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Abstract
Health sensors and remote measurement tools have saved lives through the possibility of continuous monitoring and inter-
vention tools, and over the years their use has expanded to non-medical areas such as fitness and perceived well-being. This 
expansion has led to unprecedented data collection, especially since biomedical sensors are now ubiquitous in everyday 
devices such as smartwatches and smartphones. While these devices can be disruptive research tools and even clinical tools, 
they pose technological and socio-economic challenges that can limit their impact. Here, we highlight these challenges, 
including the use of proxies for clinical reference measurements, uncertainties resulting from the presence of noise, com-
plexity of physiological systems, and statistical methods used for data interpretation.
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Introduction

The rapidly growing and ageing world population with its 
healthcare needs has placed an increased demand on clini-
cians, not only in terms of their numbers, but also in terms of 
interaction time and quality of care. To meet such demand, 
there has been a notable shift in the opportunities for care 
outside the clinic, thanks to the evolution of monitoring and 
diagnostic technologies fueled by their integration into wear-
able technologies.

Healthcare sensors and remote measurement tools have 
saved lives thanks to the possibility of continuous monitor-
ing and life-saving intervention tools, and over the years 
their deployment has expanded into areas beyond healthcare 
such as fitness and well-being perception [1]. Such expan-
sion has led to the collection of data at an unprecedented 
rate, opening the floodgates to new possibilities in biomedi-
cal research [2, 3].

Biomedical sensors are being ubiquitously placed into 
daily-use devices, such as smart-watches and smartphones. 

Since the number of smartphone subscriptions worldwide 
today surpasses six billion and is forecast to further grow 
by several hundred million in the next few years,1 the age 
of planet-scale healthcare technology testing and diagnos-
tics is right around the corner. But what does this mean for 
studies using standard clinical data measurement setups 
in small, controlled settings when confronted with experi-
ments approaching “N = All humanity” scales of data? Does 
quantity mean quality? What are the future implications on 
healthcare? A debate has arisen as to the quality of data 
collected and signal processing methods, which may signifi-
cantly deviate from medical standards.

Proxies of clinical gold standard measurements are fre-
quently employed in wearable data acquisition and can lead 
to greater risks for error. The main issue that arises in the 
employment of wearable measurement devices, as is the case 
for any biomedical measurement for clinical use, is uncer-
tainty generated by the presence of noise. The quality of the 
data and associated level of noise depend on many factors, 
including the devices employed and the skill level and com-
petence of the person operating the device.

While wearable technologies offer new opportunities 
for translational biomedical engineering, the many path-
ways by which physiological data could be collected and 
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the subsequent signal processing techniques raise concerns 
for data validity. Furthermore, the intricacy of dealing with 
sensor acquisition, data processing, and the complexity of 
physiological systems in health and disease raise concerns 
about data interpretation, data privacy, and data sharing.

The World of Wearables

Wearable sensors and remote measurements have made con-
tinuous patient monitoring possible. Wearables and wearable 
technology have consolidated their presence in health and 
well-being applications; in fact, 85 million wearable medical 
sensors and devices were shipped in 2021, and the number 
of shipments is expected to grow to 160 million in 2024.2

State-of-the-art wearables can potentially capture data 
always and everywhere. For example, blood pressure 
monitoring in a clinical setting usually requires 1-h doc-
tor appointments every 6 months; over the same 6-month 
period, 4320  hourly blood pressure readings could be 
obtained through the use of wearables. Clinically validated 
data acquisition systems found in hospitals are cumbersome 
to use and require specialized technicians [1–3]. The avail-
ability of miniaturized cardiovascular wearable diagnostic 
sensors worn usually on the chest or wrists for cardiorespira-
tory or body-motion detection typically in smartphones have 
allowed for (i) longer durations of ambulatory monitoring 
for at-risk patients [4]; (ii) a prolonged use of wearables by 
asymptomatic, healthy subjects for assessing physical fitness 
or improving individual perception of well-being [5]; (iii) 
and the implementation of follow-up protocols for at-risk 
patients, in the form of alerts sent to patients or caregivers. 
Textile wearables are widely used as well [6].

Due to its nature, wearable technology employs proxy 
measures to obtain information that is meant to be equivalent 
to clinical biomarkers. For example, video-based motion-
capture systems are the gold standard for capturing proxy 
parameters of healthy and pathological gait dynamics, which 
may also be retrieved using wearable inertial motion cap-
ture platforms [1]. These provide proxy measurements of 
the video-based motion-capture proxy in many rehabilitation 
scenarios, while allowing for patient monitoring in real-life 
conditions.

In respiratory medicine, spirometry is the gold standard 
proxy for the assessment of pulmonary capacity and related 
disorders [7]. In the wearable domain, a proxy of the proxy 
spirometric assessment has been developed in the form of 
abdominal and/or thoracic belts [1]. These are currently 

employed in pneumology studies, providing relevant diag-
nostic information, such as on apneic transients [7].

Besides monitoring patients, other advances in biomedi-
cal research have been developed using wearable technol-
ogy, such as the acquisition of digital biomarkers through 
consumer-generated physiological and behavioural data. 
These biomarkers offer a great potential in their applica-
tion to medical domains that are less understood or where 
disease diagnosis is difficult or difficult to quantify, such as 
in the fields of neurology and psychiatry. For example, emo-
tion monitoring is carried out through camera-based facial 
expression sensing, capable of providing ubiquitous meas-
urements that are otherwise physiologically or neurologi-
cally inaccessible, such as pain, which has no clear sensor 
correlate. Another example regards overcoming the limita-
tions of more standard and expensive invasive vagus nerve 
stimulation techniques through extra skin/in-ear devices, 
benefitting patients with pharmacoresistant epilepsy (par-
tial onset seizure disorders) and depression [8, 9]. The use 
of digital biomarkers could also enable and reduce clinical 
trial duration since disease progression may be monitored 
by wearables with more precision and accuracy.

The propagation of easily accessible and affordable wear-
able technology contributes to significant improvements 
regarding the power of well-being studies as well as the 
reach of basic healthcare diagnostics, though not an easy 
task. Due to the use of proxy techniques and because of 
the nature of the devices themselves, data evaluation and 
validation require improved signal processing analytics that 
can extract diagnostic information due the elevated amount 
of noise present in the acquisition to monitor the perfor-
mance of on-going interventions [1–3] and to predict future 
clinical events. With regards to problems in cardiovascular 
healthcare monitoring, class action lawsuits3 filed against 
major device manufacturers are supported by experimen-
tal testing: while wearable optical heart rate trackers has 
proven effective for cardiac healthy behaviour assessment 
when subjects are at rest, its predictive power decreases dur-
ing physical activity or mental stress, unlike ECG-derived 
measurements [10]. Indeed, some studies claim clinical 
validity of smartphone-derived cardiovascular metrics [11], 
while others have raised concerns [12]. In young healthy 
adults, commercial-grade wearable optical heart rate track-
ers are off by 5–40 beats per minute while exercising on a 
treadmill for 3 min at rest, and at 2–6 mph activity [12]. 
These trackers have also been associated with no less than 
1.14% as mean absolute percentage error in other seden-
tary testing, and light (error range 5.60–24.38%), moderate 
(error range 6.70–24.27%), and vigorous physical activity 
(error range 3.32–9.88%) [13]. This is confirmed by the fact 

2 https:// www. stati sta. com/ stati stics/ 12905 10/ weara ble- medic al- sen-
sor- device- shipm ents/. 3 https:// www. rosen legal. com/ cases- 811. html.

https://www.statista.com/statistics/1290510/wearable-medical-sensor-device-shipments/
https://www.statista.com/statistics/1290510/wearable-medical-sensor-device-shipments/
https://www.rosenlegal.com/cases-811.html


682 Biomedical Materials & Devices (2023) 1:680–685

1 3

that wearable heart rate monitoring through smart-watches 
on average underestimates heart rate by 1–9%, depending 
on the activity (e.g., rest: lying, sitting, standing; exercise: 
walking, cycling), with respect to a reference ECG [14]. In 
a small cohort of patients in an intensive care unit, wear-
able monitoring had a sensitivity of 69.5% and specificity 
of 98.8% for the detection of tachycardia, with lower sensi-
tivity in case of patients not in sinus rhythm or with faster 
heart rates (> 150 bpm) [15]. Other, although minor, lev-
els of disagreement were found in comparing standard and 
healthcare wearable metrics in patients with mild/moderate 
systolic dysfunction (see [16] and references therein).

Overfitting the Patient and Confounding 
Physiological Complexity

How reliable are healthcare wearables? The deployment of 
wearables outside a clinical setting have raised several ques-
tions as to the quality of the data being generated as well as 
the reliability of data validation techniques employed.

Uncertainty arises from both noise and ambiguity in our 
measurements and sets fundamental challenges and limits 
to inferring the underlying physiological state of a person. 
Measurements taken by devices are often noisy due to elec-
trical noise in amplifier circuits or the physical nature of the 
biosignals themselves [17]. Wearables by their very nature 
promise ubiquitous data collection with the opportunity cost 
in using more “indirect” or “noisier” sensors. In the afore-
mentioned example of blood pressure measurements, while 
4320 readings can be taken over a year, the level of uncer-
tainty is decreased; however the level of noise may be much 
greater than those readings taken by a clinician.

Different technological platforms and software systems 
among manufacturers present different levels of noise, 
signal-to-noise ratio, noise correction and smoothing algo-
rithms that are often not exposed to the user nor the “App” 
software developer. Common devices embedding biomedi-
cal sensors may come with noisy and biased and/or non-
precise sensor performance. This may vary considerably 
across different brands and even within devices of the same 
make and series. Moreover, software developed across plat-
forms without careful testing or calibration across devices 
could give rise to problems; this is especially a risk in the 
two big software platforms for smartphones, which create 
abstractions of low-level sensor differences and often simu-
late missing sensors. Developers are provided with generic 
sensors for devising software for “well-being” applications, 
which are likely to be the output of team programmers, 

without the involvement of clinicians or biomedical engi-
neers who understand the underlying physiological and sen-
sor mechanisms. It is therefore not surprising that, between 
the beginning of 2020 and the end of 2021, the number 
of mHealth apps available to Android users reached over 
65,300 thousand,4 the majority of which lack scientific evi-
dence of their function, and only four of these have been 
subjected to clinical trials [5]. This is a concern as there is a 
high-risk of implications for the use of ‘well-being’ applica-
tions of wearables due to misinformation, misdiagnosis or 
even mistreatment that can be caused by these Apps. The 
absence of clinical trials or prospective studies limiting reli-
able self-monitoring and self-management of disease creates 
a divide between well-being gadgets and tightly regulated 
and clinically-tested wearable medical devices. However, in 
the domain of medical devices, regulatory tightening by the 
US Food and Drug Administration and European Medicines 
Agency required more medical devices to undergo actual 
clinical trials only this year. Another example of problems 
with wearable devices lacking clinically driven data regards 
the dermatological inspection of skin abnormalities through 
photography-based apps, which has recently been challenged 
by the US Federal Trade Commission, who took action 
against two melanoma detection Apps in 2015 because of 
little evidence of clinical output.5 In either case it is impor-
tant that even wellbeing gadgets are clinically validated, as 
the scalability of this technology paired with the end-user’s 
illusion of precise technology can lead to medical complica-
tions from the misreading of such wearables.

A key area of concern regards specificity issues in 
human pathophysiology that require careful use of data-
driven methods when healthcare monitoring occurs out-
side a clinically-informed context. While different stages 
of severity of a specific disease may show a clear correla-
tion with wearable-derived biomarkers, many other condi-
tions, especially healthy ones, may show similar biomarker 
variations as in patients. For example, in internal medicine, 
autonomous nervous system functioning can be assessed 
through Heart Rate Variability (HRV), as a proxy meas-
ure. HRV is a widely recognized, non-invasive tool used to 
investigate neural control of cardiac activity with a consider-
able amount of applications and clinical evidence [18, 19]. 
While gold-standard measures of HRV use electrocardio-
gram recordings to quantify heartbeat time intervals, most 
wearable cardiovascular monitoring devices rely on optical 
measures (photoplethysmography) of the mechanical blood 
pulse signal. Thus, another wearable proxy of a proxy [10]. 
Autonomic variations following dynamical sympathetic and 
parasympathetic activation or withdrawal can be observed 
4 https:// www. stati sta. com/ stati stics/ 779919/ health- apps- avail able- 
google- play- world wide/.
5 https:// www. ftc. gov/ news- events/ press- relea ses/ 2015/ 02/ ftc- cracks- 
down- marke ters- melan oma- detec tion- apps.
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for different conditions such as postural changes, physical 
mental stress or different pathological status. This may lead 
to inconsistencies due to the variety of experimental set-ups 
and methodological approaches used in validation studies. 
Let us illustrate this autonomic non-specificity with respect 
to vagal driven heartbeat dynamics in resting state: simi-
lar variations in HRV series may be observed during sim-
ple postural changes in healthy subjects as well as during 
unstructured activity in congestive heart failure [20]. In fact, 
these healthy and pathological states are associated with a 
significant sympathetic-driven dynamics on cardiac control.

For the validation of data from wearable sensors versus 
gold-standard proxy, the use of simple correlation analyses, 
as well as inferential statistics based on first- and second-
order moments (e.g., parametric t-test or F tests) should be 
avoided because they refer to group-wise metrics, which are 
not sample-wise. This is dangerous when estimating heart-
beat complex dynamics (e.g., using entropy metrics), which 
may be significantly affected by the precise estimation of 
heartbeat time intervals and, consequently, by the signal 
sampling frequency [16]. Instead, a quantitative, sample-
wise analysis based on the point-by-point comparison of 
proxies should be applied, also statistically testing the agree-
ment between two methods of measurement (e.g., through 
Bland–Altman analysis).

When considering applications of statistical testing, ana-
lysts should account for an increased likelihood of finding 
spurious correlations, as well as for a redefinition of arbi-
trary thresholds in significance tests. As datasets increase 
in size, spurious correlations can begin to wreak havoc sug-
gesting significant results where there are none [21]. This 
poses challenges in how to verify the reliability of results 
gathered from very large-scale experiments, and how to run 
scientifically rigorous large-scale evaluations through ran-
domised controlled trials employed to reach the standard of 
care we are used to [22]. Further confounds are added by 
users cheating in their wearable use, but because healthcare 
insurers monitor their physical activities, it resulted in the 
development of anti-cheating technology [23].

Tailoring Wearables Through Signal 
Processing—Outlook

Wearable technology and the creative approaches that have 
sprung from the need to provide cost-effective healthcare 
to a growing population are expected to build upon what is 
nowadays called “precision medicine”, that is, the prevention 
and treatment strategies that take individual variability into 
account [24]. Users will be equipped with healthcare self-
assessment and self-management tools and, over time, will 
generate knowledge that directly impacts clinical practice.

To this end, the author believe that some important con-
siderations must be taken into account to ensure that the 
wake of this technological disruption unfold responsibly.

The first is the need for standardisation of wearable 
devices. The variety of device hardware, software, experi-
mental set-ups and methodological approaches used for vali-
dation is primarily responsible for important inconsistencies 
in wearable technology data validation. In order to make 
validation studies more reliable, it would be advantageous 
to the research community to encourage manufacturers and 
developers to create standards including, but not limited to, 
analogue front-ends, body placement, duration, and task 
details, as well as information on sensor calibration included 
in the software development kit.

Wearables give us the opportunity to analyse our com-
plex physiological systems “as a whole”. Network medicine 
approaches and subsequent discovery of functional inter-
dependencies among newly developed healthcare variables 
will lead to alternative ways of understanding the structure 
of disease, therefore accounting for the complexity of physi-
ological systems, i.e., due to the many interaction of many 
sub-components, the study of the system as a whole will 
uncover properties that the study of the individual subsys-
tems acting alone cannot [19, 25]. To this end, biomedical 
engineers and computer scientists must also be prepared for 
their role in the healthcare chain in converting what is cur-
rently considered non-healthcare data into actual healthcare 
data, e.g., step counters and GPS locations. End users will 
also need training or supervision in order to play their part 
in the data collection process, such as data labeling using 
“fuzzy labeling” rather than “binary logic” (e.g., diseased 
vs. healthy).

A further consideration regards the exploitation of large 
data collection in a wearable fashion to overcome non-spec-
ificity of physiological dynamics. Confounding disease ele-
ments resulting from comorbidities have already been rec-
ognised in pharmaceutical trial validation, yet awareness in 
biomedical device evaluation with inputs from autonomic 
dynamics has yet to gain broader appreciation. To this end, 
large-scale data acquisition initiatives have already started 
for cardiovascular healthcare, e.g., Apple Heart Study.6 
Understanding how multi-faceted properties of disease 
are reflected in data gathered from simple wearable sen-
sor biomarkers will lead to discerning among various dis-
ease stages and healthy states by wearable sensors. Further 
insight into a-specificity will be gleaned through considera-
tion of a combination of biomarkers. We envisage that data 
driven approaches including deep/reinforcement learning 
may resolve several arising issues relating to uncertainty 
and individuality of treatment strategies, as they can learn 

6 http:// med. stanf ord. edu/ apple heart study. html.

http://med.stanford.edu/appleheartstudy.html
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real-world tasks. This requires that the algorithm operate in a 
closed-loop, i.e. responding to sensor information appropri-
ately and weighing the consequences of future actions to find 
the best final outcome. So far these processes have already 
proven how to surpass human performance [26]. Moreover, 
this class of algorithms can build rich internal representa-
tions, or models of patients, that allow the system to simulate 
potential future outcomes.

There are considerable ethical challenges present in the 
pervasive use of wearable healthcare technology, espe-
cially regarding individual privacy in health data sharing. 
Often, privacy concerns arise from unintended and often 
the unforeseen exploitability of data exhaust from weara-
bles, e.g., users willing to undergo ubiquitous cardiovascular 
monitoring may expose their psycho-physiological states, 
such as emotion recognition through analysis of cardiovas-
cular dynamics [27]. Moreover, storage of large amounts of 
data in clouds or other repositories also raise issues about 
security of personal information. The hope is that these 
will be tackled by privacy-preserving data sharing and data 
mining algorithms that prevent the problem of disclosing 
sensitive data when mining for useful information, also com-
pliant with changes in research regulation (EU Regulation 
2016/679 of the European Parliament and of the Council of 
27 April 2016 (General Data Protection Regulation). As of 
May 26, 2020, any medical device certified in the EU must 
comply with the requirements of the Medical Device Regu-
lation. By 2024, any device sold, and in 2025 any device put 
into service must comply with the regulations). This will be 
achieved through cryptographic and blockchain technolo-
gies that prevent disclosure of sensitive personal informa-
tion, while making the anonymised data usable for analysis, 
protecting the source from being retraceable. Moreover, 
algorithms will be designed to compute values with par-
tial information only, e.g., averages, so that actual sensitive 
parameters need not be explicitly stated.

Another message regards society, in that it is our duty 
as experts to create awareness in the general public and 
the medical community. It is important that the public be 
educated and informed, and that they understand the limita-
tions of embedded signal processing in the presence of noise 
and the benefits of wearable technology through patient 
involvement. Healthcare wearables have already placed the 
end user in a position to be more intimately involved in his 
or her own healthcare and well-being management. While 
some consumers are aware of the differences and efficacy 
between unregulated, untested nutritional supplements pro-
moting well-being and tightly controlled pharmaceuticals 
that drive healthcare, talk about the regulation of wearable 
healthcare has only started now. Clinicians and biomedical 
engineers should also be present in all aspects of wearable 
technology development. Machine-learning approaches will 
place medical doctors in the role of a “network of medicine” 

rather than confining them to the narrow and specialised 
fields delineated by medical schools [28].

These healthcare innovations are expected to stimulate 
academia and industry in developing countries. The rap-
idly changing social and technological dynamics has driven 
a price-sensitive market and growth in mobile phone and 
low-cost, smart-device ownership in critical regions of low 
and middle-income countries. Because of the lack of formal 
infrastructure to reach the base of the population, wearable 
biomedical sensors (especially embedded into smartphones) 
constitute particularly promising channels for the provision 
of health services and information in rural, otherwise inac-
cessible zones. Considering that 78% of global mortality and 
86% of mortality and morbidity from cardiovascular diseases 
occurs in developing countries [29], which could be a major 
step towards improving global healthcare.

The evolution and propagation of wearable technology 
has disrupted the medical device industry and the traditional 
way of delivering healthcare. The access to a substantial 
degree of previously unmet personalised treatments and 
interventions is now possible, dramatically reducing the fear 
of communicating personal information directly to another 
individual, as patients are willing to disclose more informa-
tion about themselves to a computer than to their therapist 
[30]. Medical device technicians and analysts, who once 
stood at the helm of research and development of biomedi-
cal device technology, are now equal partners with medical 
doctors and the general population, redefining the healthcare 
chain.

Technologies that were once in the hands of a few are 
now in the hands of all, resulting in mass quantities of data, 
thereby presenting new challenges and opportunities to the 
research community. At the forefront of this debate is the 
importance of noise reduction and signal processing valida-
tion, for if these are not resolved, the potential benefits and 
opportunities afforded by wearable technology may be lost.
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