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Abstract: Diphenolic acid, or 4,4-bis(4-hydroxyphenyl)pentanoic acid, represents one of the poten-
tially most interesting bio-products obtainable from the levulinic acid supply-chain. It represents a
valuable candidate for the replacement of bisphenol A, which is strongly questioned for its toxicologi-
cal issues. Diphenolic acid synthesis involves the condensation reaction between phenol and levulinic
acid and requires the presence of a Brønsted acid as a catalyst. In this review, the state of the art
related to the catalytic issues of its synthesis have been critically discussed, with particular attention
to the heterogeneous systems, the reference benchmark being represented by the homogeneous
acids. The main opportunities in the field of heterogeneous catalysis are deeply discussed, as well
as the bottlenecks to be overcome to facilitate diphenolic acid production on an industrial scale.
The regioselectivity of the reaction is a critical point because only the p,p′-isomer is of industrial
interest; thus, several strategies aiming at the improvement of the selectivity towards this isomer are
considered. The future potential of adopting alkyl levulinates, instead of levulinic acid, as starting
materials for the synthesis of new classes of biopolymers, such as new epoxy and phenolic resins and
polycarbonates, is also briefly considered.

Keywords: diphenolic acid; levulinic acid; phenol derivatives; homogeneous catalysis; heterogeneous
catalysis; epoxy resins; polycarbonates

1. Introduction

Levulinic acid (LA) is a well-known platform chemical that is obtainable nowadays
from cheap and waste cellulosic biomasses, thus allowing its industrial production on a
larger scale [1,2]. The growth of LA production is allowing the progressive reduction of
its manufacturing costs, thus favoring the research and development of new added-value
bio-products derived from its supply-chain. At the state of the art, many technological
improvements have been made by GF Biochemicals [3] to lower the LA production costs,
aiming at a target of USD 1/kg, which is highly competitive in the market [4]. One of the
most important added-value LA derivatives is 4,4-bis(4-hydroxyphenyl)pentanoic acid,
also named diphenolic acid (DPA), for which the main physico-chemical properties are
reported in Table 1.

Due to the structural similarities, DPA has been identified as a potential replacement
for bisphenol A (BPA), the latter representing one of the most adopted monomers for
the synthesis of epoxy resins and polycarbonates [5,6], which are widely exploited for
the formulation of paints, cosmetics, surfactants, plasticizers, textile chemicals, etc. [7,8].
However, BPA is well-known for its dangerous toxicological properties, which mime the
effects of estrogens and thus disrupt the endocrine system, even at very low concentrations
(<1 ng L−1) [9,10]. Moreover, BPA use has been associated with the onset of health issues,
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such as cancer, obesity, and diabetes [11,12], and its use, especially in foodstuffs, is strictly
regulated by European Food Safety Authority (EFSA) legislation [13]. In this context, DPA
represents an excellent substitute for BPA, and the progressive lowering of the LA produc-
tion costs makes further R&D on this topic particularly valuable. Moreover, DPA can be
envisaged as a completely bio-based molecule if the phenol production from renewable
lignin sources, mainly through pyrolysis or reductive depolymerization, will be imple-
mented on an industrial scale [14,15]. Remarkably, such pathways could be even better
tailored to give substituted phenols (catechol, resorcinol, cresol, guaiacol, etc.), thus further
broadening the application opportunities of the final specialty biomaterials. Whilst BPA is
produced through a condensation reaction between acetone and two moles of phenol, in
the DPA synthesis, acetone is replaced by LA, and both reactions require the presence of a
proper Brønsted catalyst. A comparison between the reactions involved in the BPA and
DPA syntheses is shown in Figure 1.

Table 1. Physico-chemical properties of DPA.

Physical Property Details

Formula C17H18O4

Chemical structure
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Molecular weight (g mol−1) 286.33

Melting point (◦C) 167–170

Boiling point (◦C) 507

Flash point (◦C) 208

Density (g mL−1) 1.30–1.32

Refractive index 1.675

Solubility
Slightly soluble in water; soluble in acetic acid,
acetone, ethanol, isopropanol, and methyl ethyl

ketone; and insoluble in benzene

According to Rahaman et al. [16], the reaction mechanism of DPA synthesis (Figure 2)
involves the preliminary formation of the mono-phenolic acid (MPA) intermediate via
activation of the LA ketone group, followed by the subsequent nucleophilic attack of the
phenol and finally through the acid-catalyzed loss of a water molecule. The obtained
carbocation intermediate (MPA) undergoes the nucleophilic attack of another phenol
molecule to obtain the target DPA.

Just as for BPA, the synthesis of DPA is traditionally carried out in the presence of
strong mineral acids, such as concentrated HCl or H2SO4, which are generally considered
benchmarks for the development of new investigations. Remarkably, an isolated yield
of about 60 mol% (evaluated with respect to the starting LA) was claimed in Bader’s
patent [17], typically employing an LA/phenol molar ratio of 1/2 and working at 25 ◦C
for 20 h with concentrated H2SO4 (about 80 wt%). Such molar yields were also claimed
employing the same LA/phenol molar ratio and a lower concentration of HCl (about
25 wt%) but working at a higher reaction temperature (about 90 ◦C) for 6 h. The use of
HCl is generally preferred over H2SO4 due to the simpler work-up operations, which are
required for its recovery. More recently, the use of concentrated mineral acids (37 wt% HCl
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or 96 wt% H2SO4), excess of phenol (LA/phenol molar ratio within the range 1/2–1/4),
mild reaction temperatures (up to 60 ◦C), and long reaction times (up to 48 h) have generally
been proposed, thus achieving a maximum DPA yield of about 70 mol% [18–22]. Remark-
ably, the use of a thiol (namely, methyl mercaptan) as a reaction co-catalyst led to significant
improvement of the DPA yield up to a maximum of about 93 mol%, working at 55 ◦C for
16 h, in the presence of 37 wt% HCl as the main catalyst, and adopting the LA/phenol
molar ratio of 1/2 [23]. The chemistry involved in such reactions was not explained in detail
by the authors, and claims of such patents were mainly based on experimental evidence.
Moreover, the reaction is mostly performed under solvent-free conditions, e.g., without
any addition of external water and/or other solvents, thus exploiting the use of an excess
of phenol. To specifically assess issues related to the selectivity of the DPA synthesis, it is
necessary to consider more recent works, including, in some cases, the chemistry of BPA as
the only reference, which admits the formation of different degradation products, mainly
including triphenols and chromans [24]. In any case, the identification of the corresponding
by-products in the DPA synthesis has not been specifically discussed in the literature, and
scarce information is available on a few reaction by-products. In this context, according
to the reaction mechanism proposed in Figure 2, the nucleophilic attack of the second
molecule of phenol may lead to the formation of the o,p′-DPA isomer (Figure 3), and this
isomer is considered an unwanted reaction by-product because it has no industrial interest
and cannot be recycled within the process. In such condensation reactions involving unsub-
stituted phenol, the formation of the o,o′-isomer is almost negligible for steric hindrance,
whilst those of the p,p′- and o,p′- ones are both thoroughly allowed [25]. The presence of
the o,p′-DPA isomer significantly complicates the purification procedures of the p,p′-DPA,
which represents the only industrially useful product. On this basis, the p,p′/o,p′ molar
ratio represents a key parameter for the optimization of the DPA synthesis process due to
the difficult separation of the two isomers through crystallization. For the BPA synthesis,
an isomerization reaction was planned at the industrial scale to advantageously convert
the o,p′-BPA isomer to the p,p′-BPA one [26], but this isomerization is extremely difficult in
the case of DPA isomers; thus, this crucial aspect requires the adoption of more appropriate
strategies already during the synthesis step.
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The p,p′-DPA/o,p′-DPA molar ratio also has important effects on the properties of
the final polymers, such as the color stability, crystallinity, and intermolecular attractive
forces between the polymer chains. Thus, the p,p′-DPA/o,p′-DPA molar ratio should be
as high as possible to improve these properties [27]. Remarkably, the available data based
on Bader’s patents, such as those of reference in this discussion [17], seem to confirm the
exclusive formation of the p,p′-DPA isomer, but these data must be much more carefully
considered due to the instrumental limitations at that time. In fact, the most recent literature
admits the formation of the o,p′-DPA isomer starting from phenol [16], and, in this regard,
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different approaches have been proposed to improve the selectivity towards the p,p′-isomer.
Remarkably, 2,6-xylenols, such as 2,6-dimethylphenol, were proposed as a phenolic source
for the acid-catalyzed condensation with LA to the corresponding bis-xylenol product [28],
thus completely addressing the reaction selectivity towards the corresponding p,p′-isomer
(that, is 4,4-bis(3,5-dimethyl-4-hydroxyphenyl)pentanoic acid). Even more advantageously,
natural phenols deriving from lignin sources, such as catechol and resorcinol, could be
smartly exploited as valuable replacements for unsubstituted phenol [29]. In this case, in
addition to the para-orientating effect, the presence of an additional hydroxyl group in
the appropriate position of the phenolic structure is advantageous because it adds another
reactive group to the DPA derivative, which could be better exploited to produce even
more added-value products, such as glycidyl ethers [29].

Regarding the catalytic issues, although mineral acids are the traditional ones, their use
has some well-known and important drawbacks, including corrosivity, difficult separation,
and expensive treatment of the process’s wastewater. These general issues are stimulating
the development of new catalysts to perform DPA synthesis with the intention of improving
the activity and the selectivity towards the p,p′-DPA isomer and, above all, overcoming
the corrosion and separation problems. In this context, sulfonated acid catalysts [19,27,30,31],
heteropolyacids [16,18,20,30,32], zeolites and oxides [18,27], as well as ionic liquids [21,22,33]
have been proposed for DPA synthesis in the search for further improvement of the
selectivity to the p,p′-DPA isomer. In this context, the use of a thiolic derivative as a
co-catalyst was proposed by Van De Vyver et al. [30,31] to further improve the selectivity
to the p,p′-DPA isomer. According to the reaction mechanism proposed by the authors for
explaining the behavior of sulfonic-acid-functionalized catalysts, the thiol additive acts
as a promoter by improving the reactivity of the carbonyl group of LA, thus making it
more prone to react with phenol. Therefore, the thiol would react with the carbonyl of
the LA to give an intermediate that is more electrophilic towards the reaction with phenol
(Figure 2). The authors found that thiols with small substituents, such as ethanethiol,
were particularly effective towards the p,p′-DPA formation, preferentially working at low
LA conversion and therefore under kinetic control [31]. On the other hand, at higher LA
conversions, the formation of the o,p′-DPA isomer became relevant according to a regime
of thermodynamic control.

Starting from the above milestones, the state of the art related to the production of
DPA from LA is critically discussed in this review by focusing on the development of new
acid catalysts, with particular attention to the heterogeneous systems and considering the
homogeneous ones as the benchmark. Subsequently, the main available applications of
p,p′-DPA are summarized and discussed while highlighting the bottlenecks to be solved for
further improving the research on this topic.

2. DPA Synthesis
2.1. DPA Synthesis with Homogeneous Catalysts

The condensation reaction between LA and phenol to give DPA has been traditionally
carried out in the presence of strong Brønsted mineral acids, mainly HCl and H2SO4.
The most interesting results reported in the literature with these mineral acids and other
homogeneous systems, mainly referring to sulfonic acids, are reported in Table 2.
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Table 2. DPA synthesis catalyzed using inorganic mineral acids and homogeneous sulfonic acids.

Entry LA/Phenol
(mol/mol) Catalyst (gLA/gcat)

Additive
(molLA/moladditive) T (◦C) t

(h)
CLA

(mol%)
Yp,p ′-DPA
(mol%)

p,p′-DPA/o,
p′-DPA Molar

Ratio
Ref.

1 1/3 HCl (8.0) / 100 6 46 19 2.2 [18]

2 1/7 HCl (8.0) / 100 24 n.a. a 56 1.8 [20]

3 1/4 HCl (6.3) Ethanethiol (100) 60 24 65 41 2.0 [21]

4 1/4 H2SO4 (11.8) / 60 24 62 42 11.2 [19]

5 1/3.7 H2SO4 (0.9) / 75 6 n.a. a 74 b n.a. a [33]

6 1/4 H2SO4 (2.3) / 60 48 n.a. a 61 24.0 [22]

7 1/4 H2SO4 (2.3) Mercaptoacetic
acid (20.0) 60 48 n.a. a 68 9.0 [22]

8 1/4 p-TSA (1.3) Ethanethiol (100) 60 24 25 18 3.9 [21]

9 1/3.7 p-TSA (0.9) / 75 6 n.a. a 70 b n.a. a [33]

10 1/4 NH2SO3H (2.4) Ethanethiol (100) 60 24 58 51 7.4 [21]

11 1/3.7 CH3SO3H (0.9) / 75 6 90 37(66 b) 1.2 [33]

12 1/9.2 CH3SO3H (0.9) / 75 6 n.a. a 86 b n.a. a [33]

13 1/4 CF3SO3H (1.5) / 60 48 n.a. a 43 25.0 [22]

14 1/4 HS(CH2)3SO3H (1.5) / 60 48 n.a. a 77 30.0 [22]

a n.a. = not available; b yield of p,p′-DPA + o,p′-DPA.

Very different reaction conditions in terms of the LA/phenol molar ratio, LA/catalyst
weight ratio, reaction temperature, and time have been proposed when working with min-
eral acids and, in some cases, adding thiols to improve the selectivity towards the desired
p,p′-DPA isomer [21]. However, H2SO4 generally led to higher yields and p,p′-DPA/o,p′-
DPA molar ratios compared to HCl, regardless of the adopted reaction conditions (entries
1–7, Table 2). Thus, H2SO4 results are more promising for this application. On this basis, it is
possible to suppose that the sulfonic group plays a key role in the reaction. For this reason,
many other sulfonic acids have been proposed, including p-toluenesulfonic acid (entries 8
and 9, Table 2), sulfamic acid (entry 10, Table 2), methanesulfonic acid (entries 11 and 12,
Table 2), triflic acid (entry 13, Table 2), and 3-mercaptopropyl sulfonic acid (entry 14, Table 2).
In this context, Shen et al. [21] compared the catalytic performances of p-toluenesulfonic
acid and sulfamic acid with those of HCl (entries 8, 10, and 3, Table 2) working under the
same reaction conditions, including the amount of catalyst and ethanethiol (as an additive).
The authors found that HCl led to the highest LA conversion (entry 3, Table 2, 65 mol%)
but also to the lowest p,p′-DPA/o,p′-DPA molar ratio (2.0), whilst the sulfamic acid resulted
in the most promising catalyst (entry 10, Table 2), showing comparable conversion but
with a much higher selectivity towards the p,p′-DPA isomer (p,p′-DPA/o,p′-DPA molar
ratio of 7.4) and the yield of 51 mol%. Mthembu et al. [33] optimized the Response Surface
Methodology (Box–Behnken) for the condensation reaction between commercial LA and
phenol by employing methanesulfonic acid as the homogeneous catalyst. The effects of the
reaction time, temperature, and acid loading were investigated while keeping constant the
LA/phenol molar ratio (3.7). The highest overall DPA yield of 66 mol%, corresponding to a
yield of the p,p′-DPA isomer of 37 mol%, was achieved by working for 6 h at 75 ◦C with
a LA/catalyst ratio of 0.9 wt/wt (entry 11, Table 2). The same authors also tested H2SO4
(entry 5, Table 2) and p-toluenesulfonic acid (entry 9, Table 2), in both cases achieving higher
overall DPA yields than that reported for the methanesulfonic acid while working under
the same reaction conditions. However, the authors did not report the p,p′-DPA/o,p′-DPA
molar ratio reached with H2SO4 and p-toluenesulfonic acid; thus, further specific informa-
tion on the p,p′-DPA yield is not available. The increment of the amount of phenol up to
an LA/phenol ratio of 1/9.2 mol/mol was effective for improving the overall DPA yield
from 66 to 86 mol% (entry 12, Table 2) but, in this case as well, no further information was
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given on the p,p′-DPA isomer yield. Moreover, the authors synthesized LA from depithed
sugarcane bagasse as a real waste biomass to obtain an LA-rich liquor, working for 7 h at
100 ◦C in the presence of [EMim][HSO4] as both solvent and catalyst, thus achieving an LA
yield of 55 mol%. The crude LA-rich mixture further reacted with phenol under the same
reaction conditions (75 ◦C, 6 h, and 1/3.7 as the LA/phenol molar ratio), thus achieving a
total DPA yield of 65 mol% and proving that even crude LA derived from waste biomass
can be directly used for DPA production. Liu et al. compared the catalytic activity of
H2SO4 (entry 6, Table 2), triflic acid (entry 13, Table 2), and 3-mercaptopropyl sulfonic acid
(entry 14, Table 2) by keeping constant the reaction conditions (60 ◦C for 48 h and 1/4 as the
LA/phenol molar ratio), reaching the highest p,p′-DPA yield and p,p′-DPA/o,p′-DPA molar
ratio by working with 3-mercaptopropyl sulfonic acid (entry 14, Table 2) [22]. Considering
the promoting effect of the thiol groups, the mercaptoacetic acid was employed as an
additive for the H2SO4-catalyzed reaction (entry 7, Table 2), which only modestly improved
the p,p′-DPA yield from 61 to 68 mol%, but a reduction of the p,p′-DPA/o,p′-DPA molar
ratio was also ascertained. According to the available literature [31], the formation of the
o,p′-DPA isomer becomes relevant at high LA conversion under a regime of thermodynamic
control, whereas the use of thiol additives for improving the p,p′-DPA production can be
advantageous at low LA conversions, therefore working under kinetic control.

Isolation of DPA from a crude reaction mixture is a challenging topic, and only few
examples are available in the literature, which mainly apply to DPA synthesized in the
presence of a mineral acid (H2SO4 and HCl) as the catalyst. According to Bader [17], the
isolation of DPA from such a reaction environment can be realized by diluting the crude
reaction mixture with water and, next, extraction with ethyl acetate. The extract (containing
phenol and DPA) can be further extracted with an aqueous solution of sodium bicarbonate
to selectively deprotonate the DPA, which becomes soluble in the water phase. The latter is
acidified and extracted with ether, and the corresponding extract is stripped in vacuo to
yield the isolated DPA. Depending on the required purity degree, crude DPA can be further
crystallized, generally with organic solvents, such as aromatic hydrocarbons (toluene), but
also with water or ethanol.

2.2. DPA Synthesis with Heterogeneous Sulfonated Systems

Starting from the previous discussion, the use of heterogeneous catalysts that include
sulfonic groups has represented the smartest choice to be immediately developed. In this
context, many authors have proposed the use of heterogeneous systems, including the
sulfonic acid group, to perform the DPA synthesis. The main available results based on
such commercial and ad hoc synthesized catalysts are reported in Table 3.

Among the commercial, heterogeneous, sulfonic-acid-based systems, Amberlyst-15 is
the preferred choice according to entries 15–17 of Table 3, with the highest p,p′-DPA yield
(55 mol%) and p,p′-DPA/o,p′-DPA molar ratio (15.8), which were ascertained while working
at 60 ◦C for 24 h and employing an LA/phenol molar ratio of 1/4 and LA/catalyst weight
ratio of 4.4. Remarkably, comparing the results obtained with the same LA/phenol ratio
(1/4, according to entries 15 and 16), it is evident that a lower reaction temperature should
be preferred while compensating with a greater amount of the catalyst to obtain a similar
conversion of LA but significantly better selectivity control towards the p,p′-DPA formation.
Van De Vyver et al. [30] compared the catalytic activity of the Amberlyst-15 with that of
Nafion NR50 (entry 18, Table 3), highlighting that the latter led to a higher p,p′-DPA/o,p′-
DPA molar ratio while achieving similar LA conversion under the same reaction conditions.
Moreover, the authors synthesized a new class of sulfonated hyperbranched poly(arylene
oxindole)s (SHPAOs), which were tested for DPA synthesis. The macromolecular struc-
ture of these hyperbranched polymers positively acts on the increase in the functional
group density, which is a desirable aspect for developing catalytic applications. When
such catalysts were employed for the DPA synthesis, better performances than those of
Amberlyst-15 and Nafion NR50 were achieved, mainly in terms of higher conversion and
selectivity to the p,p′-DPA isomer (entry 19, Table 3). In addition to the desired p,p′-DPA
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product, the authors reported the formation of the o,p′-DPA isomer, as well as oligomeric
phenol derivatives and LA dimers [34]. Such condensation reactions are typical of the acid
catalysis approach, such as those occurring during BPA synthesis [35]. These side-reactions
involving LA, which represents the limiting reagent of DPA synthesis, must be avoided, as
they negatively impact p,p′-DPA selectivity. To selectively favor p,p′-DPA production, Van
De Vyver et al. [30] proposed the use of thiol as the additive, thus showing an improvement
in LA conversion and selectivity towards the p,p′-DPA isomer (entries 20–25, Table 3). By
adopting thiols with different chain lengths, the authors found that the phenol condensation
was the rate-determining step, and the condensation rate decreased in the following order:
ethanthiol > 1-propanethiol ≈ benzylthiol > 1-butanthiol > 2-propanethiol > 2-methyl-2-
propanethiol. This suggests that the reaction rate is significantly affected by the thiol steric
hindrance. These results agree with the work of Margelefsky et al. [36], who proposed that
the formation of the electrophilic sulfonium intermediate accelerates the condensation rate
towards the target product, thus preferentially shifting the regioselectivity towards the
p,p′-DPA isomer thanks to the introduction of minor steric hindrance of the thiol side chain.
In this context, the increase in the thiol steric hindrance significantly worsens the catalytic
activity and p,p′-DPA selectivity, making necessary the employment of an accessible thiol
group [30]. Moreover, it is well-known that the p,p′-DPA can isomerize to the o,p′-DPA
isomer in the presence of acid catalysts; thus, Van De Vyver et al. investigated in greater
depth the effect of thiol additives on this isomerization reaction [31]. They found that
thiols scarcely affected the isomerization step and the second condensation with phenol
to give DPA, whilst such additives play a key role in determining the regioselectivity
of the first condensation step of LA with phenol to give MPA. An appropriate balance
between the acidity of the catalyst and the steric hindrance and the amount of the thiol
additive represents the right solution to achieve high p,p′-DPA yields. In particular, the
choice of a low SO3H/SH ratio is effective in favoring the reaction rate and increasing
the p,p′-DPA/o,p′-DPA molar ratio (compare entry 23 with entry 26, Table 3). Based on
such promising results, the authors also investigated the post-synthetic modification of
SHPAOs by incorporating aminothiols, such as 2-mercaptoethylamine (SHPAOs-MEA) and
4-(2-thioethtyl)-pyridine (SHPAOs-TEP) (entries 27 and 28, Table 3). Both of these catalysts
led to a significant improvement in the LA conversion and regioselectivity control to the
p,p′-DPA when compared with the absence of the thiol additive (entry 19, Table 3). More
recently, Zhu et al. [19] prepared magnetic catalysts to be employed in the DPA synthe-
sis from LA. In this context, an N-doped carbon nanotube modified with -SO3H groups
encapsulating Fe, Ni, or Co nanoparticles (Fe@NC-SO3H, Ni@NC-SO3H, Co@NC-SO3H)
were synthesized. All of the investigated heterogeneous catalysts gave the best perfor-
mances in terms of higher LA conversions, p,p′-DPA/o,p′-DPA molar ratios, and p,p′-DPA
yields (entries 29–31, Table 3) compared to those achieved with H2SO4 under the same
reaction conditions (entry 4, Table 2). Remarkably, Co@NC-SO3H was the most promising
catalyst, leading to the highest p,p′-DPA yield of 63 mol% (entry 31, Table 3). The authors
attributed these valuable catalytic performances to the regular microstructure and larger
specific surface area of Co@NC-SO3H, which resulted in a more uniform distribution and
easier accessibility of the SO3H groups on the catalyst’s surface. At the end of the reaction,
the catalyst was magnetically separated and employed in recycling tests, showing good
performances after four cycles. The authors attributed the high stability of this catalyst
to its encapsulated structure, which protects the internal metal nanoparticles from un-
wanted degradation processes, such as leaching. The stability of the recovered nanotubes
was experimentally confirmed by verifying the absence of Co in the reaction medium,
the uniform distribution of -SO3H groups on the catalyst’s surface, and the presence of
encapsulated Co nanoparticles. In addition, Zhu et al. [19] studied the role of thiol in the
improvement of p,p′-DPA production by adopting the same Co@NC-SO3H system. Again,
a small thiol (namely, mercaptoacetic acid) was effective in improving both LA conversion
and the p,p′-DPA/o,p′-DPA molar ratio (entry 32, Table 3). The adoption of longer reaction
times (from 24 to 48 h) improved the LA conversion and the p,p′-DPA yield (91 mol%),
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keeping almost constant the p,p′-DPA/o,p′-DPA molar ratio (entry 33, Table 3). The authors
also investigated the catalytic performances of mercaptoacetic acid and Co@NC alone to
exclude any relevant catalytic activity due to their individual contributions. In both cases,
the LA conversion was lower than 5 mol% and no DPA was detected, thus proving that
mercaptoacetic acid had a too-low acidity and that the -SO3H groups were the effective
active sites of the catalyst. An overall evaluation of the data related to sulfonated catalysts
highlights good catalytic performances for the Amberlyst-15 sulfonic resin and, even bet-
ter, excellent performances for the synthesized Co@NC catalytic system, which is easily
recoverable and thermally stable.

Table 3. Heterogeneous catalysts with sulfonic acids applied to the synthesis of DPA.

Entry LA/Phenol
(mol/mol) Catalyst (gLA/gcat)

Additive
(molLA/moladditive) T (◦C) t

(h)
CLA

(mol%)
Yp,p ′-DPA
(mol%)

p,p′-DPA/o,
p′-DPA Molar

Ratio
Ref.

15 1/4 Amberlyst-15 (6.1) / 120 24 64 6 0.4 [27]

16 1/4 Amberlyst-15 (4.4) / 60 24 70 55 15.8 [19]

17 1/3 Amberlyst-15 (9.0) / 100 16 34 14 4.0 [30]

18 1/3 Nafion NR50 (1.7) / 100 16 36 24 5.8 [30]

19 1/3 SHPAOs a (7.6) / 100 16 40 35 7.6 [30]

20 1/3 SHPAOs a (7.6) Benzylthiol (15.5) 100 16 65 42 15.6 [30]

21 1/3 SHPAOs a (7.6) Ethanethiol (15.5) 100 16 70 53 19.5 [30]

22 1/3 SHPAOs a (7.6) 1-Propanethiol
(15.5) 100 16 65 49 17.6 [30]

23 1/3 SHPAOs a (7.6) 1-Butanethiol
(15.5) 100 16 60 38 14.0 [30]

24 1/3 SHPAOs a (7.6) 2-Propanethiol
(15.5) 100 16 54 38 12.0 [30]

25 1/3 SHPAOs a (7.6)
2-Methyl-2-

propanethiol
(15.5)

100 16 39 26 10.5 [30]

26 1/3 SHPAOs a (7.6) 1-Butanethiol
(3.9) 100 32 93 n.a. d 20.0 [31]

27 1/3 SHPAOs-MEA b (8.2) / 100 16 59 38 9.8 [30]

28 1/3 SHPAOs-TEP c (10.1) / 100 16 57 35 15.5 [30]

29 1/4 Fe@NC-SO3H d (1.2) / 60 24 69 49 17.5 [19]

30 1/4 Ni@NC-SO3H d (1.9) / 60 24 72 57 17.2 [19]

31 1/4 Co@NC-SO3H d (2.1) / 60 24 74 63 16.9 [19]

32 1/4 Co@NC-SO3H d (2.1)
Mercaptoacetic

acid (5.0) 60 24 82 76 24.4 [19]

33 1/4 Co@NC-SO3H d (2.1)
Mercaptoacetic

acid (5.0) 60 48 98 91 23.7 [19]

a Sulfonated hyperbranched poly(arylene oxindole)s; b Sulfonated hyperbranched poly(arylene oxindole)s
modified with 2-mercaptoethylamine; c Sulfonated hyperbranched poly(arylene oxindole)s modified with 4-(2-
thioethyl)-pyridine; d Sulfonated N-doped carbon nanotube.

2.3. DPA Synthesis with Heteropolyacids

The heteropolyacids are another class of acid catalysts that have been employed in
the synthesis of DPA. They have a higher acid strength than traditional solid acids (oxides
and zeolites) and are less corrosive than mineral ones [16]. On this basis, several types
of heteropolyacids have been synthesized and studied for DPA synthesis (Table 4) while
working in the absence of thiol additives.
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Table 4. Heteropolyacids applied to the synthesis of DPA.

Entry LA/Phenol
(mol/mol) Catalyst (gLA/gcat)

T
(◦C)

t
(h) CLA (mol%) Yp,p ′-DPA

(mol%)

p,p′-DPA/o,
p′-DPA Molar

Ratio
Ref.

34 1/4 H3PW12O40 (4.0) 100 6 55 46 a n.a. b [16]

35 1/4 H4SiW12O40 (4.0) 100 6 69 25 a n.a. b [16]

36 1/4 H4SiMo12O40 (6.4) 100 6 79 17 a n.a. b [16]

37 1/4 H3PW12O40 (4.0) 140 6 87 82(85 a) 28.0 [16]

38 1/7 H3PW12O40 (7.9) 100 24 n.a. b 1 2.4 [20]

39 1/3 H3PW12O40 (4.2) 100 16 55 31 8.7 [30]

40 1/3 H3PW12O40 (8.0) 100 6 33 18 1.5 [18]

41 1/3 H6P2W18O62 (8.0) 100 6 39 29 3.5 [18]

42 1/4 H3PW12O40/SiO2-E-4.0 c (8.0) 100 8 24 1 3.6 [32]

43 1/4 H3PW12O40/SiO2-E-7.5 c (8.0) 100 8 31 2 2.8 [32]

44 1/4 H3PW12O40/SiO2-E-14.5 c (8.0) 100 8 75 21 3.0 [32]

45 1/4 H3PW12O40/SiO2-E-17.5 c (8.0) 100 8 80 27 2.8 [32]

46 1/4 H3PW12O40/SiO2-C-7.5 c (8.0) 100 8 19 1 2.1 [32]

47 1/7 H3PW12O40/SiO2-3Dhex-C-7.5
d (7.9) 100 24 n.a. b 4 1.6 [20]

48 1/7 H3PW12O40/SiO2-3Dhex-C-11.1
d (7.9) 100 24 n.a. b 14 1.8 [20]

49 1/7 H3PW12O40/SiO2-3Dhex-C-14.5
d (7.9) 100 24 n.a. b 13 1.3 [20]

50 1/7 H3PW12O40/SiO2-3Dhex-C-15.8
d (7.9) 100 24 n.a. b 12 1.1 [20]

51 1/7 H3PW12O40/SiO2-3Dhex-C-29.9
d (7.9) 100 24 n.a. b 12 1.7 [20]

52 1/7 H3PW12O40/SiO2-3Dhex-C-35.2
d (7.9) 100 24 n.a. b 9 1.7 [20]

53 1/7 H3PW12O40/SiO2-3Dhex-C-43.6
d (7.9) 100 24 n.a. b 9 1.7 [20]

54 1/7 H3PW12O40/SiO2-2Dhex-C-11.7
d (7.9) 100 24 n.a. b 3 3.3 [20]

55 1/7 H3PW12O40/SiO2-2Dhex-E-11.1
d (7.9) 100 24 n.a. b 6 3.3 [20]

56 1/3 Cs1.5H4.5P2W18O62 (8.0) 100 6 36 31 7.3 [18]

57 1/3 Cs2.5H0.5PW12O40 (8.0) 100 6 28 22 4.0 [18]

58 1/9 Cs1.5H4.5P2W18O62 (4.0) e 150 10 n.a. b 62 7.3 [18]

59 1/4 Cs2.5H0.5PW12O40 (4.0) e 150 10 n.a. b 37 4.9 [18]

a Yield of p,p′-DPA + o,p′-DPA; b n.a.= Not available; c Calcined(C)/extracted(E)H3PW12O40-silica materials with
x wt% of H3PW12O40;

d Hexagonal(hex) calcined(C)/extracted(E) 3D/2D H3PW12O40-silica materials with x wt%
of H3PW12O40; e The test was carried out with a stirring rate of 1200 rpm.

Rahaman et al. [16] prepared different Keggin-type heteropolyacids ([XM12O40]n−),
including phosphotungstic acid (H3PW12O4), silicotungstic acid (H4SiW12O40), and silico-
molybdic acid (H4SiMo12O4), and compared their catalytic performances under the same
reaction conditions (entry 34–36, Table 4). The authors proved that all of the tested catalysts
were active in LA conversion, which was always higher than 55 mol%, but only H3PW12O4
gave a good DPA yield (46 mol%) while at the same time showing higher selectivity to the
p,p′-DPA. Because of the higher productivity obtained with H3PW12O4, it was employed
for further optimization of the reaction. Regarding the catalyst amount, the authors found
that its increased sped up LA conversion, but it did not affect the selectivity towards DPA.
On the other hand, the temperature increase was effective for improving the LA conversion
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and the p,p′-DPA/o,p′-DPA molar ratio, thus proving that the regioselectivity control of
this reaction greatly depends on the temperature. The highest p,p′-DPA/o,p′-DPA molar
ratio (28.3) was reached at 140 ◦C, together with LA conversion of 87 mol% and a p,p′-DPA
yield of 82 mol% (entry 37, Table 4). At the state of the art, H3PW12O4 is the most studied
heteropolyacid for the synthesis of DPA, and it was reported as the catalyst of reference in
the works of Li et al. [20], Van De Vyver et al. [30], and Yu et al. [18]. However, lower LA
conversions and p,p′-DPA yields were reported in all of these studies (entries 38–40, Table 4)
when compared with the results of Rahaman et al. (entry 37, Table 4) [16]. Interestingly,
Yu et al. [18] also employed Wells–Dawson phosphotungstic acid (H6P2W18O62), claiming
higher LA conversion, p,p′-DPA/o,p′-DPA molar ratio, and p,p′-DPA yield (entry 41, Table 4)
with respect to the Keggin phosphotungstic acid (H3PW12O4). Some bottlenecks still limit
the employment of heteropolyacids, including small specific surface area (1–5 m2/g) and
good solubilities in polar solvents, which limit their recovery/reuse. To overcome these
issues, some smart strategies have been proposed, such as their immobilization on solid
supports and the exchange of protons with large alkali cations, to form insoluble salts.
The first approach was proposed by Guo et al. [32], who prepared some mesostructured
silica-supported H3PW12O4 catalysts with different heteropolyacids loadings. This goal
was achieved through the contemporary hydrolysis and condensation of tetraethoxysilane
(TEOS) with H3PW12O4 in the presence of a template surfactant (Pluronic P123), followed
by the hydrothermal treatment and template removal through calcination or extraction
with boiling ethanol. This one-pot synthesis is smarter than the traditional post-synthesis
grafting method, because the latter results in poor control of the heteropolyacid loadings
and not negligible leaching phenomena. Moreover, the employment of a non-ionic surfac-
tant (Pluronic P123) is effective for weakening the interactions between the template and
the inorganic walls; thus, it can be easily removed (through solvent extraction or calcination
at low temperatures) without damaging the catalyst structure. The authors investigated
the effect of the H3PW12O4 loading, finding that its increment was effective for improving
the LA conversion and p,p′-DPA yield, but a slight decrease in the p,p′-DPA/o,p′-DPA
molar ratio was also observed (entries 42–45, Table 4). Moreover, the catalytic activities
of the catalysts having the same H3PW12O4 loading but resulting from different template
removal were compared, demonstrating that the extracted catalyst (H3PW12O40/SiO2-E-7.5,
entry 43, Table 4) led to higher LA conversion and p,p′-DPA/o,p′-DPA molar ratio than
the calcined one (H3PW12O40/SiO2-C-7.5, entry 46, Table 4). The authors ascribed this
different catalytic behavior to the different textural properties, and, in particular, to the nar-
rower pore sizes of H3PW12O40/SiO2-C-7.5 (6.0 nm) with respect to H3PW12O40/SiO2-E-7.5
(7.2 nm). Given the large dimensions of the DPA molecule, a catalyst with a large pore
size is more suitable for allowing the accessibility of the reactants on the acid sites, as
well as the next desorption of the produced DPA from its surface. On the other hand,
the narrow pores may cause an increment of the internal mass transfer limitation and,
consequently, slower substrate conversion. Moreover, the calcination of the catalyst at
420 ◦C caused the loss of some acid sites, leading to a lower activity of H3PW12O40/SiO2-C-
7.5 with respect to H3PW12O40/SiO2-E-7.5. Finally, the authors investigated the recyclability
of the prepared catalysts. At the end of the reaction, the catalyst was separated through
filtration and then washed with water and ethanol and calcined at 120 ◦C under vacuum for
1 h. This spent catalyst was employed within two following reactions, partially losing the
catalytic performances after the first recycle run and completely losing it after the second
one. This evident worsening aspect was not due to the leaching of H3PW12O40 (its absence
in the reaction medium was verified through ICP-AES analysis), but rather the strong
adsorption of DPA on the catalyst surface. This hypothesis was confirmed by restoring
the initial activity through calcination of the spent catalyst at higher temperatures. The
same authors deeply investigated the synthesis of these H3PW12O40-silica materials and,
properly adjusting the composition ratios of the precursors, temperature, and acidity of
the solution, they prepared well-defined ordered mesoporous catalysts with a 2D or 3D
hexagonal structure and tested them in the synthesis of DPA [20]. First, they studied the
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influence of the LA/phenol molar ratio; in principle, an excess of phenol was employed,
but molar ratios that are too low could limit DPA formation due to the dilution effect
of phenol towards LA. Once having identified the best LA/phenol molar ratio (fixed at
1/7), the authors studied the influence of the H3PW12O40 loading supported on the 3D
hexagonal structure (entries 47–53, Table 4). The highest p,p′-DPA yield of 14 mol% was
achieved with the 11.1 wt% loading of H3PW12O40, highlighting that lower loading gave
insufficient active sites and that the reaction was particularly slow. On the other hand,
higher loadings led to the aggregation of heteropolyacid units at the catalyst surface, thus
reducing the available surface of the active sites. Moreover, considering the catalysts with
similar H3PW12O40 loading obtained through the same template removal method, the
3D hexagonal silica material led to higher catalytic activity than the 2D hexagonal one
(compare entries 48 and 54, Table 4). In fact, the 3D morphology allows for more efficient
transport of the reactant molecules in many more directions through an easier diffusion
than the 2D morphology. Lastly, in the same work, the authors confirmed that the template
removal through the extraction route should be preferred, as it allows for a higher structural
ordering and catalytic activity (compare entries 54 and 55, Table 4). The recyclability of the
best-performing catalyst (H3PW12O40/SiO2-3Dhex-C-11.1) was investigated and, as in the
previous case, a bulk loss of activity after three runs was ascertained, which was mainly
attributed to the strong adsorption of the DPA molecules on the catalyst surface. However,
after calcination at 420 ◦C for 1 h, the pristine catalytic activity was almost completely re-
stored. In developing a different approach, protons of heteropolyacids are often exchanged
with large alkali cations, thus obtaining the corresponding insoluble salts in the polar
reaction medium and improving the catalyst recovery. In this context, Yu et al. [18] partly
substituted the protons of Keggin (CsxH3−xPW12O40 with x = 1.0–2.5) and Wells–Dawson
(CsxH6−xP2W18O62 with x = 1.5–4.5) heteropolyacids with cesium, and they found that the
latter led to higher p,p′-DPA yields and p,p′-DPA/o,p′-DPA molar ratios than the Keggin-
type catalysts when tested under the same reaction conditions (entries 56 and 57, Table 4).
This different behavior depended on the different reaction mechanisms of Wells–Dawson
and Keggin-type catalysts. In fact, the adsorption ability of Wells–Dawson heteropolyacids
strongly depended on the content of cesium, which gradually decreased by increasing the
cesium content, whilst the adsorption ability of Keggin heteropolyacids was related to their
specific surface area. These properties suggested that with the Wells–Dawson catalysts,
the reaction proceeded in the pseudo-liquid phase; thus, the polar molecules as LA can be
rapidly adsorbed into the catalyst and react there. This pseudo-liquid phase mechanism
often allows for reaching high catalytic activity and promising selectivity. On the other
hand, with the Keggin heteropolyacids, the reaction proceeded according to a surface-type
mechanism, where the adsorption–desorption step was generally slow, thus justifying the
more interesting results achieved with the Wells–Dawson catalysts. The authors selected
the most active catalysts for the Wells–Dawson and Keggin-type heteropolyacids (namely,
Cs1.5H4.5P2W18O62 and Cs2.5H0.5PW12O40, respectively) and studied the influence of sev-
eral reaction parameters. They found that the increment of phenol improved the DPA
yield without any appreciable change in selectivity to the p,p′-DPA isomer. On this basis,
the optimal LA/phenol molar ratio was fixed to 1/9 and 1/4 for the Cs1.5H4.5P2W18O62
and Cs2.5H0.5PW12O40, respectively. Analogously, the increment in the catalyst amount
promoted the DPA yield, together with a negligible effect on the reaction selectivity. On the
contrary, the temperature affected not only the DPA yield but also the p,p′-DPA selectivity.
Moving from 80 to 150 ◦C, the p,p′-DPA selectivity increased from 70 to 85 mol% for the
Keggin-type heteropolyacid and from 76 to 89 mol% for the Wells–Dawson one. Moreover,
the authors proved the presence of external diffusion limitations with both catalysts by
changing the stirring speed from 800 to 1200 rpm, with the latter further improving the DPA
yield. Once having optimized the reaction conditions, the highest p,p′-DPA yields obtained
with Wells–Dawson and Keggin-type heteropolyacids were 62 and 37 mol%, respectively
(entries 58 and 59, Table 4). The recyclability of these heteropolyacids was investigated,
and, for this purpose, the recovered catalysts were washed with ethanol and calcined
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at 100 ◦C for 1 h. The catalytic performances did not significantly change during three
recycle tests, and the ICP-AES analysis of the reaction mixtures confirmed the absence of
leaching phenomena, thus demonstrating the catalyst’s stability. In conclusion, considering
the available data on heteropolyacids, the best catalytic performances are achieved with
cesium-based systems combining high yields/selectivity to the p,p′-DPA, with an excellent
advantage for its recovery/reuse.

2.4. DPA Synthesis with Other Heterogeneous Systems: Zeolites and Modified Metal Silicas

Acid zeolites and metal oxides are often exploited in the field of acid catalysis due
to their mild acidity, which is effective for reducing corrosion issues, as well as being
more easily recoverable from the reaction medium and, in many cases, easily recyclable.
Their catalytic performances strongly depend on the nature, number, and distribution
of acid sites, differentiating them from Brønsted and Lewis ones. Such heterogeneous
catalysts have also been employed for DPA synthesis (Table 5) working in the absence of
thiol additives.

Table 5. Zeolites and modified metal oxides applied to the synthesis of DPA.

Entry LA/Phenol
(mol/mol) Catalyst (gLA/gcat)

T
(◦C)

t
(h) CLA (mol%) Yp,p ′-DPA

(mol%)

p,p′-DPA/o,
p′-DPA Molar

Ratio
Ref.

60 1/4 Pr-SO3H-SBA-15 c (6.1) 120 24 38 2 0.4 [27]

61 1/4 Ar-SO3H-SBA-15 d (6.1) 120 24 41 3 0.3 [27]

62 1/4 Nafion-SBA-15 (6.1) 120 24 38 5 0.5 [27]

63 1/4 n-ZSM-5 (6.1) 120 24 26 1 4.9 [27]

64 1/4 H-USY (6.1) 120 24 37 8 2.0 [27]

65 1/4 H-Beta 12.5 (6.1) 120 24 44 33 99 [27]

66 1/4 H-Beta 19 (6.1) 120 24 48 40 a n.a. b [27]

67 1/4 H-Beta 75 (6.1) 120 24 57 45 a n.a. b [27]

68 1/4 H-Beta 180 (6.1) 120 24 49 27 a n.a. b [27]

69 1/6 H-Beta 19 (4.6) 140 72 77 69 99 [27]

a Yield of p,p′-DPA + o,p′-DPA; b n.a. = not available; c Propylsulfonic-acid functionalized mesostructured silica;
d Arenesulfonic-acid functionalized mesostructured silica.

Morales et al. [27] compared the catalytic activity of different modified metal oxides
(propylsulfonic-acid mesostructured silica, arenesulfonic-acid functionalized mesostruc-
tured silica, and Nafion supported mesostructured silica, entries 60–62, Table 5), zeo-
lites (n-ZSM-5, H-USY and H-Beta, entries 63–65, Table 5), and sulfonic-acid-based resins
(Amberlyst-15, entry 15, Table 3) while keeping constant the reaction conditions. Amberlyst-
15 was found to be the most active catalyst, leading to the highest LA conversion (64 mol%)
but to a very low p,p′-DPA yield (6 mol%), thus highlighting a very poor selectivity. Simi-
larly, the modified SBA-15 silicas showed modest LA conversions and very low DPA yields.
These results can be attributed to the presence of strong Brønsted acid sites that promoted
undesired pathways, thus causing the LA conversion to by-products. However, the authors
did not provide further insight into such by-products. On the other hand, among the
tested zeolites, the H-Beta allowed for the achievement of the highest LA conversion of
44 mol%, a p,p′-DPA yield of 33 mol%, and a p,p′-DPA/o,p′-DPA molar ratio of 99 when
performing the reaction at 120 ◦C for 24 h (entry 65, Table 5), thus exploiting the appropriate
combination of pore size, structure, type, and strength of acid sites. Moreover, a marked
difference between the selectivity of the sulfonic catalysts and zeolites was ascertained:
the former preferentially led to the formation of the o,p′-DPA, whereas the latter led to the
desired p,p′-DPA. Because the best catalytic performances were achieved with the H-Beta
zeolite, the authors focused on the investigation of the influence of the Si/Al ratio for this
type of system by increasing it from 12.5 to 180 (entries 65–68, Table 5). The H-Beta 75
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was the most active catalyst, thus leading to the highest LA conversion and DPA yield,
but the selectivity, equal to 78 mol%, was lower than that achieved with the H-Beta 19
(84 mol%). The authors assigned the best catalytic performances of the H-Beta 19 due to
the right Brønsted/Lewis acid sites ratio, which was even more thoroughly evaluated by
considering the strong acid sites (strong Brønsted/strong Lewis acid sites ratio equal to
about 2.0). After the optimization of the reaction using the Response Surface Methodology,
the authors claimed that all of the investigated independent variables (namely, temperature,
H-Beta 19 loading, and LA/phenol molar ratio) positively affected the LA conversion and
overall DPA yield. The highest overall DPA yield of 70 mol%, with the corresponding LA
conversion of 77 mol%, was achieved after 72 h at 140 ◦C by employing the LA/phenol
molar ratio of 1/6. It is noteworthy that the excellent p,p′-DPA/o,p′-DPA molar ratio of 99
was kept under these reaction conditions, corresponding to a p,p′-DPA yield of 69 mol%
(entry 69, Table 5). The recyclability of the H-Beta 19 catalyst was investigated in three
subsequent runs after washing with acetone and drying at room temperature overnight.
The recycled catalyst showed a decrease in DPA yield up to 28 mol% after the third run,
with a negligible change in the LA conversion, thus highlighting a loss of selectivity. The
authors proved the presence of organic compounds on the catalyst surface, which are
responsible for the deactivation issues. However, the pristine activity was almost totally
restored through calcination in air at 550 ◦C for 5 h.

On the basis of the above data, the use of zeolites for this condensation reaction is
promising, considering that the zeolite pore size and structure must be adequate for the
molecules of interest, as well as the type and strength of the acidity. In this regard, a
moderate strength of acid sites should be preferred for p,p′-DPA synthesis in order to
avoid undesirable side-reactions, which typically occur in the presence of strong Brønsted
acid catalysts. For this purpose, the Si/Al ratio represents the key parameter affecting
the acid properties of these catalysts, determining not only the amount and concentration
of acid sites but also their nature (Brønsted and Lewis) and strength. Therefore, Beta
zeolite with a moderate aluminum content (H-Beta 19, Si/Al = 23) represents the best
catalyst to perform the solvent-free condensation between LA and phenol owing to the
shape selectivity conferred by its structure and the adequate balance of acidity (Al content
and speciation).

2.5. DPA Synthesis with Other Catalysts: Ionic Liquids

Ionic liquids are well-known, robust, and designable organic salts typically composed
of large cations and small anions that can find applications as solvents and catalysts for
carrying out the syntheses of several bio-based compounds [37]. In the field of DPA
synthesis, acid ionic liquids have been proposed for the condensation reaction between LA
and phenol. The most significant results available for such catalysts are summarized in
Table 6.

Shen et al. [21] tested different ionic liquids, again proposing the use of ethanethiol
as the additive for further improving the catalytic performances. Remarkably, it was
found that [BSMim]CF3SO3 was the most active and selective towards the p,p′-DPA isomer,
reaching the maximum LA conversion of 81 mol% and the p,p′-DPA yield of 79 mol%
(entry 70, Table 6), a promising result attributed to the in situ formation of HF, which is
mainly responsible for the acid catalysis. [BSMim]OAc and [BSMim]HSO4 were also active,
but the former led to only moderate results because of its lower acidity, thus demonstrating
the key role of the anion (entries 71 and 72, Table 6). However, the cation also strongly influ-
enced the catalytic activity of the ionic liquids, as shown by [BSMim]HSO4 and [BPy]HSO4
systems (entries 72 and 73, Table 6), with the former leading to higher LA conversion and
p,p′-DPA yield due to the presence of the sulphonic acid in the [BSMim]HSO4 cation. The
importance of -SO3H groups in the cation/anion of the ionic liquid is also highlighted
by the lower LA conversion, p,p′-DPA yield, and p,p′-DPA/o,p′-DPA molar ratio achieved
with [AMim]Br and [BMim]Cl (entries 74 and 75, Table 6). Moreover, the authors inves-
tigated the effect of the additive (ethanethiol) for the improvement of the catalysis with



Molecules 2024, 29, 126 15 of 29

[BSMim]CF3SO3, which was identified as the most active catalyst (entry 70, Table 6). For
the test carried out in the absence of the additive (entry 76, Table 6), a significant worsening
of the p,p′-DPA/o,p′-DPA molar ratio was ascertained, thus confirming that the regioselec-
tivity of the reaction depends on the synergy between the type of ionic liquid and additive.
However, although [BSMim]CF3SO3 was identified as the best catalyst, its synthesis is diffi-
cult and expensive; thus, the optimization of the DPA synthesis was developed employing
[BSMim]HSO4 as the catalyst, which allowed for achieving similar promising results (entry
72, Table 6). Temperature, LA/phenol molar ratio, LA/catalyst weight ratio, and time
were optimized (60 ◦C, 1/4.5, 0.3, and 30 h, respectively), thus improving the p,p′-DPA
yield up to 93 mol% without any marked drop in selectivity (entry 77, Table 6). At the end
of the reaction, the ionic liquid was regenerated through ethyl acetate extraction, and it
was recycled up to four runs. Only a slight decrease in the p,p′-DPA yield up to the value
of 85 mol% was observed, which was mainly attributed to some loss of the ionic liquid
that occurred during the separation step. Mthembu et al. [33] employed [EMIM][OTs]
and [BMim]HSO4, considering the catalysis with H2SO4 (entry 5, Table 2), p-TSA (entry 9,
Table 2), and CH3SO3H (entry 11, Table 2), for comparison purposes. Maximum DPA yields
of 59 and 68 mol% were obtained with such ionic liquids (entries 78 and 79, Table 6), which
are comparable to those already reported for the homogeneous catalysts. In addition, Liu
et al. [22] tested several ionic liquids with Brønsted acidity (for which the corresponding
chemical structures are reported in Appendix A), highlighting an unclear relationship
between their acid strength and the corresponding catalytic activity, which decreased in
the order of 4b > 1a > 4a = 2 > 5 > 6 > 3 > 1c > 1d (entries 80–88, Table 6). Remarkably, the
highest p,p′-DPA yield of 74 mol% was achieved with the ionic liquid 4b, which included a
thiol group. Exploiting again the beneficial effect of the thiol group on this condensation
reaction, the authors proposed the simultaneous use of mercaptoacetic acid and the most
interesting ionic liquids (namely, 1a, 2, 3, 4a, 5, and 6) (entries 89–94, Table 6). The claimed
results confirmed the positive role of thiol for the improvement of the p,p′-DPA yield, which
increased up to 71–84 mol% depending on the employed ionic liquid. However, at the
same time, a decrease in the p,p′-DPA/o,p′-DPA molar ratio was ascertained, which seems
in disagreement with the findings reported in the literature. In any case, the thiol effect
must be considered not only in terms of the thermodynamic aspects but also kinetic ones,
and it should be better exploitable at lower LA conversions [31]. Due to the presence of the
thiol group in the 1b and 4b ionic liquids, these were tested as additives together with the
4a ionic liquid as the main acid catalyst (entries 95 and 96, Table 6). The authors claimed
further improvement of the p,p′-DPA yield and p,p′-DPA/o,p′-DPA molar ratio, proving
that thiol-containing anions of ionic liquid play a key role in the optimization of p,p′-DPA
synthesis.

According to the above data, the fine tunability of the catalytic properties of the
ionic liquids certainly offers remarkable advantages for improving DPA synthesis by
exploiting the Brønsted sulfonic groups to promote the LA conversion according to the
general mechanism already discussed for the other Brønsted acids (Figure 2). Moreover, the
inclusion of a thiol group within the anion of the ionic liquid remarkably improved both the
yield and selectivity of the p,p′-DPA. Although mechanistic details have not been provided
by the authors, the improved selectivity of the p,p′-DPA isomer could be attributed to the
improved cooperation between the thiol group and its cationic counterpart in the ionic
liquid. However, the main bottleneck limiting the use of ionic liquids for such industrial
applications is their high cost in addition to their uneasy isolation/reuse, which requires an
additional separation step of the reaction mixture using an appropriate solvent extraction
given the high boiling points of the involved compounds.
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Table 6. Ionic liquids applied to the synthesis of DPA.

Entry LA/Phenol
(mol/mol)

Catalyst
(gLA/gcat)

Additive
(molLA/moladditive) T (◦C) t (h) CLA

(mol%)
Yp,p ′-DPA
(mol%)

p,p′-DPA/o,
p′-DPA Molar

Ratio
Ref.

70 1/4 [BSMim]CF3SO3
a (0.6) Ethanethiol (100) 60 24 81 79 100 [21]

71 1/4 [BSMim]OAc b (0.8) Ethanethiol (100) 60 24 35 34 100 [21]

72 1/4 [BSMim]HSO4
c (0.7) Ethanethiol (100) 60 24 75 74 100 [21]

73 1/4 [BPy]HSO4
d (1.0) Ethanethiol (100) 60 24 68 67 90 [21]

74 1/4 [AMim]Br e (1.1) Ethanethiol (100) 60 24 18 10 3.1 [21]

75 1/4 [BMim]Cl f (1.3) Ethanethiol (100) 60 24 14 11 4.6 [21]

76 1/4 [BSMim]CF3SO3
a (0.6) / 60 24 73 70 22.3 [21]

77 1/4.5 [BSMim]HSO4
c (0.3) Ethanethiol (100) 60 30 n.a. g 93 100 [21]

78 1/3.7 [EMIM][OTs] h (0.9) / 75 6 n.a. g 59 i n.a. g [33]

79 1/3.7 [BMim]HSO4
j (0.9) / 75 6 n.a. g 68 i n.a. g [33]

80 1/4 1a (0.8) k / 60 48 70 52 16.0 [22]

81 1/4 1c (0.7) k / 60 48 n.a. g 34 32.0 [22]

82 1/4 1d (0.6) k / 60 48 n.a. g 13 30.0 [22]

83 1/4 2 (0.6) k / 60 48 n.a. g 48 21.0 [22]

84 1/4 3 (0.7) k / 60 48 n.a. g 43 33.0 [22]

85 1/4 4a (0.8) k / 60 48 n.a. g 48 32.0 [22]

86 1/4 4b (0.8) k / 60 48 n.a. g 74 50.0 [22]

87 1/4 5 (0.7) k / 60 48 n.a. g 47 33 [22]

88 1/4 6 (0.7) k / 60 48 n.a. g 46 33 [22]

89 1/4 1a (0.8) k Mercaptoacetic
acid (20.0) 60 48 n.a. g 71 9.0 [22]

90 1/4 2 (0.6) k Mercaptoacetic
acid (20.0) 60 48 n.a. g 72 9.0 [22]

91 1/4 3 (0.7) k Mercaptoacetic
acid (20.0) 60 48 n.a. g 78 9.0 [22]

92 1/4 4a (0.8) k Mercaptoacetic
acid (20.0) 60 48 n.a. g 84 20.0 [22]

93 1/4 5 (0.7) k Mercaptoacetic
acid (20.0) 60 48 n.a. g 73 13.0 [22]

94 1/4 6 (0.7) k Mercaptoacetic
acid (20.0) 60 48 n.a. g 73 9.0 [22]

95 1/4 4a (0.9) k 1b (20.0) 60 48 n.a. g 85 100 [22]

96 1/4 4a (0.9) k 4b (20.0) 60 48 n.a. g 91 100 [22]

a 1-(4-sulphonic acid)butyl-3-methylimidazolium triflate; b 1-(4-sulphonic acid)butyl-3-methylimidazolium ac-
etate; c 1-(4-sulphonic acid)butyl-3-methylimidazolium hydrogen sulphate; d 1-butylpyridinium hydrogen sul-
phate; e 1-allyl-3-methylimidazolium bromide; f 1-butyl-3-methylimidazolium chloride; g n.a. = not available;
h 1-ethyl-3-methylimidazolium tosylate; i yield of p,p′-DPA + o,p′-DPA; j 1-butyl-3-methylimidazolium hydrogen
sulphate; k chemical structure is reported in Appendix A.

3. Applications of DPA: Challenges and Opportunities

The presence of one carboxyl group and two phenolic ones makes DPA an interesting
molecule to be exploited for the synthesis of a plethora of more added-value bio-products.
On the other hand, the reactivity of DPA must be properly controlled to avoid unwanted
reactions, including its self-condensation [29,38]. Moreover, it can undergo oxidation
and degradation over time [39,40], which can limit its shelf life and usability in several
applications, thus requiring careful attention to its stability during the synthesis of the DPA-
derived polymers; for instance, when transforming the carboxyl group of DPA in esters,
ethers, or amide derivatives [41,42]. To date, DPA has been exploited for the synthesis of
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epoxy and phenolic resins [6,43] as well as other polymers, such as polycarbonates [44,45],
polyarylates [46], and polyesters [47]. Both DPA-based epoxy and phenolic resins find
applications in the production of composites, adhesives, and coatings [48,49]. Some niche
applications of DPA have been proposed, including the production of thermal paper
for printers [50], coatings, and adhesives [51–53]. Moreover, DPA and its derivatives
show good antioxidant, antiviral, and antibacterial properties, making them suitable for
the development of valuable applications in the cosmetic, food, textile, and polymer
sectors [27,33,54,55]. Such materials could be obtained from the diphenolate derivatives. In
this context, alkyl levulinates (ALs) were proposed by Olson in 2001 [56] as a replacement
for LA in the synthesis of new diphenolate esters (DPEs). Remarkably, the reaction between
ethyl levulinate (EL) and phenol under conditions analogous to those used for LA enables
the production of DPE, but only in low yields, thus highlighting a much more moderate
reactivity of the ALs. However, when the reaction conditions were properly modified, very
high yields of the DPE (95 mol%) were ascertained, which were even greater than those
obtained when starting from LA (67 mol%). The most efficient method for the synthesis of
DPE from EL was achieved by using concentrated sulfuric acid as the catalyst, followed
by dilution with ethanol at the end of the reaction. The residual reactants were steam-
distilled off the product, but no further details regarding synthesis or purification were
reported. Pancrazzi et al. [57] performed the one-pot synthesis of DPEs, which involved the
LA’s esterification to EL and the cascade condensation of the latter with phenol and ortho-
substituted phenols (R = 2-Me, 2-iso-Pr, 2-sec-Bu) without any intermediate purification
step of ethyl levulinate. In principle, methyl and ethyl levulinate are the preferred ALs
to be employed to exploit their highest esterification yields [58]. Therefore, two different
approaches can be proposed for the synthesis of DPEs by employing ALs as starting
materials (Figure 4).
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The one-pot approach should be preferred over the two-step one because the for-
mer allows for a significant reduction in the work-up costs. Certainly, ALs should be
preferred over LA for reducing the formation of by-products, especially when working
under heterogeneous catalysis. Remarkably, the use of esters can open the way to the
production of a new class of DPE-based polymers, such as bis epoxy and polyurethane
derivatives [56], thus expanding the possibilities for applications with respect to the tra-
ditional DPA-based polymers. In the following paragraphs, these main applications will



Molecules 2024, 29, 126 18 of 29

be discussed, with an emphasis on their relevant advantages and limitations over the
corresponding BPA-based materials.

3.1. Epoxy Resins

DPA-based epoxy resins are employed for the synthesis of thermosetting materials,
including coatings, adhesives, matrix resins, and others [48,59]. The presence of DPA
within epoxy resins confers remarkable valuable properties, including lightweight and
high-strength composites [60]. Moreover, epoxy resins containing DPA could be used for
encapsulating and protecting electronic devices (semiconductors, printed circuit boards,
and sensors), thus valorizing their excellent electrical insulation properties, thermal stability,
and protection against moisture and contaminants [48,61,62]. Furthermore, epoxy resins
are used to create molds and patterns for casting various materials, including plastics and
metals, with the latter showing promising dimensional stability and heat resistance [60].

In deepening the exploitation possibilities of DPA, it is well-known that the synthesis of
BPA glycidyl ethers (DGEBA) represents valuable polymers due to their robust mechanical
properties, favorable thermodynamic characteristics, and remarkable stability [63]. DGEBA
and its oligomers account for 90% of the global production of epoxy resins [64]. A similar
approach to that of BPA can also be proposed for DPA, thus obtaining the corresponding
glycidyl ethers (DGEDPA). Both chemical structures of the corresponding glycidyl ether
monomers are reported in Figure 5.
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The research towards the development of new DGEDPA-based materials is mainly
aimed at solving some well-known DGEBA performance drawbacks, including high brit-
tleness and poor impact resistance, due to its inherent rigid aromatic rings [65]. DGEDPA-
based epoxy thermosets characterized by a hyperbranched structure may enhance mechan-
ical strength and toughness simultaneously [66]. The hyperbranched structure generated
through the reactivity of the carboxyl group of the DPA can significantly increase the
crosslink density in thermosets, thereby enhancing their mechanical strength. This crosslink-
ing could be obtained through the synthesis of ethers, esters, and amide derivatives of the
DPA, thus exploiting the reactivity of its carboxylic group. In addition, hyperbranched poly-
mers have a higher proportion of free volume than their linear counterparts, which helps
to improve the toughness of DPA-based epoxy resins [67]. In this context, Wei et al. [42]
synthesized a new DGEDPA-based polymer starting from DPA and epichlorohydrin to
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obtain a trifunctional epoxy resin. The obtained DGEDPA was cured with 3,3′-dimethyl-
4,4′-diaminodicyclohexylmethane, and the final material exhibited better performance
than that of the DGEBA-based one, including higher curing temperature, glass transition
temperature, and thermal expansion characteristics [42]. Consequently, the authors claimed
that this innovative epoxy resin shows promising potential for various critical applications,
including aerospace and microelectronics. Regarding the electronic applications, McMaster
et al. [68] tested a series of diglycidyl ethers of diphenolate esters (DGEDPE) as dielectric
materials to be proposed in substitution of DGEBA. Methyl, ethyl, propyl, and butyl es-
ters of DPA were synthesized and studied. Remarkably, the DGEDP-propyl showed the
highest dielectric constant, with results comparable to those of the traditional DGEBA. The
authors stated that variations in the dielectric characteristics of DGEDP-esters result from
the complex interplay between segmental, local, and side-chain movements on one side
and the influence of free volume and steric hindrance on the other. The research formed the
groundwork for the development of new DGEDPE-based epoxy resins, with the intention
to improve polarization and dielectric constants, which are valuable physical properties for
such types of applications. Developing a different approach, Xiao et al. [65] synthesized
different DPA-based hyperbranched epoxides (HBEPs) from DPA and dibromobutane to
improve the mechanical properties of the final resin. A two-step synthetic approach was
proposed by the authors (Figure 6). In the first step, hyperbranched polymers (HBPs)
were synthesized through polymerization through a condensation mechanism starting
from DPA and 1,4-dibromo butane in the presence of potassium carbonate and DMF. In
the second step, the epoxidation reaction of HBPs to obtain HBEPs was carried out in the
presence of an excess of epichlorohydrin. In this way, terminal functional groups were
modified through epoxidation through epichlorohydrin, thus obtaining the epoxy resin.
This methodology utilizes DPA as the branching component, thus improving the mechan-
ical durability due to its aromatic ring composition and adding a well-tuned flexibility
by including dibromo butane. Such hyperbranched thermosets exhibited exceptional me-
chanical strength and toughness, with much better performances than those of commercial
DGEBA thermosets [65,69].

Qian et al. [41] proposed another innovative synthesis of a new class of epoxy resin
with outstanding thermal performance, DPA-based polybenzoxazines, based on the ami-
dation of DPA. First, the authors synthesized DPA hexanediammonium salt (DHDA)
by reacting DPA and 1,6-hexanediamine in ethanol. Then, DHDA reacts with PEG-200,
furfurylamine, and paraformaldehyde to obtain benzoxazine diphenolic hexanediamide
(DHDA-fa) (Figure 7).

Polybenzoxazines offer distinct advantages compared to most conventional polymers.
These advantages include minimal volumetric changes during curing, high glass transition
temperatures, impressive thermal and mechanical characteristics, exceptional flame resis-
tance, and a low dielectric constant [70]. The authors demonstrated that the incorporation of
amide groups into a benzoxazine molecule can effectively improve the thermomechanical
performances of these resins with respect to those of DPA-derived benzoxazines containing
the free-ending carboxylic group in the DPA structure [41].
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3.2. Phenolic Resins

Phenolic resins are well-known for their heat resistance and durability, making them
suitable for producing electrical and automotive components, as well as in the construction
industry [71]. DPA has been employed for the synthesis of phenolic resins, including,
in particular, novolaks [72,73]. In this context, Kiran et al. [74] synthesized a sulfonated
poly(arylene ether sulfone) copolymer through direct copolymerization of p,p′-DPA, ben-
zene 1,4-diol, and the synthesized sulfonated 4,4′-difluorodiphenylsulfone (Figure 8).
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to Kiran et al. [74].

The copolymer was subsequently crosslinked with 4,4′-(hexafluoroisopropylidene)
diphenol epoxy resin through a thermal curing reaction to synthesize crosslinked mem-
branes for fuel cell applications. Zúñiga et al. [75] claimed the synthesis of a DPA-based
porous polybenzoxazine as the phenolic resin. For this purpose, the foaming agent (CO2)
was generated in situ during the thermal curing. The DPA-benzoxazine monomer was
thermally polymerized at different temperatures according to the reaction in Figure 9.
According to the authors, the proposed synthesis is smart, as it uses the same chemical both
as a crosslinking monomer and as a blowing agent. Moreover, the relative decarboxylation
reaction can be controlled by varying the temperature, which gives an excellent and simple
method for tuning foam properties. The obtained low-density foams exhibit a high glass
transition temperature, with heterogeneous open-cell morphology.
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An alternative to DPA-based sulfonated poly(arylene ether sulfone) copolymers and
porous polybenzoxazine is represented by DPE-based resins. To improve the thermal
stability of aromatic polyesters and polycarbonates prepared from DPA, various DPEs have
been proposed for the synthesis of new polymers, including methyl diphenolate (MDP),
ethyl diphenolate (EDP), n-propyl diphenolate (PDP), n-butyl diphenolate (BDP), and
n-hexyl diphenolate (HDP) [44,76]. For example, Ping et al. [76] synthesized two aromatic
polyesters, poly(MDP–IPC) and poly(EDP–IPC), via interfacial polycondensation (IPC)
of isophthaloyl chloride with methyl diphenolate (MDP) and ethyl diphenolate (EDP),
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respectively, and studied their thermal stability by considering the poly(DPA–IPC) as the
reference. The authors found that the presence of carboxylic groups in poly(DPA–IPC)
leads to lower thermal stability addressed to carboxyl group interactions, which can be
weakened by working with the ester. In this context, poly(MDP–IPC) and poly(EDP–IPC)
display single-stage thermal decomposition at higher temperatures, with slightly reduced
glass transition temperatures due to increased side-chain flexibility. Overall, at the state
of the art, DPE-based polymers exhibit better thermal performance and behavior than
DPA-based ones.

3.3. Thermal Papers

DPA could also be used as a sustainable alternative to BPA to produce thermal pa-
pers, which are commonly used in point-of-sale (POS) receipt, fax, and label printers [50].
Thermal papers enable the production of images after exposure to a heat source, thus
eliminating the need for the use of inks or toners. Generally, the thermosensitive layer
contains a fluoran-type dye (leuco dye) serving as the thermal dye and a color developer,
such as BPA, as the proton donor. These chemical components are responsible for color
development after heating, according to Figure 10.
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colored open form of the dye [50].

The U.S. Environmental Protection Agency (EPA) has issued warnings about using
BPA on thermal paper and is searching for possible substitutes, including DPA-based
ones [77]. Moreover, DPA and its derivatives were proposed as drying agents for inkjet
receptor media, as reported by Malhotra et al. [78]. In this context, when DPA is used
in combination with a multivalent salt and a surfactant, it can efficiently dehydrate the
medium, resulting in a better quality of the final printed product.

3.4. Coatings and Adhesives

DPA also finds applications for the formulation of coatings and adhesives [51–53]. To
date, most of these applications of DPA are aimed at improving adhesion promotion, corro-
sion resistance, thermal stability, resin modification, adhesive strength, electrical insulation,
and UV resistance [79]. Remarkably, Yan et al. [52] first synthesized the poly(diphenolic
acid-phenyl phosphate) [poly(DPA-PDCP)] from DPA (Figure 11) and then used it in com-
bination with a polyethylenimine (PEI) to produce, through layer-by-layer self-assembly, a
flame-retardant surface coating for ramie fabric. Poly(DPA-PDCP)/PEI showed excellent
flame-retardant properties, thus finding many potential applications in the automobile,
train, and aerospace fields [53].

Furthermore, DPA is effective for improving the UV resistance of coatings by help-
ing to prevent color fading and degradation when exposed to sunlight [79,80]. This is a
valuable property for outdoor applications, such as architectural coatings and automotive
finishes. For example, in the study by Zhang et al. [79], a novel, multifunctional, bioderived
polyphosphate (PPD) for poly(lactic acid) (PLA) was synthesized through a three-step
procedure (Figure 12). In the first step, 9,10-dihydro-9-oxa-10-phosphaphanthrene-10-
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oxide (DOPO) reacted with polyformaldehyde (HCHO) to produce a DOPO-derived com-
pound, 2-(6-oxido-6H-dibenz[c,e][1,2]oxaphosphorin-6-yl)-methanol (ODOPM). ODOPM
reacted with DPA in the presence of N, N-dimethylformamide (DMF) and sulfuric acid
(as the acid catalyst) to produce (6-oxidodibenzo[c,e]› [1,2]oxaphosphinin-6-yl)methyl 4,4-
bis(4-hydroxyphenyl)pentanoate (DPOM). Lastly, DPOM reacted with phenylphosphonic
dichloride (PPDC) in ethyl acetate (EAC) and triethylamine (Et3N) to give the target PPD.
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3.5. Antioxidant Properties

DPA shows interesting antioxidant properties, which could potentially be exploited for
various applications, such as in the packaging industry to extend the shelf life of products
and in cosmetics for their anti-ageing effects. Moreover, DPA and its derivatives can be used
in paint formulations, decorative surface coatings, additives for lubricating oil, plasticizers,
surfactants, cosmetics, and the textile industry [27,54,55,81,82]. For example, in the rubber
industry, DPA is employed as an antioxidant additive, thus helping to protect such products
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from the degradation of oxygen, heat, and other agents [83]. This can extend the lifespan of
rubber components used in automotive and industrial applications. Similarly, in the paint
industry, the addition of DPA derivatives can increase the durability of commercial paint
formulations. As reported in the patent of Holmen et al. [82], such an improvement was
achieved through the incorporation of a DPA-based polyamide. Even at the low amount
of 1 wt% of DPA within the polyamide modifier, this formulation improves the longevity
of an applied coating. In all of these applications, DPA serves as a valuable antioxidant
additive by effectively scavenging free radicals and inhibiting the oxidation of materials,
thereby extending the lifespan, maintaining performance, and ensuring the quality of
various products and materials.

3.6. Other Possible Applications

Finally, DPA-coated surfaces show good antivirus and antibacterial properties. This
valuable biological activity is attributed to the interaction between the DPA molecules and
the membrane proteins of the pathogens, thus causing deformation of the cell membrane
and the cell lysis [84]. In this context, Shen et al. [84] demonstrated the active biological
activity of Co-DPA-1.0% fabric surface towards common pathogens, like Escherichia coli
and Staphylococcus aureus. DPA can be employed as an antibacterial agent in textile finishes
and coatings to enhance the resistance of textiles to biological factors, which can cause
fading and degradation. For example, Shen et al. [84] employed DPA as a finishing
reagent to impart antibacterial and antiviral functions to cotton fabric. After a simple
pad–dry–cure process, DPA molecules were covalently linked onto cotton fiber surfaces
via the esterification reaction between their carboxyl groups and the hydroxyl groups of
cellulose on the fiber surfaces. The DPA phenolic groups on the cotton fibers enable the
destruction of the pathogens through protein affinity interactions. Experimental results
show that the DPA-modified fabrics realize not only a high bacteriostatic effect against
both Escherichia coli and Staphylococcus aureus but also an excellent antivirus effect that
allows for rapid virus inactivation in less than 20 min. It was also demonstrated that the
modification process generated insignificant damage to the cotton fiber structure, and
the resultant cotton fabrics are safe for human skin. Therefore, this work may open a
new way to endow cotton textiles with antibacterial and antiviral functions. Moreover,
some phenolic acids have been studied for their potential biological activity, including anti-
inflammatory and anti-cancer properties [85,86], thus opening the way to the development
of new therapeutic applications.

4. Conclusions

This review focused on the synthesis and potential applications of diphenolic acid,
a valuable alternative to bisphenol A, and demonstrated that its synthesis from the con-
densation of levulinic acid and phenol still has many challenges and critical issues to be
solved. The feasibility of this reaction has been variously investigated, requiring, similarly
to bisphenol A, the use of a Brønsted acid catalyst, mild temperature, and long reaction time.
Mineral acids give good results in terms of yield (about 70 mol%) at complete levulinic acid
conversion, but the development of heterogeneous acid catalysts is highly desirable, thus
minimizing the corrosion problems and simplifying the subsequent work-up operations.
Commercial acid resins, such as Amberlyst-15 and zeolites, give promising catalytic perfor-
mances similar to those of traditional homogeneous acids. Moreover, as discussed in detail,
new ad hoc catalytic systems have been proposed by several authors, which, in some cases,
maintain good catalytic performances after the reactivation step. In fact, catalyst deacti-
vation was generally observed after its recycling mainly due to the adsorption of organic
matter on the catalyst surface. On this basis, the thermal calcination of the spent catalyst
is often effective to restore its pristine performances. However, this thermal treatment is
feasible only for inorganic systems (sulfonated N-doped carbon nanotube, H3PW12O40-
silica materials, and zeolites), whilst it is inappropriate for sulfonic-acid-based organic
resins (Amberlyst and Nafion), which would degrade at such high temperatures. Therefore,
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the inorganic catalysts are industrially more attractive from the perspective of a desirable
scale-up of the reaction in the immediate future. The improvement of the regioselectivity of
this reaction is specifically addressed because different isomers, including, mainly, the p,p′-
and o,p′-ones, can be obtained starting from phenol, but only the first one is industrially
attractive. The most studied solution to solve this issue involves the use of thiol additives,
which mainly improve the p,p′/o,p′ molar ratio, in some cases up to 100, which allows for
reaching a p,p′-DPA yield higher than 90 mol%. With these kinds of catalytic systems, the
thiol effect should be properly tuned by preferring a kinetic control regime and therefore
working at limited levulinic acid conversion rather than a thermodynamic one. In most
cases, this last approach has been preferred by pursuing the maximum performance of the
catalysts and thus mostly losing the advantage deriving from the thiol use. Remarkably,
only batch-scale studies have been carried out up to now, whilst thiol use could be even
better exploited through a continuous-scale approach. In addition to the catalytic synthesis
of DPA, its main developed applications have also been discussed, which mainly deal with
epoxy and phenolic resins and polycarbonates. Moreover, DPA shows many other potential
valuable benefits in terms of antioxidant, flame-retardant, and UV protection properties
and biological activity. In principle, the work-up step should be specifically evaluated de-
pending on the use of the final material. In this context, some old patents for DPA synthesis
reported some purification procedures, but the evaluation of DPA purity is limited by the
technological techniques of those years in the field of characterization. Nowadays, the
phase diagrams of the p,p′- and o,p′-isomers are not known, and the characterization of the
heavier by-products has been little investigated. Therefore, further research on these issues
is highly necessary to fill these gaps and improve the know-how mainly in the selective
synthesis of the p,p′-isomer and the industrial separation/purification field. Lastly, other
challenges to be further investigated include the use of substituted phenolic derivatives,
which can be reasonably obtained from lignin sources, and/or the use of alkyl levulinates
instead of levulinic acid to increase the selectivity to the p,p′-isomer and improve the
physico-chemical properties of the final polymers. Very few promising results deriving
from these approaches are already available, demonstrating that further improvement
in this field is possible and thus favoring the growth of the production of DPA and its
added-value, versatile derivatives.
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