, theymust possibly assume values.
In other words, there must be accessible states in which they assume values. We
find axiom D = �ϕ → ♦ϕ to adequately capture that. We further adopt axiom
K = �(ϕ → ψ) → (�ϕ → �ψ) as a basic tenet of modality that extends to the
present one.

An important aspect we need to ensure is a constant domain of quantification. In
order to see why, we may consider an arbitrary rodent. Anyone would agree that a
rodent measures less than 2 meters in length. Indeed, the largest actual rodent, which
is the capybara, only grows up to around 134 centimeters. If anyone were to object by
saying there could be a larger species of rodent, or even just a larger individual capybara
(not in the sense that actually there is such a species or specimen, unbeknownst to us,
but in the sense that such a specimen could exist in some other possible state), we
would likely find the objection unsubstantial. As a matter of fact, possible non-actual
individuals are not of interest in such an assessment. In a similarway, suppose someone
was in a room filled with three leaning chairs, a bowling ball, and nothing else, and
they affirmed an arbitrary thing of that room could be a ball. It would be highly strange
if a second person immediately maintained that was wrong, on the grounds that the
bowling ball could possibly not exist – not only because that person was not there to

7 Later, in Section 4, we shall see how to extend functions to encompass operations on A-objects.
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begin with, but also because there is an actual ball in the room, although surely there
could have been none. Thus, in the sort of modality concerning arbitrariness, possible
objects do not matter in the assuming of states. Therefore, in order to cover the above
concerns, we supplement the basic modal systemwith the usual axiom schemes which
came to be known as Barcan Formula (BF = ∀x�ϕ → �∀xϕ) and Converse Barcan
Formula (CBF = �∀xϕ → ∀x�ϕ), and which are known, together, to ensure a
constant domain.8

For what concerns the proper axioms, we propose the following:

Sact ∀x(Ax ↔ ∀y(¬Sxy))
Spot ∀x�∃ySxy
Suni ∀x∀y(Sxy → ∀z(Sxz → z = y))
NSA ∀x(Sxx ↔ ¬Ax)
NA1 ∀x(Ax → �Ax)
NA2 ∀x(¬Ax → �¬Ax)

Spot andNSA hint the predicate Amay be defined in terms of the relation S. In fact,
we could have set Ax :: = ♦∃y(x 
= y ∧ Sxy), and that is an equivalence derivable
in the system – from axioms Spot , Suni , NSA, and rule NecT�q , introduced below –,
so that A is dispensable. We still keep it, from now on, for the sake of simplicity of
our presentation. As pointed out earlier, S plays two different roles at the same time,
delivering the object itself if it is specific, and the value the object assumes if it is an
A-object. Not much should be read into the choice of using such relation. It is merely
for aiding the presentation.

We may justify each remaining proper axiom. Sact , Spot , Suni , and NSA describe
how the assuming of values works. AnA-object always possibly assume values (Spot ),
but never actually does so (Sact ). A value is always unique (Suni ), in the sense that at
any given state, an object can only assume one value, and only A-objects can properly
assume values – that is, different from themselves. On the other hand, NA1 and NA2
describe the fact that anA-object is necessarily anA-object, for it is of a different nature
from a specific (ordinary) object. NSA captures the intuition according to which an
A-object cannot be in its own scope, if we want to avoid Russell-like paradoxes, and
that assuming different values is something exclusive of A-objects.

One may notice that Sact , Spot , and NSA clearly contradict the reflexivity of an
accessibility relation whenever Ax obtains. As such, the normal modal axiom T
(�ϕ → ϕ) is incompatible with afthairetic modality – since we want there to be
A-objects. Furthermore, Necessitation is a rule too strong for the system. In order
to see that we can argue by contradiction. Assume otherwise, then from Sact we get
� �∀x(Ax ↔ ∀y¬Sxy), which clearly cannot be valid, since every A-object neces-
sarily assumes a value.

As we said, the afthairetic modality of a first-order theory T must inherit the infer-
ence rules of T, in order for it to be a proper extension. This means the resulting theory
must have at least Modus Ponens (henceforth MP) and Generalisation (henceforth

8 As we shall see briefly, the semantics we adopt is slightly different than the usual, but the schemes still
aid in the completeness results we offer.
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Gen). Consider now � ⊆ FormL, ϕ ∈ FormL, and αT(�) = {αT(ψ) | ψ ∈ �}. Let
R, as described below, be a proper inference rule of T, and R�a f be the following:

R �T �, then �T ϕ;

R�a f �T�a f
αT(�), then �T�a f

αT(ϕ).

Then, we admit R�a f as an inference rule of T�a f .
Now, to prove completeness of AM-extensions, we also need to add a new,

unconventional rule. It involves two notions of deduction. Let αa
T(T) = {αT(A) |

A is an axiom of T}, and let FFOMLa be the set of axioms of FFOML. We shall call
a formula T�q -derivable if it is derivable in the system T�q , so defined:

T�q = FFOMLa + αa
T(T)+ Necessitation + MP + Gen + R�a f +{Spot ,Suni ,NSA,NA1,NA2,BF,CBF,K}

We excludeD from the system T�q for, otherwise, rule NecT�q (introduced below)
cannot be valid in the semantics we define, since the system may be valid in models
in which, for the actual world w0, R2(w0) = ∅.9

Likewise, we may call a set of formulas T�q -consistent if it is consistent in the the-
ory composed by T�q -derivable formulas. We shall denote the corresponding notion

of derivability by �T�q
, distinguishing it from derivability in the main theory for

afthairetic modality, which we may denote by �T�a f
.10 We introduce, then, the fol-

lowing rules:

Necτ if �T�a f �ϕ, then �T�a f ��ϕ;

NecT�q if �T�q
ϕ, then �T�a f �ϕ.

The theory T�a f shall then be defined as:

T�a f = FFOMLa + αa
T(T)+ Necτ+ NecT�q + MP + Gen + R�a f +{Sact ,Spot ,Suni ,NA1,NA2,NSA,BF,CBF,K,D}

The difference between T�a f and T�q is the former encompasses Sact , D, Necτ ,
and NecT�q , but lacks the rule Necessitation, while the opposite is true for the latter.
The purpose of having two theories is to reflect the distinction between how an A-
object behaves in the actual world – following T�a f –, and how it behaves in possible
states – in accordance with T�q .

3 Semantics and Completeness

We start by defining models for the AM-extensions. Let 〈M, I〉 be a first-order model
for a first-order theory T (henceforth, T-model), whose language is L – that is, M

9 We follow the convention of writing wRn
M+u for there are x1, ..., xn−1 such that wRM+ x1 and

x1RM+ x2 and ... and xn−1RM+u for a relational model M+ with accessibility relation R; and of
writing Rn

M+ (w) for {x | wRn
M+ x}. We also use Rn(w) when the relevant model is clear by context, and

R(w) for when n = 1.
10 In the absence of ambiguity, we may use simply � to mean �T

�a f
.
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is a set of objects, and for each n-ary predicate P , function f , and constant c of L,
I(P) ⊆ Mn , I( f ) : Mn → M, and I(c) ∈ M.We may extend it to a model for T�a f , in
a intuitive manner, by adding the relational semantics machinery (a set of states and an
accessibility relation), designating a state (the actual world), setting the interpretation
of any predicate in the actual world to be that of the model – when restricted to the
ordinary objects in the domain, since A-objects are also to be subjects of predication
–, and adding adequate interpretations of the distinct predicates A and S. We follow
the convention of denoting the domain of a model M by the standardised M, and by
adding the superscript + to the name of a model – for example,M+ – to represent an
AM-extension of it.11

Definition 3.1 (T�a f -model) Let M = 〈M, I〉 be a T-model. A model for an AM-
extension M+ of it is a tuple 〈M+, I+,W, w0,R,A,S〉, such that:

(a) W 
= ∅ and w0 ∈ W;
(b) R ⊆ W × (W \ {w0}) and R(w0) 
= ∅;12

(c) for each n-ary predicate P , I+(P, w0) �M= I(P);13 for each constant c,
I+(c) = I(c); for each n-ary function symbol f , I+( f ) is a n-ary function such
that I+( f ) �M= I( f );

(d) M ⊆ M+ and M+ \ M = A;
(e) S : M+ × M+ → P(W) is such that:

• w0 /∈ ⋃
i∈A; j∈M+ S(i, j);14

• o /∈ A iff for all w ∈ W, w ∈ S(o, o); and if a ∈ A, then for all w 
= w0, there
is o 
= a such that w ∈ S(a, o);

• if w ∈ S(a, b) and w ∈ S(a, c), then b = c.

IfM+ is the AM-extension of a T-model, we call it a T�a f -model.

Definition 3.2 (Assignment and equiadmissible assignment) An assignment on an
afthairetic modality model M+ is a function η : VarL → M+, where VarL is the
set of variables of L. If η is an assignment such that for all x ∈ VarL, η(x) ∈ M, then
we call η an equiadmissible assignment.

Given an assignment η on M+ (and likewise, μ on M), we may extend it
to an assignment ηM+

(respectively, μM) to any term in the following way: for
a variable x , ηM+

(x) = η(x) (respectively, μM(x) = μ(x)), for a constant
c, ηM+

(c) = I+(c) (respectively, μM(c) = I(c)), and for a n-ary func-
tion symbol f , ηM+

( f (t1, ..., tn)) = I+( f )(ηM+
(t1), ..., ηM

+
(tn)) (respectively,

11 We use AM-extension to refer both to the theory which is an extension of a certain first-order theory, and
to the extended model for the afthairetic modality of a certain theory. We trust there to be no ambiguity in
each context.
12 Notice (a) and (b) together imply W \ {w0} 
= ∅.
13 The restriction ensures that any new tuple satisfying a predicate in the AM-extension involves an A-
object – so that the objects of the first-order theory remain on the same relations between themselves as in
the AM-extension.
14 Intuitively, that means the designated state is not in the set of states in which i assumes the value j , for
any i ∈ A and j ∈ M+.
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μM( f (t1, ..., tn)) = I( f )(μM(t1), ..., μM(tn))). For x ∈ VarL, an x-variant of η is
an assignment η′ on the same model such that for all y 
= x , η(y) = η′(y). If η and
η′ are x-variant assignments on a model M, we denote it by η ∼M

x η′. We omit the
reference to the model, both when introducing variant assignments and referring to
extended assignments, when the context is unambiguous.

Fact 3.3 An assignment is equiadmissible iff it is an assignment on the regular
first-order model of which the afthairetic modality model is an AM-extension (or,
equivalently, it is an assignment on M+ �M). Furthermore, if η is an equiadmissible
assignment, then for any t ∈ T ermL, ηM

+
(t) = ηM(t).15

Because of the above fact, ifη is an equiadmissible assignment, there is no ambiguity
in using simply η(t) in a context in which there are two relevant models – a first-order
model and an AM-extension of it.

Truth, now, may be defined (with respect to a model, a state, and an assignment):

• M+, w |�η t1 = t2 iff η(t1) = η(t2);
• M+, w |�η Pt1...tn iff 〈η(t1), ..., η(tn)〉 ∈ I+(P, w).
• M+, w |�η At iff η(t) ∈ A;
• M+, w |�η St1t2 iff w ∈ S(η(t1), η(t2));
• M+, w |�η ¬ϕ iffM+, w 
|�η ϕ;
• M+, w |�η ϕ ∧ ψ iffM+, w |�η ϕ and M+, w |�η ψ ;
• M+, w |�η �ϕ iff for all u ∈ R(w), M+, u |�η ϕ;
• M+, w |�η ∀xϕ iff for any η′ ∼x η,M+, w |�η′ ϕ.

Notice the truth of an atomic formula implies the designation of each term occurring
in it. Thus, we work with a negative semantics. A formula ϕ is said to be true in a state
w (M+, w |� ϕ) if it is true in w under any assignment.

Definition 3.4 A formula ϕ, in the appropriate signature, is said to be true in a model

(M+ |� ϕ) if it is true in the actual world w0. A formula ϕ is valid (|�T�a f
ϕ) if it is

true in any T�a f -model.16

Fromnowon,we shall also use the notion of free occurrences of variables, extending
it to terms in the obvious way. We trust the reader to be familiar with the subject.

For simplicity, we use the following conventions: we write μ for assignments on
a regular first-order model and η for assignments on AM-extensions; whenever there
is a string of related assignments such that η1 ∼x1 η2... ∼xn ηn+1, we may write
η1 ∼x1,...,xn ηn+1; and we also writeM+, w |�η ϕ[o/x] to mean ϕ is true in w under
an assignment η′ ∼x η such that η′(x) = o. Putting some of those notations together,
for example, we have if η1 ∼x1 η2... ∼xn ηn+1, we write η1 ∼�x ηn+1; if ∀x1...∀xnϕ,
we write ∀�xϕ; and ifM+, w |�η ∀�xϕ, then for any η′ ∼�x η,M+, w |�η′ ϕ.

15 To see that, notice, by Definition 3.2, ηM+
(x) = ηM(x); by Definition 3.1, for any con-

stant c, ηM+
(c) = I+(c) = I(c) = ηM(c); and by induction on the complexity of terms, we

may get for any n-ary function term f , ηM+
( f (t1, ..., tn)) = I+( f )(ηM+

(t1), ..., η
M+

(tn)) =
I+( f )(ηM(t1), ..., η

M(tn)) = I( f )(ηM(t1), ..., η
M(tn)) = ηM( f (t1, ..., tn)).

16 We may note that, under this definition of truth in a model, axiom D no longer defines the class of serial
models. Instead, it defines the class of models in which R(w0) 
= ∅ – that is, the actual world access at
least one other state.
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3.1 Soundness of the Hilbert-style System for T�af

Lemma 3.5 LetM+ be an AM-extension ofM. Let also ϕ ∈ FormL and {xi } be the
free variables of ϕ. If μ is an assignment onM and η is an assignment onM+ such
that η(xi ) = μ(xi ), then,

M |�μ ϕ iff M+, w0 |�η αT(ϕ).

Theorem 3.6 Let ϕ ∈ FormL�a f and {xi } be the free variables of ϕ. If η and η′ are
assignments on M+ such that η(xi ) = η′(xi ), then, for any w ∈ W,

M+, w |�η ϕ iffM+, w |�η′ ϕ.

Theorem 3.6 is straightforwardly obtained through the first-order properties of the
semantics.

Theorem 3.7 Let L be the language of a first-order theory T and ϕ ∈ FormL. Let
alsoM be a T-model, and M+ be an AM-extension of it. Then,

M |� ϕ iff M+ |� αT(ϕ).

Corollary 3.8 Let L be the language of a first-order theory T and ϕ ∈ FormL. Then,

|�T ϕ iff |�T�a f
αT(ϕ).

Corollary 3.9 Let T be a first-order theory. Then, R�a f preserves validity in T�a f -
models.

Theorem 3.10 Let M = 〈M, I〉 be a T-model, M+ an AM-extension of it, and L the
language of T. Then, for any ϕ ∈ FormL and equiadmissible assignment η,

M |�η ϕ iffM+ �M, w0 |�η ϕ.

Corollary 3.8 shows the AM-extension T�a f of T is semantically conservative in
the sense that, whatever is true of the objects of T in T is also true in T�a f . Indeed, the
translation αT only assures us, when moving from a first-order theory to its afthairetic
modality, we are still talking about the objects of the theory when using its theorems.
Moreover, together with Corollary 3.9, we have that, if T is sound, then the fragment
of T�a f restricted to the axioms and rules inherited from T is sound with respect
to the class of models for T�a f . Theorem 3.10 is a slightly stronger version of the
conservativeness: it shows M+ �M itself is a model for T, as it is to be expected.

Moving on to the remaining axioms and inference rules, Corollaries 3.8 and 3.9
tell us the translated versions of the axioms of predicate logic with identity are valid,
and MP and Gen preserve validity. However, we trust the reader to see there is no
substantial modification to the interpretation of regular predicates and identity, so that
the regular first-order axioms and inference rules are also valid and preserve validity,
respectively, and thatCBF and BF are still valid in monotonous and anti-monotonous
models, such as those for T�a f . Furthermore, for there is always at least one state
accessible from the actual world, we may also notice that D is valid. We can now
concentrate on the proper axioms and rules of T�a f .
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Theorem 3.11 NecT�q and Necτ preserve validity in the proposed semantics, and

|�T�a f Sact ,Spot ,Suni ,NSA,NA1,NA2.

Proof We start by the axioms. We have that Sact holds, since
w0 /∈ ⋃

i∈A; j∈M+ S(i, j), and we may see M+, w0 |�η ¬Sxy for any η such that
η(x) ∈ A. Thus, M+, w0 |� ∀x(Ax ↔ ∀y(¬Sxy)).

For Spot , let η be an assignment. Then, w ∈ S(η(x), b) for some b by the
definition of T�a f -model, so that M+, w |�η Sxy, for η such that η(x) = a
and η(y) = b. Thus, we get M+, w |�η ∃ySxy. By the arbitrariness of w,
M+, w0 |�η �∃ySxy, and by the arbitrariness of η, we get Spot .

The validity of Suni andNSA is clearly implied by Definition 3.1 (e) (by the second
and third conditions, respectively).

For NA1, let η be an assignment and w be any state. Either η(x) ∈ A or η(x) /∈ A.
If the former, thenM+, w |�η Ax , and sincew is any state (particularly, any inR(w0)),
that means M+, w0 |�η �Ax – and
M+, w0 |�η Ax → �Ax . If the latter, then M+, w 
|�η Ax , which also means
M+, w0 |�η Ax → �Ax . By the arbitrariness of η, we get
M+, w0 |� ∀x(Ax → �Ax). By an analogous argument, the case for NA2 can
be made.

For Necτ , suppose �ϕ is valid, and ��ϕ is not. Let M+ 
|� ��ϕ. We have
M+, w0 |� �ϕ, and M+, w0 
|� ��ϕ, which means, for some u ∈ R2(w0),
M+, u 
|� ϕ. Consider, now, M+

2 = 〈M+, I+,W, w0,R2,A,S〉 such that R2 =
R ∪ {〈w0, u〉}. It is fairly simple to see that, for any ψ ∈ FormL�a f , M+, u |� ψ

iff M+
2 , u |� ψ , so that M+

2 , u 
|� ϕ, and thus M+
2 , w0 
|� �ϕ. It is also clear that

M+
2 is a T�a f -model – since u 
= w0, for w0 is seen by no state –, so we have a

contradiction. Thus, ��ϕ must also be valid.

For NecT�q , let �T�q
ϕ. We show, by an induction on the length l of proofs, �ϕ is

valid. Suppose the length of the proof of ϕ is l = 1. Then, ϕ is an axiom of T�q . We
show then its necessitation is valid. The result is trivial for the non-proper axioms of
T�q . Given that the argument offered above for the truth of the axioms in w0 works
as well for any other state, it is easy to see the boxed version of each proper axiom (of
T�q ) is likewise true in w0.

Suppose now it works for l ≤ n, and consider l = n + 1. Then, ϕ is obtained by
the application of either MP, or Gen, or Necessitation. Therefore, either (i) there is

ψ ∈ FormL�a f such that�T�q
ψ and�T�q

ψ → ϕ, and the lengths of their proofs is

lesser than n+1; or (ii) there is ψ ∈ FormL�a f such that ϕ = ∀xψ , �T�q
ψ , and the

length of the proof ofψ is lesser than n+1; or (iii) for someψ ∈ FormL�a f , ϕ = �ψ

and �T�q
ψ , and the length of its proof is lesser than n + 1. If (i), then, by induction

hypothesis, �ψ and �(ψ → ϕ) are valid. SinceK is valid andMP preserves validity,
that means �ψ → �ϕ is valid, and we have that �ϕ is valid. If (ii), by induction
hypothesis, �ψ is valid. SinceGen preserves validity, ∀x�ψ is valid, and since BF is
valid andMP preserves validity, �∀xψ is valid. If (iii), then, by induction hypothesis,
�ψ is valid. Since Necτ preserves validity, that means ��ψ is valid. ��
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Corollary 3.12 Let T be a first-order theory. Then, T�a f is sound with respect to the
class of AM-extensions of its models (equivalently, the class of all T�a f -models).

Notice, if the theoryT is not consistent, the aboveCorollaries 3.9 and 3.12 vacuously
apply.

3.2 Completeness of the Hilbert-style System for T�af

Without loss of generality,wemay assume the first-order theoryT ofwhich the relevant
afthaireticmodality theory is an extension is consistent. Therefore, from nowon, this is
an implicit assumption.We start with some necessary definitions, but first we introduce
an important step into the direction of our intended goal.

Theorem 3.13 Let ϕ ∈ FormL. If �T ϕ, then �T�a f
αT(ϕ).

Proof We prove by an induction on the length l of the proof of ϕ in T. Suppose l = 1.
Then, ϕ is an axiom of T, which means αT(ϕ) is an axiom of T�a f . Assume the
case for l ≤ n, and consider l = n + 1. Then, either ϕ is obtained by MP, or by
Gen, or by a proper rule R. Therefore, either (i) there is ψ ∈ FormL�a f such that

�T ψ → ϕ and �T ψ , and the lengths of those proofs are lesser than n + 1; or (ii)
there is ψ ∈ FormL�a f such that ϕ = ∀xψ and �T ψ , and the lengths of that proof

is lesser than n + 1; or (iii) there are ψi such that �T ψi , and the length of each of

those proofs is lesser than n+1. If (i), by induction hypothesis,�T�a f
αT(ψ → ϕ) (and

αT(ψ → ϕ) = αT(ψ) → αT(ϕ)) and �T�a f
αT(ψ), so by MP,

�T�a f
αT(ϕ). If (ii), by induction hypothesis, �T�a f

αT(ψ), so by a few steps,

�T�a f ¬Ax → αT(ψ), and by Gen, �T�a f ∀x(¬Ax → αT(ψ)). If (iii), by induction

hypothesis, �T�a f
αT(ψi ), and by R�a f , �T�a f

αT(ϕ). ��
Definition 3.14 (∀-property, [9]) Let � be a set of formulas. We say � has the ∀-
property if for every formula ϕ and variable x there is a term t such that ¬∀xϕ →
(¬ϕt

x ∧ t = t) ∈ �.

The definition of the ∀-property is slightly different from the one usually used.
We need that modification to ensure every universally quantified formula which is not
verified is falsified by some object. Otherwise, since we are using a negative free logic,
for example, the fact that ϕt

x is not verified does not mean ¬∀xϕ, for, as we may see
in UI f , it may be that t does not designate.

Lemma 3.15 Let 	 be a T�a f -consistent set of formulas. If the formulas of L are
enumerable, then there is aT�a f -consistent set� with the∀-property such that	 ⊆ �.

Proof sketch Use the same structure of the proof for first-order modal logic17 (as
T�a f also possesses Gen), and extend an enumeration of the formulas of L to an
enumeration of the formulas of L�a f .18

17 For example, see [9], Chapter 14, Theorem 14.1.
18 Let P j

i be the j-ary predicates of first-order modal logic, and Q j
i the j-ary predicates of L. We map A

to P1
1 and Q1

n to P1
n+1, S to P2

1 and Q2
n to P2

n+1, and for all remaining j , Q j
i to P j

i .
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Lemma 3.16 ([Lindenbaum) Let 	 be a T�a f -consistent set of formulas of L�a f .
Then, there is a maximal consistent set of formulas � with the ∀-property such that
	 ⊆ �.

Proof sketch The same as that for normal first-order modal logic, using Lemma 3.15
appropriately.

Corollary 3.17 Let 	 be a T�q -consistent set of formulas of L�a f . Then, there is a
maximal T�q -consistent � with the ∀-property such that 	 ⊆ �.

Wecannot build canonicalmodels, inwhich each state is amaximal T�a f -consistent
set of formulas with the relevant properties, and for which each formula is true at a
state iff the formula is a member of the state. In that sort of construction, it is routine to
extend every consistent set of formulas to amaximal consistent set of formulaswith the
relevant properties, and collect them as the states in the canonical model. In the present
case, the set {¬Sxy | x, y ∈ VarL�a f } can be extended to many different maximal
consistent sets. Following the usual method, we would have many non-designated
states in which Ax and ∀y¬Sxy are both true, which is inadequate – in contradiction
with Spot . Nevertheless, given that validity in a model is identified with truth in the
actual world, for each set of that form, we may build a model that validates all of its
formulas, which shall allow us to show the completeness of the system.

Definition 3.18 Let � be a set of formulas. Then, L(�) = {ϕ | �ϕ ∈ �}.

It is routine, in proving completeness by using canonical models, to show for any
maximal consistent set � that, for any formula ϕ such that �ϕ /∈ �, we may extend
{¬ϕ} to a maximal consistent set which contains L(�). The purpose of that is to make
it so there is a maximal consistent set modally compatible with �, and so �, as a
state in the canonical model, may access a state which falsifies ϕ, therefore reflecting
the fact �ϕ /∈ �. However, in our case, we have two notions of consistency, one for
the actual world, and another for any possible state. In the models we have offered,
the actual world always accesses possible states, and possible states may access yet
other possible states, but the actual world is accessed by no one. Therefore, we need
to provide two different lemmas of existence of such sets: one showing that the non-
necessary formulas of a T�a f -consistent set is verified in a T�q -consistent set modally
compatible with it – which reflects the actual world accessing a possible state –, and
another showing that the non-necessary formulas of a T�q -consistent set is verified
in a T�q -consistent set modally compatible with it – which reflects a possible state
accessing another.

Lemma 3.19 Let 	 be a maximal T�a f -consistent set of T�a f formulas of L�a f with
the∀-property. Let alsoϕ ∈ FormL�a f be such that�ϕ /∈ 	. Then, there is amaximal

T�q -consistent set � with the ∀-property such that L(	) ∪ {¬ϕ} ⊆ �.
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Lemma 3.20 Let 	 be a maximal T�q -consistent set of formulas of L�a f with the
∀-property, and let ϕ ∈ FormL�a f be such that �ϕ /∈ 	. Then, there is a maximal

T�q -consistent set of formulas � with the ∀-property such that L(	) ∪ {¬ϕ} ⊆ �.19

Lemma 3.19 is the reason for the introduction of NecT�q into the system, and why
we have stated, in Section 2, that the system as it stood then – without the rule – was
too weak. It reiterates how that unusual rule is essential to the completeness of the
systems with respect to our semantics.

Definition 3.21 (Induced model) Let � be a maximal T�a f -consistent set of formulas
ofL�a f with the∀-property.We define the equivalence classes, for t ∈ T ermL, [t]� =
{r | t = r ∈ �}.20 The model induced by � is M+

� = 〈M+
� , I+,W, �,R,A,S〉, such

that:

(a) M+
� = {[t]� | t ∈ T ermL & t = t ∈ �};

(b) [�t]� ∈ I+(P, w) iff P�t ∈ w and [ti ]� ∈ M+
� ; if [ f (�t)]� ∈ M+

� ,
then I+( f )([�t]�) = [ f (�t)]� , and otherwise, I+( f )([�t]�) is not defined;
I+(c) = [c]�;

(c) W = {�} ∪ {	 | 	 is a maximal T�q -consistent set of formulas
with the ∀-property such that, for all t ∈ T ermL such that At ∈ �,

At ∈ 	};
(d) R = {〈w, u〉 | w, u ∈ W & L(w) ⊆ u};
(e) A = {[t]� | At ∈ �};
(f) w ∈ S([t1]�, [t2]�) iff St1t2 ∈ w.

Lemma 3.22 Let η and η′ be assignments on a model M+ (respectively, M), ϕ ∈
FormL�a f (respectively, ϕ ∈ FormL), and {xi } be the free variables of ϕ. If η′(x) =
η(y), and for all xi 
= x, η′(xi ) = η(xi ), then, for any state w,

M+, w |�η′ ϕ iffM+, w |�η ϕ
y
x

(respectively, M |�η′ ϕ iffM |�η ϕ
y
x ).

Lemma 3.22 for normal first-order modal logic has many proofs in the literature,
all of which trivially extend to T�a f .

Theorem 3.23 The following are obtained in T�a f :

• � ∀x∀y(x = y → �x = y)
• � ∀x∀y(x 
= y → �x 
= y)

The proofs of the above theorems are inherited from FFOML, by the use ofNecT�q .

Corollary 3.24 Let η and η′ be assignments on M+, ϕ ∈ FormL�a f , and {ti } be the
free terms of ϕ. If η′(s) = η(t), and for all ti 
= t , η′(ti ) = η(ti ), then, for any state w,

M+, w |�η′ ϕ iffM+, w |�η ϕt
s .

19 To prove this lemma, we only need to make the same argument as that of Lemma 3.19 (which may be
found in the Appendix), only using Necessitation instead of Nec

T�q .
20 We retain the convention, and write [�t]� for the sequence [t1]�, ..., [tn ]� .
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Lemma 3.25 Let � be a maximal T�a f -consistent set of formulas of L�a f with the
∀-property, andM+

� = 〈M+, I+,W, �,R,A,S〉 be the model induced by it. Let also
ξ be the canonical assignment ξ(x) = [x]� . Then,

M+
� ,w |�ξ ϕ iff ϕ ∈ w.

Lemma 3.26 Let M+
� be the model induced by a maximal T�a f -consistent set of

formulas � with the ∀-property. Let M� = 〈M�, I〉 be such that:

• M� = M+
� \ A;

• P, f , c ∈ L, I(P) = I+(P, �) �M� ; I( f ) = I+( f ) �M� ; and I(c) = I+(c).

Then, M is a T-model.

Theorem 3.27 (Completeness) Let T be a sound theory, and ϕ ∈ FormL�a f . If

|�T�a f
ϕ, then �T�a f

ϕ.

Proof As usual, in order to prove the completeness of the system, we only need to
show that any model induced by a maximal T�a f -consistent set of formulas with the
∀-property is a T�a f -model.21 To do that, consider one such set � and its induced
model, M+

� . We argue it is an AM-extension of M� , defined as in Lemma 3.26. We
check each condition of Definition 3.1 – skipping (c) and (d), which are covered by
Lemma 3.26:

(a) For � ∈ W, W 
= ∅;
(b) Since Sact ,Spot ∈ �, by �’s consistency, there is no state u such that L(u) ⊆ �.

Thus, by Definition 3.21 (d), R ⊆ W × (W \ �). Furthermore, by Lemma 3.19
there is a maximal T�q -consistent 	 with the ∀-property such that L(�) ⊆ 	, so
by Definition 3.21 (d), R(�) 
= ∅;

(e) For the first point of the criterion, suppose for some [t1]�, [t2]� ∈ M+
� ,M+

� , � |�ξ

St1t2. By Lemma 3.25, that means St1t2 ∈ �. Then, by �’s maximal T�a f -
consistency, from Sact , ¬At1 ∈ �, which means [t1]� /∈ A. Therefore, � /∈⋃

i∈A; j∈M+ S(i, j). For the second, let [t]� /∈ A and w ∈ W. By Definition 3.21

(e), that is the case iff At /∈ �. By �’s maximal T�a f -consistency, that happens
iff ¬At ∈ �. By Definition 3.21 (c) and w’s maximal T�q -consistency, that is
the case iff ¬At ∈ w, and from NSA, that is the case iff Stt ∈ w. But, by
Definition 3.21 (f), that is so iff w ∈ S([t]�, [t]�). Let now [t]� ∈ A and w ∈ W.
Then, At ∈ �. By �’s maximal T�a f -consistency, from Spot , At → ∃y(t 
=
y ∧ Sty) ∈ L(�) ⊆ w. By the previous argument, we also have At ∈ w, and so
∃y(t 
= y∧ Sty) ∈ w. By Lemma 3.25, that meansM+

� ,w |�ξ ∃y(t 
= y∧ Sty).
Therefore, for some η ∼y ξ , η(y) 
= [t]� and w ∈ S([t]�, η(y)). Furthermore,
by (b) of this proof, w 
= �. For the last point, suppose for some w ∈ W and

21 The reason for that is: suppose �
T

�a f
ϕ. Then, {¬ϕ} is a T�a f -consistent set of formulas, and thus, by

Lemma 3.16, there is a maximal T�a f -consistent � with the ∀-property such that ¬ϕ ∈ �. LetM+
� be the

model induced by such set. By Lemma 3.25, that means M+
� , � |�ξ ¬ϕ, and since � is the actual world,


|�T
�a f

ϕ.
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[t]� ∈ A, w ∈ S([t]�, [s]�) and w ∈ S([t]�, [s′]�). By Definition 3.21 (f), we
have Sts ∈ w and Sts′ ∈ w. By w’s maximal T�q -consistency, from Suni , we
get s = s′ ∈ w. By Theorem 3.23, that means s = s′ ∈ �, and therefore, by the
definition of [·]� , [s]� = [s′]� .

Therefore, M+
� is a T�a f -model, and we conclude our proof. ��

4 Extensions of T�af and the PGA

Now that we have the minimal system which models the assuming of values, we
may study how to extend it in order to add features that further characterise not
only afthairetic modality, but also other characteristics of A-objects, as described by
Horsten. We prove a series of semantic characterisations of axioms expressing these
features, which show the soundness and completeness of the extensions, conditional
on their being consistent. The results are conditional for, with the exception of Theo-
rem 4.5 – which presents a model for the axioms introduced in Subsection 4.2 –, we
do not offer model for the extensions. We hope that does not affect extensively our
contribution, and leave it open for future work.

The structure of the argument in showing completeness by the characterisation
results follows the course usually presented in normal modal logics. When we say that
a logic L characterises a class of models C, we mean that any model for L belongs
to C and that any model in C satisfies every theorem of L. Therefore, any theorem
of L is valid over C, and for any non-theorem ϕ of L there is a model for L + ¬ϕ,
which, by the characterisation, will be a model in C. Therefore, the class C validates
all and only the theorems of L – and why, if C 
= ∅, that implies the soundness and
completeness of the systems.

To make the presentation simpler, we define a few concepts.

Theorem 4.1 v(x) = y ::= Sxy is a permissible definition (the relation S is a
function), and v may be adequately interpreted by v : M+ × W → M+ such that
v(o, w) = o′ iff w ∈ S(o, o′).

Proof The former claim follows from Suni . By the latter, we mean that
M+, w |�η v(x) = y may be interpreted as v(η(x), w) = η(y); or analogously,
thatM+, w |�η Sxy iff v(η(x), w) = η(y). To see that, notice, by Definition 3.1 (e),
the o′ such that w ∈ S(o, o′) is indeed a definite description – that is, there is only one
such o′. ��

Intuitively, v is the function induced by S that gives the value of an object at a
certain state. In fact, we could have as well defined the language and models for AM-
extensions with v as a primitive and v as its interpretation, respectively, instead of with
the binary predicate S and function S. We avoided doing that for, in that case, v would
need to be not defined in the actual world for A-objects, and therefore any term v(x)
not occurring inside the scope of a modal operator would fail to have an interpretation,
introducing yet more non-designating terms. That would have made the presentation
of the current framework needlessly more complex. We trust the reader to see, had
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we followed that route, we would have obtained a system equivalent to the present
one. From now on, we shall use the function v and the relation S interchangeably,
depending on which makes the presentation at hand cleaner. The reason for that is we
constantly talk about the value of some object or another, and we believe that to be
better reflected by using a function term.

We extend our convention of abbreviating sequences here as well, so that
v(t1), ..., v(tn) may be denoted by v(�t), and, as long as we are referring to the values
of a collection of objects at a certain state – for example v(a1, w), ..., v(an, w) –, we
shall also write v(�a, w).

The state space, or range, associated to an A-object a in a model M+ may be
defined as:

ran(a) = {o ∈ M+ | ∃w ∈ R(w0)(o = v(a, w))}
That is, ran(a) is the range of the A-object a, the collection of objects amay assume

as a value. Though we may not use it, as a curiosity, membership of an object to the
range of an A-object may be defined in L�a f by:

x ∈ ran(y) ::= Ay ∧ ♦v(y) = x

The clause requires, for something to have a range, that it be an A-object. That is
necessary for v, as mentioned in Section 2, is ambiguous, and when we talk about
the range of an object, we are concerned with the sort of assuming of value A-objects
perform.

Once the notation is set, we may proceed to the main purpose of the section, which
is to extend the minimal system so that it deals with the most common problems
faced by an ontology comprising A-objects – and, more specifically, trying to follow
Horsten’s view.

What is the successor of an arbitrary natural? What about the biological father of
an arbitrary man? And the product of an arbitrary even number and 3? Are there such
objects, and if so, what is their nature? Would admitting A-objects into our ontology
not bring about the endless proliferation of ontological categories? These are a few of
the questions Frege posed as criticism of the concept of A-object – or, in the specific
context of his work, indeterminate numbers. So we find in his writing:

[Emanuel Czuber] obviously distinguishes two classes of numbers: the determi-
nate and the indeterminate. We may then ask, say, (1) to which of these classes
the primes belong, or whether maybe some primes are determinate numbers and
others indeterminate. [...] (2) How many indeterminate numbers are there? (3)
How are they distinguished from one another? (4) Can you add two indetermi-
nate numbers, and if so, how? How do you find the number that is to be regarded
as their sum? (5) The same questions arise for adding a determinate number to
an indeterminate one. To which class does the sum belong? Or maybe it belongs
to a third?22

Unquestionably, those are problems a theory of A-objects must, at least, attempt to
answer, and Horsten’s indeed does so:

22 [6], p. 160. The enumerations are ours.
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(1) The prime numbers are not arbitrary numbers: they are specific natural num-
bers. It may be that a concept of prime number can be generalised to the space
of arbitrary natural numbers, just as it can be generalised to various algebraic
structures, but that is another matter.
(2) [We have] argued that there are 2ω arbitrary natural numbers. [We] shall
see that if you hold a particular structuralist position about the natural number
structure, then you will disagree with this argument and instead hold that there
are 22

ω
arbitrary natural numbers.

(3) I proposed an identity criterion for arbitrary objects according to which an
arbitrary number a is identical with an arbitrary number b if and only if in each
situation, a is in the same state as the state that b is in, or, in other words, if and
only if a and b take the same specific value in each situation.
(4) A natural notion of sum can be defined for arbitrary numbers in a pointwise
manner. If a and b are arbitrary numbers, then their sum a + b is the arbitrary
number such that in each state where a is the specific number m and b is the
specific number n, a + b is the specific number n + m.
(5) Given that a specific number can be seen as a limiting case of an arbitrary
number, the sum of a specific natural number and a non-specific natural number
is easily seen to be a non-specific arbitrary number.23

We shall address each of these points with the extensions. We start with point (3),
followed by (4) and (5), and then (2). At last, we show how those extensions come
together, when using a simple (definable) convention for extending predicates from
the original theories to their AM-extensions, to obtain a weak form of the PGA –
which allows us to address point (1).

4.1 Identity of A-objects

As in (3), Horsten offers the following identity criterion for A-objects:

For any F , and any arbitrary F’s a and b: a = b iff, in every possible situation,
the value taken by a is identical to the value taken by b.24

That may be formalized as:

IdA (Ax ∧ Ay) → (x = y ↔ �(v(x) = v(y)))

That is, two A-objects are the same if they assume the same values on every state
– consequently, they have the same range.

Theorem 4.2 M+ |� IdA iff for all a, b ∈ A, a = b iff for anyw ∈ R(w0), v(a, w) =
v(b, w).

Proof sketch One direction of the equivalence in the property is trivial and the other
is straightforward from the truth condition of IdA.

23 [7], p. 67.
24 [7], p. 45.
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Theorem 4.2 shows IdA adequately encodes Horsten’s criterion of identity for A-
objects, as the property of the class of frames in which it is valid reflects its intended
interpretation.

4.2 Extending Functions

Aswehave expressed earlier,whengoing fromafirst-order theory to itsAM-extension,
we are extending the domain of quantification, but we are not necessarily extending
its functions. AM-extensions in which the functions are interpreted just as in the
ordinary first-order models are still T�a f -models. Therefore, to address issues (4) and
(5) according to Horsten’s answer, we add the following three axioms, for each n-ary
function symbol f of L:
FI1 ∀�x∀y( f (x1, ..., xn) = y ↔ � f (v(x1), ..., v(xn)) = v(y))
FI2 ∀�x∀y( f (�x) = y → (¬Ay ↔ ∧

i≤n ¬Axi ))
FI3 ∀�x(�∃y( f (v(x1), ..., v(xn)) = y) → ∃y( f (x1, ..., xn) = y))

Theorem 4.3 AxiomsFI1,FI2 and FI3 define properties (a), (b) and (c) below, respec-
tively.

(a) I+( f )(a1, ..., an) = b iff ∀w ∈ R(w0), I+( f )(v(a1, w), ..., v(an, w)) = v(b, w);
(b) I+( f )(o1, ..., on) ∈ M iff o1, ..., on ∈ M;
(c) if ∀w ∈ R(w0), I+( f )(v(a1, w), ..., v(an, w)) is defined, then so is I+( f )(a1, ...,

an).

Proof The equivalence between the validity of FI1 and FI3, and properties (a)
and (c), respectively, is straightforward. Let M+ have property (b), and suppose
M+, w0 |�η f (�x) = y, so that I+( f )(η(�x)) = η(y), which means these are
defined. If M+, w0 |�η ¬Ay, then η(y) ∈ M, so by the property, each η(xi ) ∈ M,
and therefore M+, w0 |�η ¬Axi . If now M+, w0 |�η ¬Axi , then η(xi ) ∈ M,
so by the property, I+( f )(η(�x)) = η(y) ∈ M. Therefore, M+, w0 |�η ¬Ay.
That gives us M+, w0 |�η ¬Ay ↔ ∧ ¬Axi , so by the arbitrariness of η, we
get FI2. Let now M+ |� FI2, and I+( f )(o1, ..., on) ∈ M. Let η(xi ) = oi and
η(y) = I+( f )(o1, ..., on), so that M+, w0 |�η f (�x) = y. By the validity of FI2,
M+, w0 |�η ¬Ay ↔ ∧ ¬Axi , and thus I+( f )(o1, ..., on) ∈ M iff oi ∈ M.25 ��
Theorem 4.4 Let M+ |� FI2. If I( f ) is a partial function, then so is I+( f ).

Proof Suppose I( f )(o1, ..., on) is not defined, but I+( f )(o1, ..., on) is. Then, by the
validity of FI2, since oi ∈ M, I+( f )(o1, ..., on) ∈ M. But that cannot be since, by
Definition 3.1, I+ �M ( f ) = I( f ). ��

Therefore, each axiom plays a different role in extending the functions. Axiom FI1
ensures that, if a function is extended, then it is extended in the appropriate way for

25 Notice throughout the argument wemake use of the fact that, for any term t and assignment η, if η(t) /∈ A
and η(t) is defined, then by Definition 3.1 (d), η(t) ∈ M.
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A-objects: for example, if a is an arbitrary natural, a + 2, if defined, will be an object
– not necessarily arbitrary – which assumes as its value the value a assumes plus 2;
and if b is another arbitrary natural, then a + b, if defined, is an object which always
assumes as its value the sum of the values a and b assume. Axiom FI2 ensures two
things: that these objects which are outputs, in these new cases, are indeed A-objects,
and that if I( f ) is a partial function, then the tuples of objects of the original theory
for which the function are not defined remain so. Axiom FI3 guarantees objects, like
the ones we gave as example of outputs of the function when applied to the extended
domain, indeed exist. In other words, axiom FI1 describes the modal profile the output
of the function should possess, axiom FI3 ensures there is an object with such modal
profile, and axiom FI2 guarantees that object is arbitrary. To see how the last step is
necessary, consider two arbitrary numbers a and b such that ran(a) = ran(b) = {1, 2},
and the value b assumes in a state is always that of the value a assumes minus 3. Then,
without axiom FI2, it may be that a + b = 3 – as opposed to the product of the sum
being an arbitrary number which always assume the value 3 –, which goes against
point (4).

For the next result, we make the following observation.

Theorem 4.5 LetM+ be a T�a f -model. Then, for any transfinite cardinal κ , there is a
model for T�a f +{FI1,FI2,FI3} with κ A-objects {ai } such that for some b ∈ ran(ai )
ai ∈ ran(b) (that is, the cardinality of the set defined by the condition ∃y(♦v(x) =
y ∧ ♦v(y) = x) is κ).

Proof Let M+ = 〈M+, I+,W, w0,R,A,S〉. We show how to construct such model.
Let M+

u = 〈M+
u , I+u ,W, w0,R,Au,Su〉, such that M+

u = M+ ∪ (κ × 2), Au =
A∪(κ ×2), Su be in accordance with, for each β ∈ κ , ran(〈β, i〉) = {〈β, |i−1|〉}, and
I+u differ from I+ onlywith respect to the interpretation of functions. It is clear neither of
the newobjects falsify the axiomsofT�a f –byaquickobservationof theproper axioms
of T�a f , and by noticing they are A-objects, and as such consistent with any axiom of
the first-order theory T, for the nature of the translation αT. Hence, we show they are
consistentwith the newaxioms. For that,we need to define how the functionsworkwith
the new objects. Define I+( f )(o1, ..., 〈β1, i1〉..., 〈βk, ik〉, ..., on) = 〈β j , i j 〉, for β j =
min{βl}l≤k . We check for the satisfiability of each property described in Theorem 4.3.
Clearly, (b) is still satisfied, and so is (c), for the function is defined whenever it takes
as input the new objects. For (a), consider w ∈ R(w0). Then,

I+( f )(v(o1, w), ..., v(〈β1, i1〉, w), ..., v(〈βk , ik〉, w), ..., v(on, w)) =
I+( f )(v(o1, w), ..., 〈β1, |1 − i1|〉, ..., 〈βk, |1 − ik |〉, ..., v(on, w)),

which by definition, is 〈β j , |i j − 1|〉 for β j = min{βl}l≤k .

By the definition of our model, 〈β j , |i j − 1|〉 = v(〈β j , i j 〉, w). ��
The above theorem shows T�a f is insensitive to ungrounded A-objects: objects

whose existence is not related to the objects of the original theory T. That makes it
possible for models with any cardinality of ungrounded objects to equally be T�a f -
models. The existence of such objects is problematic. First, we have no justification
for their existence: once again they are (arguably, metaphysically) ungrounded, or
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in a sense, grounded by themselves – they are essentially unfounded with respect to
the relation S. Furthermore, in the context of each AM-extended theory, there is no
adequate answer to of what they are an A-object. Take for example PA as the original
theory. Then, the above result shows there may be non-standard models for its AM-
extension, PA�a f , possessing a transfinite myriad of A-objects which are in not a
single way related to natural numbers.

Let us write GrM+ for the set of grounded A-objects of M+. We may define
it inductively: let G0 = {a ∈ A | ∀o ∈ M+(o ∈ ran(a) → o ∈ M)},
Gn+1 = Gn ∪ {a ∈ A | ∀o ∈ M+(o ∈ ran(a) → o ∈ Gn ∪ M)}, and
GrM+ = ⋃

i<ω Gi . We may then define the set of ungrounded A-objects as its com-
plement with respect to A, GrCM+ . We shall, from now on, present a series of results
we get from the domain without ungrounded A-objects, M+ \GrCM+ = M ∪ GrM+ ,
so for a cleaner presentation let us name this set M+

Gr .
For the following results, we note the elements of M+

Gr present a natural hierarchy.
This hierarchy may be made explicit by defining ranks of arbitrariness: for o ∈ M+

Gr ,
let rA(o) = 0 if o ∈ M, and otherwise, rA(o) = max{rA(a) | a ∈ ran(o)} + 1. We
may see, by this definition, given the first iteration of the construction of GrM+ in
which it appears, the rank of an A-object coincides with the previous level.

Theorem 4.6 LetM+ |� FI1. Then, if I( f ) is a commutative function, I+( f ) �M+
Gr

is a

commutative function; if FI3 is also valid and I( f ) is a total function, then I+( f ) �M+
Gr

is also total; and if IdA is also valid and I( f ) is an injective function, then I+( f ) �M+
Gr

is also injective.

Theorem 4.6 shows that, in any model for the three axioms with no ungrounded
objects, some properties of functions may also be extended. As we shall see, that is
due to the possibility of inducing from the ground up, on the ranks of M+

Gr . It is the
hierarchical nature of the groundedA-objects that allowswell behaved extensions, and
so there is a further reason for rejecting ungrounded A-objects. In the next subsection,
we shall see a possible natural way out of this issue.

4.3 A Note on the Hierarchy of A-objects

Before we continue, let us dig briefly into the naturally rising hierarchy just presented
– and more importantly, see what is Horsten’s view on the matter:

A second-order arbitrary number is an entity that can be in a state of being
different arbitrary natural numbers, and so on. This gives rise to the following
definition of a hierarchy of higher-order arbitrary natural numbers:

(1) A0 = N;
(2) Aβ+1 = A

Aβ

β ;

(3) Aλ = ⋃
β<λ Aβ for λ a limit ordinal.26

26 [7], p. 64.

123

1047



G. Venturi and P. Yago

Thus, just as we have defined in the last subsection, the members of M, the original
domain, may be seen as “0-th level" objects (those of rank 0), while the A-objects
whose range is a subset of it, as “first level" A-objects (those of rank 1).

Define new predicates An recursively such that:

• A0x :: = ¬Ax ;
• An+1x ::= ∃y(♦v(x) = y ∧ An y) ∧ ∀y(♦v(x) = y → ∨

i≤n Ai y).

Here, A0x expresses that x is a specific object. Notice the first conjunct in the
definition An+1x guarantees the rank of x is at least n + 1, while the second, that
its rank is at most n + 1. Notice, also, our definition is different from what Horsten
describes. In the above passage, each level of the hierarchy is formed by the A-objects
that may assume as value the objects of the level immediately below. Our definition,
however, allows for A-objects of a level to assume as value objects from any of the
lower levels – so that our formulation is a little more general. That is no problem,
however, as Horsten himself considers such an elaboration.27

Lemma 4.7 M+, w0 |�η Anx iff rA(η(x)) = n.

Proof By induction on n, let M+, w0 |�η A0x . Then, η(x) /∈ A, rA(η(x)) = 0. Let
n = m + 1. IfM+, w0 |�η ∃y(♦v(x) = y ∧ Am y) ∧ ∀y(♦v(x) = y → ∨

i≤m Ai y),
then, by induction hypothesis, from the first conjunct, for some a ∈ ran(η(x)), rA(a) =
m, and from the second conjunct, for any a ∈ ran(η(x)), rA(a) ≤ m. Therefore,
rA(η(x)) = m + 1. ��

Let a ∈ A in some T�a f -model. Then, Anx is true of a only if any sequence
o1, ..., ok such that oi ∈ ran(oi+1) and ok ∈ ran(a) is at most of length n, and
o1 ∈ M. However, with such sort of definition, we may see we cannot define a
predicate for A-objects of the level of a limit ordinal λ, since that would require either
a second-order quantification on these new predicates – so that Aλx ::= Ax ∧ ∀β <

λ∃α < λ(β < α ∧ ∃y(♦v(x) = y ∧ Aα y)) –, or an infinitary disjunction – so that
Aλx ::= Ax ∧ ∀y(♦v(x) = y → ∨

β<λ Aβ y). We may always trivially collect the
A-objects of all levels of the hierarchy with the original predicate A, but at the cost of
possibly having ungrounded A-objects.

Consider then the following axiom scheme:

AHn ∀x(∨i≤n Ai x).

Then, we have the following result:

Theorem 4.8 M+ |� AHn iffM
+
Gr = M+ and max{rA(a)}a∈M+ ≤ n.

Proof LetM+ |� AHn and η(x) ∈ A. Then,M+, w0 |�η Amx for some m ≤ n. By
Lemma 4.7, rA(η(x)) = m. By the arbitrariness of η, that means every object has a
defined rank – so that M+

Gr = M+ – of, at most, n. Let now the two properties hold.
By the properties, rA(η(x)) ≤ n is defined, so by Lemma 4.7, M+, w0 |�η Amx for
some m ≤ n. Thus, AHn holds. ��
27 [7], pp. 120–121.
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Therefore, finite fragments of the hierarchy may be reflected by the validity of
specific axioms in the framework. Furthermore, for any n < ω, we may rule out
ungrounded A-objects, at the cost of also ruling out A-objects of rank greater than
n. We leave the investigation on how to rule out ungrounded A-objects without this
trade off for future work. Still, as we shall briefly see, these predicates reflecting the
hierarchy will aid us in the presentation of new axioms and results.

4.4 Arbitrary Comprehension

Concerning the abundance of A-objects, we can divide the investigation in two fronts:
we may wonder how many sorts of A-objects there are, and how many A-objects
of the same sort there are. That is, we may question what ϕ’s there are that talking
about an arbitrary ϕ makes sense; and given some ϕ, we may also question how many
arbitrary ϕ’s there are. This subsection intends to address the first question, and thus
only partially covers (2).28 In that regard, Horsten expresses the following view:

For any condition φ that holds for every element of a non-empty set A of specific
objects of kind K and only of those objects, there is an arbitrary object a that
can be in the state of being any element of A and can be in no other state.29

This stratified comprehension scheme can be now formalized, by using the ranks
of arbitrariness, as follows:

CompA ∃x(Anx ∧ ϕ(x)) → ∃y(Ay ∧ ∀x(♦v(y) = x ↔ (
∨

i≤n Ai x ∧ ϕ(x)))),
for any syntactic condition ϕ(x) and n < ω.

Here, by a syntactic condition (which in the absence of ambiguity, we may call
simply condition), we understand a formula of the language with a single free variable.
According to CompA, for any non-empty condition on objects of rank n, there is an
A-object which can assume the value of any object, of at most rank n, satisfying that
condition, and no other. Notice that implies the rank of the new A-object is n + 1.

The formulation of CompA does not provide for the existence of both an empty
and a universal A-object – that is, one whose range is empty, and another whose range
is the whole domain, respectively. Those objects are left out for two reasons. The
first is conceptual: as stated in the second section, A-objects are objects which assume
values, so trivially, there must be objects in its range. Furthermore, they cannot assume
themselves as values, and therefore cannot have the entire domain as their range. The
second reason is more formal: as Spot is an axiom of the system, it would require of the
empty A-object that it possibly assumes a value, which might lead to a contradiction.
Similarly, as NSA is an axiom, the general A-object being in its own range would be
contradictory. Still,CompA implies the existence of a universal specific A-object – an
A-object whose range is the domain of the original theory – by having ϕ(x) ::= ¬Ax
and n = 0.

Notice CompA works as a sort of separation scheme, to avoid Russell-like para-
doxes. To see how a paradox may arise from an unrestricted comprehension scheme

28 We intend to cover the second question in future work.
29 [7], p. 46.
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– like that obtained by just the consequent of the conditional –, consider the A-object
a which ranges over the class of objects which cannot assume themselves as a value.
Then, a may assume itself as a value iff it does not assume itself as a value. A contra-
diction. However, in the above formulation, the requirement that the values assumed
by the new A-object are of a lesser rank guarantees that condition does not fulfil the
necessary requirement to be encompassed by the comprehension scheme.

Definition 4.9 LetM+ be aT�a f -model and X ⊆ M+.We say X is definable inM+ if
there is a condition ϕ(x) such that o ∈ X iff
M, w0 |�η ϕ(x)[o/x].

The next theoremshows the class ofmodels that allow this comprehension scheme is
characterisable. Let us denote the set of objects of rank atmost n – that is,M ∪ ⋃

i≤n Gi

– by Gi≤n .

Theorem 4.10 M+ |� CompA iff it presents the following property:

For each n < ω, for all definable X ⊂ M+ in M+, if X ∩ Gi≤n 
= ∅ there is
aX ∈ Gn+1 such that: for each o ∈ X ∩ Gi≤n, there is w ∈ R(w0) such that
v(aX , w) = o; and for any w ∈ R(w0) and o ∈ M+, if v(aX , w) = o, then
o ∈ X ∩ Gi≤n.

Proof To see CompA implies the property, let M+ |� CompA, X ∩ Gi≤n 
= ∅, and
let X be defined by ϕ(x). Then,

M+, w0 |�η ∃x(Anx ∧ ϕ(x)) → ∃y(Ay ∧ ∀x(♦v(y) = x ↔ (
∨

i≤n Ai x ∧ ϕ(x)))).

Clearly, by the non-emptiness of that set, the antecedent is true. Therefore,

M+, w0 |�η ∃y(Ay ∧ ∀x(♦v(y) = x ↔ (
∨

i≤n Ai x ∧ ϕ(x)))), so that
for some η′ ∼y η, M+, w0 |�η′ Ay ∧ ∀x(♦v(y) = x ↔ (

∨
i≤n Ai x ∧ ϕ(x))).

We get η′(y) ∈ A. Let o ∈ X ∩ Gi≤n and η′′ ∼x η′ be such that η′′(x) =
o. Then, we get (i) M+, w0 |�η′′ ♦v(y) = x ↔ (

∨
i≤n Ai x ∧ ϕ(x)). Since

η′′(x) ∈ X ∩ Gi≤n – which means M+, w0 |�η′′
∨

i≤n Ai x ∧ ϕ(x) –, we get
M+, w0 |�η′′ ♦v(y) = x , and thus there is w ∈ R(w0) such that v(η′′(y), w) = o.
Let now w ∈ R(w0), and v(η′′(y), w) = o. Since η′′ is any x-variant of η′, let
it be such that η′′(x) = o. Then, M+, w0 |�η′′ ♦v(y) = x , so that, by (i),
M+, w0 |�η′′

∨
i≤n Ai x ∧ ϕ(x), which means η′′(x) = o ∈ X ∩ Gi≤n . Hence,

η′′(y) = η′(y) is the object in A making the property true for X .
To see now the property implies CompA, suppose it holds, and that

M+, w0 |�η ∃x(Anx ∧ ϕ(x)). Let (ii) X be the set defined by ϕ(x). Then,
clearly, X ∩ Gi≤n 
= ∅. By the property, there is a ∈ A such that (iii) if
it assumes the value o in some w ∈ R(w0) then o ∈ X ∩ Gi≤n , and (iv)
for any o ∈ X ∩ Gi≤n there is w such that a assumes the value o. Let
then η′ ∼y η such that η′(y) = a, so that (v) M+, w0 |�η′ Ay. Let then
η′′ ∼x η. If η′′(x) ∈ X ∩ Gi≤n , then by (ii) M+, w0 |�η′′

∨
i≤n Ai x ∧ ϕ(x).

By (iv), there is w ∈ R(w0) such that v(η′′(y), w) = η′′(x), and thus
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M+, w0 |�η′′ ♦v(y) = x . If η′′(x) /∈ X ∩ Gi≤n , then either M+, w0 
|�η′′ ϕ(x)
or M+, w0 
|�η′′

∨
i≤n Ai x . By (iii), there is no w ∈ R(w0) such that v(η′′(y), w) =

η′′(x), so M+, w0 
|�η′′ ♦v(y) = x . By the nature of η′′ and η′, and with (v) the
desired conclusion easily follows. ��

For a condition ϕ, let us call an A-object a, in a model M+, an arbitrary ϕ if it
assumes each object satisfying ϕ inM+ as a value in some state.

Theorem 4.11 Let P be a unary predicate,M+ be a model for T�a f +CompA, and
aP ∈ A be an arbitrary P. Then, aP /∈ I+(P, w0).

Proof If aP ∈ I+(P, w0), then by Theorem 4.10 there would be w ∈ R(w0) such that
v(aP , w) = aP , which cannot be the case by Definition 3.1 (e). ��

Theorem 4.11 shows a seeming incompatibility between Horsten’s theory of A-
objects and Kit Fine’s [3]. According to the latter, A-objects of a sort P are objects
which present all the properties (although within some restrictions) common to all
individual P’s. This property is best described by the previously mentioned PGA:

Let ϕ(x) be any condition with free variable x ; let a be the name of an arbitrary
object a; and let i be a variable that ranges over the individuals in the range of
a. (We here follow a general convention whereby a names a.) Then the required
formulation of the principle is:

ϕ(x)(a) ⇔ ∀iϕ(i) (a ϕ’s iff every individual [in its range] ϕ’s)30

Therefore, according to the PGA, an arbitrary P should present P trivially. Theorem
4.11 goes against that. It says an arbitrary P does not present, precisely, P . That,
however, is in no way a problem for Horsten’s account:

The fundamental question is: is the arbitrary number b a natural number? I say
that it is not, and this is (in my view) precisely where Berkeley’s argument goes
wrong. The natural numbers are the specific objects 0, 1, 2, 3, ... The domain of
arbitrary natural numbers will be seen to, in a sense, contain the natural numbers
as limiting cases. The domain of arbitrary numbers can therefore be seen as an
extension of the natural numbers. So b is not a natural number. To believe that
it is, is to be deceived by language.31

So, an arbitrary P may indeed not be a P – not in the same sense an individual P
is. We shall see, in the next subsection, how that may be incorporated into the system.

At this point, we note Horsten’s work does not intend to focus on this specific aspect
of A-objects, nor to engage with the PGA, so that we do not wish to convey him as
taking any particular instance on the issue. We do find, however, value in highlighting
commitments to the nature of A-objects, and the way they work.

An interesting, but intuitively obvious, consequence of CompA is the following
theorem:

30 [4], p. 59.
31 [7], p. 48.
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Theorem 4.12 If M+ |� CompA, then |Bmax
ϕ | ≤ |W|, where Bmax

ϕ is the largest
definable subset of M+ inM+.

Proof sketch Just notice CompA implies the existence of an arbitrary Bmax
ϕ , and

therefore there must be at least |Bmax
ϕ | states in W for it to assume each of its possible

values.

Therefore, both the language and the domain of quantification play a role in defin-
ing the size of the set of states, which is at least in part in accordance to Horsten’s
requirement that the state space associated to an arbitrary F is as big as the cardinality
of the class of F’s. In fact, Horsten argues, depending on the nature of the range of
an A-object, there should be exactly as many states as the cardinality of its range.
Thus, for any A-object whose range is of a cardinality lesser than |Bmax

ϕ |, there will
actually be more states than required.32 If one is to closely follow Horsten’s approach,
that would be a problem when dealing with degrees of arbitrariness of A-objects –
which is related to the amount of states in which each different object in the range of
an A-object is assumed as a value.33 The topic, however, is outside the scope of this
paper.

Another consequence ofCompA is that its validity implies the existence of constant
A-objects, for each constant c – by setting ϕ(x) ::= x = c. The further validity of IdA

implies each of these constant A-objects is unique, and therefore nameable. Extending
the language with names for each of these new objects allows us to express interesting
properties of the extended models.

Define a new constant c↑ by setting, for any ϕ ∈ FormL�a f :

ϕ(c↑) ::= Ax ∧ ϕ(x) ∧ �(v(x) = c)

Having that, we may once again define another new constant, c↑↑, which always
takes the value of c↑, by setting

ϕ(c↑↑) ::= Ax ∧ ϕ(x) ∧ �(v(x) = c↑)

Notice, as a consequence, an arbitrary constant, which takes as values the constant
of rank n, is of level n + 1. That goes on indefinitely – but this is not an issue. By the
previous observation, it is clear in the given context there is exactly one object which
satisfies any such condition, for each constant. We may call each of these arbitrary
constants cn↑, referring to its rank – so that the 0th rank is attributed to the original
constant c. It is easy to see the interpretation of any model for those axioms may be
extend to interpret these new constants, such that I+(cn↑) is that unique a ∈ A such
that for any w ∈ R(w0), v(a, w) = I+(cn−1↑). Furthermore, notice I+(cn↑) ∈ M+

Gr .
Therefore, from now on, we may use cn↑ as proper names of such objects, and work
as if we have the extended language, and as if any model for CompA and IdA is
adequately equipped with an interpretation of cn↑.

32 [7], pp. 53–55.
33 [7], pp. 63–64, 178–181.
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Now, define a translation on terms, (·)↑, as:
(y)↑ = y
(cn↑)↑ = cn+1↑
f (t1, ..., tn) = f (t↑1 , ..., t↑n )

That is, (·)↑ only replaces each occurrence of a constant with another of a higher
rank. Just as cn+1↑ names the constant A-object which takes the value of cn↑ at every
state, we write tn↑ for t translated n times, and ϕn↑ for a formula ϕ with all of its terms
translated n times – when we need to make that explicit.

Theorem 4.13 Let M+ |� IdA,CompA,FI1,FI2,FI3, and ϕ ∈ L \ {Pi } – that is,
the fragment of L with only, in addition to the logical symbols, function symbols and
constants. Let {yi } be the free variables of ϕ. Then,

if ∀w ∈ R(w0), v(η(xi ), w) = η(yi ) implies M+ �M+
Gr

, w0 |�η ϕ, then

M+ �M+
Gr

, w0 |�η ϕ
↑�x
�y .

For the next result, for each of the predicates An previously defined, define:

As
nx ::= Anx ∧ ∀y(♦v(x) = y → An−1y)

What As
nx means is that if an object satisfies it, then not only is it of rank n, but all

of the objects in its range are of the rank immediately bellow, n − 1.

Theorem 4.14 LetM+ |� IdA,CompA,FI1,FI2,FI3. Let also �ϕ(�x, y) ∈ L\ {Pi }
be a condition in prenex normal form, where � is the prefix and ϕ(�x, y) the matrix.
Then, for n ≥ 1,

if |�T �ϕ(�x, c), then M+ �M+
Gr

|� �(
∧

i≤m As
nxi → ϕn↑(�x, cn↑)).

Theorems 4.13 and 4.14 extend the result of Theorem 4.6. For example, if in T there
is an inverse for every element with respect to f , then, in T�a f with the above axioms,
any element of a rank has an inverse of the same rank. Likewise, if there is a neutral
element of a certain operation, then in the extended theory there should be a neutral
element of that operation for each rank. Thus, a wide variety of properties of functions
and constants of the original theory are present in the AM-extended theories.

4.5 Relation Inheritance (or a weak PGA)

As suggested at the beginning of this section, to address (1), we shall define new
predicates. Just like we have defined a new constant for each rank – or level of the
hierarchy –, so we define new predicates for each rank, counterparts of the original
predicates. Thus, for each n-ary predicate Pi , we find new n-ary predicates Pk∗

i , which
we may call generic predicates (of k-th level). Intuitively, Pk∗ is supposed to be the
(more) generic counterpart to the predicate Pk−1∗.

Øystein Linnebo offers, in [10], in the context of the abstractionist (or neo-Fregean)
program, a proposal for how abstracta introduced by abstraction principles inherit
relations from the objects in the classes from which they are generated. Borrowing
from his suggestion, we may inductively define:
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• P∗ �x ::= ∧
i≤m Axi ∧ �Pv(x1)...v(xm);

• Pn+1∗ �x ::= �Pn∗v(x1)...v(xm).

By defining generic predicates in this way, we keep the frameworkmore compatible
to the view according to which saying, for example, an arbitrary natural number is
even is mere façon de parler.

An obvious consequence of this sort of definition is that, for example, if we say an
arbitrary natural number is even, then it must clearly be even in a different manner
than that of a specific number – accordingly to what we have previously expressed.

Theorem 4.15 M+, w0 |�η Pn∗ �x iff rA(η(xi )) = n and for any w ∈ R(w0), if
v(η(xi ), w) = η(yi ), then M+, w0 |�η Pn−1∗ �y.

Proof sketch By induction on n, the result is easily obtained by the definition of the
new predicate.

Corollary 4.16 IfM+, w0 |�η Pn∗ �x, then for any b ∈ ran(η(xi )), rA(b) = n − 1.

The new predicates let us abstract upon the predicates of the original theory. For
example, an arbitrary object is prime∗ if all the objects in its range are prime numbers;
it is prime∗∗ if the objects in its range are arbitrary primes, and so on. Therefore, by
extending the relevant notions, issue (1) can adequately be dealt with.

Now, as we intended, we may move towards obtaining a weak form of PGA. To do
that, we need to slightly expand our theory. Let

T�q+ = T�q + {IdA,CompA,FI1,FI2,FI3},
and NecT�q+ be the inference rule which allows us to put a� not on every formula

derivable in T�q , but on every formula derivable in T�q+. Define then T�a f + as T�a f

with all the new axioms, but with NecT�q+ instead – that is,

T�a f + = (T�a f − NecT�q ) + {IdA,CompA,FI1,FI2,FI3} + NecT�q+ .

For the next theorem, define a translation (·)∗ on formulas which replaces each
constant and predicate with one of a higher level:

(t1 = t2)∗ = t↑1 = t↑2
(Pn∗t1...tn)∗ = Pn+1∗t↑1 ...t↑n
(¬ϕ)∗ = ¬ϕ∗
(ϕ ∧ ψ)∗ = ϕ∗ ∧ ψ∗
(∀xϕ)∗ = ∀xϕ∗
(�ϕ)∗ = �ϕ∗

Theorem 4.17 Let M+ |� IdA,CompA,FI1,FI2,FI3. Then, for any ϕ ∈ L�a f \
{S, A} such that ¬ only occurs in expressions of the form ¬∀x¬ψ ,34

M+ �M+
Gr

|� (
∧

i≤n Axi ∧ �ϕ(v(x1), ..., v(xn))) ↔ ϕ∗(x1, ..., xn).

34 That is, the theorem is not true for negated and disjunctive formulas, but it is for formulas with ∃x . The
convoluted way in which this definition comes across is for the non-primitiveness of the quantifier.
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Proof By induction on the complexity of ϕ. The base cases are covered by Theorems
4.13 and 4.15. The conjunctive case is trivial. If ϕ ::= ∀zψ(�y), let M+, w0 |�η

∀zψ∗(�x). Then, we have for any assignment η′ ∼z η, M+, w0 |�η′ ψ∗(�x). By
induction hypothesis, we get

M+, w0 |�η′
∧

i≤m Axi ∧ �ψ(v(�x)).
By the arbitrariness of η′, we get

M+, w0 |�η ∀z(∧i≤m Axi ∧ �ψ(v(�x))).
Since z only (possibly) occurs in ψ(�y), that means

M+, w0 |�η

∧
i≤m Axi ∧ �∀zψ(v(�x)).

Let nowM+, w0 
|�η ∀zψ∗(�x), so that for some η′ ∼z η,M+, w0 
|�η′ ψ∗(�x). By
induction hypothesis, M+, w0 
|�η′

∧
i≤m Axi ∧ �ψ(v(�x)), so either M+, w0 
|�η′∧

i≤m Axi or M+, w0 
|�η′ �ψ(v(�x)). If the former, the result is straightforward, so
suppose the latter. Then, for some w ∈ R(w0), M+, w 
|�η′ ψ(v(�x)). That means
M+, w 
|�η′ ∀zψ(v(�x)), which gives us M+, w0 
|�η′ �∀zψ(v(�x)).

The case forϕ ::= ∃zψ(v(x)) is analogous to the universal case. Forϕ ::= �ψ , just
notice although in all the previous arguments we evaluated formulas in w0, nothing
hinges on the state of evaluation being w0, and so they are all valid for any state
accessed by it. Therefore, by the induction hypothesis, the present case can be easily
made. ��

Once we compare it to Fine’s definition, we see Theorem 4.17 is a weak form of
the PGA, with a classical reading of a predicate on the left-hand side and a generic
reading of it on the right-hand side. Therefore, as we have expressed, Horsten’s theory
may not be so distant from Fine’s PGA.

Notice Theorem 4.17 fails to account for disjunctive and negative relations. Con-
cerning negative relations, the restriction is quite natural. Being a non-mammal, or
being neither a chair nor a table seem less like actual (independently obtained) rela-
tions, and more like restrictions on other relations. If we consider collections to have
similar existence criteria as to sets, then we need collections to exist when they are
well-determined sub-collections of pre-existing collections. On the other hand, the
power of definition provided by negation can easily encompass this form of determi-
nation (e.g. the complement of a pure set is a class). For example, describing something
as the collection of non-aeroplanes only tells us that, if anything were to belong to
that collection, then it would not be an aeroplane. It is only once we supplement the
description, by saying of what it is a restriction, that the collection may be determined.
In that way, there is no loss of generality, as there are no negative relations to be
inherited.

Disjunctive relations are of a different matter. The theorem with disjunctive cases
cannot be valid (at least with respect to the classes of models we have described), as it
would fall prey to Berkeley’s argument against A-objects in the semantic framework.
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However, it seems adequate to conclude that an arbitrary natural number is either even
or odd by seeing that each individual natural number is either even or odd. Therefore,
there may be a better way of dealing with additional generic predicates.

5 Conclusion

Concerning the sort of modality that the afthairetic one is, we can easily notice it is
distinct from metaphysical necessity. Models are not reflexive, nor serial, nor sym-
metric, nor transitive. Common to all models, in this regard, is only the fact of having
a distinguished world in the center, which accesses every other, but is never accessed.
To paint a picture, it is like an octopus, whose tentacles stretch and reach other states,
but who can never touch its own head.

Concerning Horsten’s view on A-objects, we have shown how to conservatively
extend any non-modal first-order theory to incorporate them. More importantly, we
have shown how to extend their proof theory, which may allow a more precise study
of A-objects in that front. In doing so, we hope we have contributed, even if just in
the humblest sense, to a problem Horsten expresses at the end of his book:

Problem 11.1. Articulate and defend a general metaphysical and logical theory of
arbitrary entities.35

Many questions are left open. First, there is the remaining part of point (2) – namely,
how many arbitrary ϕ’s there are. Then, there is the problem of finding a way of
eliminating ungrounded A-objects, without paying the price of also getting rid of part
of the grounded A-objects. On the other hand, it may be argued that some ungrounded
A-objects are unique, and therefore there might be interesting applications of models
with ungrounded A-objects, for their unfounded nature. Moreover, building models
for the AM-extended theories – with all the additional apparatus of Section 4 – may
allow us to study the behaviour of A-objects of specific theories – more specifically,
PA, so that we may compare our approach to Horsten’s model and axiomatisation. We
intend to investigate that in future work.

The most pressing question, however, is how to appropriately present a relation
inheritance principle, in a way that it adequately rebuts Berkeley’s argument. That is
not a problem necessarily for Horsten’s view, as he is not concerned with this issue.
Nevertheless, that same principle suggests a connection to the abstractionist program,
and therefore away of adequately justifying the ontologically committed assertion that
there are, in fact, arbitrary objects. That makes the viewmore promising. Therefore, in
future work, we also intend to address that question, with further offering a predicative
definition by abstraction of A-objects.

35 [7], p. 211.
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Appendix A Proof of Lemma 3.5

Proof Let xi be the free variables of ϕ. We note that the translation works for the
purpose of the lemma for it preserves free variables of formulas – that is, ϕ and αT(ϕ)

indeed share the same free variables.
Now, we proceed by an induction on the complexity of ϕ. We skip the Boolean

cases. First, by an induction on the complexity of terms, we show that for any free
term t occurring in ϕ, μ(t) = η(t). The base cases are trivial. The case of t :: = f (�s)
is easily obtained by the induction hypothesis and Definition 3.21 (c).

Now, suppose M |�μ t1 = t2. That is the case iff μ(t1) = μ(t2). Since t1 and
t2 occur freely, μ(t1) = η(t1) and μ(t2) = η(t2), so η(t1) = η(t2), and therefore
M+, w0 |�η t1 = t2. The other direction goes by an analogous argument. Suppose
now M |�μ P�t . Then μ(�t) ∈ I(P). By Definition 3.1 (c), I(P) ⊆ I+(P, w0).
Since the terms occur freely, μ(�t) = η(�t), and therefore η(�t) ∈ I+(P, w0), so that
M+, w0 |�η P�t . Once again, we get the other direction by an analogous argument.

Suppose now M |�μ ∀xϕ. If η(x) /∈ M, then M+, w0 
|�η ¬Ax , and therefore
M+, w0 |�η ¬Ax → αT(ϕ). If on the other hand η(x) ∈ M, thenM+, w0 |�η ¬Ax .
Let μ′ be an assignment on M such that, for y = x or y = xi , μ′(y) = η(y), and
μ′(y) = μ(y) otherwise. Then, μ′ ∼M

x μ, so that M |�μ′ ϕ, and also, by induction
hypothesis, M+, w0 |�η αT(ϕ). We conclude M+, w0 |�η ∀x(¬Ax → αT(ϕ)).
Suppose now M 
|�μ ∀xϕ. Then, for some μ′ ∼M

x μ, M 
|�μ′ ϕ. Let η be an
assignment on M+ such that η(xi ) = μ′(xi ) for the free variables xi of ∀xϕ, and
η(x) = μ(x). Then, by induction hypothesis, M+, w0 
|�η αT(ϕ). Furthermore,
η(x) = μ(x) ∈ M, so that M+, w0 |�η ¬Ax . Therefore, M+, w0 
|�η ¬Ax →
αT(ϕ), and we conclude M+, w0 
|�η ∀x(¬Ax → αT(ϕ)). ��

Appendix B Proof of Theorem 3.7

Proof The proof is an induction on the complexity of ϕ. Skipping the trivial cases,
let ϕ:: = ∀xψ and M |� ∀xψ . By the definition of validity of open formulas, that
is the case iff M |� ψ , which by induction hypothesis, means M+ |� αT(ψ). From
that, one getsM+ |� ¬Ax → αT(ψ), and then the desired conclusion. For the other
direction, suppose M+ |� αT(∀xψ), which means M+ |� ∀x(¬Ax → αT(ψ)).
Let μ be an assignment on M. We get M+, w0 |�μ ¬Ax → αT(ψ). Since μ is an
equiadmissable assignment, μ(x) /∈ A, so M+, w0 |�μ αT(ψ). By Lemma 3.5, we
get M |�μ ψ , and by the arbitrariness of μ, we have M |� ∀xψ . ��

Appendix C Proof of Theorem 3.10

Proof Weprove it by an induction on the complexity of ϕ.We skip the cases of identity
(in which the all terms designate, since the functions are total in M) and the Boolean
operators. SupposeM |�η P�t . That is the case iff η(�t) ∈ I(P), which byDefinition 3.1
(c), is the case iff
η(�t) ∈ I+(P, w0) �M iff M+ �M, w0 |�η P�t . Suppose now M |�η ∀xϕ. Then,
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for any η′ ∼M
x η, M |�η′ ϕ. By induction hypothesis, M+ �M, w0 |�η′ ϕ. Notice

both M+ �M and M possess the same domain, and thus any η′′ ∼M+�M
x η is an

equiadmissible assignment. Therefore, η′ is also any x-variant of η inM+ �M, so that
M+ �M, w0 |�η ∀xϕ. The converse case goes by an analogous argument. ��

Appendix D Proof of Lemma 3.19

Proof Let 	 be such a set of formulas. Suppose L(	) ∪ {¬ϕ} is not T�q -consistent.
Then, either (i) L(	) is inconsistent, so that for some ψ1, ..., ψn, χ ∈ L(	),

�T�q
(ψ1 ∧ ... ∧ ψn) → ¬χ ,

or (ii) L(	) is consistent, so that for some γ1, ..., γm ∈ L(	),

�T�q
(γ1 ∧ ... ∧ γm) → ¬¬ϕ.

Suppose (i). Then, by NecT�q and K,

�T�a f �(ψ1 ∧ ... ∧ ψn) → �¬χ .

Since ψi ∈ L(	), �ψi ∈ 	, and since it is maximal consistent,
(�ψ1∧ ...∧�ψn) ∈ 	, which means�(ψ1∧ ...∧ψn) ∈ 	. That gives us�¬χ ∈ 	.
But χ ∈ L(	), so �χ ∈ 	. By an argument analogous to the last one, we have
�(χ ∧ ¬χ) ∈ 	. Now,

�T�q
(χ ∧ ¬χ) → ϕ, which by NecT�q and K, gives us

�T�a f �(χ ∧ ¬χ) → �ϕ.

However, since 	 is maximal and T�a f -consistent, that would mean �ϕ ∈ 	,
contrary to our assumption. Let us suppose now (ii). Then, we get

�T�q
(γ1 ∧ ... ∧ γm) → ϕ, and by NecT�q and K, we get

�T�a f �(γ1 ∧ ... ∧ γm) → �ϕ.

Since γi ∈ L(	), �γi ∈ 	, which means �(γ1 ∧ ... ∧ γm) ∈ 	. But 	 is max-
imal and T�a f -consistent, which would mean �ϕ ∈ 	, contrary to our supposition.
Therefore, L(	) ∪ {¬ϕ} is T�q -consistent. By Corollary 3.17, there is a maximal
T�q -consistent � with the ∀-property such that L(	) ∪ {¬ϕ} ⊆ �. ��

Appendix E Proof of Lemma 3.25

Proof First, notice for any t ∈ T ermL, if ξ(t) is defined – or, equivalently, ξ(t) ∈ M+
�

–, then ξ(t) = [t]� .36 Now, we proceed by an induction on the complexity of formulas

36 By the definition of the equivalence classes [·]� and the canonical assignment, the base cases are trivial.
If t is f (�s), let ξ( f (�s)) = I+( f )(ξ(�s)) ∈ M+

� . By Definition 3.21 (b), I+( f )(ξ(�s)) = [ f (�s)]� .
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of L�a f . Suppose M+
� ,w |�ξ P�t . That is the case iff [�t] ∈ I+(P, w) iff P�t ∈ w, by

Definition 3.21 (b).
If M+

� ,w |�ξ t1 = t2, then the ξ(ti ) are defined, so [t1]� = [t2]� , which means
t1 = t2 ∈ �, so ifw is�, we are done. Otherwise, since� is maximal T�a f -consistent,
by Theorem 3.23,�(t1 = t2) ∈ �, so by Definition 3.21 (c) and (d), t1 = t2 ∈ L(�) ⊆
w. Let now M+

� ,w 
|�ξ t1 = t2. Then, either the ξ(ti ) are defined or not. If they are,
then by the definition of [·]� , t1 = t2 /∈ �, so if w is �, we are done. Otherwise,
by the maximality of �, t1 
= t2 ∈ �, so by Theorem 3.23, �t1 
= t2 ∈ �, and
thus t1 
= t2 ∈ L(�) ⊆ w. If either of the ξ(ti ) are not defined, by Definition 3.21,
t1 = t2 /∈ �, so by maximality, t1 
= t2 ∈ �, and the previous argument follows.

If M+
� ,w |�ξ At , that is the case iff [t]� ∈ A, iff At ∈ �, by Definition 3.21 (e).

By Definition 3.21 (c) and (d), that is the case iff At ∈ w.
If M+

� ,w |�ξ St1t2, that is the case iff w ∈ S([t1]�, [t2]�) iff St1t2 ∈ w, by
Definition 3.21 (f).

If M+
� ,w |�ξ ¬ϕ, that is the case iff M+

� ,w 
|�ξ ϕ, which, by induction hypoth-
esis, happens iff ϕ /∈ w, iff ¬ϕ ∈ w, since w is maximal.

IfM+
� ,w |�ξ ϕ ∧ ψ , that is the case iffM+

� ,w |�ξ ϕ andM+
� ,w |�ξ ψ , which,

by induction hypothesis, happens iff ϕ ∈ w and ψ ∈ w iff ϕ ∧ ψ ∈ w, since w is
maximal and consistent.

If ∀xϕ ∈ w, since w is maximal and consistent (it does not matter if T�a f or T�q -

consistent), by UI f , ∃y(y = t) → ϕt
x ∈ w for any t ∈ T ermL. Let now η ∼M+

�
x ξ .

Then, by Definition 3.21 (a), for some s ∈ T ermL, η(x) = [s]� = ξ(s). By the
maximal consistency ofw,ϕs

x ∈ w, so by induction hypothesis, we getM+
� ,w |�ξ ϕs

x .
By Corollary 3.24, that means M+

� ,w |�η ϕ. By the arbitrariness of η, we have
M+

� ,w |�ξ ∀xϕ. Now, suppose ∀xϕ /∈ w. Since w has the ∀-property, for some t ,
¬∀xϕ → (¬ϕt

x ∧ t = t). Sincew is maximal and consistent, we get¬ϕt
x ∧ t = t ∈ w.

By induction hypothesis, we haveM+
� ,w |�ξ ¬ϕt

x andM+
� ,w |�ξ t = t . Therefore,

for η ∼x ξ such that η(x) = ξ(t),M+
� ,w |�η ¬ϕ.37 We conclude M+

� ,w 
|�ξ ∀xϕ.
If now �ϕ ∈ w, consider some u ∈ R(w). Then, ϕ ∈ L(w), which means ϕ ∈ u,

by Definition 3.21 (d). By induction hypothesis, M+
� , u |�η ϕ. Since u is any such

relevant state, M+
� ,w |�ξ �ϕ. Suppose now �ϕ /∈ w. Since w is maximal and

consistent, ¬�ϕ ∈ w, which means ♦¬ϕ ∈ w. If w is �, by Lemma 3.19, there is
u ∈ R(�) and¬ϕ ∈ u. Otherwise, by Lemma 3.20, there is a u ∈ R(w) and¬ϕ ∈ u. In
either case, by induction hypothesis, M+

� , u |�ξ ¬ϕ, which means M+
� ,w 
|�ξ �ϕ.

��

Appendix F Proof of Lemma 3.26

Proof First, we note, for μ an assignment on M� , we have μM� (t) = μM+
� (t).38

Now, we show, by an induction on the complexity of formulas of L, that if �T ϕ,

37 Notice the modification in Definition 3.14 plays an important role here, as otherwise we could not
guarantee the existence of such x-variant assignment, for ξ(t) would not be defined.
38 To see that, we proceed by an induction on the complexity of terms, and skip the base cases, so consider
the case of f (�t). Then,μM� ( f (�t)) = I( f )(μM� (�t)) = I+( f )(μM� (�t)). Since, by induction hypothesis,
μM� (�t) = μ

M+
� (�t), we get I+( f )(μM� (�t)) = I+( f )(μM+

� (�t)) = μ
M+

� ( f (�t)).
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then M� |� ϕ. We skip the cases of the Boolean operators. Suppose �T t = s,
which means �T ∀�x(t = s), where �x are the free variables of t and s. Then, by The-

orem 3.13, �T�a f ∀�x(∧ ¬Axi → t = s). Since � is T�a f -consistent and maximal,
∀�x(∧ ¬Axi → t = s) ∈ �, and by Lemma 3.25,M+

� , � |�ξ ∀�x(∧¬Axi → t = s).
Let μ be any assignment on M� . Then, μ is an equiadmissible assignment (on
M+

� ). Let η be an assignment on M+
� such that, η(xi ) = μ(xi ), and η(y) = ξ(y)

for y 
= xi . Then, η ∼M+
�

�x ξ , so M+
� , � |�η

∧ ¬Axi → t = s, and since
xi are the free variables of that formula, M+

� , � |�μ

∧ ¬Axi → t = s, by
Theorem 3.6. Since μ is an equiadmissible assignment, μ(xi ) /∈ A, and therefore
M+

� , � |�μ t = s, so that μM+
� (t) = μM+

� (s). Here we recall our remark from the
beginning, which means we get μM� (t) = μM� (s), and therefore M� |�μ t = s.
Since μ is any assignment, we conclude M� |� t = s.

Suppose �T P�t , which means �T ∀�x P�t , for �x the free variables of �t . Then, by
Theorem 3.13, �T�a f ∀�x(∧ ¬Axi → P�t), so that ∀�x(∧¬Axi → P�t) ∈ �, and
thus by Lemma 3.25, M+

� , � |�ξ ∀�x(∧ ¬Axi → P�t). Once again, let μ be any
assignment on M� (so, an equiadmissible assignment), and consider η on M+

� such
that η(y) = μ(xi ) for y = xi for each xi in �x , and η(y) = ξ(y) otherwise. Then,
M+

� , � |�η

∧ ¬Axi → P�t , and since η(xi ) = μ(xi ) /∈ A, M+
� , � |�η P�t . By

Theorem 3.6, that means M+
� , � |�μ P�t , so that μM+

� (�t) ∈ I+(P, �). Since, for

the ti , μM+
� (ti ) = μM� (ti ) ∈ M� , that means μM+

� (�t) ∈ I+(P, �) �M�= I(P).
Therefore, M� |�μ P�t , so by the arbitrariness of μ, M� |� P�t .

At last, suppose �T ∀xϕ. By universal instantiation, �T ϕ, so by induction hypoth-
esis,M� |� ϕ, which is the case iffM� |� ∀xϕ. ��

Appendix G Proof of Theorem 4.6

Proof (Totality) Let M+ |� FI1,FI3 and I( f ) be a total function. We show, by an
induction on max{rA(o j )} j≤n , that if oi ∈ M+

Gr , then I+( f )(o1, ..., on) is defined.
The case in which that is 0 is straightforward, by assumption. Let it work then for
a max rank of m, and suppose max{rA(o j )} j≤n = m + 1. If oi ∈ M, then for any
w ∈ R(w0), rA(oi ) = rA(v(oi , w)) = 0 ≤ rA(ok), for any k. Otherwise, oi ∈ GrM+ ,
and thus by definition, rA(v(oi , w)) < rA(oi ) ≤ m + 1 for any w ∈ R(w0). Thus, by
induction hypothesis, we get I+( f )(v(o1, w), ..., v(o1, w)) is defined. Let η(xi ) = oi ,
and η(y) = I+( f )(v(o1, w), ..., v(o1, w)), so M+, w |�η f (v(x1), ..., v(xn)) = y.
By the arbitrariness of w, we get M+, w0 |�η � f (v(x1), ..., v(xn)) = y. From
FI3, that gives us M+, w0 |�η ∃y( f (x1, ..., xn) = y), and so, for some η′ ∼y η,
I+( f )(η(�x)) = I+( f )(o1, ..., on) = η′(y), and so that is defined. Let η′(y) = b
and w ∈ R(w0). By FI1, v(b, w) = I+( f )(v(o1, w), ..., v(on, w)). Once again, by
induction on max{rA(o j )} j≤n , we show v(b, w) ∈ M+

Gr . If that max rank is 0, then
oi ∈ M, and since I( f ) is a total function, we get I+( f )(v(o1, w), ..., v(o1, w)) =
I+( f )(o1, ..., on) = I( f )(o1, ..., on) ∈ M ⊆ M+

Gr .
39 Let it work for a max rank of m,

39 For then oi ∈ M, and thus v(oi , w) = oi for any w ∈ W.
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and suppose that max rank ism+1. As we have seen, rA(v(oi , w)) < rA(oi ) ≤ m+1,
so that by induction hypothesis, I+( f )(v(o1, w), ..., v(on, w)) = v(b, w) ∈ M+

Gr . We
conclude I+( f ) is a total function on M+

Gr .
(Commutativity) Let a1, a2 ∈ M+

Gr , such that I+( f )(a1, a2) is defined and b is its
output. By the validity of FI1, for any w ∈ R(w0),
I+( f )(v(a1, w), v(a2, w)) = v(b, w). For the sake of clarity, let v(ai , w) = oi
and v(b, w) = b′. By an induction on max{rA(o j )} j≤2, we show I+( f )(o1, o2)
= I+( f )(o2, o1). If that max rank is 0, then oi ∈ M, so since I( f ) is
commutative, we are done. Let it work for a max rank of m, and suppose
now max{rA(o j )} j≤2 = m + 1. By FI1, we have I+( f )(o1, o2) = b′ iff
for any u ∈ R(w0), I+( f )(v(o1, u), v(o2, u)) = v(b′, u). As per the last
paragraph, r(v(oi , u)) < r(oi ) ≤ m + 1, so that by induction hypothesis,
I+( f )(v(o1, u), v(o2, u)) = I+( f )(v(o2, u), v(o1, u)) = v(b′, u). Therefore, by FI1,
I+( f )(o2, o1) = I+( f )(v(a2, w), v(a1, w)) = b′ = v(b, w). By the arbitrariness of
w and FI1, we get I+( f )(a2, a1) = b = I+( f )(a1, a2).

(Injectivity) Let a1, a2 ∈ M+
Gr such that a1 
= a2. Then, by the validity

of IdA, v(a1, u) 
= v(a2, u) for some u ∈ R(w0). Let I+( f )(a1) be defined
and b1 be its output. By the validity of FI1, that is the case iff for any w ∈
R(w0), I+( f )(v(a1, w)) = v(b1, w). If I+( f )(a2) is not defined, we are done,
so suppose it is and its output is b2. That is the case iff for any w ∈ R(w0),
I+( f )(v(a2, w)) = v(b2, w). One more time, we proceed by an induction on
max{rA(v(a j , u)} j≤2 to show that means I+( f )(v(a1, u)) 
= I+( f )(v(a2, u)). If
that is 0, then v(ai , u) ∈ M, so since I( f ) is injective, we are done. Let it
work for a max rank of m, and suppose max{rA(v(a j , u)} j≤2 = m + 1. By
FI1, I+( f )(v(ai , u)) = v(bi , u) iff for any u′ ∈ R(w0), I+( f )(v(v(ai , u), u′)) =
v(v(bi , u), u′). Since rA(v(v(ai , u), u′)) < rA(v(ai , u)) ≤ m + 1, by induc-
tion hypothesis, I+( f )(v(v(a1, u), u′)) 
= I+( f )(v(v(a2, u), u′)), and therefore
v(v(b1, u), u′) 
= v(v(b2, u), u′). That means v(b1, u) 
= v(b2, u), and therefore
I+( f )(v(a1, u)) 
= I+( f )(v(a2, u)). Thus, b1 
= b2, and we conclude I+( f )(a1) 
=
I+( f )(a2). ��

Appendix H Proof of Theorem 4.13

Before we give the full proof, we need to show a few lemmas.

Lemma H.1 Let M+ |� IdA,CompA,FI1,FI2. Let also t↑�x
�y be the translation t↑ of

a term t with each yi replaced by xi not occurring previously, and η be an assignment
such that η(xi ) ∈ M+

Gr . If η(t↑�x
�y ) is defined, then η(t↑�x

�y ) ∈ M+
Gr .

Proof The argument for that is a simple induction on the complexity of t . If
t :: = y, then t↑xy is x , so by the assumption η(x) ∈ M+

Gr ; if t :: = cn↑, then
t↑ is cn+1↑ and η(t↑) = I+(cn+1↑) ∈ M+

Gr ; and if t :: = f (s1, ..., sn), then

t↑�x
�y = f (s↑

1 , ..., s↑
n )�x

�y = f (s↑�x
1�y , ..., s↑�x

n �y ). For a cleaner presentation, let us call

each s↑�x
n �y by ri . By induction hypothesis, η(ri ) ∈ M+

Gr . We proceed by an induc-
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tion on max{rA(η(ri ))}i≤n to show η(t↑�x
�y ) ∈ M+

Gr . If that max rank is 0, then

η(ri ) ∈ M, so by FI2, η(t↑�x
�y ) = I+( f )(η(r1), ..., η(rn)) = η(t↑�x

�y ) ∈ M ⊆ M+
Gr .

Supposing it works for a max rank of m, let it now be m + 1. By FI1, that is the
case iff I+( f )(v(η(rn), w), ..., v(η(rn), w)) = v(η(t↑�x

�y ), w) for any w ∈ R(w0).
As we have seen, rA(v(η(ri ), w)) < rA(η(ri )) ≤ m + 1, so by induction hypoth-
esis, v(η(t↑�x

�y ), w)) ∈ M+
Gr . By the arbitrariness of w, we conclude η(t↑�x

�y ) =
I+( f )(η(r1), ..., η(rn)) ∈ M+

Gr . ��
Lemma H.2 Let M+ |� IdA,CompA,FI1,FI2, w ∈ R(w0), and η be an assign-

ment such that η(t↑�x
�y ) is defined. If η(xi ) ∈ M+

Gr and v(η(xi ), w) = η(yi ), then

v(η(t↑�x
�y ), w) = η(t).

Proof We prove by an induction on the complexity of t . If t :: = y, the result
is straightforward. If t :: = cn↑, then (t)↑ = cn+1↑, so we have η(cn↑) =
I+(cn↑), and η(cn+1↑) = I+(cn+1↑), so by our definitin of cn+1↑ we are done.
If t :: = f (s1, ..., sn), suppose η(t↑�x

�y ) = η( f (s↑
1 , ..., s↑

n )�x
�y) is defined. Then,

each η(s↑�x
i �y ) must be defined. Since η(xi ) ∈ M+

Gr , by Lemma H.1, η(s↑�x
i �y ) ∈

M+
Gr , and so η(t↑�x

�y ) = I+( f ↑)(η(s↑�x
1�y ), ..., η(s↑�x

n �y )) ∈ M+
Gr . By FI2, for any

w ∈ R(w0), v(η(t↑�x
�y ), w) = I+( f )(v(η(s↑�x

1�y )), w), ..., v(η(s↑�x
n �y )), w)). By induction

hypothesis, v(η(s↑�x
i �y ), w) = η(si ), and so v(η(t↑�x

�y ), w) = I+( f )(η(s1), ..., η(sn))
= η(t). ��
Lemma H.3 Let M+ |� IdA,CompA,FI1,FI2, t be a term, and {xi } be its free
variables. If η(xi ) ∈ M+

Gr and η(t) is defined, then η(t) ∈ M+
Gr .

Proof Once again, by induction on t . The base cases are trivial, so suppose t :: =
f (s1, ..., sn). Then, η(t) = I+( f )(η(s1), ..., η(sn)). By induction hypothesis, η(si ) ∈
M+

Gr . We make an induction on max{rA(η(si ))}i≤n to show η(t) ∈ M+
Gr . If that is 0,

then η(si ) ∈ M, so by FI2, I+( f )(η(s1), ..., η(sn)) ∈ M ⊆ M+
Gr . Let it work for a rank

of m, and suppose that max rank is m + 1. By FI1, η(t) = I+( f )(η(s1), ..., η(sn)) iff
v(η(t), w) =
I+( f )(v(η(s1), w), ..., v(η(s1), w)) for any w ∈ R(w0). As we have argued before,
rA(v(η(si ), w) < rA(η(si )) ≤ m + 1, and therefore, by induction hypothesis,
v(η(t), w) = I+( f )(v(η(s1), w), ..., v(η(s1), w)) ∈ M+

Gr . By the arbitrariness of
w, η(t) ∈ M+

Gr . ��
Lemma H.4 LetM+ |� IdA,CompA,FI1,FI2,FI3, t ∈ T ermL, and η be an assign-
ment such that η(xi ) ∈ M+

Gr and v(η(xi ), w) = η(yi ). If for any w ∈ R(w0), η(t) is

defined, then η(t↑�x
�y ) is defined.

Proof By induction on the complexity of t . We skip the base cases, so sup-
pose t :: = f (s1, ..., sn). We have (i) η(t) = I+( f )(η(s1), ..., η(sn)), and so
the η(si ) are defined. By Lemma H.3, η(si ) ∈ M+

Gr , so by induction hypoth-

esis, the η(s↑�x
i �y ) are defined. By Lemma H.2, η(si ) = v(η(s↑�x

i �y ), w), so (i)
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means I+( f )(v(η(s↑�x
1�y ), w), ..., v(η(s↑�x

n �y ), w)) is always defined. By FI3, that means

I+( f )(η(s↑�x
1�y ), ..., η(s↑�x

n �y )) = η(t↑�x
�y ) is defined. ��

We are now ready to offer the proof of Theorem 4.13:

Proof By an induction on the complexity of formulas. Let
M+ �M+

Gr
, w0 |�η t1 = t2. We proceed by an induction on the complex-

ity of terms. First, let t1:: = y1, and suppose t2:: = cn↑. Then, we have
v(η(x1), w) = I+(cn↑), which by IdA means η(x1) = I+(cn+1↑). Therefore,
M+ �M+

Gr
, w0 |�η x1 = cn+1↑. If t2:: = x2, then v(η(x1), w) = v(η(x2), w),

so by IdA, M+ �M+
Gr

, w0 |�η x1 = x2. Let now t2:: = f (s1, ..., sn). Then, we

have v(η(x1), w) = I+( f )(η(s1), ..., η(sn)). Since this is defined, η(si ) ∈ M+
Gr ,

so by Lemma H.4, I+( f )(η(s↑�x
1�y ), ..., η(s↑�x

n �y )) = η(t↑�x
2�y ) is defined. By Lemma H.2,

v(η(t↑�x
2�y ), w) = I+( f )(η(s1), ..., η(sn)) = v(η(x1), w). By the arbitrariness ofw, and

the validity of IdA, that means η(x1) = η(t↑�x
2�y ). Thus, M+ �M+

Gr
, w0 |�η x1 = t↑�x

2�y .
The induction cases for t1 are analogous, so we conclude our induction on the com-
plexity of terms.

We skip the cases of negation and conjunction, so suppose now
M+ �M+

Gr
, w0 |�η ∀zψ . Then, for any η′ ∼z η, M+ �M+

Gr
, w0 |�η′ ψ . By induction

hypothesis, M+ �M+
Gr

, w0 |�η′ ψ
↑�x
�y , so by the arbitrariness of η′, M+ �M+

Gr
, w0 |�η

∀zψ↑�x
�y . ��

Appendix I Proof of Theorem 4.14

Proof We prove by induction on the complexity of �ϕ(�x, c). Let |�T t1 = t2. By
Theorem 3.7, we have η, M+, w0 |�η t1 = t2. We proceed by an induction on the
complexity of terms. Let t1:: = c, and suppose t2:: = c2. Then, we haveM+, w0 |�η

c = c2, which means I+(c) = I+(c2). By our definition of cn↑ and cn↑
2 , we may

see that is the case iff I+(cn↑) = I+(cn↑
2 ), and therefore M+, w0 |�η cn↑ = cn↑

2 .
Let now t2:: = f (s1, ..., sm). Then, we have M+, w0 |�η c = f (s1, ..., sm), so that

I+(c) = I+( f )(η(s1), ..., η(sm)). By LemmaH.2, v(I+( f )(η(sn↑
1 ), ..., η(sn↑

m )), w) =
I+( f )(η(s1), ..., η(sm)) = I+(cn↑) for any w ∈ R(w0). Thus, by the defini-
tion of cn↑ and the validity of IdA, I+(cn↑) = I+( f )(η(sn↑

1 ), ..., η(sn↑
m )), so that

M+, w0 |�η cn↑ = f (sn↑
1 , ..., sn↑

m ). The induction cases for t1 are analogous.
Skipping the cases of negation and conjunction, suppose now

|�T ∀yϕ(y, c). By Theorem 3.7, for any η,

(i)M+ �M+
Gr

, w0 |�η ∀y(¬Ay → ϕ(y, c)). (1)
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Let then M+ �M+
Gr

, w0 |�η As
nx . We show, by an induction on n, that

M+ �M+
Gr

, w0 |�η ϕn↑(x, cn↑).40 Let n = 1, w ∈ R(w0), and η′ ∼y η be

such that η′(y) = v(η(x), w). Then, η(y) /∈ A. Therefore, from (i), we have
M+ �M+

Gr
, w0 |�η′ ϕ(y, c). By the arbitrariness of w, and Theorem 4.13, we get

M+ �M+
Gr

, w0 |�η′ ϕ↑(x, c↑), which means M+ �M+
Gr

, w0 |�η ϕ↑(x, c↑), since

η′(x) = η(x). Let that work for n ≤ k. If M+ �M+
Gr

, w0 |�η As
k+1x , then by Lemma

4.7, rA(η(x)) = k + 1. Let once again w ∈ R(w0), and η′(y) = v(η(x), w). Then,
rA(η′(y)) = k, which means M+ �M+

Gr
, w0 |�η′ Ak y. By induction hypothesis, we

get M+ �M+
Gr

, w0 |�η ϕk↑(y, ck↑). By the arbitrariness of w and Theorem 4.13, we

getM+ �M+
Gr

, w0 |�η′ ϕk+1↑(x, ck+1↑). Since η′(x) = η(x), that is also the case for

η, and we conclude our induction on β. Therefore, M+ �M+
Gr

, w0 |�η ∀x(Anx →
ϕn↑(x, cn↑)). ��
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