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Abstract. We consider a homogeneous Bose gas in the Gross—Pitaevskii limit at temperatures
that are comparable to the critical temperature for Bose—Einstein condensation in the ideal gas. Our
main result is an upper bound for the grand canonical free energy in terms of two new contributions:
(a) The free energy of the interacting condensate is given in terms of an effective theory describing
its particle number fluctuations, and (b) the free energy of the thermally excited particles equals
that of a temperature-dependent Bogoliubov Hamiltonian.
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1. Introduction and main results.

1.1. Background and summary. The dilute Bose gas, that is, a bosonic sys-
tem with rare but strong collisions, is one of the most fundamental and interesting
models in quantum statistical mechanics. Its prominence is mostly due to the occur-
rence of the Bose-Einstein condensation (BEC) phase transition and its numerous
phenomenological consequences. Triggered by the experimental realization of BEC
in ultracold alkali gases in 1995 (see [4, 20]) and by the subsequent experimental
progress, in the past two decades, there have been numerous mathematical investiga-
tions of dilute Bose gases in different parameter regimes.

The most relevant parameter regime for the description of modern experiments
with cold quantum gases is the Gross—Pitaevskii (GP) limit. Here the scattering
length of the interaction between the particles is scaled with the particle number N
in such a way that the interaction energy, in the limit N — oo, is of the same order
of magnitude as the spectral gap in the trap. It has been shown in [39] that the
ground state energy per particle can, in this limit, be approximated by the minimum
of the GP energy functional. Moreover, approximate ground states of a trapped Bose
gas display BEC and superfluidity; see [35, 37]. The derivation of the GP energy
functional has later been extended in [36, 50] to the case of rotating gases; see also
[45]. In such a system, the one-particle density matrices of approximate ground states
can be shown to converge to a convex combination of projections onto the minimizers
of the GP energy functional.
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As predicted by Bogoliubov in 1947 in [12], the subleading correction to the
ground state energy of a dilute Bose gas is given by the ground state energy of a certain
quadratic Hamiltonian called a Bogoliubov Hamiltonian. Recently, this claim has
been proved in the GP limit for a homogeneous Bose gas in [8, 10], for a homogeneous
Bose gas with a slightly more singular interaction in [2, 13], and for a trapped Bose
gas in [14, 15, 44, 46]. The two-dimensional case has been investigated in [17, 18].
In all these works, it was also possible to compute the low-lying eigenvalues of the
Hamiltonian as well as the corresponding eigenfunctions. Simplified approaches in the
homogeneous case have been provided in [30, 31], and a second-order upper bound
for a system with hard-core interactions was proved in [5]. A Bose gas in a box
with Neumann boundary conditions has been studied in [11]. In case of mean-field
interactions, Bogoliubov theory had previously been justified in [28, 53].

Low-energy eigenstates provide an accurate description of a Bose gas at zero
temperature. However, the understanding of the model at positive temperature is
essential for the full description of experiments and crucial for the mathematical
understanding of the BEC phase transition. In this case, one is interested in the
free energy and the Gibbs state, which are natural equivalents of the ground state
energy and the corresponding eigenfunction. A trapped Bose gas in a combination of a
thermodynamic limit in the trap and a GP limit was studied in [23]. There, it could be
shown that the difference between the free energy of the system and that of the ideal
gas is approximately given by the minimum of the GP energy functional. Moreover,
the one-particle density matrix of approximate minimizers of the free energy is, to
leading order, given by the one of the ideal gas, where the condensate wave function
has been replaced by the minimizer of the GP energy functional. This, in particular,
establishes the existence of a BEC phase transition in the system. Comparable results
have been obtained also for a homogeneous Bose gas; see [22].

The GP limit is appropriate to describe experiments with 102 — 106 alkali atoms.
In contrast, truly macroscopic samples with particle numbers of the order of the Avo-
gadro constant N = 6.022 x 10?3 are well described by the thermodynamic limit
followed by a dilute (i.e., low density) limit. The asymptotic behavior of the specific
energy in this setting has been obtained in [24, 41]. Results in two and one space
dimensions can be found in [42] and [3], respectively. Also, the next-to-leading-order
correction (Lee-Huang—Yang (LHY) term) predicted in [32] could recently be estab-
lished; see [6, 56] (upper bound), [26, 27] (lower bound), and [25] (comparable result
in two space dimensions). A two-term expansion for the free energy of the three-
dimensional system has been proved in [57] (upper bound) and [52] (lower bound)
and for the two-dimensional system in [43] (upper bound) and [21] (lower bound).
In the latter case, the result depends on the critical temperature of the Berezinskii—
Kosterlitz—Thouless critical temperature for superfluidity. Finally, an LHY-type lower
bound for the free energy at suitably low temperatures, where the contribution of the
excitation spectrum and the LHY correction are of the same order, has been proved
in [29]. For a more extensive list of references concerning static properties of Bose
gases, we refer the reader to [38, 48].

In the present article, we consider a homogeneous Bose gas in the GP limit at
temperatures of the order of the critical temperature for BEC. Our main result is an
upper bound for the grand canonical free energy in terms of two new contributions.
The first is the free energy of the particle number fluctuations of the condensate and
is described by a suitable effective theory. It results from the interplay between the
condensate’s self-interaction energy and the entropy of its particle number distribution
and is a pure grand canonical effect. The second new contribution is related to the
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free energy of thermal excitations over the condensate. For temperatures of the order
of the critical temperature, the number of excited particles may be of the same order
as the number of particles in the condensate, and Bogoliubov modes need to be
described in terms of a temperature-dependent Bogoliubov Hamiltonian. To obtain
our upper bound, we construct a trial state as follows: The state of the condensate
equals a convex combination of coherent states, which allows us to accurately describe
its entropy. The excitations are described by a Gibbs state of free bosons with a
Bogoliubov dispersion relation. The resulting state is a convex combination of quasi-
free states, which we further transform to include two-body correlations. To do this,
we employ a suitable second quantized quartic operator. When computing the energy
of our trial state, this operator allows us to renormalize the interaction potential and
to show that the result only depends on the scattering length.

1.2. Notation. For two functions a and b of the particle number and other
parameters of the system, we use the notation a < b to say that there exists a constant
C > 0 independent of the parameters such that ¢ < Cb. If we want to highlight
that C depends on a parameter k, we use the symbol <i. If a < b and b < a, we
write a ~ b, and a >~ b means that a and b are equal to leading order in the limit
considered. By C,c > 0, we denote generic constants, whose values may change from
line to line The Fourier coefficients of a periodic function f : [0, L]> — C are denoted
by f f[o e e~ P f(x)dx, and for two Fourier coefficients f,g, we define their
convolutlon as

(1.1) frgp)=17* > f(p 9)d(q)-

pE(2w/L)Z
This, in particular, implies that E(p) = fx a(p)-

1.3. Fock space and Hamiltonian. We consider a system of bosons confined
to a three-dimensional flat torus A with side length L. In what follows, we could set
L =1, but we prefer to keep a length scale to explicitly display units in formulas. The
one-particle Hilbert space of the system is given by L?(A, dx) with dz denoting the
Lebesgue measure. We are interested in the grand canonical ensemble, that is, in a
system with a fluctuating particle number. The Hilbert space of the entire system is
therefore given by the bosonic Fock space

(1.2) F(L3(A, dz)) @Lsym A", dz).
Here LZ,,,, (A", dz) denotes the closed linear subspace of L?(A", dz) consisting of those
functions ¥(x1,...,x,) that are invariant under any permutation of the coordinates
x1, n €A As usual, we define Lsym(AO7 dz)=_C.

On the n-particle Hilbert space Lbym(A”, dz) with n > 1, we define the Hamil-
tonian
(1.3) HY =N+ D unld(@i,ag)),

i=1 1<i<j<n

where A denotes the Laplacian on the torus A and d(z,y) is the distance between
two points z,y € A. In the realization of A as the set [0, L], A is the usual Laplacian
with periodic boundary conditions and d(x,y) = mingezs |z —y — kL|. We also define
/Hg\?) =0. The interaction potential is of the form

(1.4) un(d(z,y)) = N*v(Nd(z,y))
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with a measurable, compactly supported function v : [0,00) — [0,00] and a parameter
N > 0. We will later choose N as the expected number of particles in the system.
The scaling in (1.4) is known asthe higher-order GP regime. Note that the Hamilton-
ian 'HE\J,V) is unitarily equivalent to the one described by the same Hamiltonian with
interaction potential vy replaced by v in a box of side length LN. Our assumptions
on v guarantee that it has a finite scattering length a > 0. The scattering length is
a combined measure for the range and the strength of an interaction potential. For
its definition, we refer the reader to [38, Appendix C] and Appendix A. A simple
scaling argument shows that the scattering length of vy is ay = a/N. Finally, the
Hamiltonian Hpy acting on % is defined by

(1.5) Hy =EPHY.
n=0

1.4. Grand canonical free energy, Gibbs state, and Gibbs variational
principle. We are interested in a gas of bosons in the grand canonical ensemble.
The usual thermodynamic variables used to describe such a system are the inverse
temperature, the chemical potential, and the volume of the container. The chemical
potential can later be chosen to obtain a desired particle number. In this article, we
replace the chemical potential in the above list of variables by the expected number
of particles, which yields an equivalent description of the system. This motivates the
following definitions.

The set of states on the bosonic Fock space .Z(L?(A, dz)) with an expected
number of N > 0 particles is defined by

(1.6) Sy={TeB(F)|T>0,TrI' =1, Tr[NT| = N},

where B(%) is the set of bounded linear operators on % and

(1.7) N = én
n=0

denotes the number operator on .%. For a state I' € Sy, the Gibbs free energy
functional reads

1

(1.8) F(T)=Tr[HnT] — BS(F)
with the von Neumann entropy
(1.9) S(T) = —Tr[['n(T))

and the inverse temperature § > 0. The grand canonical free energy of the system is
defined as the minimum of F in the set Sy:

(1.10) F(B,N,L) = Frggrjlv F)= —% In (Trlexp(—B(Hn — pN))]) + uN.

Here the chemical potential y is chosen such that the unique minimizer

__exp(=B(Hy = pN))
Tr[exp(—A(Hy — pN))]

of F satisfies Trf[N'G] = N. The state G is called the (grand canonical) Gibbs state.

(1.11)
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1.5. The ideal Bose gas on the torus. The bound that we prove for the free
energy F(8,N,L) in (1.10) depends on several quantities related to the ideal (i.e.,
noninteracting) Bose gas on the torus. In this section, we recall their definition and
briefly discuss their behavior as a function of the inverse temperature (3.

The chemical potential pg(5,N,L) < 0 of the ideal gas is defined as the unique
solution to the equation

1
(112) N= pEZA* ex p p _IU/O(ﬁaN7L)>) -

where A* = (27r/L)Z3. The expected number of particles with momentum p =0 and
their density read

(113) NO(ﬂaNaL):(eXp(fﬂ,uO)71)71 and QO(BaNaL):NO(ﬂaNaL)/LSa

respectively. The asymptotic behavior of Ny in the limit N — oo is given by

3/2 —2/3
aag  MEED (%) ] win f= b (e )

We note that 8 in (1.14) usually depends on N. By (, we denote the Riemann zeta
function and [z]; = max{0,2}. The above formula implies that the ideal Bose gas
displays a BEC phase transition: If 8 = k8. with & € (1,00), then Ny ~ N[1 — 1/x]
and |pg| ~ L~2N~1/3, In contrast, for § = k8. with x € (0,1), we have Ny ~ 1 and
ltto| ~ L=2N?/3. Finally, the grand canonical free energy of the ideal gas is given by
Fo = FPEC + FF. Here

1
(1.15) FL?EC(@N,L)ZEln(l—eXP(ﬁuo))+M0N0
denotes the free energy of the condensate and
(1.16) Fy (B,N,L)= Z In (1 —exp (—B(p” — p0))) + Ho(N — No)
peA*

that of the noncondensed particles.

1.6. Main results. Our main result is the following upper bound for the free
energy of the homogeneous Bose gas in the GP limit.

THEOREM 1.1. Assume that the function v : [0,00) — [0,00] is nonnegative and
compactly supported and satisfies v(| - |) € L>(A, dz). By o = N/L?, we denote the
particle density. In the combined limit N — oo, 8 = k. with k € (0,00) and B, in
(1.14), the free energy in (1.10) satisfies the upper bound

F(B,N,L) < Fg(ﬁ N, L) + 8ran L3 ¢® + min{ FP¥C — 8ray L3 o2, FPEC}
1677(1NQ0(5 N L) 167TaNQ0(BvN7L)
-3 B > [ —In(1+

2 2
pes p D
(1.17) +O(L™2N"/12)
with g9 in (1.13), FPEC in (1.15), Fyf in (1.16), and

FBEC(ﬁ,No,L7ClN) I l In (/ exp (—B (47TCINL_3|Z|4 — ,U|Z|2)) dz)
B c

(1.18) + puNo(B, N, L).
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Here dz = dzdy/7w, where x and y denote the real and imaginary part of the complex
number z, respectively. The chemical potential p in (1.18) is chosen such that the
Gibbs distribution

_exp (=B (4man L73|2|* — plz]?))
(1.19) 92 = T ep (B (Aman L3I — al])) dz
satisfies
(120 [ ate)as =no(s, . 1),
c

The terms on the right-hand side (r.h.s.) of (1.17) are listed in descending or-
der concerning their order of magnitude in the limit N — oo. The free energy of
the noncondensed particles satisfies FO+ ~ L72N5/3. The second term is a density-
density interaction, i.e., a contribution depending only on g, and it is of the order
L72N. As we will see with Proposition 1.2 below, the energy of the interacting con-
densate (the third term) contributes on two orders of magnitude (if x > 1): L=2N and
L=2N?/31n(N). The term in the second line is a correction to the free energy of the
noncondensed particles coming from Bogoliubov theory and is of the order L=2N2/3.

The following proposition provides us with a simplified expression for FBEC above
and below the critical point. This, in particular, allows us to compute the minimum
on the r.h.s. of (1.17).

PROPOSITION 1.2. We consider the limit N — oo, 8 = kf. with k € (0,00) and
Be in (1.14). The following statements hold for given & > 0:
(a) Assume that Ny 2 N°/6%¢ and that ay > 0. There exists a constant ¢ > 0

such that
(1.21)
In (4Bay /L3
FBEC(ﬁ, No, Lyay) = 47raNL39(2J + (5227/) + O (L_2 exp (—CNE)) .
(b) Assume that Nog < N°/6~¢ and that ay >0. Then
1 1
(1.22) FPEC(B, Ny, L,ay) = —5In(No) = 5 +0 (L‘2N2/3‘25)

holds. In particular, FBEC(3, Ny, L,ay) is independent of ayx at the given
level of accuracy.

The interpretation of Proposition 1.2 is as follows: If the number of particles in
the BEC is sufficiently large, we see a contribution of the order L=2N?/31n(N) in addi-
tion to the density-density interaction 4wayL303. This new contribution (the second
term on the r.h.s. of (1.21)) is a consequence of the particle number fluctuations in the
BEC and will be discussed in more detail in Remark 1.4(b) below. In contrast, if the
expected particle number inside the BEC satisfies 1 < Ny < N°/6=¢ its free energy
equals that of an ideal gas to leading order. The appearance of the exponent 5/6 is
explained by the fact that 4may L33 ~ L~2N?/3 if Ny ~ N°/6. This should be com-
pared to 1/ times the classical entropy of g (for a definition, see (1.27) below), which,
for N¢ < Ny < N/ with ¢ > 0, is always of the order In(N)/f ~ L~2N?/31n(N).
That is, in the parameter region N°/6=¢ < Ny < N5/6+¢ the effective theory of the
condensate transitions from a regime where the interaction is relevant to a regime
where it is not. For those values of Ny, the free energy FBFC does not have a form
that is as simple as that in (1.21) or (1.22).
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Proposition 1.2 allows us to bring our main result into a form that is better suited
for a comparison to the existing literature, as stated in the following corollary.

COROLLARY 1.3. Assume that the function v:[0,00) — [0, 00] is nonnegative and
compactly supported, satisfies v(|-|) € L3(A, dx), and is strictly positive on a set of
positive measure. By o = N/L3, we denote the particle density. We consider the
combined limit N — 0o, 8= k8. with k € (0,00) and B. in (1.14). If k € (1,00), the
free energy in (1.10) satisfies the upper bound

In (4 3
F(BaNaL) SF(;F(/BaNaL) +47T(1NL3 (2Q2 - Q%(/BaNaL)) + H(B;lg/)
_i 167TC(NQO(ﬁ,N,L) _In 1+167TCLNQO(B7N7L)
2p p? p?
pEAL
(1.23) +O(L72NT/12),
and if K € (0,1), we have
(1.24) F(8,N,L) < Fo(8,N, L) 4 8man L?o* + O(L"2N'/?)

with Fy defined above (1.15).

If kK € (1,00), the minimum in (1.17) is attained by the first term, and one
obtains (1.23). In contrast, for x € (0,1), it equals the second term, which leads to
(1.24). At the critical point (kx =1, or K — 1 as N — o0; see also Remark 1.4(h)
below), the minimum is needed. We have the following remarks concerning the above
statements.

Remark 1.4.

(a) The first two terms on the r.h.s. of (1.23) and (1.24) already appeared in
an asymptotic expansion of the canonical free energy in the GP limit in [22]
(with a remainder of the order o(L~2N)). To be precise, the result in (1.23)
has been stated with Fj” replaced by the canonical free energy F§ of the
ideal gas. However, from [22, Lemma Al], we know that F§ and F," agree
up to a remainder of the order L~2N?/31In(N). It is to be expected that the
result in [22] also holds if the grand canonical ensemble is considered. That is,
the two ensembles are expected to be equivalent if one allows for remainders
of the order o(L=2N). We highlight that the first two terms on the r.h.s. of
(1.23) had for the first time been justified in the thermodynamic limit; see [57]
(upper bound) and [52] (lower bound). The inclusion of the remaining two
(negative) terms in the upper bound for the free energy in (1.23) is therefore
our main new contribution.

(b) The third term on the r.h.s. of (1.23) is related to the particle number fluctu-
ations in the BEC. Let us explain this in some more detail: It is well known
that a c-number substitution for one momentum mode in the spirit of [22, 40]
(method of coherent states) introduces only a small correction to the free
energy. Motivated by this, we use a trial state of the form

(1.25) FO:/ |2)(z| p(z)dz, where |z)=-exp(zay— Zag)|vac),
c

to describe the BEC. Here af and ag denote the usual creation and annihila-
tion operators of a particle in the p =0 mode, and |vac) is the related vacuum
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vector. Moreover, p(z) is a probability distribution on C w.r.t. the measure
dz defined below (1.18). Let us assume that the interaction energy of the
BEC is described by the effective Hamiltonian 4may L™ 3afaiaoao. The free
energy of I'g is then given by

1
(1.26) FBEC(Ty) :47raNL’3/ |2|*p(2) dz — BS(FO).
C
From the Berezin—Lieb inequality (see, e.g., [7, 34]), we know that the last
term on the r.h.s. is bounded from above by —1/3 times

(1.27) 5(0) == [ () n(p(2)) .

When we minimize FBEC(T'y) with S(T'y) replaced by S(p) under the con-
straint [ |z|?p(z) dz = Ny over all probability distributions p, we obtain FBEC
in (1.18). The unique minimizer is the Gibbs distribution g in (1.19). With
the above considerations, Proposition 1.2(a), and [, |2|?g(z) dz = Ny, we con-
clude that

tray L ( [ ttaeras = ([ o) d)) - 550

(1.28) _ hl(lGiZN/L?’) +0 (12 exp (—en12))

provided that Ny > N5/6+¢ holds for some fixed € > 0. That is, the term
on the r.h.s. of the above equation indeed describes the free energy related
to the particle number fluctuations in the BEC. It is interesting to note that
this contribution vanishes in the thermodynamic limit because it is bounded
from above by a constant times In(N)/S.

The Gibbs distribution g in (1.19) satisfies

120 Vary(eP)= [ Jeltatas - ([ |z|29(z)dz>2~N5/3

for k£ > 1, which should be compared to the grand canonical ideal Bose gas.
Here the same quantity is of the order N2. This decrease of the number fluc-
tuations in the BEC is a well-known effect caused by the repulsive interaction
between the particles. Motivated by the recent experimental realization of a
system with grand canonical number statistics (see [49]), a discrete version
of g in (1.19) has recently been used in [55] to compute the particle number
fluctuations in an interacting grand canonical trapped BEC. To rigorously
justify the computations in [55], it is necessary to show that g(z) approxi-
mates Tr[|z)(z|G] with the interacting Gibbs state G in (1.11). This is a very
interesting mathematical problem, whose solution is beyond the scope of the
present investigation.

The term in the second line of (1.23) is a correction to the free energy of the
noncondensed particles coming from Bogoliubov theory. It can be motivated
by the following heuristic computation: We write the Hamiltonian Hy in
(1.5) in terms of creation and annihilation operators a, and a;, of a particle
with momentum p € A*. Next, we replace ap and afj by /Ny and 9(p) by
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4rayL=3. When we additionally neglect cubic and quartic terms in a, and
a,, we obtain the Bogoliubov Hamiltonian

(1.30)
HBos = Z p asa, +4ranoo(B,N, L) Z (2a5ap + aja® , +apa_p).
pEA”‘+ pEA”‘+

The above heuristics is also supported by nonrigorous arguments in the physics
article [33]. A careful analysis shows that the grand potential ®2°8(3, ug, L)
associated to HBo8 —E?Og with pg in (1.12) and with the ground state energy
E°% of HB# satisfies (compare to Lemma B.1 in Appendix B)

®BE (B, 119, L) :% 3 1 (1 exp (~ VI ioy/7 — o + Tomanas)
pEA«*F
= % Z In (1 —exp (—,B(p2 — 1)) + 8ranL>(0 — 00)00
pEAi
1 |:167TaNgo(ﬁ,N, L) ( ].6’7TC1]\IQO(ﬁ,]\/v7 L)>:|
~—%a —In(1+
26 pez;i p? p?
(1.31) + o(L72N?/3),

The first term on the r.h.s. contributes to Fj, the second term is part of the
density-density interaction energy, and the third term is the novel contribu-
tion in the second line of (1.23).

In [8], it has been shown that eigenvalues ep of HE\J,V) —En (with HEVN) in (1.3)
and Ey its ground state energy) that satisfy eg < L~2N'/® are, to leading
order, as N — oo, approximated by those of a Bogoliubov Hamiltonian. If we
compare this energy scale to our temperature 1/ ~1/8; ~ L~2N?/3 which
is a measure for the energy per particle in our system, we see that the result
in [8] is far from being sufficient to draw conclusions about the free energy.
It is interesting to note that if one replaces ay by a and takes the thermo-
dynamic limit (N,L — oo with ¢ = N/L? fixed) of the last term in (1.31)
divided by L3, one obtains

1 16magg 167ago 16+/7 3/2
1.32) — —In{1 =TTas :
(1.32) 26(2m)3 /RS { p2 n( * p? )} dp 38 (o)

The r.h.s. has been conjectured to appear in the asymptotic expansion of the
specific free energy in the dilute limit; see [47, Theorem 11]. There it is shown
that the restricted minimization of the free energy functional (1.8) over the
class of quasi-free states leads to (1.32) with the scattering length replaced
by its first Born approximation. This is also true for the natural equivalent
of the second term on the r.h.s. of (1.23) in the thermodynamic limit.

The dependence of the third term on the r.h.s. of (1.17) on FFFC is needed
because FBEC —8max L3 0Z fails to describe the free energy of the p =0 mode
correctly if Ny~ 1 (& k< 1), that is, if there is no BEC. This is also related
to the fact that we describe the discrete random variable associated to the
operator agap by one that is continuous.

Theorem 1.1 is stated and proved for fixed k € (0,00). Our proof can, however,
easily be extended to cover the case when k depends on N provided that x 2 1
holds.
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(i) We expect the upper bound in Theorem 1.1 to be accurate up to a remainder
of the order o(L~2N?/3). That is, we expect it to be possible to prove a
matching lower bound.

(j) In case of the canonical ensemble, we expect that FJ‘ + FBEC peeds to be
replaced by F§ + 4ray 03, where F§ denotes the free energy of the canonical
ideal gas. This is a consequence of the fact that the variance of the number
of condensed particles in the canonical ideal gas lives, for § = k. with kK > 1,
on the scale N*4/3. This needs to be compared to (1.29) and (1.28). For a
thorough analysis of condensate fluctuations in the canonical ideal gas, we
refer the reader to [19].

1.7. Organization of the article. We prove Theorem 1.1 with a trial state
argument. In section 2, we define our trial state and establish some of its properties
that are needed for proving an upper bound for its free energy. In section 3, which
is the core of our analysis, we provide an upper bound for the energy of our trial
state, and section 4 is devoted to an estimate for its entropy. Finally, in section 5,
we use these results to give the proof of Theorem 1.1. To not dilute the main line
of the argument, we deferred some technical parts of our proof to an appendix. In
Appendix A, we collect known properties of the solution to the scattering equation
in a ball with Neumann boundary conditions. Appendix B contains the proof of an
expansion of the free energy related to a Bogoliubov Hamiltonian in the spirit of
(1.31). In Appendix C, we prove Proposition 1.2 as well as some lemmas concerning
FBEC in (1.18) and g in (1.19). Finally, in Appendix D, we give the proof of a lemma
that allows us to estimate the influence of the correlation structure on the expected
number of particles in our trial state.

2. The trial state. In this section, we define our trial state and collect some of
its properties.

2.1. Definition of the trial state. We start our analysis with the definition of
the trial state. To be able to distinguish between different parts of the system as, e.g.,
the condensate, thermally excited particles, and the microscopic correlations between
the particles induced by vy, we start by introducing several subsets of the momentum
space A*. Let dp,dr,,0n >0 with ég < 1/3 and &y, + dg < 2/3, and define

PLi= {peA* | 1o §N1/3+5L/L},

Pp:={peA* | 0<|p|<N°®/L},

Pii={pe A" | N /L<[p| <NV /LY,
(2.1) Pu:={peA*||p|>N'"""/L}.

Our assumptions on the parameters ensure that Py C P;, and P;,N Py = (). Later, the
parameters dg,dr,, and dg will be chosen independently of N. The meaning of our
sets in (2.1) is the following: The set Py, is appropriate to represent the BEC and the
thermally excited particles described by our trial state. To that end, it is sufficient
to choose 61, > 0 as small as we wish. For any dp > 0, the set Pp is large enough to
describe the Bogoliubov excitations in the system. The part of the trial state with
support in .# (L?(P;)) will be chosen as the Gibbs state of an ideal gas. That is, for
these modes, Bogoliubov theory is not relevant. Finally, the microscopic correlations
between the particles induced by the singular interaction vy will be chosen to live in
the set Py.
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It is convenient for us to introduce the following decomposition of the bosonic
Fock space:

(2.2) F(L*(A, dz)) = Py @ Fp @ F1 @ F,

where %, denotes the Fock space over the p = 0 mode, .3 is the Fock space over
L?(Pg), %1 denotes the Fock space over L?(P;), and %~ is the Fock space over all
remaining momentum modes. Moreover, by =, we denote unitary equivalence. For
more information on the above unitary equivalence, we refer the reader to [54, Problem
6.3]. In the following, we will use, without explicitly mentioning it, the same symbol
for an operator acting on .% and for its unitary image acting on .%y®.#pR®.#10.%~. By
a*(g) and a(g), we denote the usual creation and annihilation operators of a particle
in the function g € L?(A, dxr), which satisfy the canonical commutation relations

(2:3) [a(9),a™(R)] = (g, ), [a(g),a(h)]=0=[a"(g),a"(h)].

We also use the notation a, = a(p,) with the plane wave L~3/2¢P*. In this special
case, the first identity in (2.3) reads [a,,a}] =6 4.

We are now prepared to define our trial state and start by introducing the Bo-
goliubov Hamiltonian

HB = Z (p? — 110) @ ayp

pEPE

+ QO(ﬁaQNvL)

(2.4) Z Dy * fN(p) [Qa;ap + (z/|z|)2a;§a*_p + (E/|z|)2apa_p]

pEPE
with pg in (1.12), go in (1.13), and the Fourier coefficients fy = IR e P fy(z) dx of
the solution fy(z) to a version of the zero energy scattering equation that will be

introduced more carefully below. We also recall our definition of the convolution in
(1.1). By

_ exp(—BHP)
Tr g, [exp(—AHP))’

we denote the Gibbs state related to HP, which acts on .#5. We also introduce the
Gibbs state of the ideal gas

(2.5) Ga(z)

exp(—BY_,cp (P* — ko) ajap)
Trg, exp(=B3 e p (P? — po) ajap)

(2.6) Giree =

acting on %1 and the vacuum vector Qs of #-. With these definitions at hand, we
define the state I'g without microscopic correlations between the particles by

(2.7) Tg= /(C |2)(z] ® GB(2)((2) dz ® Gree ® |25 ) (2]

Here |z) is the coherent state in (1.25). The probability distribution ((z) is given by

exp (—ﬁ (47raNL_3|z|4 - ﬁ\z|2)) .
exp (B (Aman L3217 — f2[%)) 4=

(2.8) ((z)= T

C

i.e., it equals g(z) in (1.19) except for the fact that the chemical potential i in the
definition of ¢ will be used to adjust the expected number of particles in our final
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trial state I' that we define below in (2.13). To be able to adjust the particle number
correctly, we will need the assumption Ny > N2/3. This is related to the fact that
the correlation structure we add later changes the particle number on the scale N
(6 < 2/3). In the parameter regime where Ny < N%/3 holds, we use a much simpler
trial state. This is discussed at the end of section 5. We define Ny by

(2.9) No = /«: 1212¢(2) d.

In combination, Lemmas 2.1, 2.7 below and our choice of parameters below (5.19)
show that Ny equals Ny in (1.13) up to a correction of the order N2/3 if Ny ~
N. In the computation of the free energy of our trial state, we obtain the term
FBEC(B Ny, L,ay). To replace this free energy by the same expression with N
replaced by Ny, we use Lemma C.1 in Appendix C. It is important to note that the
difference between these two free energies yields a contribution of the order L=2N?2/3,
More details concerning this issue can be found in section 5 in the analysis following
(5.16).

The definition of the condensate part and the part of our trial state related to the
Bogoliubov modes p € Py have been motivated in Remark 1.4(b) and (d), respectively.

For higher momenta, the Bogoliubov dispersion relation \/ p? — o \/ p? — po + 16may 0o
resembles p? — pg to leading order. We find it therefore more convenient to describe
the thermally excited particles with momenta in P; by Gfee. The Bogoliubov Hamil-
tonian in (2.4) depends on z/|z| because the condensate is described by the coherent
state |z)(z|. The complex phase z/|z| will cancel out in the computation of the energy,
but its inclusion here is crucial for certain terms not to vanish.

In the final step, we dress our trial state with a correlation structure that de-
scribes the microscopic correlations introduced by vy. Let fn denote the ground
state solution to the Neumann problem

(2.10) (—A+on(2)/2) fn(2) = AN fn(2)

on the ball By(0) with some fixed 0 < ¢ < L/2. We assume that fx is normalized
such that it equals 1 on 0By(0), and we interpret it as a function on A by extending
it by 1 outside of By(0). Equation (2.10) is a finite volume version of the zero energy
scattering equation Af(z) =v(z)f(x)/2 with boundary condition lim ;| f(z) =1
on R3. We also define

(2.11) p = fn(p) = L6y 0.

More information on the functions fx and 7, can be found in Appendix A. With 7,
at hand, we define the two-body operator

1 * *
(2.12) B=r3 > mpan a0,
pEPy, u,veEP,

on .%. Except for the restriction of the momenta, it is a multiplication operator with
the inverse Fourier transform of the function 7,. We apply the spectral theorem to
write T'o =" Aa|¥a) (Y| and define our trial state I' by

(14 B)va

. I'= )\a « aly hy a= /1 oy -
219 2 Aalda)(dal, - where - ga =g
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The general idea behind the way we introduce correlations is as follows: Let us
for the sake of simplicity consider an N-particle wave function ¢ that we want to
dress. A natural way to introduce correlations is to multiply ¢ with a Jastrow factor
Hiq fn(z;— ;). When we write fy =1 —wn and expand the product in powers of
wy, we obtain (137, wn(z;—=;))1 plus higher-order contributions in wy. Except
for our momentum cutoffs, these first two terms equal (1 + B)t. Since higher-order
corrections in wy are not necessary to obtain the correct energy in the GP limit, we
omit these contributions. The restrictions of the momentum sums in the definition
of B turn out to be mathematically convenient. Intuitively, p € Py and u,v € Py,
because 7, can be well approximated with momenta in Py and Gg(z) and Ggee can
be well approximated with momenta in Pp,. Correlation structures that are similar
to the one introduced by B have been used at zero temperature in [8, 10]. A similar
approach to describe correlations can be found in [56, 57].

The introduction of our correlation structure changes the expected number of
particles in the trial state (slightly) because T'y does not commute with A/. The
following lemma provides us with a bound relating the expected number of particles
in I and T'g.

LEMMA 2.1. We consider the limit N — oo, 8 = kf. with k € (0,00) and B. in
(1.14). The bound

(2.14) | Te[NT] — Tr[NTy]| < N°H

holds uniformly in 0 < Ny <CN.

We recall that 0 < dg < 2/3. The proof of the above lemma is based on simpler
versions of the techniques that we use to prove our upper bound for the energy of I'
in section 3, and we therefore prefer to give it in Appendix D.

The above lemma quantifies the change in expected particle number caused by the
correlation structure, but it does not guarantee the existence of jz with Tr[NT] = N.
This is because we are missing the information that Tr[NT] is a continuous function
of f1. To circumvent this problem, we use the fact that the free energy in (1.10) is, for
fixed vy and S, a convex function of N. To see this, we first note that

OF(B,N,L)
T*#(ﬂaN»L)-

Moreover, differentiation of both sides of the equation Tr[N'G] = N with G in (1.11)
with respect to N yields
ou(B, N, L) 1

(2.16) ON BITNZG] - (mNa)E)
In combination, (2.15) and (2.16) show that the map N — F(5,N, L) is convex. This
implies the following statement: For given |M| > 0, it is always possible to satisfy
F(B,N+ M,L)> F(8,N, L) by choosing the correct sign for M. Motivated by this,
we choose 1 such that Tr[NT¢] =N + AN, where |AN| is twice as large as the error
term in (2.14) and the sign of AN is chosen such that the free energy is increased.
This is possible because the remainder in (2.14) is uniform in 0 < Ny < CN and
Ny >0 can be chosen arbitrarily by varying fi. A bound relating our choice of Ny and
Ny is provided by Lemma 2.7 below.

In the remainder of this article, we prove an upper bound for the free energy of
I" that implies Theorem 1.1.

(2.15)
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2.2. Preparatory lemmas. In this section, we state and prove several lemmas
that are needed for the computation of the free energy of ' in (2.13). We present
them here to not interrupt the main line of the argument in section 3.

Properties of the state Gg(z) ® Ggree. The first lemma provides us with a
Bogoliubov transformation that diagonalizes the Bogoliubov Hamiltonian H® in (2.4).
Before we state it, we introduce the following notation. For fixed z € C and p € A*,
we define the functions ¢, .(z) = (z/|z|)L~3/2€!P*, which are plane waves with a 2-
dependent phase. By a;, . =a*(¢p.) and a; . = a(ypy, »), we denote the operators that
create and annihilate a particle in the function ¢, ., respectively. Since {¢p - }peorz/1
is an orthonormal basis of L?(A, dz), the operators ay, ., and ay » satisfy the canonical
commutation relations in the form stated below (2.3). We also define the (unitary)
Bogoliubov transformation U, : # — % (up to a global phase) by its action on our
z-dependent creation and annihilation operators in the following way (p € Pg):

*

* % _ * * _
(2.17) Ulay U, =upay . +vpa_p 2, Uiay U, =upay . +vpa’, .

z 'p,z7t%

The z-independent coefficients u, and v, are defined by

1/4 —1/4
1 p* — 1o 1 p* — 1o
up =5 | - - + 3\ - - and
2\ p? — po + 20N * fn(p)oo p? — po + 20N * fn(p)oo

1/4 —1/4
oL P* — ho 1 P> — o
P2\ p2 — o + 208 * fn(p)oo 2\ p? — po + 20N * fn(p)oo

with po in (1.12) and gp in (1.13), respectively. The function oy * fN(p) may take
negative values. However, we claim that there exists N € N such that it is nonnegative
uniformly in p € Pg provided that N > N. To prove this, we note that

1
@N*fN<p>2@N*fN<o>—|p|/o Vi * f(tp)|dt
(2.19) Zf)N*fN(O)—N‘SBL_l/AUN(x)fN(x)|x|dx.

By Lemma A.1, we know that 0 < fy < 1; we use this and [ovy(z)N|z|dz/L =
N7 |- |v]|1 to see that the last term on the r.h.s. is bounded by a constant times
LN%=2_ Since 0 < dg < 1/3 by assumption and iy * fx(0) = N~! [w(z) f(z)dz >
LN~! by (A.3), the claim is proved. In particular, it ensures that u, and v, are well
defined. In the following, we will always assume that N > N, and hence 9y * f (p) > 0
for p € Pg.

We are now prepared to state our first lemma.

LEMMA 2.2. The Bogoliubov Hamiltonian H® in (2.4) satisfies

(2.20) U:HBU, = By + Z e(p)ayap

pEPB

with

e(p) =vp* - uo\/p2 — o+ 208 * fn(p)eo  and
(2.21) EO:—% > [pQ—uwgof)N*fN(p) —ep)] -
pEPs
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Proof. To see that the Bogoliubov transformation U, diagonalizes H®B, we note
that the latter can be written as

HE =" (0" — o)) .ap -

pEPB

4 ﬁv N? L A P * * *
(222) + M Z UN * fN(p) [2ap,zapyz + a’p,za—p,z + apvza*p,z] .

2
pEPs
Equation (2.20) now follows from a standard computation that uses (2.17) and (2.22);
see, e.g., [9, Lemma 5.2]. d

Remark 2.3. Tt is worth noting that although H#® depends on z € C, the r.h.s. of
(2.20) is independent of z. This is related to the fact that the z-dependence of H® is
quite simple: All functions of the plane wave basis are multiplied by the same complex
phase.

Next, we compute the 1-pdm and the pairing function of the state Gg(2) ® Gpree-
LEMMA 2.4. The 1-pdm and the pairing function of the state Gg(z) ® Ggee with
Gg(z) in (2.5) and Gree in (2.6) are for p,q € Pg U Py given by

Troyesm [a;apGB(z) ® Gtree] = 0p,g7(p)  and

(2.23) Troye.9 (apagGr(2) ® Giree| = 5p$,q(z/\z|)2a(p)7
respectively. Here
1
Jr]l(pepl)exp(ﬁ(pQ—uo))—l) and
2
(2.24) a(p) =1(p € Pr)uyvy (exp(ﬂs(p))l) + 1)

with e(p) in (2.21).

Proof. We start by noting that the special form of the 1-pdm and the pairing
function in (2.23) follows immediately from the translation invariance of the state
Gp(2) ® Gree- To compute (p), we write

(2.25) Tros7 0,0pGB(2) ® Giree] = Tray 0.2 U agapU. U G (2)U, @ Giree)-

Using a, = (2/|2])ap,. and Lemma 2.2, we see that

1
T rfa,UG U, =06, g———F,
g [aqap z B(2) ] P.q exp(Be(p) — 1)

(2.26) Tr gy laya,U; G (2)U.] = 0= Tr g, [aga,U; G (2)U,]
holds for p,q € Pg. We also have

Tr g, [a)apGrree) = 0 !

F11GqUpTiree D,q eXp(ﬂ(pQ — ,UO) — 1)7

(2.27) Trz [a;a,Giree] = 0= Tr 7 [agapGiree)

for p,q € P1. Since Gp(z) ® Gaee is a quasi-free state, we know that the expectations
in (2.23) vanish if one momentum is in Pg and the other in P;. When we use (2.17),
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ap, = (z/|z])ap,», (2.26), and (2.27) on the r.h.s. of (2.25), we obtain the claimed
formula for the 1-pdm. The formula for the pairing function follows from a similar
computation. 0

We highlight that the pairing function of Gg(z) ® G depends on z/|z|, while
the 1-pdm does not. We state now a result useful to estimate momentum sums. Its
proof can be found in [22, Lemma 3.3].

LEMMA 2.5. Let f:[0,00) = R be a nonnegative and monotone decreasing func-
tion, and choose some k> 0. Then

@2 bz < (57 ) [ .

pEA:_ T}Jr

3T 6m
1+ — 4+ —— | dp.
1o (14 7+ s ) o

The next lemma provides us with bounds for the functions v and «.

LEMMA 2.6. The functions v and « in (2.23) satisfy the pointwise bounds

10) S 10 € FO0)) s + 10 € Po) iy and
220 la@IStere) s (1455 ).

Moreover, for n€{0,1}, we have

> Ipl*y(p) SLPBTETR L L7 e, (N)  with

pEAY
1 if n=0
cn(N) = z‘fn as well as
In(N) ¢fn=1
(2.30) > plMa@)| SLTEB T e, (N) + LN,
pEAY

Finally, the number of particles with momenta in Pg is bounded by

L2N6B
(2.31) d ) S+ 7
pEPB
Proof. We start by noting that
(2.32)

1/2 —1/2
2ot P —po L1 P —po Y
PA N\ p? — po + 208 * fn(p)oo 4\ p? — pio + 20 * Fn(p)oo 2

As already remarked above, we can assume that 20y * fN(p) > 0 holds uniformly in
p € Py (see (2.19)). In combination with the bound 0 < (1+z)~ Y24+ (1 +2)1/2 -2<
22 /4 for z >0 and po < 0, this implies that

(000w * fn(p))? .

2
(2.33) v, < I

Using 0 < fy <1, we see that

(2.34) o * Fv (p)] < /

AUN(x)fN(x) de <Nt /Av(a:) dz,
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and hence
Ng 1
2 0
(2.35) %S Nap S T
The bounds for 'y( ) and |a(p)| now follow from (2.24), (2.35), u? —v2 = 1, and

e(p) > p? — po > p?. The bounds in (2.30) and (2.31) are a direct consequence of the
pointwise bounds for v(p) and |a(p)| and Lemma 2.5. 0

Properties of the state I'g. Recall definition (2.9) for Ng, the expected number
of particles in the condensate of our trial state I'g. Recall also that Tr[NTo] = N+AN
with |AN | < N%i. We highlight that if we know Ny, we can compute the chemical
potential zz in the definition of (, as discussed below (2.7). In the following lemma,
we prove a bound for Ny showing that it is close to Ny in (1.13) in a suitable sense.

LEMMA 2.7. Assume that 8 2 (.. There exists a constant ¢ > 0 such that ]\70
satisfies the bound

NoL? Ng
]35 +f0(1+L2571)+exp(ch25L).
Proof. The expected number of particles in the state I'g equals N + AN, that is,

(2.37) N+AN:/Tr[/\/ 12)(2] © Cn (2) @ Grec]C dz—/|z| Cyda+ 3 A
C

PEAT

(2.36) |No — No| SN +

where we used Lemma 2.4 to obtain the second identity. We apply Lemma 2.4 and
the identity ug — vg =1 to see that the part of the sum on the r.h.s. that runs over
Py can be written as

2.38 =
(239 pezl;s ) pezF; eXp(ﬁf + pezf; exp/ 56 -1 p+p§BU

with £(p) in (2 21) and v? in (2.32). We use £(p) > p?, (exp(z) —1)~! <1/z, and the
bound for U in (2.35) to see that the second term on the r.h.s. is bounded by

NZL?
2.39 2 < Ng <0
(2:39) pGXP: exp 65 )—1 % g\: sz N2[Apt ™~ N2g3°
Moreover, for the third term,
N2
2 0
(2.40) Y ourg el
pEPB
holds.
We also claim that
1 1 NoL?
2.41 - < ,
(240 2 (exp(ﬁs(p)) -1 exp(B(p* — po)) — 1) NB

pEPB

To see this, we write
1 B 1
exp(Be(p)) =1 exp(B(p* — po)) — 1

1 B0* o) (\/ 1+ 2ol i) — 1)

(2.42) - /0 4sinh? ((t(p? — po) + (1 —t)e(p))/2)

dt.
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Using |v1+x — 1| <x/2 for 2 >0 and (2.34), we check that

000N * fn (D) e 2001 < Ny
p2—po  — N(p?—po) ~ NL2(p? — po)

2
(2.43) [4/1+ QOUN*fN()—lg
P? — o

In combination, (2.42), (2.43), e(p) > p® — uo, and pg < 0 imply that

1 1 NoB 1
2 (exp(ﬁﬁ(p)) —1  exp(B(p® — o)) — 1) = NLZ Sinhz(ﬂ(il?2 — Ho)/2)

pEPB

(2.44) —N5L2 Z oF

GA*

which proves (2.41).
When we put (2.37)—(2.40) and (2.41) together and use (2.24), we find

~ 1 NyL?
(2.45) N+AN=No+ > 2+O( )
perrvioy EPB(P* — o)) Np

with Ng in (2.9). The second term on the r.h.s. can be written as

1 1
> exp(B(p? —po)) —1 2 eXp(ﬁ(p2—ﬂo))—1

pePL\{0} pEAL.

(2.46) B Z B(p? —Mo)) 1’

pEPC

where Py denotes the complement of the set F;,. The first term on the r.h.s. equals
N — Ny with Np in (1.13), and the second term satisfies the bound

1
Z. exp(B(p? — po)) — 1

peEPf
1/2
< 1 / E ( ! )1/2
~ \exp (ﬁN2/3+25L) -1  \exp(B(p% — o)) — 1
pEAY

(2.47) <exp(—cN?L)N

for some ¢ > 0. To obtain (2.47), we used 5 2 0. and the definition of P, in (2.1).
When we put (2.45)—(2.47) together and use [AN| < N as well as the assumption
1, > 0, we obtain a proof of (2.36). 0

For the computation of the energy of 'y, we need to know its 2-particle density
matrix (2-pdm), which is stated in the next lemma.
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LEMMA 2.8. The 2-pdm of the state Ty in (2.7) reads

Trz [al, a} auyau,T0] = 0uy ,0001,00us,000,,0 /(C |z|*C(2) dz
o+ No [1(01)801, 020,005, + 7018 02 801,000.0
701 8us02001,0003,0 & 70180 0361, 000.0]
o No[0(12)8uz, 020000010 + AT, -,z 08030
+ ()Y (V1) us Ov w0z + Y (U2)7(V1)6us 05001

(2.48) + a(ul)a(u2)6uh*v16u2ﬁv2

with Ny in (2.9) and v, a in (2.24).

Proof. We denote by W, = exp(za — Zag) the Weyl transformation that imple-
ments the condensate. Using W}aoW, = ag + 2z, we find

(249> Tre [a;qua’jn Qg Aoy FO] = / Tr<9B®gzl [Aul,vl,umvz Gp (Z) ® Gfree]C(Z) dz
C
with the operator
Aul;vlau27v2 :|Z‘46u1706111,06u2,051)2,0 + |Z|2 (azla’liz 6u1,05u2,0 + a:u Ay 61}1,061)270

+ a’:;l Ay, §v1,06u2,0 + CLZI (07998 5u1’0502’0)
(2.50) + 22 Ay oy Oy 000, 0 + 2205, @5 Gz 00050 + s, Q% QuiyGoy-
An application of Lemma 2.4 allows us to compute the terms proportional to |z|?,
22, and Z2. Tt remains to compute the expectation of the last term in (2.50). Since

GB(2) ® Ghee is a quasi-free state, we can apply the Wick theorem (see, for example,
[54, Theorem 10.2]) and find

Tropes [ah, @), Gy, GB(2) @ Giree)
=Trzpoz [0y, 0u,GB(2) ® Ghree] Trzpe.7, [a), 00,GB(2) ® Giree]
+ Trapes [ah, a4, GB(2) ® Ghee| Trzpoz [0, au,GB(2) @ Ghredl
(2.51) + Tr gy [a) ) Ga(2)] Traz, [au,au, GB(2)].

The claimed identity in (2.48) follows when we apply Lemma 2.4 to compute the
expectations in (2.51). d

Our last preparatory lemma contains bounds for the 2-, 3-, and 4-pdms of T'y.

LEMMA 2.9. The state T'g in (2.7) satisfies

Z ‘TrgB@% [ailailamamfoﬂ < N?,

u1,v1 €PL
u2,v2€ P

3
Z |TI‘9B®91 [ajlazzazsaulawawfoﬂ <N’  and

uy,u2,ug€PL
v1,v2,v3E€EPL

* ok k% 4

(2.52) g | Tr o 0.9, [avlav2av3a1,4au1au2au3au4Fo]| < N*.
u1,u2,u3,us € P,
v1,V2,03,04 €PL
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Proof. The first bound is a direct consequence of Lemmas 2.6, 2.8 and C.3. To
prove the second and the third bound, we first need to compute the 3-pdm and the 4-
pdm of I'y as in the proof of Lemma 2.8. Afterward, applications of the same lemmas
prove the claim. Carrying out these steps is straightforward but a little lengthy. We
therefore leave the details to the reader. ]

3. Bound for the energy. We compute now the expectation of the Hamil-
tonian Hy, defined in (1.5) and (1.3), on our trial state. The main result of this
section is Proposition 3.1 below. This, together with Proposition 4.1 for the entropy
contribution (in section 4), will be the main ingredient to prove Theorem 1.1.

PROPOSITION 3.1. Assume that v : [0,00) — [0,00] is nonnegative and compactly
supported and satisfies v(|-|) € L3(A, dx). Let T be defined in (2.13) and 3 = k8. with
k€ (0,00). Then we have

(3.1) Tr [HNT] — By S L %Eny,
where

Buy = v*1(0)+00(B,N.L) > (on  f)(0) (1(p) + ()

pEPRUP; pEPB
+dranL? U 2*(z)dz+2Ng D y(w)+2No Y ¥(9)
C u€ePL\{0} qePr
(3.2) +2 ) v(v)v(U)]
w,v€ P \{0}
and
(3.3) Epppy = N0 NOut200 4 N1/SHont20n 4 N1/3 40,

The functions v(p) and a(p) are defined in (2.24), the parameter No has been intro-
duced in (2.9), and 0o(B8,N, L) = No(8,N,L)/L? with No(8,N, L) in (1.13).

To prove Proposition 3.1, we split the Hamiltonian into two contributions: We
define

(3.4) K= Z praay and VN = 33 Z ON(P) a4 pQy—pQuty
pEAT DU, vEA*

so that Hy =K + V. We have therefore

1+B Y (K + V) (L + B)iba)
ZA (14 B)ba, L+ B)ta)

(3.5) Tr[HNT] = =0k + Gy.

We will prove Proposition 3.1 in section 3.3, using the results of Lemma 3.2 below
for the analysis of Gy and Lemma 3.3 for the analysis of Gi.

3.1. Analysis of Gy,. In this section, we prove an upper bound for Gy, as stated
in the following lemma.

LEMMA 3.2. Under the assumptions of Proposition 3.1, we have

(3.6) Gv — By, SL7(N'7% 4 N3 4 NO),
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where
dmray 87TC1NN
Byy = IE / |21%¢(2) dz + TO Z v(uw)
C
ue P \{0}
NO A 7 8man
+ 70 Y v fvm) [ +a@] + 75 D @)
P,aeA” u,wePL\{0}
1 A~
+ 276 Z Tp, |:'UN(p1 +uy — ug)
p1€Py
u1,v1,u2,v2€ P
1 3 * %
(37) + ﬁ Z ’UN(pl +po+up — u2)77p2:| Tr[avlaulav2au2]_"0}.
p2€Pu

The functions y(p) and a(p) are defined in (2.24).

Proof. Recall definition (2.12) for B. Acting on v, (i.e., the eigenfunctions of I'y,
defined in (2.7)) with annihilation operators of momenta in Py gives zero. Therefore,
(Vas Bha) = (o, B* o) =0, and we can estimate the denominator in (3.5) as ||(1 +
B)Ya|I? = (¥a, (1 + B*B)1,) > 1 so as to have the upper bound

(38) Gv <Y Ao o, V(L4 B)ta) + > Aa (o, BVN (1 + B)a) = G + GF.
With definitions (3.4) for Vi and (2.12) for B, we write

(1) _ _ 1 N * *
Gy’ =Tr[Vn(1+ B)lo] = 313 Z 0N (p1) Trlag, +p, @5, —p, Guy @0, Lo
p1,u1,v1 EA*
1 ~ * * * *
+ 4L56 Z ON (P1)ps Tr[ag, 4 p, 05, —p, Qg Gy Gy, O, Gy Gy T
p1,u1,v1E€A"
pi2€ P, uz,v2€ P,

(3.9)
=g\t +g(h?.

Using the commutation relations (2.3), we bring the monomial a,, a,, aj,, St Qg —py 111

Q‘(/l 2 to normal order. When we exploit again that acting on I'y with annihilation
operators of momenta in Py gives zero, we remain with

12 _ 1 3 .
gV - 2L6 UN (pl)n;DQ
p1,u1,v1EAT
pi2€ Py, u2,v2€ P
* *
(3.10) X Trlay, 4y @y —py Cug Qs L0000y 05— py Oy s s

where in addition we used the symmetry under exchange of w; with v; and p; with
—p1. We add and subtract the contributions where po € P5 = {p € A* | |p| <
N1=%/L}; using the definition of 1, in (2.11), we find

1
1,2 5 * -
g\(/ )= _ﬁ Z UN (pl) Tr[aur‘rpl Gy —py uq Qo, Fo]
p1,u1,v1 EAT
1 X ; - ;
+ ﬁ Z UN (pl)fN(p2) T‘r[au2+1)z+p1 Gy —pa—p1 Puz Gy FO]
p1EAT

pis€A", uz,v2€ Py,
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1
~ * *
(3.11) T 576 E : ON (P1)1ps Tr[@50; 4 papy @ —po—py Gz G0s L0
P1,u1,01EA"
pi2€P, u2,v2€PL

The first contribution in (3.11) cancels with the first contribution in (3.9). In the
following, we denote the second and the third terms on the r.h.s. of (3.11) by Gy and
8‘(,1 ), respectively.

Using Lemma 2.9 to estimate the trace, (A 9) to estimate the sum of 7,, over p,
and the bound |on(p1)| < [vn(z)de S LN, we see that

N1
IS()IQLﬁ[Sup o (p1)| } > 1l

p2€PG

-2 1—6yu
(3'12> X E : ‘TI‘ Gy tpa+p1 @ U2 P2— Plau?av2F0”§L N :
p1EAN" Jus,vaE€ Py,

We consider now Gy ; we compute the trace using Lemma 2.8 and obtain

Go =55z 30 onlnin(en) o [ 1516021 0s

p1,p2EAT
+2No0p, 4ps .0 Z v(u) + 2Noy(p1 + p2) + 2Noou(p1 + p2)
ue P \{0}
+ Y alwtpr+p)a(w) Fopimo Y, Y)W
ueP\{0} u,ve P \{0}
8
(3.13) + > utpat+p)y } Z
ue P \{0} j=1
Using (A.3), we see that
- L3 L3
(3.14) > in(p)fnp) =5 [ v(@)f(x)de == (87a+ CL/N),

pEA*

and therefore the first contribution in (3.13) satisfies

(3.15)  Gyi— LG S ow o) fn (v /|z| C(2)dz < NL3/|Z| C(2)dz+CL™

peEA”

To obtain a bound for the integral over |z|*, we applied Lemma C.3.
We consider now Gy 2. From ZueAi ~v(u) <N and (3.14), we know that

(316) Gra="0 Y on)in() Y A< 0 S w4 L

pPEA” uePL\{0} u€PL\{0}

holds. The sum of g~v,3,g~v,4, and Q~V’5 is left untouched, i.e.,

(317) Gyt Gvatlvs=—0 3 inlo—a)fn(p) ra) + (o).

P,gEN”
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Next, we consider gNV,G. From (A.3), it follows that

. K CL
(3.18) sup Z On(Q)In(p—q) SW 87m+W ;
pEA qeEN*

using in addition (2.30) and dp < 1/3, we see that

5 1 . ; —2n71/3
(3.19) |gV,6|—m Z on(q)fn(p—q) Z a(u+pla(u)| <CLT=NV".
p,qEA” u€Pp\{0}

Using (3.14) and (3.18), we see that the last two terms in (3.13) are equal at leading
order:

G +-Gvs= g5 3 G Y @)

peEAN” u,v€P\{0}

+% > (g fnip—q) Y. Au+pn(w)

p,gEN” uePL\{0}

8ma -
(3.20) < N3 Z v(v)y(u) + CL™2,
w,v€ P \{0}

It remains to consider Q‘(,Q) in (3.8).
To that end, we write

(3.21) G = Tv[B*Vn (1 + B)[y] = Tr[B*VnTo] + Tx[B*Vy BTy] = G2 + G2,
We have

. 1
BVN:m Z Mpa

p1E€Py
u1,v1€PL
~ * % * * .
(322) X E UN (p2) Ayyy Qoyy Qg 4p1 Qvy —p1 g 4o Cvg —py Gva Quy s
P2,u2,v2 AT
commuting @, +p, @v, —p, to the right and observing that only the contributions with
V9, U2 € P, give a nonzero contribution, we arrive at

1 .
g\(/m):ﬁ Z Mpy Z on(p2)

p1E€PH p2EA”
u1,v1€PL u2,v2€ P,

* *
X Tr[a’vl Ay vy Qg F0]6u2 +p2,u1+p1 61}2 —p2,v1—p1
1

(323) = ﬁ Z Mp1 ﬁN (pl +uy — UQ) Tr[af)l azlam (27 FO]dvzﬂn +vi—uz-
p1€EPH

u1,v1,u2,v2€ P

This term contributes to (3.7). Note that 0y, 4, +v,—u, can be dropped here because
T'y is translation invariant.
To compute g‘(/2’2), we need to study

1
* — ~
B'VNB = ]L9 § : nP1UN(p2)77P3
P1,P3€Pu
u1,v1,u3,03€PL
pia,uz,v2,EA”

* * * * * *
(3'24) X Gy Q) Qug +py Qv —py Oy +p2 vy —pg Qva Aug Aoy 4-ps Qyg —pg Qvg Qusg -
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We bring the monomial a,,au,a;, . ay._,. to normal order; the symmetries under
exchange of uy with vy and of us with vs and n_,, =n,, allow to organize the result
of the commutation in the following three contributions:

(3.25) G =1+ Ja+ 3
with
1 .
Ji:= SF Z nplvN(pQ)nps
P1,P3€Pu

u1,v1,u3,v3EPL
; %
pi2,uz,v2,EA

* %k * * * *
x Tray, az,, Guy+py Coy—py Qg 49y Gy — o G +ps B — g Vo3 Qi Qo Qg L5

1 .
Jo: Z Np1 VN (p2)77103

2L°
P1,p3€PH
Ulgvhus,vgePL
piz,uz,v2,EA"

* * * * *
x Tr [avl au1 Auy +p1 Ao,y —P1 au2 +p2 a'Ug —p2 au3+p3 Ay Az Qug F0]5U2 ;U3 —P39

1
J3i=— E ON (P2)p:
4Lg 77p1 ( )77103
p1,p3E€Pu
u1,v1,u3,v3E€PL
pia,uz,v2,EA"

* * * *
(326) x Tr [a’vl a’ul Quy+p1 vy —py au2 +pa a’vz —pa Ayg Qg FO] 6u2 ,U3—P3 61}2 ,uz+ps -

In Jy, we bring the monomial @y, p, Gvy —p, @554 p, Gy —p, t0 nOTMal order; using that
we obtain zero when we act with annihilations operators of momenta in Py on I'g and
exploiting the symmetry under exchange of v; and u;, we obtain

1 .
Ji= m Z "7171’UN(p2)77p1+u1*u3
p1E€PH

u1,v1,us€PL
! A
Pi2,u2,v2,C

* % % *
(3.27) x Tr[ay, az, @z, o @y — py @os Qs Qo 4y —1uz Qs o)

When we apply Lemma 2.9 and the Cauchy—Schwarz inequality and use the bound
in (A.8) as well as |onx(p)| < LN, we see that

L
x % * *
|J1| S NL® z : ‘ Tr[am au1au2+p2av2—1)2av2au2avl+u1—u3au3F0}‘
u1,v1,us€PL
piz,uz,v2,EA"

X Z |np1np1+u1*u3‘
p1E€PH
(3.28) <SLT2N%H

holds.
In Jz, we bring the monomial ay, +p, @y, —p, @y, 1, t0 normal order (so we obtain

zero when ay, . acts on I'g since ug + p3 € Py) and find

1 R
J2=75 > N On(p2)np,

P1,P3€PH
u1,v1,u3,03€E€PL
piz,ug,v2,EA"

* * * *
(3'29) X Tr[avl a’ul Ay —py auz +p2 avz —p2 Qg Qyg Aoy g FO] 61)2 ,U3—P3 6u1 +p1,uz+p3-
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Now we normal order ay, —p, ay,, 4,0 with the aim of commuting a,, —,, to the

right since vy — p; € Py), obtaining

'T)2 —Db2 (

2 .
Ja=15 > N (),

P1,P3€PH
u1,v1,u3,V3€ Pr,
piz,uz,v2,EA"
* * *
X TI‘[G,UI aul au2+p2 auzavsauaro]évm%*?a 6u1+P17u3+P36v1*P17U2*P2
2 .
= ﬁ E Np1 UN (1)3 +uz — v — ul)np1+ulfu3
p1E€Pu
U1,V1,U3,V3,u2 € PL

(330) x Tr [azl aq*“ a:2 —v1 vz —u1 +ug Yuz Qvg Qug FO] :
Again we exploited that v, can be exchanged with u; and vo with us. Using Lemma 2.9,
(A.8), and |ox(p)| £ LN, we obtain the bound

(3.31) |Jo| SLTEAN—1H0m,

Normal ordering of @y, +p, @v, —p, a5, 4 p, @y, —p, and analogous considerations as above
lead to

1
T3 = 21,9 E : M O (P2) ps
p1,P3€PH
u1,v1,u3,v3E€PL
pig,ug,v2,EA”
* *
X Tr[avl aul Qug ausro]éuz,vsfp36v2,u3+p3 61}1 *P1,U2*P26u2+172’u1+;01

1 A~ * *
(3.32) = Z Np ON (p1 + P34 uz — v1)np, Trlay, ay, Gy, 6y, Tol.

219
P1,P3€Pu
u1,v1,v3,u3€EPL

We combine J3 with g‘(f’l) in (3.23) and obtain

1

g‘(/271) + J3 = TLG Z ’I’}pl'[JN(pl +up — UQ) Tr[a:jl a;l av2au2ro]
p1€PH
u1,v1,v2,u2€ P,
71 3 * %
+ 27,9 Z Npy ON (P1 + P2 + Uz — v1)np, Tr[ay, ay, Gy, @y, o]
P1,p2€Pu

u1,v1,V2,u2€ Py,

1
=576 ) M [@N (p1+u1 —u2)
p1E€Py
u1,v1,u2,02€ Py,
1 .
(3.33) + m E ON(p1 + P2 +ur — ug)mp, | Trlay ay, ay,au,To).

p2€Pu

In the last line, we used the symmetry under exchange of v; with u;. Collecting the
results of (3.8), (3.15), (3.16), (3.17), (3.20), (3.21), (3.25), (3.33) and the bounds on
the error terms in (3.12), (3.19), (3.28), (3.31), we obtain (3.6). d

3.2. Analysis of Gxc. We recall the definitions of K in (3.4) and Gk in (3.5). In
this section, we prove an upper bound for Gi, as stated in the following lemma.
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LEMMA 3.3. Under the assumptions of Proposition 3.1, we have

(3.34) Gk — Ex SL72(Not2e 4 N=1/3F0nt200 4 N1/31n(N))
with
(3.35)
1
Ex = Z p27(p) + ﬁ Z Mpy (pl +ur — u2)277171+u1*u2 Tr[avla’ula’vzau2ro]'
pe Py, p1€Pu

w101 ,ug,vs € P,
The function v(p) is defined in (2.24).
Proof. Tt is convenient to introduce the operators

(3.36) Kg= Z an;ap, Ki= Z anZap, and Ks = Z pza;;ap
pEPs pEP pEPE

and to denote the corresponding expectations w.r.t. I' by Gk, Gk, k., i.e.,

Z)‘ (14 B)tha, (Kg + K1+ K5) (1 + B)a)
(14 B)ta, (1+ B)by)

In the next subsectlons7 we will prove upper bounds for Gx,,Gx,, and Gx.. We will

need to compute the commutators of K; and K- with B. Indicating with Py either
P; or PY and with Ky either K or K., we will use the result

(3.37)

=0kp + 9K, + k.-

1
KpBl=srs > aPmplejagalyoi_ 0]

qE€E Py ,p€ Py,
u,vE Pr,
1
_ 2 k% * *
(3.38) =73 E q-np <5q7u+paqav_pauav — g auﬂ,av_pavaq),
q€ Py ,p€ Py,
u,vE P,

where we exploited the symmetry 1, =n_,.

3.2.1. Analysis of Gx,. Using the positivity of Kg, we estimate the denomi-
nator by one; observing that (1, (B*Kp + KpB)),) vanishes (because the creation
operators in B commute with Kp and give zero when acting on 1,,), we have

((1+ B)tho, Kp(1 4+ B)tha)
ZA (L% B)ba, (11 B)io)

SZ)\Q <"/}av Zp ay ap ¢a>+z>\a<¢mB*’CBB¢a>

pEP

(3.39) = D P*(0) + Eky

pEPB
To estimate the error term in (3.39), we contract the annihilation operators with
momenta in Py in B* with those in B and obtain

1
|57C13| = Z q Npy Tlpy +uy —us Tr[aul vlaqaqauzau1+v1—uzro]

2L6
p1E€EPH,qEPE
u1,v1,u2€ P,

N —3+0u+208

(3.40) < — 7z Z | Trlay, 1,1aqaqamaul_s_vl_u21“0}| < LT2NOut2om,
q€Ps

u1,v1,u2€PL
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The inequalities follow from |q| < N%8 the Cauchy-Schwarz inequality, the bound in
(A.8), and Lemma 2.9. We therefore have

(3.41) — > pPy(p) SLTENTs,
pEPp

3.2.2. Analysis of Gi,. Here we need to exploit crucial cancellations between
the numerator and the denominator. To that end, we commute Kj to the right and
obtain
(3.42)

gICI — Z /\a <(1 + B)¢a7K1(1 + B)¢o¢> — Z)‘u <(1 + B)¢aa (1 + B)’CI"r/)a> EQK
(1+ B)tpa, (14 B)va) (14 B)¢a, (14 B)a) '

with

wav 1+B*)[K1a ]wa>
3.43 Eg. Aa
(343) 9t Z (14 B)tpa, (1+ B)tha)”
Let us introduce the notation 1, = a0y ® Ve, With a = (a1, a2), where &,, and v,,
denote the eigenfunctions of Gg and Giee, respectively. Calling E,, the eigenvalues
of Kt so that Kivy, = Eq,Va,, We see that

(344) gICI = Z )\ocEaz + SQKI

holds. That is, we have fully canceled the contribution from the correlation structure
in the numerator and the denominator in the first term on the r.h.s. of (3.42). This
is necessary because the operator Kp is responsible for a contribution of the order
L™2N5/3,

Next, we estimate g, . With (¢, [K1, Bltba) =0 and [[(1 + B)¢a || > 1, we find

1/%17 []Ch
(345) |Gy |= ZA 1+Bwa7(1+B ZAlwa, *[K1, Bltba) |-

When we contract the high momenta in B*[K, B], we see that the inner product
inside the absolute value equals

(3.46) 1
<wa7 B*[ICD BW)a) -y Z u2 Np1+v1—u2Tlpy <1/Ja7 au1 av1 auzaul+vl—uzwa> .

L6
u1,v1€PL
pi1€Pu,u2€Py

Applying the Cauchy—Schwarz inequality, using (A.8), and estimating |us]
N3+ /T, we find

ZA | (Yo, B*[K1, Blta) |

2
LG ZA Z waaaul vlauzaul+vl—u2wa>| Z |77p1+u1—u277p1 u2|

u1,v1€EPL p1E€Py
uz € Py
—2A7T—T/34+0u+26 * %
(347) SL°N /3+out20n § Ao § |<wmaulavlauzau17v1+uzwa> |
o uy,v1 €EP,
uz€ Py
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We observe now that since us € P, at least one of the momenta u; or vy needs to
be in P (this is due to the fact that the eigenfunctions of Gfee are symmetric tensor
products of plane waves). Let us assume without loss of generality that v; € P. We
distinguish now the three cases u; =0, u; € Pg, and u; € P.

If u; =0, then v1 —ug = 0 (this again follows from the structure of the orthonormal
set {ta}aen), and the expectation <wa,a3a22au2aowa> is positive. In this case, we
estimate the sum on the r.h.s. (3.47) by

Z)\a Z <¢a,a3a22au2aowa>: Z Tr [QSQZQG‘UQG’OFO}

«@ ug €Pr ug € P
/Trg:o [ajao|2)(z|]¢(2) dz Trg Z ay, Ao, Gfmc]
UPISI &

(3.48) /|z| C(z)dz 7(u2)§N2.

uzGPI

To obtain the last inequality, we used No+ ZpeA* ~v(p)=N.

In the case u; € Pg, we have v1 = us and uy — vy +us = uq because Gg and Giree
are both translation-invariant states. In particular, the relevant expectation value is
again positive. Using (2.31), we obtain the following bound for the sum on the r.h.s. of
(3.47):

ZA > (a0, Gy @y oy s o) I—ZA R (N )

u1 €Pp u1 €Pp
v1,u2€R uz € P

(3.49)
((z)dz Trg, < NB/3+%m,

*
§ au2 Ay Gfree

uz € P

/TrgB [Z al ay, Gu(z)

u1 €Pp

To conclude the discussion, we examine the case uy; € P;. This implies that
u1 — v1 + us € Pi. Moreover, we have that either v; = uy or u; = uo; in both cases,
the expectation is positive. An application of Lemma 2.9 shows that

2
3 50 Z)\ Z wa7aul uga‘u2au1w0¢ = Z Trﬂl |:au1 uzauzaul I‘()} § N
u1,u2 € P u1,u2 € Py

as a bound for the sum on the r.h.s. of (3.47).
In combination, (3.45), (3.47)—(3.50), and 0 < 1/3 imply that

(3.51) €01, | S "2 N 1/3+6u+26r

as well as

(3.52) |Gxc, — Z)‘aEaz| = |Gk, — Z p*Y(p)| S L72N- 1/3+6u+251
@ pEP

To obtain (3.52), we additionally used (3.44) and Lemma 2.4.

3.2.3. Analysis of Q';C> . In the analysis of Gx. , we estimate the denominator
again by one. When we additionally commute K< to the right, we find

<Z)\ (14 B, Ks (1 + B)ta)

(3.53) ZA (14 B)tha, (14 B)Kstba) +ZA (i, (14 BY)[C>, Blba) -
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The first contribution clearly vanishes because it contains annihilation operators with
momenta in Pf acting on t,. Using additionally (3.38), we see that

(3.54)

1 2
2 * * * * .
[K>,B]= 3 E D Np gy Qg Qg Qy + Ve E Np U D Oyg QO Oy = Ky + Ex,
pEPu pE Py
u,vE P, u,v€E Py,

which implies that
(3.55)  Gro <) Aa (Yo, (14 B*)(Ky + Ex)tba) = Tr[B*K,To] + Tr[B*ExT].

When we contract operators with high momenta, this allows us to write the first term
on the r.h.s. as

N 1
Tr[B ICWPO] = 6 Z Tlp: Z p%npz
p1E€PH p2€ Py
u1,v1 €P, u2,v2€ Py,

* %
X Tr[a’m Qopy Avg Qo FO} 5u2 +p2,u1+p1 51}2 —Pp2,V1—P1

1 2
= E E Np1 (pl +up — U’2) Np1+u1—us
p1€PH
u1,v1,u2,02€ P,
* %
(3.56) x Trlay, @y, Qv @uyT0]0uy, 00 +ur —us-

Because I'y is translation invariant, the factor d,, v, +u; —u, can be dropped. This term
contributes to (3.35).
We consider now the second term in (3.55), that is,

2
(357) Te[B'E&c Tol=15 D D Mpstus-wlpeP2 2 Trlay, 0, av,au,Tol.

u1,v1€PL, p2€PH
uz,v2€ P

An application of Lemma 2.8 shows that the trace in (3.57) can be written as
TI‘[B*(E‘]C Fo] :Dl + D2 with
Dy =2N,L™% > [(77;02 + Tl us ) s P2 - U2 (u2)

p2€Pu,u2€Py,

+ NpotuaTlp P2 - U2 O‘(UQ)} s

D2 = 2L76 Z |:(77p2 + np2fvz+u2)np2p2 s U2 7(“2)7(’02)

p2€Pu
vz, u2€PL
(3.58) st ualpap2 -z av2)a(u) .
Let us introduce the set P,.:={p € A*:|p| >N}, where r > 1; for py € P, we have
1/2 1/2
(3.59) sup Y [po-ulipllp2l < [ D Impl® > gl | S LN
uehr p2EP, PEP; /2 qeEP;

which follows from the Cauchy—Schwarz inequality, (A.7), and (A.4) (the latter implies
that |V fn|z2 S L2N~1/2). Instead, for py € PS, (A.7) implies that
p2l(Ipa = [u)> ™~ N2~

L2
(3.60) sup > [y ipyullp2] S 55 sup

UEPLPQEPHQP,,C, uePby szPHﬁPf
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To obtain the second bound, we used |p2|—|u| 2 1, which follows from the assumption
0, + 0m < 2/3. Using (2.30), (3.59), (3.60), and ég < 1/3, we conclude that

ID1| S (No/L°) sup D [npa—upalpl D lualy(us)

u€ Py,

p2€Pu uz € P,
+(No/L8) sup > [npy—unipa |lp2] D [ualla(us)|
ue L pa€Py uz € Py,
(3.61) < L72NY3m(N).

With similar considerations, we see that

1
|Da| < +5 sup |ps —uTlps || P2] lug|y(uz)y(v2)
L ue P

L poePy uz,v2€ Py,
1 B
(862)  + 75 sup S pautipllp2l D fualla(uz)a(ve)| S LT2NVEIn(N).

p2€Pu uz2,v2€P,

Collecting the results of (3.55)—(3.57) and the bounds (3.61), (3.62), we conclude that

1
2 * sk
glC> = *ﬁ E Tlp1 (pl +u; — UQ) Mp14u1 —us Tr[avl aula’vzauzro]
p1E€Pu
u1,v1,uU2,v2€ P,

(3.63) <L72NY3In(N).

The bounds (3.41), (3.52), and (3.63) imply (3.35) and conclude the proof of
Lemma 3.3. d

3.3. Proof of Proposition 3.1. The results of Lemmas 3.2 and 3.3 imply that
(3.64) Tr [HnT] = (Ex + Evy) SL7%EN
with Ey, in (3.7), Ex in (3.35), and
(3.65) En = N'70H 4 NOWFT2B o N-1/8H04200 L NS (N,

The terms Ey, + Ex can be written as

BetBoy= Y p0)+ 20 3 (o + fr) o)D)

pEPgUP; peP;
No o
+ 73 2 (o ) () (1) + a(p)
pEPR
4dma ~
(3.66) + LSN U 2% ¢(2)dz+ 2Ny > ) +2 > fy(v)'y(u)} +E;
Cc u€ P\ {0} u,ve P \{0}
with
1 9 1.
Ei = 76 Z Tlp1 [(pl +up — Ug) Np14ur—us + 7UN(p1 +up — u2)
L 2
P1E€PH
uy,v1,uz€ Py,
1 N * %k
(367) + ﬁ UN(pl +p2t+ur — u2)77p2} Tr[avl aulav2au2ro]‘

p2€Pu
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An application of the scattering equation in (A.6) allows us to write E; as

1 ~ A~
Bi=7 > {)‘N (Ljaj<e * fn) (p1 + ur — ug)
p1E€Pu
u1,v1,u2€PL

1 N * %
~ 5 Z ON (P14 P2 +ur — u2)np, | Trlay, ay, @y, @y, Tol

pZGPﬁ
(3.68) =:E11 + Eqa.
We now prove that
(3.69) |Eyq| SLTANTY24000/2 and By S LT2NT0m,
To obtain the bound for E11, we first note that (A.4) and fy <1 imply that
(3.70) > 1{aj<e * fn) (1) = [ Lja<efnl* S LP.
p1EAT

Applications of the above bound, the Cauchy—Schwarz inequality, (A.2) (which implies
that Ay <1/(NL?)), (A.8), and Lemma 2.9 prove the bound for E;;. An application
of (A.7) shows that

1/2 1/2
R L||?]| 0o 1 R L2
sup 3 oo + )y <200 5 7t (Z |vN<p>|2> (Z Np)

A ;
UEAT e Py ;‘DE‘PH7 peA Ip|>N
p|<N

(3.71) <SLANTL

The bound for Eq5 follows when we combine this bound, (A.9), and Lemma 2.9.
Next, we use (2.30) and (3.18) to estimate

(in+ )@ (0) < TR S () + 0L

qeEP; qEP;

N,
(3.72) L—g

Finally, we can replace No by No(8, N, L) in the second line of (3.66). More precisely,
we apply Lemmas 2.6 and 2.7 and (3.18) and find that the error term is bounded by

(3.73) w Y 1w = fx) @] (v(a) + lal@)]) ST2NYHe,
q€PB

In combination, (3.64), (3.66)—(3.69), (3.72), and (3.73) prove (3.1).

4. Bound for the entropy. In this section, we establish the following lower
bound for the entropy of our trial state.

PRrROPOSITION 4.1. There exists a constant C' > 0 such that the entropy of the
state T in (2.13) satisfies

(4.1) S(r) > /CS(GB(Z))((Z) dz + S(Gee) + S(¢) — ON~1+ou
with Gg(2) in (2.5), Gtee n (2.6), and where
(42 SO == [ cle)micte) dz

(o

denotes the classical entropy of the probability distribution ¢ in (2.8).
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The remainder of this section is devoted to the proof of Proposition 4.1. In the
first step, we estimate the influence of the correlation structure with the following
lemma. It appeared for the first time in [51, Lemma 2].

LEMMA 4.2. Let T' be a density matrix on some Hilbert space with eigenvalues
{Aataen, let {Pa}aen be a family of one-dimensional orthogonal projection (for which
P, Py, =0da, a,Pa, need not necessarily be true), and define I' =3 Ao Po. Then we
have

(4.3) S(I') > S(I') — InTr (Z PJ) :

An application of Lemma 4.2 shows that

(44) S(F) Z S(FO) —InTr <Z |¢o¢’><¢0/| F) = —In Z /\ ¢a7¢o¢ |

with T'g in (2.7) and As, ¢ in (2.13). Let us have a closer look at the term inside
the logarithm. Using ||(1 4+ B)yq|| > 1, B*, = 0, and the fact that {14 }aen is an
orthonormal set, we see that

Z)\oc ¢(xa¢a | <ZA waa 1+B*)(1+B)w0/>|2

=142 Aa(tba, B"Ba) + D Aalta, (B"B)*a)
(4.5) <140+ (14671 Tr [(B*B)Ty]

holds for § > 0.
The last term on the r.h.s. reads

4
(4.6) Tr[(B*Bﬁro]:ﬁ S I

pi € Pajui,v; €Pr i=1
x Tr [a 1a1)1 Quy+py Qv —py azz-i-pz a:Q—pQ Aoy Aoy aud 0’1)3
X Quz+ps Qvg—ps az4+p4 a;k)4fp4 Ay Aoy FO] :
Since no momenta in Py — P|, are present in the state I'g, we know that the operators
with momenta in Py — Pp, need to be paired among each other in order to obtain a

nonzero contribution. A short computation therefore shows that the r.h.s. of (4.6) is
bounded from above by a constant times

2

1
(4.7) Af g 1774 | E Tr [a}, @} Guy G,y @5, Gy @, Dol -
p,q€Pu+PL ui, v €PL

We apply the Cauchy Schwarz inequality and (A.8) to bound the proportional to 7,7,
by Y e putr, My S LONT3T01 Afterward, we use Lemma 2.9 to show that the second
factor is bounded by a constant times N*. When we put the above considerations
together, use dy, + oy < 2/3, and choose § = N 1% we find

(4.8) > X {barbor)|> <1+ CNHHOm

a,a’
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as well as
(4.9) S(I') > S(Iy) — CN~1Hom,

It remains to find a lower bound for the entropy of I'g.
To that end, we need the following lemma, which provides us with a Berezin—Lieb
inequality in the spirit of [7, 34].

LEMMA 4.3. Let {G(2)}.ec be a family of states on a (separable complex) Hilbert
space with eigenvalues go(z) and eigenvectors v, (z), a« € N, and let p : C — R
be a probability distribution. We assume that the functions z — go(z) are mea-
sumble that the functions z — vo(2) are weakly measurable, and that p satisfies
JoIp(2)In(p(2))| dz < +o00. Then the entropy of the state

(4.10) F:/C|z)<z|®G(z)p(z)dz

where the integral is understood in the sense of Lebesque w.r.t. the weak operator
topology, satisfies the lower bound

(411)  SI)> /C S(G(=)p(z)dz +S(p)  with  S(p) = /C p(=) In(p(2)) dz.

Proof. We use the spectral theorem to write
(4.12) |2)(z| © G(2) Zga 2 ©va(2))(z ® va(2)]-

Because G(z) is a state for fixed z € C, we know that {v,(2)}een is an orthonormal
basis. In combination with the completeness relation [ |z)(z|dz =1, this implies that

(4.13) /C; (W, 2 @ va(2)) Pz = 1

for any fixed vector w with ||w|| =1.
For x € [0,00), we define the function ¢(z) = —xIn(x) and denote by {wq}aen
the eigenbasis of I'. An application of Jensen’s inequality shows that

Tro(T) = g ((wa, Tura)) = g (/ 5 (20,2 8 v >>|2p<z>dz>
=3 /C S (00 (2)0(2) [t 2 ® v ()22
(4.14) - /C S olgar (2)p(2)) dz.

This is justified because x — @ (x) is concave and (4.13) holds. In the last step, we used
that {wa}aen is a complete orthonormal basis. With zyIn(zy) = zyln(x) + zyln(y)
for z,y >0 and ), gor(2) =1, we see that the r.h.s. of (4.14) equals the r.h.s. of the
inequality in (4.11), which proves the claim. ]

From Lemma 2.2, we know that the eigenvalues of Gg(z) are independent of z.
Its eigenfunctions can be chosen as U, (defined in (2.17)) times symmetrized products
of plane waves with a fixed particle number. Using (2.17), we check that they are
polynomials in z and Z and therefore weakly measurable. Accordingly, an application
of Lemma 4.3 on the r.h.s. of (4.9) and the additivity of the entropy w.r.t. tensor
products prove Proposition 4.1.
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5. Proof of the main results. Propositions 3.1 and 4.1 imply the following
upper bound for the free energy of our trial state:

Te[HnT] ES < 3 P Tes a7, Gruee] — %S(Gfree)
pEP!
+ [ (TG - 550D )z 4 3 20
pEPB
oy IERIOLER TR D DRSO PRI DRI
ue P \{0} u€ Py
(5.1) +2 ) y(v)'y(u)} +L72&,,.
u,v€ P \{0}

To obtain the result, we separated contributions with momenta in Pg and in P; and
used the definitions of v(p) and a(p) in (2.24). The Bogoliubov Hamiltonian #® and
the error term £y, are defined in (2.4) and (3.3), respectively. Using (2.27), a short
computation shows that the first two terms on the r.h.s. (5.1) can be written as

1
Z <p2 - MO) TT?I [a;aprree] - BS(Gfree) + Ko Z ’I‘r.?l [a;aprree]

pEP peEP
1
=——InTrexp BZ p? — 1) apap +,uoz
B o =7, exp(B(? fuo) 1)
1
(5.2) =— Z In (1= exp(=B(p* — o)) + 1o 5
PEPI peEP eXp(B(p B MO)) -1

with g in (1.12).
An application of Lemma 2.2 shows that the third term equals

(5.3) Ey+ = Z In (1 — exp(—Be(p))) .

B pEPE

We refer to the same lemma also for the definitions of Ey and €(p). One easily checks
that Ej is negative and can be dropped for an upper bound. Let us define

(5.4) E(p) = /D% — po\/p? — po + 16man 0.

The function z + In(1 — exp(—z)) is monotone increasing (z > 0). This and (3.18)
allow us to replace on * fx(p) in the definition of e(p) by 8ray(1+ C/N). Moreover,
a first-order Taylor expansion then shows that

5 Z In (1 — exp(—pBe(p 5 Z In (1 — exp(—p£(p)))

pEPR pePp
CNy p* — 1o 1
L2N? e exp(B(p? — o)) —1p?

(5.5)

Using (exp(z) —1)7! < 1/x for 2 > 0 and Jp < 1/3, we check that the second term
on the r.h.s. is bounded by a constant times 1/L2?. Moreover, from Lemma B.1, we
know that

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/29/24 to 131.114.118.26 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

UPPER BOUND FREE ENERGY OF THE BOSE GAS 2645

3 Z ln 1—exp( BE(p <* Z ln 1—‘3XP 5(]92—M0)))

pEPB ;DEPB

1
8
o ZP exp(B(p? — o)) — 1

16manoo(8, N, L) 1 <1 167TaNgo(ﬂ,N,L)>}
P e e G
(5.6) + % (oo 4 21300

holds.
Next, we have a closer look at the second term in the second line of (5.1). In
(2.38)—(2.41), we showed

1 NoL? N2
5.7 — 5 + —2,
7 pGZF;B (W(p) exp(B(p? — o)) — 1) NB  N?
and hence
5.8 < +CL2NY/3,
(5:8) CDIRCETDY exp(B(p? *Ho)) 1

pePp peEPR
To obtain the second bound, we also used —uo = In(1 + 1/Ny)/B < 1/(BNy) (which
follows from (1.13)). In combination, the considerations in (5.2)—(5.8) and 5 < 1/3
imply that

S P Tegn 050y Grreel — = (Giee) + /«: (T% HP G (2)] — ;S(Gg(z))) ((2) dz

pEP 5
+uo Y v(p)
pEPp
1
SB Z In (1 - exp(=B(p" — o)) + Z exp(ﬂ(pzﬂfu ) —1
pEPN{0} pePL\{0} 0
8TaN Qo
+
p; exp(B(p? — po)) — 1
Z 167TC1NQ0(5,N7 L) ln 1 + 167TC[NQ0(57N7L)
2B pens p? p?

(5.9)  +CL 2(N'Y3 4 N?/3-08),

In the first two terms on the r.h.s., it remains to replace the sums over P \{0} by
sums over A% . One easily checks that this can be done at the expense of an error
term that is bounded by a constant times L~2 exp(—cN?t) with some ¢ > 0.

The first and the second terms in the third line of (5.1) equal

~ 1

FBEC(B Ny, L,ay) =— 3 In </ exp (—B (dray L72|2|* — fiz[?)) dz>
C

(5.10) + [ilNo,

where the chemical potential fi is chosen such that the Gibbs distribution ¢ in (2.8)

satisfies (2.9). The first term on the r.h.s. is a concave function of . But this implies

that
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_% In (/C exp (-8 (dran L2 |z|* — fi|z|?)) dz>

(5.11) < —%ln (/C exp (-8 (47raNL*3|Z|4 — plz[?)) dz) + (1 — 1) No.

Here we also used that the first derivative of the first term on the r.h.s. equals —Np.

The identity No + > ,cp\(03 7(P) = N + AN allows us to bound the terms in
the last two terms in the third line and the first term in the last line of (5.1) plus the
third term on the r.h.s. of (5.9) as

4dma [ 9 9 5 o 1
5 |2N? = 2NG +2(Ng — Ng) +2No —2N0 > A
3 0 0 0 _
NL el exp(B(p? — o)) ot
(5.12) + CN%",

In the following, we denote 7o(p) = exp(B(p? — po) — 1)~!. Another algebraic manip-
ulation; (2.14), (2.24), (2.31), and (5.7); the bound Zpepc (p) < exp(—cN?%t) for
some ¢ > 0; and dg < 2/3,01, > 0 imply that

NG = NG <2No Y (v(0) =w@) +2 | D @) | Y (v(p) —70(p))

pEPB pEPR pEPp
+ ) (0@ =7@) D (7(p) +70(p)) + CIN'H 4 exp(—cN )]
PEPB pEPs
(5.13)  <2No » (v(p) —y0(p)) + C[N' o 4 NY/3+0m],
pEPp

A similar argument that additionally uses Lemma 2.7 and oy < 2/3 shows that
(5.14)  2No Y 70(p) —2No D 4(p) < —2No D (v (p)) + CN*/3+05,
pEB pEPB pEPB

When we collect the results in (5.12)—(5.14), we find that (5.12) is bounded from
above by

4ma
NL3

(5.15) Sma [

N3 No > (v(p)—%(p))} +CL™?[N% + N/3+08],

[2N2 - 2Ng}
pEPB

We combine now the second term above with the last terms on the r.h.s. of (5.10)
and (5.11); that is, we consider

[ 3 00— 0to) | + o - ).

5.16
pEPB

We distinguish two cases and assume first that Ny < N3/6+9 for some 6 > 0. In this
case, applications of (5.7) and Lemma 2.7 show that the first term in (5.16) is bounded
by a constant times L~2N'/2+°_ Inspection of (C.6) (recall that No = [[2|2¢(z)d»
shows that 1] < 1/(8No) + No/(L*N). We use this estimate, Ny > N?/3 (this implies
that, by Lemma 2.7, Ny 2 N2/3) and again Lemma 2.7 to bound the second term in
(5. 16) by a constant times L™2[N% 4 N~1/6+0u+d 4 N1/3+20] 1 Ny > NO/649 we
apply part (a) of Lemma C.1 to bound the second term in (5.16) from above by

8may L No(Ny — No) 4 C exp(—cN?)
(5.17) < —8manL™*No Y (4(p) — %0 (p)) + CN™.

pEPp
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To obtain the second bound, we also used >_  pec 7(p) S exp(—cN?%) for some ¢ > 0.
We highlight that the first term on the r.h.s. of (5.17) cancels the first term in (5.16).
We collect the above considerations, make the assumption 0 < § < 1/6, and find

(18) o {No Y () - 70(1?))] +7i(No — No) S L72[N%8 4 NV/2+9),

It remains to collect our results.
In combination, (5.9)—(5.11), (5.15), and (5.18) imply the final upper bound

TofaT] - 580 <5 3 hn (1 - exp(~8(0° — i) + (N — No)
peEAy

+ 87TaNL3(92 - Q%) + FBEC(BvN()vLa CIN)
1 16man00(5, N, L) 16man00(5, N, L)
- % Z |: p2 —1In 1+ p2

PEAY,
+CL—2[N1—5H + NOu+20 4 N—1/3+0u+20L
(5.19) 4+ NV/3+os 4 N1/2+8 4 N2/3-0m),

The parameters dr,,d need to be strictly positive but can otherwise be chosen as small
as we wish. The requirements o1, < 1/6,6 < 1/12 ensure that they play no role in
the optimization. The optimal choice oy = 1/2 — dp with error N/295 follows by
combining the first and the second terms. Moreover, the optimal choice ég = 1/12
results if we combine N'/2%98 and the last term in the last line of (5.19). This leads
to an overall error term that is bounded by a constant times L=2N7/12 « [=2N?/3,
We recall that the above bound holds under the assumption Ny > N2/3.

We now prove a second bound with another trial state (see also Remark 1.4(g))
that holds without a restriction on Ny (it, however, captures the correct behavior of
the free energy only if Ny < N/ 6). As an undressed trial state, we choose the Gibbs
state

__ exp(=p(dl(=A — o))
Trz[exp(—F(dT(=A — po)))]

(5.20) Go

We define the dressed trial state I' as in (2.13) with I'g replaced by Go. To obtain
an upper bound for the free energy of I', we can use a simpler version of the above
proof. This is related to the following facts: (a) A coherent state in the definition
of our trial state is not needed, and the pairing function of Gy equals zero. (b) The
eigenfunctions of Gy are also eigenfunctions of dI'(—A). Accordingly, the special
treatment of momentum modes in Py at several places in the proof is not needed. (c)
Since [Go,N] =0, we have Tr[NT] = Tr[NGo]. We therefore simply state the result
and leave further details to the reader,

~ 1 ~
(5.21) Tr[HNT] — BS(F) < Fy(B,N, L)+ 8rayL3p? + CL™2N/?

with Fy defined above (1.15).
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We are now prepared to provide the missing proofs in section 1.6. Theorem 1.1
follows from (5.19), (5.21), Proposition 1.2, and fact that the absolute value of the
term in the third line of (5.19) is bounded by a constant times NZ/(8N?). The proof of
Proposition 1.2 is provided in Appendix C; see Proposition C.2. Finally, Corollary 1.3
is a direct consequence of (5.19), (5.21), and Proposition 1.2.

Appendix.

Appendix A. The scattering equation. In this appendix, we collect some
known properties of the finite volume scattering equation (2.10). It is convenient to
define f(Nz)= fn(x), where f satisfies the eigenvalue equation

(A1) {A%}f—w

on the ball |z| < N{ with Neumann boundary conditions. It is normalized such that
f(x) =1 holds for |z| = N{. By scaling, we have N?)\; = Ax. In the next lemma, we
collect the properties of fy, f, and Ay that are useful for our analysis. The proof can
be found in [10, Appendix A].

LEMMA A.1. Letv € L3(R®) be nonnegative, compactly supported, and spherically
symmetric. Fizx0<{<L/2, andlet f denote the solution to (A.1) and fn the solution
to (2.10). For N €N large enough, the following properties hold true:

1. We have

3a
(NE)3

(A.2) A= (1+O(a/fN)).

2. We have 0 < f; <1. Moreover, there exists a constant C >0 such that

2
(A.3) '/v(x)f(x)dx — 8ma| < %
3. There exists a constant C >0 such that, for all x € R3,
(A1) 1 f(z) < and  |Vi(z)| < —C
' T 1+ |z ~14a2?

4. There erists a constant C >0 such that, for all p€ A7,

—

(A.5) |(1*fN)(p)|§N7pQ~

By definition (2.11), the function 7, = —(1/—Ev)(l?) solves the equation

n(p 1 . AN ; A
a6t S =Y Y v )i,
qeEN* qEN*

where ]Almg ¢(q) is the Fourier coefficient of the characteristic function of the ball with
radius ¢. Note that we have reinstated units in (A.6). Moreover, by (A.4) and (A.5),
we have

L

(A~7) |77p| S W
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Inequality (A.7) implies that

(A.8) > Inp|? S LON—3+0m
pEAL:|p|>F N1 —%H

as well as

(4.9) S Il LN,

peEPy
where Pg denotes the complement of Py in (2.1).

Appendix B. Bogoliubov free energy. The goal of this section is to prove
the following lemma.

LEMMA B.1. We consider the limit N — oo, 8 = kf. with k € (0,00) and B. in
(1.14). Recall definitions (2.1) for Pg and (5.4) for &(p). There exists a constant
C >0 such that

(B 1)
3 Z In (1 — exp(—B&(p <— Z In (1 — exp( (—B(P* — po)))
pePr pGPB
1 16man 0o 16man 00
+87TONQO Z B Z |: —1In (1+2>:|
S5 exp(B? — o) —1 5 e L P’ p
LONEN® 11
N2 L2 6N6]3 BQNO

Proof. We first assume that pg =0 and then comment on how to adjust the proof
to po < 0. Let us define the function

(B.2) Fla)= Y m(1-exp(-plvp2+a)).
pEB/2Pp

For o« = 16man B, it equals S times the left-hand side (Lh.s.) of (B.1). In the
following, we derive an asymptotic expansion of F' for small values of a. We also
define the functions

1 1
B.3 - d - -
(B.3) 91() exp(z) —1 and g () 4sinh®(z/2)
and note that the bounds

1 -1 C
(B4) g1 (l‘) Z ; -C and gg(l‘) S F + ;

hold for 0 < & <1. The first and the second derivatives of F' can be written in terms
of g1 and g2 as

Fl= Y o (blviFrae) —2—

peﬂl/zPB 2+Oé
1
(B5) Flle)=1 3 {92 (v +a) 5 (IPIM> o) 3/2}7
peB1/2PB
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and hence
Flo) = FO0) - FOa=1 [© 5 o (P 1)
pEB/2 Py
(B.6) -0 (|p\\/ 2+t ) f't 3/2](a—t)dt.

It remains to investigate the r.h.s. of this above identity.
Using the bounds in (B.4), we see that it is bounded from above by

(B.7) —7/ > dt+0a/ > pﬂmdt

651/213 651/213

Here, the integral in the second term is bounded by

a a _ L*aN°®s
B.8 = In(l+—= )< -
By Y [as ¥ w(h8)s ¥ gt

pEBL/2 Py peEBL/2 Py
A straightforward computation also shows that

(B.9) /Oam&:;—an—i—;).

In combination, (B.6)—(B.9) imply that

0B
(B.10) F(Oé)—F(O)—F’(O)aS—% 3 {O;—ln<1+;)]+CLQC§N.
peB/2 Py

Finally, using In(1 + z) >z — 2%/2 for z > 0, we see that

2L4
(B.11) 3 [O;—ln<1+;>}262 3 4”52N63'

pEB/2PS pEP

When we put our findings together, we obtain a proof of (B.1) if ;19 =0 (the last error
term excluded).

If o < 0, our proof applies without changes, and we obtain the second term in
the second line of (B.1) with p? replaced by p? — po. It is not difficult to check that
the difference between these two terms is bounded by a constant times NoL?/(52N?),
which proves the claim of the lemma. 0

Appendix C. Properties of the free energy of the condensate. In this
appendix, we prove several statements concerning the effective condensate free energy
n (1.18), one of which is Proposition 1.2. The other statements are needed for the
proof of Theorem 1.1. We start our discussion with a lemma that provides us with
the asymptotic behavior of the chemical potential.

LeEMMA C.1. We consider the limit N — oo, 8 = kf. with k € (0,00) and S. in
(1.14). Let g be the Gibbs distribution in (1.19), and assume that [ |z]*g(z)dz =M.
The chemical potential v related to g satisfies the following statements for a given
e>0:
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(a) If M > N°/6%¢ then there exists a constant ¢ >0 such that
(C.1) | —8ranM/L?| S L2 exp (—cN°).

(b) If M < N°/6=¢ then we have

1 N2
<
(C.2) ’quﬁ S

Proof. We write the two-dimensional integration over C w.r.t. the measure dz =
dzdy/m in polar coordinates (r,¢) and afterward introduce the variable z = r2. This
allows us to write

_ IS wexp (=B (ha? — px)) da
[ exp (5 (ha? — pua)) dz

where h = 4may /L3 ~ L=2N~1. A short computation shows that the integral in the
numerator equals

I B \/Bu
(04) % + E %GXP <4h> erfc (— h2> y

where erfc(z) = (2/y/7) [ exp(—t?)dt denotes the complementary error function.
For the integral in the denominator, we find

- 2
(C.5) % 3 exp (i’i) erfc (\/Eﬁ) .

Let us introduce the notation n = u+/8/(4h). Using (C.4) and (C.5), we bring (C.3)
to the form

1+ mnexp(n?erfe(—n)
(C.6) VrBhM = exp(n?)erfe(—n) T

(C.3) M= /C 1229 (2) =

The function T is strictly positive and strictly monotone increasing and satisfies
YT(x) — 0 for © — —o0 as well as Y(z) — +oo for x — oo. In the following, we
study the asymptotic behavior of the (unique) solution to this equation. We start
with the parameter regime M > N%/6+¢ which implies that v/7BhM > N=.
In this case, the Lh.s. of (C.6) diverges in the limit N — oo, and hence n — oo.

From [1, equation (7.1.13)], we know that
o 1

exp (—tz) dt <

(C.7) S ——F———=
x+\x?+4/n

. ——
holds for > 0. In combination with erfc(—n) =2 — erfc(n), this implies that
2
Vr (n+ Vi + 47

(C.8) <2exp (1°) —

2exp (n°) — ) <exp (n°) erfe(—n)

2

ﬁ(n+\/m)
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as well as

\/%M _ 14/ [Qexp (r]Q) + O(l/n)] .

(C.9) 2exp (n2) +O(1/n)

We already know that 7> 1, and hence n ~ +/BhM. Using this and our assumption
M > N5/6+¢ which implies that 7 > N°, we easily check that (C.1) holds. It remains
to prove (C.2).

If M < N5/6=¢ the Lh.s. of (C.6) satisfies /7BhM < N, and we therefore have
n — —oo. To obtain the leading-order behavior of 7, the approximation provided by
(C.7) is not sufficiently accurate. A more precise approximation is provided by [1,
equation (7.1.23)], which implies that

> L - 3
(C.10)  /mexp(z®)erfe(x) = o +Q(z), where @ satisfies |Q(z)| < e

for x > 0. We use this approximation in (C.6) and find

1
(C.11) MﬁhM:m(HO(n*?)).
Equation (C.2) is a direct consequence of (C.11). This proves our claim. 0

We are now prepared to give the proof of Proposition 1.2. Because of technical
reasons, we prove it in a slightly more general situation.

PROPOSITION C.2. We consider the limit N — oo, = k. with k € (0,00) and
B in (1.14). The following statements hold for given € > 0:
(a) Assume that M > N°/6t% There exists a constant ¢ >0 such that
(C.12)

In (48ay /L3
FBEC(B, M, L,ay) =4mayL 3 M? + n(ﬁ;g/) + O (L™ ?exp (—cN%)).
(b) Assume that M < N°/6=¢. Then
BEC 1 1 —2772/3—2¢
(C.13) F (ﬂ,M,L,aN):fEIn(M)fBJrO(L N )

holds. In particular, FBEC(8, M, L,ay) is independent of ax at the given
level of accuracy.

Proof. The free energy FBEC (5, M, L, ay) in (1.18) consists of two terms. In the
following, we denote the first by ®(8, M, L,ay). When we apply the same coordinate
transformations that led to (C.3), we can write it as

B
1 I B’ \/E/i
(C.14) =73 In (2 ﬁfhexp <4h> erfc (— h2>> )

where the second identity follows from the fact that the denominator in (C.3) is given
by (C.5).

(3. M, Lyay) = -+ In (/Ooo exp (=B (ha? — jz)) dx)
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We first consider the parameter regime M > N°/6+¢ where n ~ /BRM > N°=.
An application of (C.8) shows that the r.h.s. of (C.14) equals

_ % In <\/§exp(n2) (1+0 (exp(—n2)/n)))

(C.15) = % In (4621\/) —dmany ML + O (L™ exp (—cN*)).

From Lemma C.1, we know that

(C.16) pM =8rayM?L™% + O (L % exp (—cN°®)).
In combination, these considerations show that

FBEC(57M7L7U'N) :q)(ﬁ,M,L7ClN)+,U,M
<4BaN

(C.17) = ihl

28 3

) +4rayMPL™% + O (L % exp (—cN¥))
which proves (C.12).

Next, we consider the case M < N%/6~¢ where n ~ —1/(2v/BhM) < —N°. We
use (C.10) to write ® as
(C.18)

(8, M, L,an) :_%ln (\/;mlm (1+0(77‘2))) =—1n<ﬂM) +0(N"%/8).

To obtain the second equality, we applied Lemma C.1. Another application of the
same lemma yields

1
(C.19) uM:—B (L1+O(N7>)).
In combination, (C.18) and (C.19) prove (C.13). 0

The last lemma provides us with a large deviations bound as well as with bounds
for the moments of the distribution (. The large deviations bound is needed in the
proof of Lemma 2.1 in Appendix D, whereas the moment bound finds application in
section 2.2 in our proof of Lemma 2.9. We recall that ¢ equals g in (1.19) except
that the chemical potential /i is chosen such that [ |z|*¢(z)dz = Ny holds with No
in (2.9).

LemMMA C.3. We consider the limit N — oo, 8 = k. with k € (0,00) and B. in
(1.14) and assume that 0 < Ny S N holds. Then there exist constants ¢,é > 0 such
that

(C.20) /(1 +12[)10(|2]2 > eN)¢(2) dz S exp(—eN3).
C
Moreover,
(C21) JER Oy
C

holds for all k € N.
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Proof. Let us again use the notation h = 4ray L3, We first consider (C.20) with
|22 replaced by |z|?*, k € Ny and < replaced by <j; that is, we need to derive a
bound for

2I2R1(|2]% > ¢ z z—f:;xkeXp(_B(th_ﬁx))dx

[ ALl 2 ez as = e e )} ds

_ Jov e exp(=Bh(z — i/ (2h))?) da
o exp(—Bh(z — i/ (2h))?) de

To obtain the first equality, we used the same coordinate transformations as above
(C.3). Inspection of (C.6) shows that the chemical potential assumes its largest (pos-
itive) values when Ny ~ N. This follows from the fact that the Lh.s. of (C.6) is
strictly increasing in M and that the two maps 77 — Y(7) with YT in (C.6) and
= 1 = fi\/B/(4h) are strictly increasing. Application of part (a) of Lemma C.1
and the bound Ny < N therefore show that ;i can be bounded from above by a
constant times ayNL ™3 < L2,

Using this, we see that for ¢ > 0 large enough and x > ¢N, we have x —u/2h > x/2.
We insert this bound on the r.h.s. of (C.22) and find

(C.22)

/ 221 (|2[2 > eN)C(2) de
C

ﬁh62N2> Jo exp(=(Bh/2)(z — i/ (2h))?) da
16 I exp(—Bh(z — i/ 2h))?) dz

(C.23) <k exp (—
where the fraction on the r.h.s. equals v/2 times

2y mam oxp(—2?) dw

(C.24) - .
=2y /arm exp(—2?) dz

If 2 > 0, we obtain an upper bound when we replace the lower integration boundary in
the numerator by —oo and that in the denominator by 0. This yields an upper bound
of order 1. If i <0, we apply (C.7) on the r.h.s. of (C.24) and see that it is bounded
from above by a constant times exp(8?/(8h)). In combination, these considerations
imply the bound

Bhc? N?
16

(C.25) /C 220 (2] > eN)C(2) dz Sy exp (— ) maxc{1, exp(]i2/(8h))}.

When we assume that 0 > g > —C/L? for some C > 0 and choose ¢ large enough,
(C.25) proves our claim. It remains to consider the case g < —C/L2.

In this case, we start with the term after the first equality sign in (C.22). We
pick ¢; > 0 and realize that it is bounded from above by

Jin ¥ exp(Bfiz) dx - exp(BhciN?) [ o* exp(Bfiz) dx

foclNexp(—B(ha?2 —px))dr fOClNexp(Bﬁx))dx
_ exp(BhG N (B + N*) exp(fieN)
~ 1— exp(Bfic1 N)
(C.26) <k exp(—ENY/?)
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for some &> 0. In the last step, we used 1 < —C/L? and that ¢; can be chosen as
small as we wish. In combination with our previous considerations, this proves that

(C.27) /(C|z|2k]l(|z\2 > eN)C(2) dz $p exp(—eN1/3)

for all k € Ng. In particular, (C.20) holds.
Equation (C.21) follows from (C.27) when we use the decomposition

/ |2[24¢(2) dz = / |2[24¢(2) dz + / 12[24¢(2) d=
c {I2[2<eN} {I212>eN}

(C.28) <k NF +exp(—eN/3). q

Appendix D. The expected particle number in the trial state. In this ap-
pendix, we prove Lemma 2.1. An essential ingredient of the proof are large deviations
bounds for Gg(z) in (2.5) and Giee in (2.6). Before we state them, we define

(D.1) Ng = Z apap,  and  Np= Z -

pEPR pEP]

LEMMA D.1. We consider the limit N — oo, = kf. with k € (0,00) and S. in
(1.14). For any ¢>0,r €N, we have

(D.2) Te[(1+ Np)L(NB > eN)Gp(2)] S, N7 (N2/3+08)
Moreover, there exist positive constants c,¢ >0 such that
(D.3) Tr[(1 + N)L(NT > eN)Gireo) S exp(—ENY3).

Proof. For the sake of simplicity, we give the proof of the first bound with 1+ Np
replaced by AMp and similarly for the second bound. For any r > 1, we have 1(Np >
e¢N) <NL(eN)~". Hence,

Tr[NgL(Np > cN)Gg(2)] < (eN) " Tr[N5 T G (2)]
(D.4) (eN)™" Y Trla)ap, ...a ap,,, Ge(2)].

P1s--Pr+1€EPB

After normal ordering and an application of Wick’s theorem, we can use (2.29) and
(2.31) to see that

(D.5) TrNB L (Vg > eN)Gr(2)] S, N7 (N2/3+0s) 7T

holds. This proves the first bound in (D.3).
Next, we prove the second bound. Let 0 < k < L=23, and observe that

k TrML(N] > eN)Giree] < kTr[(N; — eN)L(N] > eN)Giree]
+ ckN Tr[L(N; > eN)Giree]
(D6) < (1 + Ck’N) Tr[exp(k(J\fI - CN))Gfree]'
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The trace on the r.h.s. can be written as

Trlexp(k(N — c¢N)Gireo)]

Tr 7 [exp(—BdL(1(—iV € P1)(—A — uo — kB~1)))]
Tr g, [exp(—8dT(1(=iV € P1)(—A — uo)))]

(D.7) = exp(—keN) exp (B ((no) — ®(po +kB71)))

=exp(—kcN)

where

O(p)=—B ' InTrg, [exp( 8 Z ) ag,ayp )]

PEPL
(D) =573 [ (1 - exp(=80° — ) .

peEP

Using that ®(u) is a concave and monotone decreasing function of 1, we obtain the
lower bound

k
1 .
BP(po +kB™") > BP(po) Z)EZPI exp(B(p? — o — k1)) — 1
(D.9) > B8P(up) — CNE

for some C > 0. To come to the last line, we used 0 < k < L~23 and applied
Lemma 2.5. In combination, these considerations show that

(D.10) Tr[eP N =N Gpee] S e RN (=),
When we choose k = L™23 and ¢ > C in the above equation, this proves the second
bound in (D.3). d
We are now prepared to give the proof of Lemma 2.1.
Proof of Lemma 2.1. We use [N, B] =0 to write

ZA (1+ B)¢a, (HB)%):ZA (¢, N + BN B)ta)

(D.11) TY[NT] = (1% B)do, (L B)iba) “((1+ B)a, (1 + B)a)

and apply the lower bound [|(1 + B)Yo||? = (¥a, (1 + B*B)14) > 1 to see that the
r.h.s. is bounded from above by Tr[(N + B*BN)['g]. Using the definition of B in
(2.12), Lemma 2.9, and the bound for 1, in (A.8), we find

N 1
Tr[B*BNTy| = — Z Npr s

416 .
qEAN",p1,p2€P Py,
u1,v1,u2,02 €PL

* * *
X Tr[a‘ul v1 Qui4p1 Qvy —p1 Qypg4-po Ay —po Qug Qv Qg a’qFO]

= ﬁ Z)\a Z Np1Tlp1+us —us

p1€PH,
q,u1,v1,u2€PL

(D.12) x Trlay, ay, Guy Qo yu; —uy @5aql0] S NoH,

and therefore Tr[NT] — Tr[NTo] < N%#. It remains to prove a lower bound.
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To that end, we note that B*A'B > 0 and 1(Ny < cN)1(Np <cN)TI(N;<cN)<1
imply that

Yo, NT(Ng < eN)L(Np < eN)L(Np < eN)g)
(14 B)Ya, (14 B)a)

(D.13) Tr[NT] > ZAJ

for sufficiently large ¢ > 0. Let Ny = ajao, and recall the definition of A and
Ni in (D.1). In combination, (D.13), 1/(1+ ) > 1 —z for z > 0, and the bound
(o, NT(Ng < eN)L(N < eN)L(N; < eN)th,) < 3eN allow us to show that

TrNT] > A (o, NT(N < eN)L(Np < eN) LN < eN)tho) (1 = (Yo, B*Btba))

> Tr[NTo] — Tr [N{L(Np > ¢eN) + 1(Ng > cN) + L(N; > eN) } T ]
(D.14) — 3c¢N Tr[B* BT].

The last contribution can be bounded from below by —C'N%# (this can be seen simi-
larly as for (D.12)).
To obtain a bound for the second term on the r.h.s., we apply Lemmas C.3
and D.1. We have
(D.15)
Tr [N[L(N3 > eN) + 1(N; > eN)|To] S, N7 (N/3498) ™ exp(—aN1/3) S 1

provided that ¢ > 1 and r € N are chosen large enough. To obtain the second bound
we also used the assumption o < 1/3. Next, we consider

/Cmu + NO) LN > eN)[2) (2[]¢(2) d=
(D.16) :/C(1+|z|2)Tr[]1(NO+1ZCN)|z><z|}<(z)dz,

where we used agl(Ny > ¢N) = 1(Np+ 1 > ¢N)ag. Pick ¢ > 0. An application of
Lemma C.3 shows that the term on the r.h.s. of (D.16) is bounded from above by

/ (1+|z|2)Tr[]l(/\/o+1ZcN)|z><z|]C(z)dz+/ (1+12)%)¢(z)dz
{|z]2<c/N} {Iz|*>>c'N}
(D.17)
< (1+C/N)/ Te[L(Ng + 1> eN)|2){(z[]¢(2) dz + C exp(—EN1/3)
{|z]2<c/N}

for some ¢ > 0 as long as ¢ > 0 is chosen large enough. It remains to consider the first
term on the r.h.s. of (D.17).
We evaluate the trace in the eigenbasis {|n)}nen, of No:

/ Tr[L(No +1>¢eN)|2)(z]]¢(2)dz
{lz]*<c¢’'N}

= S 1 >cN -1 , 2 d
‘/{IZIQSC’N}nz_:o (n2eN = 1)|{z,n)[*¢(2) d=
|Z|2n
(D.18) - o7 | S T ¢yae
/{|Z|2<C’N} . n>cN—1 n!
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To come to the last line, we also used the identity [(z,n)|> = exp(—|z|?)|z|*"/n!.
An application of Taylor’s theorem with an explicit form of the remainder allows us
to see that the series on the r.h.s. is bounded from above by exp(|z|?)|z|**" /(cN!)
(here we assume for the sake of simplicity that ¢ € N). An application of Stirling’s
approximation formula therefore shows that

/ cN / cN
o19) [ T[N + 12 eN)]2) (+1)¢(2) dz < LD < -2 () ,
{|z|2§c’N} CN' C

which is exponentially small in N as long as ¢’e/c < 1 holds. When we put (D.14)-
(D.17) and (D.19) together, we find the bound

(D.20) Tr [N [L(No = cN) +1(Ng > cN) + 1(N; >eN)|To] S1.

In combination with (D.14) and the assumption dg > 0, this proves that Tr[NT] —
Tr[NTy] 2 —N%. We put this result and (D.15) together and obtain a proof of
(2.14). |
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