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Abstract: We consider a second-order equation with a linear “elastic” part and a nonlinear damping term
depending on a power of the norm of the velocity. We investigate the asymptotic behavior of solutions, after
rescaling them suitably in order to take into account the decay rate and bound their energy away from zero.
We find a rather unexpected dichotomy phenomenon. Solutions with finitely many Fourier components are
asymptotic to solutions of the linearized equation without damping and exhibit some sort of equipartition
of the total energy among the components. Solutions with infinitely many Fourier components tend to zero
weakly but not strongly. We show also that the limit of the energy of the solutions depends only on the number
of their Fourier components. The proof of our results is inspired by the analysis of a simplified model, which
we devise through an averaging procedure, and whose solutions exhibit the same asymptotic properties as
the solutions to the original equation.
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1 Introduction

Let H be a real Hilbert space, in which |x| denotes the norm of an element x € H, and (x, y) denotes the
scalar product of two elements x and y. Let A be a self-adjoint operator on H with dense domain D(A).
We assume that H admits a countable orthonormal basis made by eigenvectors of A corresponding to an
increasing sequence of positive eigenvalues )li.

We consider the second-order evolution equation

u'(t) + U (@O (t) + Au(t) = 0, (1.1)

with initial conditions
u(0) = up € D(AY?), u'(0)=u, € H. (1.2)

All nonzero solutions to (1.1) decay to zero in the energy space D(A'/?) x H, with a decay rate propor-
tional to t~1/2 (see Proposition 3.1). This suggests the introduction and the investigation of the rescaled
variable v(t) := V- u(t).

The special structure of the damping term guarantees that for any linear subspace F ¢ D(A) such that
A(F) € F, the space F x F is positively invariant by the flow generated by (1.1). In particular, equation (1.1)
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possesses the so-called finite-dimensional modes, namely, solutions whose both components of the initial
state (ug, up) are finite combinations of the eigenvectors. Denoting by uy(t) and vi(t) the projections of u(t)
and v(t) on the k-th eigenspace, we shall call for simplicity the quantity

t(lug (01 + A lui(t)]?)
the “energy of the k-th Fourier component of v(t)” (standing for total energy) while
t(u' (6)1* + 1A u())?)

will be called the “energy of v(t)” (again meaning total energy). For t large, these quantities are easily seen to

be equivalent to |V} ()12 + AZ|vi(t)|? and V' (£)|? + |AY/2v(¢)|?, respectively. Our main results, formally stated

as Theorem 2.1 and Theorem 2.5, can be summed up as follows.

o Thelimit of the energy of v(t) depends only on the number of Fourier components of v(t) that are different
from 0. In particular, the limit of the energy can take only countably many values.

o Ifv(t) has only a finite number of Fourier components different from 0, then v(t) is asymptotic in a strong
sense to a suitable solution v, (t) to the nondissipative linear equation

v (t) + Av(t) = 0. (1.3)

Moreover, there is equipartition of the total energy in the limit, in the sense that all nonzero Fourier

components of v, (t) do have the same total energy.

o If v(t) has infinitely many components different from 0, then v(t) tends to 0 weakly in the energy space,
but not strongly. Roughly speaking, the energy of v(t) does not tend to O, but in the limit there is again
equipartition of the energy, now among infinitely many components, and this forces all components of
v(t) to vanish in the limit.

In other words, the Fourier components of rescaled solutions to (1.1) communicate to each other, and this
can result in some sort of energy transfer from lower to higher frequencies, longing for a uniform distribution
of the energy among components. In the case of an infinite number of non-trivial Fourier components, the
weak convergence to 0 implies non-compactness of the profile in the energy space. In particular, if A has
compact resolvent, whenever the initial state (uo, u1) belongs to D(A) x D(A/2) and has an infinite number
of elementary modes, the norm of (v(t), v'(t)) in D(A) x D(A'/?) is unbounded, a typical phenomenon usually
called weak turbulence, cf., e.g., [1, 6] for other examples.

Our abstract theory applies for example to wave equations with nonlinear nonlocal damping terms of the
form

¢
Uge(t, x) + < J uf(t, X) dx)ut(t, X) — Uxx(t,x) =0 (1.4)
0

in a bounded interval (0, ¢) of the real line with homogeneous Dirichlet boundary conditions. This is a toy
model of the wave equation with local nonlinear damping

Upe(t, X) + u?(t, X) —Uxx(t, x) =0 t>0, x € (0, ¢), (1.5)

which in turn is the prototype of all wave equations with nonlinear dissipation of order higher than one at
the origin. This more general problem was the motivation that led us to consider equations (1.4) and (1.1). It
is quite easy to prove that all solutions to (1.5) decay at least as t~/2. Actually, the more general problem

us(t, x) + g(ue(t, x)) — Au(t,x) =0

in any bounded domain with homogeneous Dirichlet boundary conditions and g non-decreasing has been
extensively studied under relevant assumptions on the behavior of g near the origin and some conditions on
the growth of g at infinity, cf., e.g., [2, 3, 8, 9], in which reasonable energy estimates of the same form as those
in the ODE case are obtained. However, the asymptotic behavior of solutions to the simple equation (1.5) is
still a widely open problem since, unlike the ODE case, the optimality of this decay rate in unknown: there
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are neither examples of solutions to (1.5) whose decay rate is proportional to 12

solutions that decay faster.

It is not clear whether our results shed some light on the local case or not. For sure, they confirm the
complexity of the problem. In the case of (1.5), there are no simple invariant subspaces, and the interplay
between components induced by the nonlinearity is more involved. Therefore, it is reasonable to guess that
at most the infinite-dimensional behavior of (1.4) extends to (1.5), and this behavior is characterized by lack
of an asymptotic profile and of strong convergence.

As a matter of fact, the problem of optimal decay rates is strongly related to regularity issues. It can be
easily shown that the solutions to (1.5) with initial data in the energy space remain in the same space for
all times, and their energy is bounded by the initial energy. But what about more regular solutions? Can one
bound higher order Sobolev norms of solutions in terms of the corresponding norms of initial data? This is
another open problem whose answer would imply partial results for decay rates, as explained in [5, 6], cf.
also [10] for a partial optimality result in the case of boundary damping. However, the energy traveling toward
higher frequencies might prevent the bounds on higher order norms from being true, or at least from being
easy to prove.

This paper is organized as follows. In Section 2 we state our main results. In Section 3 we prove the
basic energy estimate from above and from below for solution to (1.1), we introduce Fourier components,
and we interpret (1.1) as a system of infinitely many ordinary differential equations. In Section 4 we consider
a simplified system, obtained from the original one by averaging some oscillating terms. Then we analyze the
simplified system, and we discover that it is the gradient flow of a quadratically perturbed convex functional,
whose solutions exhibit most of the features of the full system we started with, including the existence of a
large class of solutions which die off weakly at infinity. In Section 5 we investigate the asymptotic behavior of
solutions to scalar differential equations and inequalities involving fast oscillating terms. Section 6 is devoted
to estimates on oscillating integrals. Finally, in Section 7 we put things together and we conclude the proof
of our main results.

, nor examples of nonzero

2 Statements

Let us consider equation (1.1) with initial data (1.2). If A is self-adjoint and nonnegative, it is quite standard
that the problem admits a unique weak global solution

u € C([0, +00), H) N C°([0, +00), D(AY?)).

Moreover, the classical energy
E(t) = ' (t)” + 1AM ?u(b)? (2.1)

is of class C1, and its time-derivative satisfies
E'(t) = -2lu'(t)|* forallt > 0. (2.2)
The following is the main result of this paper.

Theorem 2.1. Let H be a Hilbert space, and let A be a linear operator on H with dense domain D(A). Let us
assume that there exist a countable orthonormal basis {ex} of H and an increasing sequence {Ax} of positive
real numbers such that

Aey = Ale forallk € N.

Let u(t) be the solution to problem (1.1)—(1.2), let {uox} and {u1x} denote the components of uo and uy with
respect to the orthonormal basis, and let {uy(t)} denote the corresponding components of u(t). Let us consider
the set

J:={keN:ul +uj +0}. (2.3)

Then the asymptotic behavior of u(t) and its energy depends on ] as follows.
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(1) (Trivial solution) IfJ = @, then u(t) = O for every t > 0 and, in particular,
lim t(|lu'(8)]> +AY?u(t)|?) = 0.
t—+o00

(2) (Finite-dimensional modes) If ] is a finite set with j elements, then uy(t) = O forevery t > 0 and every k ¢ J.
In addition, for every k € ], there exists a real number 0y, such that

2 cos(Ayt + Gk,oo)) _o
V2j+ 1 Ak ’

-sin(Agt + Gk,m)> =0 (2.5)
1

lim (x/E- uk(t)

t—+00

(2.4)

. !
tEE—%o( \/; uk(t) *

and, in particular,
45
2j+1°

lim t(ju' ()1 + 1AM u(t))?) =
t—+00
(3) (Infinite-dimensional modes) If ] is infinite, then
lim t(lup () + AZlur(®)|*) =0 forallk € N,
t—+00

but
l}m inf t(Ju' (62 + |AY2u(®))?) > 0, (2.6)
—+00

and hence V't - (u(t), u'(t)) converges to (0, 0) weakly but not strongly.
Let us comment on some aspects of Theorem 2.1 above.

Remark 2.2. The result holds true also when H is a finite-dimensional Hilbert space, but in this case only the
first two options apply.

Remark 2.3. In the case of finite-dimensional modes, let us set

2 Z cos(Axt + Ok, 00)

V2j+1 & Ak

It can be verified that v, (t) is a solution to the linear homogeneous equation without damping (1.3), and
that (2.4) and (2.5) are equivalent to saying that v.,(t) is the asymptotic profile of V¢ - u(t), in the sense that

Veolt) := ey forallt>o0.

Jim (IVE-u'(6) = vig (O + [VE- u(t) - veo (1)) = 0.

Remark 2.4. The assumptions of Theorem 2.1 imply, in particular, that all eigenvalues are simple. Things
become more complex if multiplicities are allowed. Let us consider the simplest case where H is a space of
dimension 2, and the operator A is the identity. In this case equation (1.1) reduces to a system of two ordinary

differential equations of the form
{u+(u2+v2)u+u=o,

v+ @ +v)v+v=0.

If (v(0), v'(0)) = c(u(0), u’(0)) for some constant c, then v(t) = cu(t) for every t > 0, hence there is no equipar-
tition of the energy in the limit.

In our second result we consider again the case where J is infinite, and we improve (2.6) under a uniform gap
condition on the eigenvalues (which is satisfied for our model problem (1.4)).

Theorem 2.5. Let H, A, Ak, u(t) and J be as in Theorem 2.1. Let us assume in addition that ] is infinite and

inf (Ag;1 — Ax) > 0. 2.7)
keN

Then it turns out that
lim t(ju'(6)% +|AY?u(t))?) = 2.
t—+00



906 —— M. Ghisi et al., Weakly turbulent profiles of solutions to some evolution equations DE GRUYTER

3 Basic energy estimates and reduction to ODEs

In this section we make the first steps toward the proof of Theorem 2.1. In particular, we prove a basic energy
estimate, and we reduce the problem to a system of countably many ordinary differential equations.

Proposition 3.1 (Basic energy estimate). Let H, A and u(t) be as in Theorem 2.1. Assume that (ug, u;) # (0, 0).
Then there exist two positive constants M, and M, such that

M M
L @)+ 1A P < =
1+t

Tii forallt > 0. (3.1)

Proof. Let us consider the classic energy (2.1). From (2.2) it follows that
E'(t) = 2|u'(t)|* = —2[E(t)]*> forallt > 0.

Integrating this differential inequality, we obtain the estimate from below in (3.1). Since E'(t) < 0 for every
t > 0, we deduce also that
E(t) < E(0) forallt>O0. (3.2)

Let us consider now the modified energy
Fe(t) = E(t) + 2eu(t), u' (0))E(t),
where ¢ is a positive parameter. We claim that there exists £y > 0 such that
%E(t) < F(t) < 2E(t) forallt>0,andall € € (0, g], (3.3)

and
Fl(t) < —€[E(t)]* forallt >0, andall € € (0, &]. (3.4)

If we prove these claims, then we set € = gg, and from (3.4) and the estimate from above in (3.3), we
deduce that e
Fl (< —ZO[Fgo(t)]z forall ¢ > 0.

An integration of this differential inequality gives that
F (t) < ka forallt >0
T 1t -

for a suitable constant ki, and hence the estimate from below in (3.3) implies that

2k

E(t) < 2F(t) <
() ol < 7

forallt >0,

which proves the estimate from above in (3.1).
So we only need to prove (3.3) and (3.4). The coerciveness of the operator A implies that

1
12¢u (&), u(t)| < W' OF + u@®)® < W' @O + A—zlAl/zu(t)Iz,
1
and hence, from (3.2), we obtain
[2¢u'(t), u(t))| < max{l, %}E(t) <k, foralltz>o0, (3.5)
1
for a suitable constant k, depending on the initial data. This guarantees that (3.3) holds true when ¢ is small
enough.
As for (3.4), after some computations, we obtain that it is equivalent to
2= 3e)u' (O + el AY2u(O" - 2¢O - 1A 2u(e)?
+ 6 (), u(t)y - [u' (O + 2e ' (6), u(t)) - W' (1)]* - |A>u(b)]* = 0. (3.6)
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Taking (3.5) into account, (3.6) holds true if we show that
(2 =3e=3ek) ' ()" + elAY?u(®)* - €2 + ko) |u' (B))? - [AY?u(t))? > 0.

The left-hand side is a quadratic form in the variables [u’(¢)|? and |AY/2u(¢t)|2, and it is nonnegative for all
values of the variables, provided that

4(2 -3¢ - 3¢eky)e > €22 + k)2,
which is clearly true when € is small enough. This completes the proof. O
Proposition 3.1 suggests that u(t) decays as t~1/2, and motivates the variable change

v(t) := Vt+1-u(t) forallt> 0.
The energy of v(t) is given by

lu(®)l?

! 1/2 2
ate D) T WO, um) +(E+ DIATUOL

V' (O + [AYV2v ()1 = (t+ DI () +

We claim that there exist constants M5 and M, such that
0<M; < V(@) +|AY?v(t))? <M, forallt > 0. (3.7)

The upper estimate being quite clear, we just prove the lower bound. To this end, we start by the simple
inequality

! 24 t+1 2,002
4(t+1)]|u(t)| + (O, u®) + —= 14 2ul.

2
V' (OF + A2V = (t+ DI () + [% ’

On the other hand,

AZ
! 2 1 2 !
(t+ D (O] + [—2 + 4(Hl)]lu(t)l +(u'(8), u(t))

is obviously greater than or equal to

(t+ D' @)1 + &Iu(t)lz + ' (t), u(t)).
4(t+1) ’

By decomposing this expression, we obtain the inequality

t+1 5 2A7+1 L ( 1 ); , 2A2 o
u ()] + u(t)]” + u (), u(t)) + (t+1)( 1 - u @) > —2—t+ D @),
2A§+1| | 4(t+1)| (OF + (), u(®) + (t+1) 2A§+1| ol ZA%+1( ' (t)]

and we end up with

(1 2A
VO + AV > min{ S, 2L+ D OF +142u(0)P),
21 +1
which proves the lower bound in (3.7) with
242
Ms = min{l, —1}M1.
27242 +1

Starting from (1.1), after some computations, we can verify that v(t) solves

V() + (V' ()2 - 1)% +Av(t) = g1(t)V(D) + g2V (D), (3.8)

where g7 : [0, +00) —» Rand g5 : [0, +00) — R are defined by

3 1 1IV@P 1o,V @) 1 |vo)? () = v, V') 1 lv(t)|?
W=7 a1

AU P20+ 02 2 (1P 8+

g1(t) =
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Due to (3.7), there exists a constant M5 such that

181(0)] +182(0)] < forall ¢ > 0. (3.9)

5
(t+1)2

In the sequel, we interpret g1 (t) and g, (t) as time-dependent coefficients satisfying this estimate, rather than
nonlinear terms.

Let now {vi(t)} denote the components of v(t) with respect to the orthonormal basis. Then (3.8) can be
rewritten as a system of countably many ordinary differential equations of the form

v’k’(t)+(2[v§<t)12— ) k()+/12vk(t) g1(tVk(D) + g2tV (1). (3.10)

i=0

Let us introduce polar coordinates r(t) and ¢ (t) in such a way that
1 .
Vi(t) = A—krk(t) cos Pi(t), vi(t) = ri(t) sin @(t).

In these new variables, every second-order equation in (3.10) is equivalent to a system of two first-order
equations of the form (for the sake of shortness we do not write explicitly the dependence of rx and ¢ on t)

( Z r? sin® ¢; — )M + Yk(6)r sin @k, (3.11)
_ S1n @y COS P
(p = Ak - ( IZ(:)r sin? @; — >t+—1 + Yi(t) cos @y, (3.12)

where

Vi(t) = Aig1(t) cos P(t) + g2(t) sin gy (t) forall t > 0.
k

In particular, since the eigenvalues are bounded from below, from (3.9) it follows that there exists a constant
Mg such that

forall t > 0,and all k € N. (3.13)

Mg
t) <
17301 t+ 1)
Finally, we perform one more variable change in order to get rid of (¢ + 1) in the denominators of equa-
tions (3.11)-(3.12). To this end, for every k € IN, we set

pr(t) :==ri(e" = 1),  Oi(t) := pi(e' - 1),

and we realize that in these new variables system (3.11)—(3.12) reads as

= _( z p?sin’ 0; - 1>pk sin? O + Ty x(t)pk» (3.14)
i=0
(o)
= Agef - ( Zp sin? 6; — ) sin 0y cos Ok + T2 k(t), (3.15)
i=0

where
T1i(t) == e'yr(e! — 1)sin Ok (t), T2 k(t) := e'yr(e’ - 1) cos O(t),

and so from (3.13) it follows, on replacing t by e — 1, that there exists a constant M7 such that
IT1x(O)] + |T2.x(t) < Mye™" forall t > 0,and all k € N. (3.16)

We observe that py can be factored out in the right-hand side of (3.14), and hence either pi(t) = O for
every t > 0, or pi(t) > O for every t > 0, where the second option applies if and only if k belongs to the set J
defined in (2.3). We observe also that the sequence py(t) is square-summable for every ¢ > 0, and the square
of its norm

R(t) = Y pi(t) = Y pi(®) (3.17)

k=0 keJ
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satisfies
R(t) = (V' (et - 1|2 + |4 2v(e! - 1)|?).

In particular, from (3.7), it follows that
0<Ms3<R(t)<M, forallt>0, (3.18)

for every nontrivial solution.

Finally, we observe that in the new variables, Theorems 2.1 and 2.5 have been reduced to proving the
following facts:
o (Finite-dimensional modes) If ] is a nonempty finite set, then, for every k € J, it turns out that

2
lim t) = s 3.19
Jim pi(t) T (3.19)

and there exists a real number 6 o, such that

Jim (0(6) + Axet) = Ox.o0- (3.20)
—+00

o (Infinite-dimensional modes) If J is infinite, then

lim py(t) =0 forallk e NN,
t—+00

and under the additional uniform gap assumption (2.7), it turns out that

lim R(t) = 2. (3.21)

t—+00

4 Heuristics

In this section we make some drastic simplifications in equations (3.14)—(3.15). These non-rigorous steps
lead to a simplified model, which is then analyzed rigorously in Theorem 4.1 below. The result is that solutions
to the simplified model exhibit all the features stated in Theorems 2.1 and 2.5 for solutions to the full system.
Since the derivation of the simplified model is not rigorous, we can not exploit Theorem 4.1 in the study of
(3.14)—(3.15). Nevertheless, the proof of Theorem 4.1 provides a short sketch without technicalities of the
ideas that are involved in the proof of the main results.

To begin with, in (3.14) and (3.15) we ignore the terms with I'y (t) and T'; x(t). Indeed, these terms are
integrable because of (3.16), and hence it is reasonable to expect that they have no influence on the asymp-
totic dynamics. Now let us consider (3.15), which seems to suggest that 0y (t) ~ —Age’. If this is true, then the
trigonometric terms in (3.14) oscillate very quickly, and in turn this suggests that some homogenization effect
takes place. Therefore, it seems reasonable to replace all those oscillating terms with their time-averages.

The time-averages can be easily computed to be

t
lim © I sin?(Ae®) ds = L foranas 0, (4.1)
t—+o00 t 2
0
: 1 102 S 102 S 1
lim = Jsm (Ae®) -sin“(ue®)ds = — forallA>pu >0, (4.2)
t—+oo t 4
0
1 : 3
lim — j sin*(Ae)ds = = forall A > 0. 4.3)
t—+oco t 8
0

A comparison of (4.1) and (4.2) reveals that the two oscillating functions in the integral (4.2) are in
some sense independent when A # y, while (4.3) shows that this independence fails when A = p. This lack of
independence plays a fundamental role in the sequel.
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After replacing all oscillating coefficients in (3.14) with their time-averages, we are left with the following
system of autonomous ordinary differential equations:

, 1 3, 1gw » 11, 18,
pi=pi(5-3P -7 2PE) =px 5 - gPE -7 2.Pi (4.4)
2 8Tk 4Ll 2 gk 4 a0
Quite magically, this system turns out to be the gradient flow of the functional
50)= 3 3 ot e 1o ¥ ot) + 55 Yok
45 16 k=0 32 k=0

where p belongs to the space of square-summable sequences of nonnegative real numbers £2. Since F(p) is
a continuous quadratic perturbation of a convex functional (the sum of the last two terms), its gradient flow
generates a semigroup in £2. Solutions are expected to be asymptotic to stationary points of F(p). In addition
to the trivial stationary point with all components equal to O, all remaining stationary points p are of the form

— ifke],
Pk i= 2j+1

0 ifke¢]

for some finite subset ] < N with j elements. Incidentally, it is not difficult to check that any such stationary
point is the minimum point of the restriction of F(p) to the subset

Wy :={p € €2 : px = O forevery k ¢ J}. (4.5)

Now we show that the asymptotic behavior of solutions to the averaged system (4.4) corresponds to the results
announced in our main theorems.

Theorem 4.1 (Asymptotics for solutions to the homogenized system). Let {px(t)} be a solution to system (4.4)
in ei, and let ] := {k € N : pi(0) > 0}. Then the asymptotic behavior of the solution depends on ] as follows.
(1) (Trivial null solution) If | = 0, then p(t) = O for every k € N and every t > O.

(2) (Finite-dimensional modes) If ] is a finite set with j elements, then py(t) = O forevery k ¢ J and every t > 0,

and
lim pk t) = —— ’Of allk € ). 4.6
t e ( ) \/2]’ +1 ( )

Inotherwords, in this case the solution leaves in the subspace Wy defined by (4.5), and tends to the minimum
point of the restriction of F(p) to W;.
(3) (Infinite-dimensional modes) If ] is infinite, then

tlim pr(t)=0 forallk e N,
—+00

but
. (o) )
Jm, >, pi(o =2 @)

and, in particular, the solution tends to O weakly but not strongly.

Proof. Firstofall, we observe that components with null initial datum remain null during the evolution, while
components with positive initial datum remain positive for all subsequent times.

Then we introduce the total energy R(t) of the solution, defined as in (3.17). Moreover, for every pair of
indices h and k in J, we consider the ratio

Qni®) = PO porang s o, (4.8)

Pr(t)

which is well defined because the denominator never vanishes.
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Simple calculations show that

R'(6)=R(O - 3RO - 7 ¥ pi0) forallt20, (4.9)
ke]

and
Qi () = %pi(t) - Qp (O - Qﬁ,k(t)) forallt > 0. (4.10)

Now we prove some basic estimates on the energy and the quotients, and then we distinguish the case
where all components tend to 0, and the case where at least one component does not tend to O.

Non-optimal energy estimates. We prove that

g < I}m inf R(t) < limsup R(t) < 2. (4.11)
—+00

t—+00

Indeed, plugging the trivial estimate

2
EDWACKIOWHC)

keJ keJ

into (4.9), we obtain that
1 2 1 2 ! 1 2
R(t) - ER (t) - ZR (t) <R'(t) < R(¢t) - ER (t) forallt>0.

Integrating the two differential inequalities, we deduce (4.11).
Uniform boundedness of quotients. We prove that for every h € J, there exists a constant Dy such that

Qni(t) <Dy forallkeJ,andallt > 0. (4.12)
We point out that Dy, is independent of k, and actually it can be defined as

Dy, := max{1, max{Qp,(0) : k € J}}. (4.13)

Therefore, it is enough to remark that the solutions to (4.10) are decreasing as long as they are greater than 1,
and observe that the inner maximum in (4.13) is well defined because for every fixed h € J, it turns out that
Qn,k(0) — 0as k — +oo (because px(0) — 0 as k — +00).

The case where all components vanish in the limit. Let us assume that

tlim pr(t)=0 forallke]. (4.14)
—+00

In this case, we prove that J is infinite and (4.7) holds true.

Let us assume that J is finite. Then from (4.14) it follows that R(t) — 0 as t — +o0o0, which contradicts the
estimate from below in (4.11). So J is infinite.

In order to prove (4.7), let us fix any index hg € J. From (4.12), we obtain that

Y oty =Y Q; ((Dpp (D) - (D) < Dj - pp (D)) pi(0).
ke ke keJ

Plugging this estimate into (4.9), we deduce that
R(t) - 1 R%(t) - 1 D? - p% (t)-R(t) <R'(t) <R(t) - 1 R%(b) (4.15)
2 4o Pt R = - 2 ’ '

Since pflo(t) -R(t) - Oast — +o0o, these two differential inequalities imply (4.7) (we refer to Proposition 5.3
below for a more general result).
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The case where at least one component does not vanish in the limit. Let us assume that there exists hg € J
such that
lim sup pp, (t) > 0. (4.16)

t—+00

In this case, we prove that J is finite and (4.6) holds true.
Since pp, (t) is Lipschitz continuous (because its time-derivative is bounded), from (4.16) we deduce that

+00

j P2 (t)dt = +oo,
0

and hence from equation (4.10) we conclude that (we refer to Proposition 5.4 below for a more general result)

tlim Qnex(t) =1 forallke]. (4.17)
—+00

We are now ready to prove that J is finite. Let us assume on the contrary that this is not the case. Then,
for every n € N, there exists a subset J,, € J with n elements, and hence

R(t)> Y pp(t) =Y Qp (Op; (t)=p; () Y Qp ().

keJn keJn keJn

When t — +00, the last sum tends to n because of (4.17), and hence

lim sup R(t) > n - lim sup pj, (6),
t—+o00 t—+00

which contradicts the estimate from above in (4.11) when n is large enough. To finish the proof, we now

observe that the vector (pi(t))kes is @ bounded solution of a first-order gradient system, so that (cf., e.g., [4,

Example 2.2.5] or [7, Corollary 7.3.1]) its omega-limit set is made of stationary points only. But the only

stationary point satisfying the condition of having all its limiting components positive and equal is the point

with all components equal to the right-hand side of (4.6). O

5 Estimates for differential inequalities

In this section we investigate the asymptotic behavior of solutions to two scalar differential equations char-
acterized by the presence of fast oscillating terms. Equations of this form are going to appear in the proof of
our main results as the equations solved by the energy of the solution and by the ratio between two Fourier
components.

Throughout the text, we shall meet oscillatory functions which are not absolutely integrable at infinity
but have a convergent integral in a weaker sense.

Definition 5.1 (Semi-integrable function). A function f € C%([to, 00), R) will be called semi-integrable on

[to, 00) if the integral
t

F(t) := If(s) ds

to
converges to a finite limit as ¢ tends to +co. In this case, the limit will be denoted as LZOO f(s) ds.

Remark 5.2. A classical example of a function which is semi-integrable but not absolutely integrable in

[to, +00) for tg > O is
cos(wt + @)

flo = ==

whenever 0 < a < 1. Another classical case (Fresnel’s integrals) is

(5.1)

f(t) = cos(wt? + ).



DE GRUYTER M. Ghisi et al., Weakly turbulent profiles of solutions to some evolution equations =— 913

In the second case the integrability comes from fast oscillations at infinity and the convergence of the
integral appears immediately by the change of variable s = t?, which reduces us to (5.1) with a = 1/2. The
semi-integrable functions that we shall handle are closer to cos(ce??) in [0, +c0), in which case the integral

can be reduced to (5.1) with a = 1, by the change of variable s = ebt.

The first equation we consider is actually a differential inequality which generalizes (4.15). It takes the form
1
Z'(t) — z(t) + — 222 (t) — P ()| < Po(t) forallt > 0. (5.2)

When z, is a positive constant, and 1 (t) = Y, (t) = 0, this inequality reduces to an ordinary differential
equation, and it is easy to see that all its positive solutions tend to z., as t — +oco. In the following statement
we show that the same conclusion is true under a more general assumption on 11 (t) and Y, (¢).

Proposition 5.3. Let z,, be a positive constant, and let z : [0, +00) — R be a solution of class C! to the differ-
ential inequality (5.2). Let us assume the following:

(i) The function 1 : [0, +00) — R is continuous and semi-integrable on [0, +00).

(ii) The function ¥, : [0, +c0) — R is continuous and satisfies

tlir+n P, (t) = 0. (5.3)
(iii) There exists a constant cq such that
z(t)=co>0 forallt>0. (5.4)
Then it turns out that
lim z(t) = Zoo- (5.5)
t—+00
Proof. Foreveryt > 0, let us set
x(t) :=2z(t) - 200, a(t):=1+ & = '@
(o) ZOO
Now (5.2) is equivalent to the two differential inequalities
X' (t) < —a(t)x(t) + Y1.(6) + Pa(8), (5.6)
x'(t) = —a(t)x(t) + Y1 (t) — Pa(b). (5.7)
Assumption (5.4) implies that
at) > l forall t > 0, (5.8)
Zoo
and (5.5) is equivalent to
tlim x(t) = 0. (5.9)
—+00

Let us set

t
A(t) := Ja(‘r) dr forallt >0,
0

and observe that (5.8) implies that A(t) is increasing and

lim A(t) = +oo. (5.10)

t—+00

Let us concentrate on the differential inequality (5.6). Due to a well-known formula, every solution sat-
isfies

t t
x(t) < e40x(0) + e4® J ey (1) d1 + 740 I ey (1) dr.
0 0
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We claim that the three terms in the right-hand side tend to 0 as t — +0c0, and hence

lim sup x(¢t) < 0. (5.11)

t—+o00

This is clear for the first term because of (5.10). Since A(t) is increasing and tends to +co, we can apply de
L’Hopital’s rule to the second term. Taking (5.3) and (5.8) into account, we obtain that

t
. 1 A(T) Y 1 A) _
0

In order to estimate the third term, let us introduce the function
+00
Wo(f) = j Yi(r)dr foralltO0.
t

Due to the semi-integrability of 11 (¢), the function W, (¢) is well defined and ¥;(t) — 0 as t — +co. Now an
integration by parts gives that

t t
I A, (1) dr = AOW, (t) - ¥, (0) - j a(r)e W, (1) dr.
0 0

The first two terms tend to 0 when multiplied by e~4(®), As for the third term, we apply again de L’'Hopital’s
rule and conclude that

t

. A(T) o 1 Al _

[HIPDO SA® J a(t)e® "V (1) dt = tE{rnoo W -a(t)e'V¥q(t) = 0.
0

This completes the proof of (5.11).
In an analogous way, from (5.7), we deduce that

lim inf x(t) > 0. (5.12)
t—+00
From (5.11) and (5.12), we obtain (5.9), and this completes the proof. O

The second equation we consider is a generalization of (4.10). It takes the form
Z'(t) = a(t)z(t)(1 - 22(t)) + a(t)B(t)Z>(t) + y(t)z(t) forallt > 0. (5.13)

When a(t) = 1 and B(t) = y(t) = 0, it is easy to see that all positive solutions tend to 1 as t — +oco. In the
following result we prove the same conclusion under more general assumptions on the coefficients.

Proposition 5.4. Letz: [0, +co) — (0, +00) be a positive solution of class C to the differential equation (5.13).
Let us assume the following:
(i) The function a: [0, +00) — (0, +0c0) is bounded and of class C', and it satisfies

J a(t) dt = +oo. (5.14)
0

(ii) There exists a constant L such that
la'(t)| < Loa(t) forallt=>O0. (5.15)

(iii) The functions B: [0, +0co) — Rand y: [0, +co) — R are bounded and semi-integrable.
Then it turns out that
lim z(t) = 1. (5.16)

t—+00
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Proof. Equation (5.13)is a classical Bernoulli equation, and the usual variable change x(t) := [z(¢)] 2 trans-
forms it into the linear equation

x'(t) = =2(a(t) + y(£)x(t) + 2a(t)(1 - B(1)). (5.17)
In the new setting, conclusion (5.16) is equivalent to proving that

lim x(t) =1. (5.18)

t—+00

In order to avoid plenty of factors 2, with a little abuse of notation, we replace 2a(t), 2(t), 2y(t) with
a(t), B(t), y(t). This does not change the assumptions, but allows us to rewrite (5.17) in the simpler form

X' (8) = —(a(t) + y(0)x(t) + a(t)(1 - B(t)). (5.19)

Now we introduce the function
t
A(t) := Ja(r) dr forallt >0,
0

and observe that
lim A(t) = +oo, (5.20)

t—+00
because of assumption (5.14). We also introduce the functions

+00

t
B(t) := J B(r)dr, C(¢t):= Jy(‘r) dr,
0

t

which are well defined for every t > 0 as a consequence of assumption (iii), and satisfy

lim B(t) =0, (5.21)
t—+00
tlim C(t) =: Coo € R. (5.22)
—+00

Every solution to (5.19) is given by the well-known formula

t t
X(£) = e AW-CO Q) 4 = AD-CO) J ADHC@ (1) dr — e~ AD-CO J eA+C o(7)B(7) dr.
0 0
We claim that the first and third term tend to O as t — +co, while the second term tends to 1. This would
complete the proof of (5.18).
The first term tends to O because of (5.20) and (5.22).
The second term can be rewritten as
t
eCo . 1 J ATHC (1) dir.
0
The factor e~¢ tends to e~C. Since A(t) is increasing and tends to +co, we can apply de L'Hdpital’s rule to
the second factor. We obtain that
t
tEEnm ﬁ J A7) dr = lim . . eA0+CO g () = el

t—+00 a(t)eA(t)
0

and this settles the second term.
In order to compute the limit of the third term, we integrate by parts. We obtain that
t t
J A y(1)B(7) dT = eAOCOH(1)B(E) - a(0)B(O) - J A0 (a(7) + y(r)a(r) + o (1)] B(7) .
0 0
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When we multiply by e=4(0-C(0) the first two terms in the right-hand side tend to 0, because of (5.20)-(5.22)
and the boundedness of the function a(t). Thanks to assumption (5.15), the absolute value of the last integral

is less than or equal to
t

j A D (la(1)| + ly(1)| + Lo)a(7)|B(7)| dT.

0
Now we multiply by e"4(0-C¢( we factor out e"¢®, and we compute the limit of the rest by exploiting de
L’Hopital’s rule, as we did before. From (5.20)—(5.22) and the boundedness of the functions a(t) and y(t), we
conclude that

A(D)+C(t)
. A(D)+C(T) € (la@®)| + ly(®)] + Lo)a()|B(t)|
Jlim o [ OO + Iy@)] + Loa@IB@] dr = lim 2o -o0.
0
This completes the proof of (5.18). O

In the third and last result of this section, we consider again equation (5.13). Let us assume for simplicity
that a(t) > 0 for every t > 0, and S(t) = y(t) = 0. These assumptions do not guarantee that positive solutions
tend to 1 as t — +00, but nevertheless they are enough to conclude that all solutions are bounded from above
for t > 0 (because solutions are decreasing as long as they stay in the region z(t) > 1). In the following result
we prove a similar conclusion under more general assumptions on the coefficients.

Proposition 5.5. Letz: [0, +00) — (0, +00) be a positive solution of class C to the differential equation (5.13).
Let us assume the following:

(i) The function a: [0, +00) — (0, +c0) is of class C*.

(ii) The functions B: [0, +oco) — Rand y: [0, +c0) — R are continuous.

(iii) There exists a constant L such that

max{a(t), |’ (), |B®, ly(®)} <Ly forallt>O0. (5.23)

(iv) There exists a constant L, such that

S S
Jﬁ(‘r) dr| < Lye™, J y(r)dr| < Lye™t foreverys>t=>0. (5.24)
t t
Let to > 0 be any nonnegative real number such that
Ly(1+9L; +32L% +32L3)e™ < log 2. (5.25)

Then the following implication holds true:

z(tg) <1 = supz(t) < 2.
t>ty

Proof. Let us assume that z(tp) < 1, and set
ty :=sup{t = to : z(1) < 2 forall T € [to, t]}.

If t, = +00, the result is proved. Let us assume by contradiction that this is not the case, and hence
t; < +00. Due to the continuity of z(t) and the maximality of ¢,, it follows that

z(ty) = 2. (5.26)

Let us set
ty = inf{t € [to, t2] : z(7) = 1 forall T € [t, t2]}.

Then it turns out that ¢ty < t; < t, and, moreover,

z(t1) =1 (5.27)
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and
1<z(t)<2 forallte[ty,t]. (5.28)

Due to (5.23) and (5.28), from (5.13), we deduce that
|z'(t)| < 8Ly + 8L% forallt € [t1, t2]. (5.29)
Since z(t) > 1in [t1, t;] and a(t) is positive, (5.13) implies also that
Z'(t) < (y(t) + a(t)ﬁ(t)zz(t))z(t) forall t € [tq, t2],

which we can integrate as a linear differential inequality. Taking (5.27) into account, we find that
t t
z(t) < exp( Jy(r) art + Ja(r)ﬁ(r)zz(r) d‘l’) forall t € [tq, t2].
t1 t1

Now we claim that
ty ty

J y(r)drt + J a(‘r)ﬁ(‘r)zz(‘r) dt < log?2. (5.30)

t t

This would imply that z(t;) < 2, thus contradicting (5.26). Due to the second inequality in (5.24), we can

estimate the first integral as
t

J y(1)dr < Le™ < Lye™™, (5.31)
ty

In order to estimate the second integral, we introduce the function

B(t) := J B(r)dr forallt>0.
t

This function is well defined because of the first inequality in (5.24) and, for the same reason, it satisfies
B(t) < Lye™t forallt> 0. (5.32)

Now an integration by parts gives that

tz tZ
j a(T)B(1)Z* (1) d1 = a(t2)z(t2)B(t2) — a(t1)z>(t1)B(t1) - JB(T)(a’(T)zz(T) +2a(1)z(1)Z' (1)) dT.
ty ty

From (5.23), (5.26), (5.27) and (5.32), it follows that
la(t2)z? (t2)B(t2) — a(t1)z*(t1)B(t1)| < L1 - 4-Lye™ + Ly - 1-Lye™™ < 5L1L,e". (5.33)
From (5.23), (5.28), (5.29) and (5.32), we have
|B(T)(a' (1)2% (1) + 2a(1)z(1)Z' (1))| < Lae " (4Lq + 32L1(L? + L1)) < 4L5(Lq + 8L} + 8L3)e™" (5.34)

for every 7 € [tq, t;]. From (5.33) and (5.34), it follows that

t
j a(T)B(1)z* (1) dt < Ly(9L1 +32L3 + 32L3)e . (5.35)
ty

Adding (5.31) and (5.35), and taking assumption (5.25) into account, we obtain (5.30). This completes
the proof. O
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6 Estimates on oscillating integrals

In the three results of this section, we prove the convergence of some oscillating integrals and series of oscil-
lating integrals. We need these estimates in the proof of our main result when we deal with the trigonometric
terms of (3.14) and (3.15).

Lemma 6.1. Leta > 0, let L3 > 0, and let i [0, +00) — R be a function of class C* such that
|/ ()| <Ly forallt=> 0.

Then, for every s > t > 0, it turns out that

et -’

Jcos(aer + (1)) dTt| < 3; L (6.1)
t

Proof. We introduce the complex-valued functions
g(b) := exp(iae’), f(t) := exp(iph(1)),

so that, clearly,

<

J cos(ae” + (1)) dt
t

I exp(ifae” + Y(1)]) dt
t

I g(mf(t)dr
t

Now we have

S

[smrnrar- | g e findr= [g(S)f(S)e‘s ~g0fve™ - [ @' m - f(r))e-fdr] :
t t t
yielding the immediate estimate

3+L3 _
< ——e t,

Jg(r)f(r) dr
t

which implies (6.1). O
Lemma 6.1 can also be viewed as a special case of the following result.

Lemma 6.2. Let g: [0, +co) — C be a continuous function, and let f: [0, +c0) — C be a function of class C'.
Let us assume that there exist two constants L, and Ls such that

S
Jg(r) dr| < Lse™t foralls >t >0, (6.2)
t
max{|f(t), If'(t)|} < Ls forallt>0.
Then it turns out that S
Jg(r)f(r) dt| < 3L4Lse™" foralls >t > 0. (6.3)
t
Proof. Let us introduce the function
+00

G(t) := J g(r)dr forallt > 0.
t

This function is well defined because of assumption (6.2) and, for the same reason, it satisfies

|G(t)| < Lye™t forallt>O0.
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Integrating by parts the left-hand side of (6.3), we find that
Jg(r)f(r) dt = G(s)f(s) - G(OF(t) - J G(Df (1) dr.
t t

At this point, our assumptions imply that

Jg(r)f(r) dr
t

<G| - Ifs) + GO - If(O)] + I IG()I - If' (D)l dt
t

s
<Lje®-Ls+ L4€_t -Ls + jL4€_T -LsdTt
t

< 3L4Ls 67[,
which proves (6.3).

The next lemma extends the previous estimates to some series of functions.

— 919

Lemma 6.3. Let gi: [0, +0c0) — R be a sequence of continuous functions, and let fi: [0, +00) — R be a

sequence of functions of class C'. Let us assume that the two series of functions

Y A, Y filt)
k=0

k=0

are normally convergent on compact subsets of [0, +00), and that there exist three constants L, L7, and Lg such

that

lgk(t)] < L forallt>0,andallk € N,

S

J gk(1)dt

<L;e™t foralls>t>0,andallk € N,

and

max{ i If(®)l, i |f;i(l‘)|} <Lg forallt>O0.

k=0 k=0
Then the series

> gr()fi(d)
k=0

is normally convergent on compact subsets of [0, +00), and it satisfies

| [( y gk<r)fk<r)) dr
t

<3L;Lge™" foralls>t>0.

k=0

Proof. In analogy with the proof of Lemma 6.2, we introduce the functions

+00

Gr(t) == j g(r) dr.
t

We observe that they are well defined because of assumption (6.5), and they satisfy
|Gr(t)] < Lye™t forallt > 0,andall k € N.
From assumption (6.4), it follows that

suplgr(Ofi(t)] < L suplfi(t)] forall k € N,
teK teK

(6.4)

(6.5)

(6.6)

(6.7)

(6.8)

(6.9)
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for every compact set K ¢ [0, +c0). As a consequence, the normal convergence in K of the series (6.7) follows
from the normal convergence in K of the series with general term fi(t). Due to normal convergence, we can
exchange series and integrals in the left-hand side of (6.8) and deduce that

j( D gk(T)fk(T)) dr|=|) Jgk(T)fk(T) dr|< ) jgk(r)fk(r) dr|.
t N k=0 k=0 % k=01%

Now we integrate by parts each term of the series and exploit (6.9) in analogy with what we did before in the
proof of Lemma 6.2. We obtain that

S S
Jgk(T)fk(T) dr| < Lye”*|fi(s)| + Lye”"|fi(0)] + L7 J e "Ify (Dl dt
t t
for every k € IN. When we sum over k, from (6.6) we deduce that
(oo} (oo}
Y LreIfi(s)l = L7e™ Y |fi(s)| < LyLge™ (6.10)
k=0 k=0
and, analogously,
(o)
> Lre Ifi(0] < LyLge™. (6.11)
k=0

As for the sum of integrals, we first observe that the normal convergence, on compact subsets of [0, +00),
of the series with general term f,:(t) implies an analogous convergence of the series

Y e TIf (D)l
k=0

Therefore, we can exchange once again series and integrals. Taking (6.6) into account, this leads to

00 S

S (o)
Y Ly [eTfimldr =Ly j( y e‘flfﬁ(r)l) dr
k=0 7§ ¢ \k=0
S
<L; j Lge " dTt
t
<L;Lge™t. (6.12)
At this point, (6.8) follows from (6.10)-(6.12). O

7 Proof of the main results

7.1 Equations for the energy and quotients

Preliminary estimates on components. Let us consider the notations introduced in Section 3, where we
reduced ourselves to proving (3.19) through (3.21). In this first paragraph we derive some k-independent
estimates on py(t) and 0y (t) that are needed several times in the sequel. The constants Mg, . . . , M3, we intro-
duce hereafter, depend on the solution (as the constants M1, ..., M7 of Section 3), but they do not depend
on k. First of all, from (3.17) and (3.18), it follows that

Y pi(t) < My
k=0
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and, in particular, we find

pi(t) < Mg forallt>0,andall k € N, (7.1)

and -
Y pr(t)sin® 6x(t) < M. (7.2)

k=0

From this estimate and (3.16), it follows that
lpi (D] < Mopy(t) forallt>0,andall k € N. (7.3)

This implies, in particular, that

(o)
Y lpi(t)? < Myo forallt>0
k=0
and
lpp ()l < M1y forallt>0,andall k € N. (7.4)

Moreover, from (7.3), it follows that
pi(t) < pr(0)eMt forallt > 0,andall k € N. (7.5)

Let us consider now the series
(o] [ee]
Y e, YRl
k=0 k=0

where m > 2 is a fixed exponent (in the sequel we need only the cases m = 2 and m = 4). From the previous
estimates, we have
(] (]
Y PRt < M1z, Y (O] < M1, (7.6)
k=0 k=0
where of course the constant M1, depends also on m. Moreover, from (7.5) and the square-integrability of
the sequence pi(0), it follows that both series are normally convergent on compact subsets of [0, +00).

We stress that we can not hope that these series are normally convergent in [0, +00), even when m = 2.
Indeed, normal convergence would imply uniform convergence, and hence the possibility to exchange the
series and the limit as t — +o0o, while the conclusion of Theorem 2.1 says that this is not the case, at least
when J is an infinite set.

Finally, plugging (3.16) and (7.2) into (3.15), after integration, we obtain that

Ox(t) = —Are" = Pi(t), (7.7)
for a suitable function i : [0, +00) — R of class C! satisfying
[Y(O)] < Mq5 forallt>0,andall k € N. (7.8)
Estimates on trigonometric coefficients. For every k € IN, we set
5 1 - 3
ay(t) :=sin” Oy (t) - 5 bi(t) :=sin™ Oy (t) - 3
and, for every k # h,
Ch k() := sin® By(t) sin? O (t) — %

These functions represent the corrections we have to take into account when we approximate the trigonomet-
ric functions with their time-average, as we did at the beginning of Section 4.
It is easy to see that
sup{lax(®)l, Ibx(®), lcnx(®)} <1 forallt >0, (7.9)
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where the supremum is taken over all admissible indices or pairs of indices. Now we claim that

S
J ax(t) dt| < Mize™t foralls>t>0,andall k € N, (7.10)
t
S
ka(r) dt| < Mise™! foralls>¢>0,andallk € N, (7.11)
t
and
; 1
Jch,k(r) drt| < M16(1 + W)e‘t foralls >t >0,andall h + k. (7.12)
k—An
t

In order to prove (7.10), we just observe that
1
ag(t) = -3 cos(20k(t)),
and hence, by (7.7),
1 . 1 .
ai(t) = -3 cos(-2Axe" = 2 (t)) = -3 cos(2Axe" + 2y (t)).

Thanks to (7.8), the assumptions of Lemma 6.1 are satisfied with & := 2y, L3 := 2M33 and (t) := P ().
Thus, we obtain that

3+2Mi3 _t _t
< — <M ,
2 € 17€

Jak(‘r) dr

where in the last inequality, we exploited that all eigenvalues are larger than a fixed positive constant.
The proof of (7.11) is analogous, just starting from the trigonometric identity

1 1
bi(t) = -3 cos(20x(t)) + 3 cos(40k(t)).
Also the proof of (7.12) is analogous, but in this case the trigonometric identity is
1 1 1 1
Chk = 3 cos(20y) — n cos(20y) + 3 cos(20y + 26y) + 3 cos(20y, — 26y).
All the four terms can be treated through Lemma 6.1, but now in the last term the differences between

eigenvalues are involved. As a consequence, for the last term, we obtain an estimate of the form

~ 2|Ak - Anl

S
Jcos(zeh(r) 26(r) dr| < 2T 4M13 e
t

If we want this estimate to be uniform for k # h, we have to assume that the differences between eigen-
values are bounded away from 0, and this is exactly the point where assumption (2.7) comes into play in the
proof of Theorem 2.5.

Equation for the energy. Let R(t) be the total energy as defined in (3.17). We claim that R(t) solves a differ-
ential equation of the form

1 13
R'() = RO = SRAO) = 2 Y pr(0) + pu(6) + (D), (7.13)
k=0
where (for the sake of shortness, we do not write the explicit dependence on t in the right-hand sides)

pi(t) =2 Y (T1xpp + awpy - bipl),  Ma(t) :=-2) (pi Y Ci,kpiz)- (7.14)
k=0 k=0 i+k
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We also claim that u(t) satisfies

<Mqge™t foralls>t>0. (7.15)

Jsul(r) drt
t

The verification of (7.13) is a lengthy but elementary calculation, which starts by writing

R'(t)=2 ) p(Dpi (D),
k=0

and by replacing pL(t) with the right-hand side of (3.14). The crucial point is that when computing the product

pjsin® 6y - Y pj sin” 6;,
i=0
one has to isolate the term of the series with i = k. In this way, the product becomes
Py sin Oy + pg Y pj sin® ; sin” by,
i#k

and now one can express sin” 0y in terms of by, and sin? ; sin? Oy in terms of c¢; . The rest is straightforward

algebra.

The proof of (7.15) follows from several applications of Lemma 6.3 with different choices of fi(t) and

Sk (t).

o Fortheterm 1"1,kpi, we choose fi(t) := pi(t) and gi(t) := I'1 k(t). Indeed, the assumptions on fi(t) follow
from (7.6) with m = 2 and from the normal convergence of the same series on compact subsets of [0, +00),
while the assumptions on gy (t) follow from (3.16).

o  For the term akpi, we choose fi(t) := pi(t) and gk (t) := ax(t). The assumptions on fi(t) are satisfied as
before, while those on gy (t) follow from (7.9) and (7.10).

e  For the term bkp,l:, we choose fi(t) := pﬁ(t) and g(t) := bi(t). Now we need the estimates for the series
(7.6) with m = 4 in order to verify the assumptions on fi(t), and (7.9) and (7.11) in order to provide the
requires estimates on gi(t).

Equation for quotients. For every pair of indices h and k in J, we consider the ratio Qp i(t) introduced in
(4.8). We remind that components with indices in J never vanish, and therefore the quotient is well defined
and positive for every t > 0. After some lengthy calculations, we obtain

Qi (D) = ar(t)Qn,k(O(1 = Qfp (1) + Ar(O)Brk(O)Qp 1 () + Vi, k(D) Qi (8), (7.16)

where
1
ap(t) := gpi(t), Bn,k(t) := 8(cn,k(t) — bi(t)),

Yhi(t) := ax — ap + T1,k = T1p + ph(bh — Chi) + Z p3(cin - Cik)-
i¢{h,k}

We observe that the first term of equation (7.16) is the same as in equation (4.10), which was derived by
neglecting all the rest.

We claim that
supflan(6)], lay (O, 1Brix®)l, lynx(OI} < Myg  forallt >0, (7.17)
where the supremum is taken over all admissible indices or pairs of indices, and that
s
[ﬁh,k(f) dr| < Mzo(l + ;>e‘t, (7.18)
] Ak = Anl
( 1 1 1 o
[ ynatrrae]< M“(l i 2 (e >)e (7:19)

t
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for every pair of admissible indices and every s > t > 0. We point out that the supremum in (7.19) is finite
because the sequence of eigenvalues is increasing.
Estimate (7.17) follows from (7.1) and (7.4) in the case of aj(t) and a;l(t), from (7.9) in the case of B i (t),
and from (7.9), (3.16) and (3.18) in the case of yp i(t).
Estimate (7.18) follows from (7.11) and (7.12).
Finally, in order to verify (7.19), we consider the expression for y, x, and we apply
o inequality (7.10) to the term ay — ap,
o inequality (3.16) to the term Ty y — Ty p,
« Lemma 6.2, (7.11) and (7.12) to the term p; (cp,k - bn),
e Lemma 6.3 and (7.12) to the last term (the series).

7.2 Proof of Theorem 2.1

Key estimate for quotients. We prove that if there exists hy € J such that

lim sup pp, (t) > 0O, (7.20)
t—+o00
then
lim Qp,x(t)=1 forallke]. (7.21)
t—+00

To begin with, we observe that pp,(t) is Lipschitz continuous in [0, +co0) because of (7.4), and hence
(7.20) implies that

+00

J pflo(t) dt = +o0. (7.22)
0

Let us consider now the quotients Qp, (t) with k € J. We claim that in this case, equation (7.16) fits in
the framework of Proposition 5.4 with

Z(t) := Qno,k(t),  a(t) = any (),  B(O) := Pro,k(t),  Y(t) = Yo,k (t).

Indeed, assumption (5.14) is exactly (7.22), assumptions (5.15) follows from (7.3), and the boundedness and
semi-integrability of 8(t) and y(t) follow from (7.17)—(7.19). Thus, from Proposition 5.4, we obtain (7.21).

The case where J is infinite. In this case, we show that all components tend to 0, which establishes state-
ment (3).

Let us assume that this is not the case. Then there exists hq € J for which (7.20) holds true, and hence also
(7.21) holds true. At this point, arguing exactly as in the corresponding point in the proof of Theorem 4.1,
from (7.20) and (7.21), we deduce that the total energy is unbounded, thus contradicting the estimate from
above in (3.18).

The case where J is finite. In this case, we prove that (3.19) is true. To begin with, we observe that there exists
ho € J for which (7.20) holds true, because otherwise the total energy would tend to O, thus contradicting the
estimate from below in (3.18). As a consequence, also (7.21) holds true and, in particular, the limit of py(t)
is the same for every k € J, provided that this limit exists. At this point, (3.19) is equivalent to showing that

lim R(t) = -7

s 7.2
t—+00 2j+1 (7.23)

where j denotes the number of elements of J.
To this end, we consider the equalities

R(t)=p; (DY Qp (B, Y pr(®) =pp ()Y Qp (D).
keJ

keJ keJ
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From these, we deduce that L

4 2
2P =R (= +aq),
z (5 +a®)

where

a:=( Y ¢, 0)( ¥ Qio,k(o)f2 - }

keJ keJ

hence, by (7.21),
lim g(t) = 0. (7.24)
t—+00

Going back to (7.13), we find that R(t) solves a differential equation of the form

2j+1

R'(t) = R(t) - 4

R(0) - 7O (0 + pa (0 + o (0,

where p; (t) and u»(t) are given by (7.14). This differential equation fits in the framework of Proposition 5.3
with 4i
z(t) :== R(t), Zeo := ﬁ Pa(t) = pa(t) + p2(8),  Pa(t) = lq()] - R*(b).

Indeed, assumption (5.3) follows from (7.24), while assumption (5.4) follows from the estimate from below
in (3.18). It remains to prove that 1 (t) is semi-integrable in [0, +0o0). The semi-integrability of y;(t) is a
consequence of (7.15), and the semi-integrability of pu,(t) follows from a finite number of applications of
Lemma 6.2 with f(t) := pi(t)piz(t) and g(t) := c; k(t) (here it is essential that the set J is finite). The required
assumptions of f(t) and g(t) follow from (7.1), (7.4) and (7.12).

At this point, Proposition 5.3 implies (7.23).

Asymptotic behavior of the phase. It remains to prove (3.20). Actually we need this fact just in the case where
] is finite, but the statement is true and the proof is the same even in the general case.

Let us consider equation (3.15). From (3.16), we know that T'; i is integrable in [0, +c0). Therefore, (3.20)
is equivalent to showing that the function

( ipiz(r) sin? 6;(t) — 1) sin 0 (1) cos O (1)
i=0

is semi-integrable in [0, +00) for every k € J. First of all, we write the function as

z p?# sin? 6; sin Oy cos Oy + p7 sin® Oy cos Oy — sin Oy cos Ox.
i#k
All these oscillating functions can be treated as we did many times before, starting from the trigonometric
identities 1 1 1
sin By cos Oy = 3 sin(26y), sin’ Oy cos Oy = 7 sin(26y) - 3 sin(40y)

and
sin? 6; sin Oy cos Oy = % sin(26y) + % sin(26; — 26y) - % sin(26; + 26y).

Due to the relation sin x = cos(x — 71/2), we can conclude by exploiting the results of Section 6, as we did
in the proof of (7.10) through (7.12), and in the estimates of the coefficients of (7.16).

7.3 Proof of Theorem 2.5

Let us consider again the differential equation (7.13) solved by R(t). We prove that the uniform gap assump-
tion (2.7) implies the semi-integrability of u,(t) and a uniform bound on the quotients that allows to show
that the series of fourth powers is negligible in the limit. At this point, we can conclude by applying Proposi-
tion 5.3.
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Estimate on u,(t). We show that

< Myet foralls>t>0. (7.25)

szz(r) dr
t

Since p;(t) involves a double series, this requires a double application of Lemma 6.3. First of all, we exploit
the uniform gap assumption (2.7), and from (7.12), we deduce that

< Myse™t foralls >t>0,andall h # k. (7.26)

S
JC;.,k(T) dr
t

Now we set

Bi(t) := Y. cix(Op? (D),

ik
and we apply Lemma 6.3 with f(t) := piz(t) and g;i(t) := c; k(t). The assumptions are satisfied due to (7.6),
(7.9) and (7.26). We obtain that

< Myse™t foralls>t>0,andall k € N. (7.27)

J(Sk(r) dt

Moreover, from (7.9) and (3.18), we obtain also that
|6x(t)] < R(t) < M, forallt>0,andall k € N. (7.28)

Due to (7.27) and (7.28), we can apply again Lemma 6.3 with fi(t) := p,z((t) and gy (t) := 6x(t), and this
completes the proof of (7.25).

Estimate on quotients. We claim that there exist to > 0 and hg € J such that
Qn, x(t) <2 forallt > tyg,andall k € J. (7.29)

This estimate is trivial when k = hg, independently on ty. Otherwise, we exploit equation (7.16), which fits
in the framework of Proposition 5.5 with

z(t) := Qu (), a(t) == an(t), P() := Bui(t), y(t) = yni(D).

Let us check the assumptions. Estimate (5.23) follows from (7.17). Estimates (5.24) follow from (7.18)
and (7.19), and the constant L, is independent of h and k due to the uniform gap assumption (2.7). As a con-
sequence, any to > O satisfying (5.25) is independent of h and k, and ensures that the following implication
holds true for every h and kin J:

Qn,k(to) <1 = sup Qpx(t) < 2. (7.30)

t>to

At this point, we choose any such ty, and we fix the index (or one of the indices) hg € J such that

Pny(to) = pr(ty) forallk e J.

Such an index exists, even when ] is infinite, because for every t > 0 it turns out that py(t) — 0 as k — +oo,
due to the square-integrability of the sequence py(t). This choice of ho implies that Qp, x(tp) < 1 for every
k € J, and therefore, at this point, (7.29) follows from (7.30) with h := hy.

Conclusion. To complete the proof, we now observe that

Y ppt) =Y Qh ((Oph (6)-pr(D) < 4pp (£)- Y pr(t)
keJ ke] ke]

for every t > to. Plugging this estimate into (7.13), we deduce that

|R’(t) -R(t) + %Rz(t) - pa(t) - pa ()| < pj () - R(t)  forall ¢ > to.
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We are now (up to a time-translation by ty) in the framework of Proposition 5.3 with
z(t) ;= R(t), Zoo:=2, P1(t) := pa(t) + pa(t), Pa(8) := pﬁo(t) “R(1).

Indeed, the semi-integrability of 1), follows from (7.15) and (7.25), assumption (5.3) follows from the bound-
edness of R(t) and the fact that p,(t) — 0 as t — +oo, and assumption (5.4) follows from the estimate from
below in (3.18).

At this point, (3.21) is exactly the conclusion of Proposition 5.3. O
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