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Abstract: Background: Healthcare systems represent complex organizations within which multiple
factors (physical environment, human factor, technological devices, quality of care) interconnect
to form a dense network whose imbalance is potentially able to compromise patient safety. In this
scenario, the need for hospitals to expand reactive and proactive clinical risk management programs
is easily understood, and artificial intelligence fits well in this context. This systematic review aims
to investigate the state of the art regarding the impact of AI on clinical risk management processes.
To simplify the analysis of the review outcomes and to motivate future standardized comparisons
with any subsequent studies, the findings of the present review will be grouped according to the
possibility of applying AI in the prevention of the different incident type groups as defined by the
ICPS. Materials and Methods: On 3 November 2023, a systematic review of the literature according
to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines
was carried out using the SCOPUS and Medline (via PubMed) databases. A total of 297 articles
were identified. After the selection process, 36 articles were included in the present systematic
review. Results and Discussion: The studies included in this review allowed for the identification of
three main “incident type” domains: clinical process, healthcare-associated infection, and medication.
Another relevant application of AI in clinical risk management concerns the topic of incident reporting.
Conclusions: This review highlighted that AI can be applied transversely in various clinical contexts
to enhance patient safety and facilitate the identification of errors. It appears to be a promising
tool to improve clinical risk management, although its use requires human supervision and cannot
completely replace human skills. To facilitate the analysis of the present review outcome and to enable
comparison with future systematic reviews, it was deemed useful to refer to a pre-existing taxonomy
for the identification of adverse events. However, the results of the present study highlighted the
usefulness of AI not only for risk prevention in clinical practice, but also in improving the use of
an essential risk identification tool, which is incident reporting. For this reason, the taxonomy of
the areas of application of AI to clinical risk processes should include an additional class relating
to risk identification and analysis tools. For this purpose, it was considered convenient to use
ICPS classification.
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1. Introduction

Healthcare systems represent complex organizations [1] within which multiple inter-
connected factors (physical environment, human factors, technological devices, quality of
care) form a dense network whose imbalance is potentially able to compromise patient
safety [2]. The latter, defined as “the absence of preventable harm to a patient and reduction
of risk of unnecessary harm associated with healthcare to an acceptable minimum” [3], is a
fundamental principle of healthcare and is part of the patient’s rights. According to the
World Health Organization (WHO), there is a one in a million chance of aviation accidents,
while the possibility of harming a patient in the Clinical process is one in three hundred [3].
As specified by the Global Patient Safety Action plan 2021–2030, patient safety incidents
are a growing problem and one of the major causes of death and disability worldwide [4].
In this scenario, the need for hospitals to expand clinical governance programs is easily
understood. Clinical governance is defined as the system through which healthcare orga-
nizations improve the quality of care and guarantee high standards of care, striving for
excellence [5].

One of the main pillars of this healthcare quality system is clinical risk management,
which refers to the set of proactive and reactive clinical tools, procedures, and processes
used to detect, monitor, reduce, and prevent potential risks and errors in clinical practice to
safeguard patient safety [6]. Risk assessment instruments include incident reporting [7],
reviews of medical records, safety walk-arounds, administrative data obtained from hos-
pital discharge forms, patient complaints, and information derived from claims litigation.
These methods allow for the identification of potential or actual problems that may cause or
have caused an adverse event for the patient or healthcare workers. Risk can be managed
by using several approaches, including the FMEA and the FMECA [8,9], morbidity and
mortality review, clinical auditing [10], significant event auditing, the London Protocol, the
SHELL model, and root cause analysis [11]. The information collected after identifying and
analyzing the biases present in the clinical care process is preparatory to the introduction
of future risk prevention strategies, aimed at improving the quality of care. This objective
is achieved through the introduction or implementation of procedures and protocols, by
ensuring continuous training for healthcare workers and introducing new technologies [12].

Nowadays, the introduction and development of new technologies in the healthcare
sector is going to transform medical service and offer the opportunity to promote harm
minimization. Artificial intelligence (AI), the application of which has grown exponentially
in various sectors in recent times, fits well in this context [13].

AI, coined in 1956 [14], is a modern informatics technology that simulates human
behavior and makes devices efficient for achieving tasks that usually require skilled human
intelligence. It is used in different fields and over the past few years, AI application in
medicine has been growing [15]. AI encompasses several domains, such as machine learn-
ing (ML), which relies on different algorithms to learn and improve from experience without
being programmed [16]; deep learning (DL), based on artificial neural networks [17]; or
speech recognition, that is, the ability of a machine to convert a speech signal into a sequence
of words, creating an interface between humans and technology [18]. AI can enhance medi-
cal achievements using automated clinical decision support (CDS), which assists health
workers in making complex decisions in clinical practice by combining relevant patient
information [19]. This application is facilitated by increasing diffusion of electronic medical
record (EMR) and computerized provider order entry (CPOE) systems [20]. Moreover,
natural language processing (NLP) is a technique able to convert unstructured text (e.g.,
medical records) into datasets easily analyzable by ML models [21]. Lastly, AI supports
Internet of medical things (IoMT) technologies, which are bio-analytical tools capable of
collecting, analyzing, and transmitting health data to increase the efficiency of human
care [22].

Previous studies have reported that AI can improve the quality of healthcare [23],
although its application still has numerous limitations [24].
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This systematic review aims to investigate the state of the art regarding the impact
of AI on clinical risk management processes. The International Classification for Patient
Safety (ICPS), developed by the WHO, provides a taxonomy for the types of healthcare
incidents that can occur, grouping them according to common characteristics, and facilitat-
ing benchmarks between results deriving from multiple sources, both at a national and an
international level [25]. To simplify the analysis of the review outcomes and to motivate
future standardized comparisons with any subsequent studies, the findings of the present
review will be grouped according to the possibility of applying AI in the prevention of the
different incident type groups as defined by the ICPS.

2. Materials and Methods

On 3 November 2023, a systematic review of the literature according to the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines [26] was
carried out using the SCOPUS and Medline (via PubMed) databases, using the following
search strings: (artificial intelligence OR AI) AND (patient safety); (artificial intelligence
OR AI) AND (risk management).

2.1. Inclusion and Exclusion Criteria

The inclusion criteria were as follows: case report; original article; short survey; article
in English; human study; medical and nursing field; full text available; publication date
between 1 January 2013 and 3 November 2023. A ten-year interval research was chosen to
focus the review on the most recent studies.

The exclusion criteria were as follows: articles not in English; abstract; editorial;
review; erratum; book chapter; note; conference paper. All articles focused on other topics
were excluded.

2.2. Quality Assessment and Critical Appraisal

M.F. and G.B. independently evaluated the entire texts of the articles. The articles on
which there was a disagreement were discussed with the senior investigator, R.L.R., for the
final decision.

2.3. Risk of Bias

The main risk was linked to the keywords selected for the search strings. Therefore, the
Kappa interobserver variability coefficient showed “almost perfect agreement” (0.80) [27].

2.4. Characteristics of Eligible Studies

A total of 297 articles were identified; 25 duplicate articles were removed, and 21 arti-
cles did not meet the inclusion criteria. After the selection process, 36 articles were included
in the present systematic review.

3. Results and Discussion

Of the 297 articles found, 36 met the inclusion criteria (Figure 1).
The main features of each article included are summarized in Table 1.

Table 1. Main results of the systematic review.

Reference Aim of the Study Findings Safety Domain

Drozdov et al. [28]

To develop a deep learning
model for detection of

nasogastric tube malposition
on chest radiographs

The developed deep learning tool for
detection of Naso Gastric Tube (NGT)

misplacement on chest radiographs may
lead to more rapid clinical image reviews,
reducing interpretation time per image

Clinical process



Healthcare 2024, 12, 549 4 of 15

Table 1. Cont.

Reference Aim of the Study Findings Safety Domain

Bowness et al. [29]

To evaluate the use of an
assistive AI device to facilitate

image acquisition for
regional anesthesia

Use of an AI assistive ultrasound device
was associated with improved
ultrasound image acquisition

and interpretation

Clinical process

Hameed et al. [30]

To evaluate the value of AI
model which identifies safe

and dangerous zones of
dissection during laparoscopic

cholecystectomy

AI is a useful tool for providing support
and feedback to surgeons Clinical process

Datar et al. [31]

To evaluate the
decision-making impact of an
artificial intelligence-enabled

prognostic test in the
management of diabetic

kidney disease

The test has greater relative importance
to primary care physicians (PCPs) than
albuminuria and estimated glomerular

filtration rate (eGFR) do in making
treatment decisions

Clinical process

Scholz et al. [32]

To analyze the potential
impact an automatic speech

recognition (ASR) could have
on stroke recognition at

emergency medical services

An ASR can potentially improve stroke
recognition by Emergency Medical

Dispatchers (EMDs) and subsequent
stroke treatment

Clinical process

Torrente et al. [33]

To present an AI-based
solution tool for cancer

patients’ data analysis and
improve their management

The platform can provide real-time
feedback by assessing risk of relapse,
performing a stratification of patients,
and predicting response to a certain

treatment or utility of follow-up tests

Clinical process

Scala et al. [34]

To evaluate use of different
artificial intelligence models

to predict surgical site
infections according to

different risk factors

The K-nearest neighbors algorithm better
handled the imbalanced dataset

observing the highest accuracy value

Healthcare-associated
infection

Brown et al. [35]

To use the electronic
prescribing system to identify
unintentional prescription of

low molecular weight
heparins (LMWHs) to patients

prescribed direct-acting
anticoagulants (DOACs).

The anticoagulant alert prevented
duplicate anticoagulant prescription Medication

Festor et al. [36]

To evaluate the safety of
AI-based clinical decision

support systems in
sepsis treatment

AI consistently leads to a lower number
of unsafe decisions in different

clinical scenarios
Clinical process

Levivien et al. [37]

To attest to whether
prescriptions with low risk of
drug-related problems (DRPs)

ruled out by a digital tool
using machine learning with
AI in everyday practice were
effectively free of any DRPs

with potentially severe
clinical impact

This hybrid decision support tool was
shown to be accurate in detecting DRPs

in daily practice
Medication
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Table 1. Cont.

Reference Aim of the Study Findings Safety Domain

Wang et al. (1) [38]

To evaluate text classification
using binary classifier

ensembles to automate the
identification of patient safety

incident reports by type
and severity

Binary classifier ensembles appear to be a
feasible method for identifying incidents
by type and severity level. Automated

identification should enable safety
problems to be detected and addressed in

a more timely manner

Incident reporting
systems

Evans et al. [39]

To test the capability of
autonomous classifying of

free text within patient safety
incident reports to determine
incident type and the severity

of harm outcome

Supervised machine learning can be used
to classify patient safety incident

report categories

Incident reporting
systems

Wang et al. (2) [40]

To evaluate the feasibility of a
convolutional neural network
(CNN) with word embedding

to identify the type and
severity of patient safety

incident reports

CNN has potential to be applied in a
real-world setting as a first step for group

incidents when human resources
are lacking

Incident reporting
systems

Ozonoff et al. [41]

To describe and evaluate an
approach to surveillance of
safety events captured in
electronic data sources,

including structured data
fields within the EMR, and

unstructured data, including
clinical notes

When provided a high-quality training
set, the Support Vecture Tracking (SVM)

model could classify unstructured
free-text notes with reasonably high

sensitivity and specificity. This is
important to reduce the necessary human

review that follows classification

Incident reporting
systems

Wang et al. (3) [42]

To evaluate the feasibility of
using Unified Medical

Language System (UMLS)
semantic features for

automated identification of
reports about patient safety

incidents by type and severity

UMLS-based semantic classifiers were
effective in identifying incidents by type

and extreme-risk events

Incident reporting
systems

Fong et al. [43]

To identify health information
technology (HIT)-related
events from patient safety

event (PSE) report free-text
descriptions

The feature constraint model provides a
method to identify HIT-related patient
safety hazards using a method that is

applicable across healthcare systems with
variability in their PSE report structures

Incident reporting
systems

Lu et al. [44]

To evaluate various text
classification methods of

adverse nursing events based
on deep learning

The results show the exceptional
performance of the proposed mechanism

in terms of various evaluation metrics

Incident reporting
systems

King et al. [45]

To use machine learning (ML)
models to predict erroneous

medication orders and
identify their

contributing factors

The methodological approach of using
ML algorithms for predicting medication
errors has two potential applications: to

identify factors associated with order
entry errors that potentially represent

generalizable knowledge for mitigating
such errors and to guide patient safety

efforts that are targeted towards
medication orders within

high-risk contexts

Medication
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Table 1. Cont.

Reference Aim of the Study Findings Safety Domain

Fong et al. (2). [46]

To apply active learning
techniques to support

classification of patient safety
event reports as HIT-related

Active learning can be used to identify
HIT-related events from large datasets

where human annotation is a major
barrier to understanding trends and

patterns in the data

Incident reporting
systems

Barmaz et al. [47]

To propose a method to
compute the probability of AE

underreporting that could
complement a machine

learning mode developed to
enhance patients’ safety while
reducing the need for on-site
and manual clinical quality
assurance (QA) activities in

clinical trials

This approach reduces the need for
on-site audits, shifting focus from source
data verification to pre-identified, higher

risk areas; it will enhance further QA
activities for safety reporting from clinical

trials and generate quality evidence
during pre-approval inspections

Incident reporting
systems

Zhou et al. [48]

To propose an automated
pipeline to identify

medication event reports and
reduce the workload of
patient safety experts

The pipeline is expected to save time and
reduce the workload for clinicians to

analyze event reports and better discover
valuable information from the reports to
facilitate the development of strategies

for preventing medication events

Incident reporting
systems

Wong et al. [49]

To develop a medication
rights detection system using
natural language processing
and deep neural networks to
automate medication incident
identification using free-text

incident reports

This study developed a medication rights
detection system via DNN to automate
medication incident identification using

free-text incident reports and provide
reference guidelines for training DNN

models to classify patient safety incidents
The deep learning method shows

promise for the efficient exploration of
textual reports of medication incidents

Incident reporting
systems

Yang et al. [50]

To develop a deep learning
model to identify allergic
reactions in the free-text

narrative of hospital safety
reports and evaluate its

generalizability, efficiency,
productivity, and
interpretability

A deep learning model can accurately
and efficiently identify allergic reactions

using free-text narratives written by a
variety of health care professionals; this
model could be used to improve allergy
care, potentially enabling real-time event

surveillance and guidance for medical
errors and system improvement

Incident reporting
systems

Ting et al. [51]

To understand how
identification confusion of

look-alike images by human
occurs through the cognitive
counterpart of deep learning

solutions and to suggest
further solutions to

approach them

This model outperformed identification
using conventional computer vision

solutions and could assist pharmacists in
identifying drugs while preventing

medication errors caused by look-alike
blister packages

Medication

Tabaie et al. [52]

To explore the use of natural
language processing (NLP)

algorithms to categorize
contributing factors from

patient safety events (PSEs)

Applying the information-rich sentence
selection algorithm boosted contributing

factor categorization performance

Incident reporting
systems
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Table 1. Cont.

Reference Aim of the Study Findings Safety Domain

Zhao et al. [53]

To explore ways of using
structured electronic health

record data that can be
exploited to detect a wide

range of adverse drug events
(ADEs), which could be

adopted in a general decision
support system that alerts for

potential ADEs

Machine learning can be applied to
electronic health records for the purpose

of detecting adverse drug events and
proposed solutions

Medication

Corny et al. [54]

To test the accuracy of a
hybrid clinical decision

support system in prioritizing
prescription checks to

improve patient safety and
clinical outcomes by reducing
the risk of prescribing errors

This novel hybrid decision support
system improved the accuracy and

reliability of prescription checks in a
hospital setting

Medication

Lee et al. [55]

To propose a fully automated
deep learning system with a
cascading segmentation AI
system containing two fully

convolutional neural
networks for detecting a

peripherally inserted central
catheter (PICC) line and its

tip location

This system could help speed
confirmation of PICC position and

further be generalized to include other
types of vascular access and therapeutic

support devices

Clinical process

Li et al. [56]

To acquire a comprehensive
structured and coded

knowledge base of indications
for medications, and to
develop methods that

determine the reasons for
medication uses in the

Electronic Health Record
(EHR) using the
knowledge base

This pilot study demonstrated that
linking external drug indication

knowledge to the EHR for determining
the reasons for medication use

was promising

Medication

You et al. [57]

To propose a novel two-stage
induced deep learning

(TSIDL) method to classify
diverse packaging of drugs
efficiently and accurately

The proposed TSIDL method
significantly improves the performance

of classifying visually similar drugs with
diverse packaging types

Medication

De Bie et al. [58]
To compare paper checklists

(control) with a dynamic
(digital) clinical checklists

A digital checklist improved compliance
with best clinical practice compared with

a paper checklist during
ward rounds in a mixed ICU

Clinical process

Segal et al. [59]

To evaluate the accuracy,
validity, and clinical

usefulness of medication error
alerts generated by a novel

system using outlier detection
screening algorithms

A clinical decision support system that
used a probabilistic, machine learning
approach based on statistically derived

outliers to detect medication errors
generated clinically useful alerts The
system had high accuracy, low alert

burden and low false-positive rate, and
led to changes in subsequent orders

Medication
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Table 1. Cont.

Reference Aim of the Study Findings Safety Domain

Zhu et al. [60]

To understand the
generalizability of a machine
learning automated surgical
site infection (SSI) detection

algorithms

SSI detection machine learning
algorithms developed at 1 site were
generalizable to another institution

Healthcare-associated
infection

Lind et al. [61]

To develop a full risk factor
(demographic, transplant,

clinical, and laboratory
factors) and clinical

factor-specific automated
bacterial sepsis decision

support tool for recipients of
allogeneic hematopoietic cell

transplants with potential
bloodstream infections

Compared with existing tools and a
clinical factor-specific tool, the full
decision support tool had superior

prognostic accuracy for the primary (high
sepsis risk bacteremia) and secondary

(short-term mortality) outcomes in
inpatient and outpatient settings

Healthcare-associated
infection
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3.1. Patient Safety Domains

In January 2009, the World Health Organization published a technical report providing
the International Classification for Patient Safety (ICPS), a conceptual framework set out
to allow for the codification of patient safety issues [62]. Specifically, “incident type” is
one of the ten level classes comprising the framework, useful for categorizing patient
safety incidents (clinical process, documentation, healthcare-associated infection, medica-
tion, blood, nutrition, oxygen, medical device, behavior, patient accidents, infrastructure,
resources) [62].

Based on the aforementioned classification, results were grouped into ICPS patient
safety domains to facilitate analysis from a risk management perspective. The studies
included in this review allowed for the identification of three main domains: clinical
process, healthcare-associated infection, and medication. Furthermore, the topic of inci-
dent reporting was discussed in an additional paragraph, since thirteen studies focus on
this issue.

3.1.1. Clinical Process

In recent times, AI has become increasingly prominent in the healthcare field, mainly
in diagnosing, managing, treating, and screening pathologies [63–66]. Consequently, it is
intuitive that the use of AI, in a clinical risk management perspective, concerns mainly
these aspects of the Clinical process. By applying the ICPS classification, the use of AI in
studies aimed at preventing the misinterpretation of radiographic investigations [28,29,56]
or the operating field [30], translates into the potential advantage of avoiding inadequate
treatments and procedures other than incorrect interventions.

Automated voice recognition software [32] and data analysis [33] have proven valuable
in recognizing pathologies such as stroke and cancer, facilitating early detection and
avoiding a delay in treatment. CDS systems [31,36] or intelligent checklists [59] can avoid
harm to patients deriving from inadequate treatment or non-conformity to guidelines and
good clinical practices.

3.1.2. Healthcare-Associated Infections

Healthcare-associated infections (HCAIs) represent a major public health problem,
with significant impacts on patients [67]. According to the Agency for Healthcare Research
and Quality, HCAIs, and in particular sepsis, represent one of the ten leading causes of death
in the United States [68]. Hence, as mortality in septic patients increases proportionally
with the delay of antibiotic treatment, early prediction is crucial for timely interventions.

Machine learning algorithms applied to datasets can map several variables to predict
the risk of Surgical Site Infections and sepsis [34,62] that could be undetected by healthcare
workers, leading to a considerable reduction of morbidity and mortality-related infections.
However, if the ML system is applied on a different dataset from the one on which it is
deployed, the so-called dataset shift can occur, leading to the AI’s ineffective performance.
For this reason, a clinician’s supervision is always necessary to evaluate any discrepancy
between the clinical evaluation and the AI prediction or external validation to ascertain the
general applicability of the ML system [61].

3.1.3. Medication

An adverse drug event (ADE) consists of a medical therapy error that causes harm to
the patient. It is estimated that this type of adverse event affects approximately 1 out of
every 30 patients in health care [69].

Medication errors are due to different factors, including the human factor [70]. A very
common error in clinical practice related to the human factor is prescription error [71].
One of the best-known human factor-related prescription error examples is that of look-
alike or sound-alike (LASA) drugs, in which the error occurs due to orthographic or
phonetic similarity or packaging between drugs [72,73]. AI could be useful in clinical
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practice to prevent so-called “look-alike” errors due to similar packaging between different
medications by applying deep learning to drug images [52,58].

Furthermore, the error due to the simultaneous prescription of drugs that have the
same effect can be avoided through the use of CDS systems which generate an alarm
capable of alerting the healthcare professional [35]. However, these systems require high
accuracy and a low number of alerts burns and false positives to avoid generating further
stress in the healthcare worker, which would contribute to fueling the risk of errors related
to the human factor [60].

Several studies have demonstrated that over half of ADEs occur during drug order-
ing [74]. To promote the best pharmaceutical care, it is essential to carry out a patient’s
medication review, which is a critical evaluation of the drugs assumed to evaluate potential
interactions and consequent adverse reactions. However, this part of clinical practice is
often not exhaustive and takes a long time [75]. Machine learning combined with CDS
systems or applied to data extracted from electronic health records are able to support phar-
macovigilance activities and appears to be safe in performing medication reviews [37,54,55].
In addition, natural language processing linked to clinical notes can determine the reason
for the pharmaceutical prescription to verify its appropriateness [57].

Computerized provider order entry (CPOE) systems reduce the risk of misinterpreta-
tion of the pharmacological order, as the integration of these systems with electronic health
records promotes coordination of drug ordering, and cooperation between healthcare pro-
fessionals allows for contextual collaboration between healthcare staff [74–76]. On the other
hand, the interaction of the healthcare worker with the CPOE has proven to be a source
of error [77,78], potentially hesitating in an ADE. In this regard, the prevention of these
adverse events can be promoted through the use of machine learning systems capable of
identifying the factors predisposing to medication ordering errors [46].

3.1.4. Incident Reporting Systems

In healthcare facilities, incident reporting systems are essential for managing clinical
risk by notifying providers of adverse events [79]. It consists of reporting adverse events,
near misses, risks, and potentially unsafe conditions to healthcare professionals [80], in-
cluding falls, HCAIs, transfusion [81], and patients’ and operators’ aggressions [82]. By
using databases, healthcare facilities can identify, map, and analyze adverse events that
occur to prevent them from occurring again. One of the limitations of this method concerns
the inexperience of the different categories of healthcare professionals who carry out the
reporting [83]. It has been noted in several studies that an absence of codified terminology
is one of the main obstacles [84,85], resulting in an under-analysis of the event and, conse-
quently, an inability to learn from it. Due to the high volume of data collected by the IT
systems responsible for these purposes, using free text for reporting these events reduces its
effectiveness due to the difficulty in aggregating the data [86]. Of the 36 articles included in
this systematic review, 13 [38–44,47–51,53] investigate the applications of AI to improve the
efficiency of incident reporting systems. The studies predominantly focus their attention on
the possibility of standardizing events according to their type and severity. Furthermore,
machine learning systems can evaluate the reporting rates of adverse events and estimate
the risk of under-reporting [48] or to analyze contributing factors that predispose to their
genesis [53].

The use of AI in this regard has a dual purpose. On the one hand, it reduces the
workload of human work risk management staff, allowing them to dedicate themselves to
other activities to implement patient safety [47,87]. On the other hand, the conversion of
unstructured data into structured information has proven effective in identifying situations
that are potentially fatal or capable of causing serious harm [51], prioritizing adverse events
with significant consequences for patients [40]. The potential exclusive application of AI in
real-world settings requires further studies, since a part of a reported event can be related
to more than one type of accident [38]. In addition, the use of abbreviations or acronyms
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requires manual review [43,49]. At present, AI systems are not able to perfectly replace
manual review [39], and the machine can only act as a support to risk management experts.

4. Conclusions

This review highlighted that AI can be applied transversely in various clinical contexts
to enhance patient safety and facilitate the identification of errors. To facilitate the analysis of
the present review outcome and to enable comparison with future systematic reviews, it was
deemed useful to refer to a pre-existing taxonomy for the identification of adverse events.

For this purpose, it was considered convenient to use ICPS classification, which
includes ten classes of “incident type”. The main fields of application, according to the cod-
ification mentioned above, concern the prevention of errors concerning clinical processes,
medication errors and the development of HAIs.

Additionally, the results of the present study highlighted the usefulness of AI not only
for risk prevention in clinical practice, but also in improving the use of an essential risk
identification tool, which is incident reporting. It follows that ICPS classification could be
limiting for the analysis of the application of AI to clinical risk management systems, as it
relates to the clinical aspects of healthcare risk. For this reason, the taxonomy of the areas
of application of AI to clinical risk processes should include an additional class relating to
risk identification and analysis tools.

The advantages of using AI in risk management systems translate into a reduction in
the workload of the risk manager, who can devote more time to developing procedures and
paths to prevent mistakes, and the healthcare staff, who can spend more time with patients.
However, aside from diminishing existing risks, as in the case of dataset shift, there is
also the possibility of introducing new risks, such as false positive alerts that increase
cognitive stress, thereby enabling human error. Furthermore, its use necessarily requires
human supervision. To conclude, AI appears to be a promising tool to improve clinical risk
management, although its use requires human supervision and cannot completely replace
human skills.
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