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Abstract

Our goal is to show that the additive-slow-Farey version of the Triangle map (a type of multi-
dimensional continued fraction algorithm) gives us a method for producing a map from the set of integer
partitions of a positive number n into itself. We start by showing that the additive-slow-Farey version
of the traditional continued fractions algorithm has a natural interpretation as a method for producing
integer partitions of a positive number n into two smaller numbers, with multiplicity. We provide a
complete description of how such integer partitions occur and of the conjugation for the corresponding
Young shapes via the dynamics of the classical Farey tree. We use the dynamics of the Farey map to
get a new formula for p(2, n), the number of ways for partitioning n into two smaller positive integers,
with multiplicity. We then turn to the general case, using the the Triangle map to give a natural map
from general integer partitions of a positive number n to integer partitions of n. This map will still be
compatible with conjugation of the corresponding Young shapes. We will close by the observation that
it appears few other multi-dimensional continued fraction algorithms can be used to study partitions.
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1 Introduction

This paper is an attempt to put two ideas together, that of integer partitions for positive integers and
that of the dynamics behind regular and multi-dimensional continued fractions. The theory of partition
numbers is one of the richest areas in mathematics, especially in combinatorics. Continued fractions and
their generalizations to the multi-dimensional case (all of which can be interpreted as division algorithms)
are important to number theory, to dynamical systems as a rich source of examples and a number of other
areas.

We have two audiences in mind: the partitions and the dynamical systems communities. Thus there
will be a bit more exposition than would be usual in a paper. This is also why we spend so much time on
the somewhat special case of partitions into only two parts.

The main idea behind this paper can initially be seen by the relation between the continued fractions
expansion of a rational number m/n and the Farey tree, a binary tree containing all rational numbers
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in (0, 1). The construction of the Farey tree recalled in Section 3.2 can then be used to generate integer
partitions of the denominator n. Let us consider for example the number 8/19, which is studied in details
in Examples 3.3 and 4.2. Our method generates the following partitions of 19:

19 = 11 + 8

= (8 + 3) + 8 = 2 · 8 + 3

= 2 · (5 + 3) + 3 = 2 · 5 + 3 · 3
= 2 · (3 + 2) + 3 · 3 = 5 · 3 + 2 · 2
= 5 · (2 + 1) + 2 · 2 = 7 · 2 + 5 · 1 .

Notice that at each step we are simply applying a slow version of the Euclidean algorithm starting from
the couple (8, 19). In this slow version of the algorithm we subtract the number 8 from 11 just once, and
keep doing the same subtraction until it is impossible to continue. Then we pass to the couple (3, 8) and
continue. We have thus produced five partitions of 19 into two different parts. We refer to Section 2 for a
background on integer partitions.

The first main result of the paper is that given an integer n we generate all its partitions into two coprime
different parts with coprime multiplicities by repeating the previous method for all numbers m/n ∈ (0, 1)
with gcd(m,n) = 1. We can then extend this result to show how to generate all the partitions of an integer
n into two different parts. The relation of the generated partitions with the Farey tree also leads to a
formula for the number of these partitions. In Theorem 4.18, we give a new formula for the number of
ways to partition n into two smaller numbers, with multiplicity. This formula is quite different than the
formula of Kim [18] and has a dynamical interpretation in terms of the Farey tree and the related Farey
map.

In Section 2, we set up our notation for partitions. Section 3 deals first with the Farey map, which
we refer to as the additive-slow-Farey map to remark its role in the generation of the slow version of the
additive Euclidean algorithm. In the same section we also recall the construction of the Farey tree and the
interpretation of the Farey map via two-by-two matrices in SL(2,Z).

In Section 4, we introduce our method to find integer partitions of a positive number n into two smaller
numbers by using the Farey map and prove the main results of the paper. Our method also produces an
extremely natural interpretation of the conjugation among partitions. In the theory of integer partition
this conjugation is described in terms of the Young shape of a partition and of the flipping of the shape. In
Theorems 4.7 and 4.16 we show that this conjugation comes out from the properties of the binary sequence
of a rational number in the Farey tree and of its reversed sequence.

All of this is about the quite special case of partitioning n into two parts. It is in Section 5 that we start
the discussion of the generalization of our method to partitions into many parts. This is the part of the
paper in which we start using a particular multi-dimensional continued fractions algorithm. In particular
we use what we call the additive-slow-Triangle map, a m-dimensional version of the Farey map (whose
two dimensional version was introduced and studied in [7] in analogy with the two-dimensional version of
the Gauss map defined in [15]). In Section 5 we will see how the Triangle map can be used to produce
various partitions of n into m smaller numbers, with multiplicity. The geometry of the Triangle map and
of its domain is more complicated than that for the Farey map. We will determine a description of which
such integer partitions occur and give description of the conjugation for the corresponding Young shapes
via the dynamics of the Triangle map. In Section 6, we will further extend the triangle map acting on
partitions, giving us a way for capturing all possible partitions into orbits of other partitions. Now the
Triangle map is only one of many possible multi-dimensional continued fractions algorithms that exist.
In Section 7, we will look at two other well-known multi-dimensional continued fractions algorithms (the
Mönkmeyer map and the Cassaigne map) and show, somewhat surprisingly, that neither can be used to

2



study partition numbers. Further in that section we discuss that there are only a few multi-dimensional
continued fractions algorithms that will create orbits of partition numbers. We close with questions in the
last section.

2 Background on Partition Numbers

There are many sources for background on partition numbers: the classical text is Andrews [1] and a good
introduction is Andrews and Eriksson [2]. In this section we recall what we need in the following.

A partition of an integer n ≥ 1 is a non-increasing sequence of positive integers

λ = (λ1, λ2, . . . , λr)

such that λ1 + · · ·+ λr = n. In this case we shall write (λ1, λ2, . . . , λr) ` n. The partition number p(n) is
the number of partitions of n, that is the number of ways for adding positive numbers together to get n,
with order not mattering. For example p(6) = 11 because 6 can be obtained in the following 11 different
ways:

6 4 + 1 + 1 3 + 1 + 1 + 1 2 + 1 + 1 + 1 + 1

5 + 1 3 + 3 2 + 2 + 2 1 + 1 + 1 + 1 + 1 + 1

4 + 2 3 + 2 + 1 2 + 2 + 1 + 1

If a certain λi is repeated in the sequence, say ki times, we collapse the repeated values and use the compact
notation

(nk11 , . . . , n
km
m ) ` n

to denote the partition n1 · k1 + · · ·+ nm · km = n. We shall call n1, . . . , nm the parts and k1, . . . , km the
multiplicities of the partition. Thus for n = 6, we can rewrite the above partitions as

(6) ` 6

(5, 1) ` 6

(4, 2) ` 6

(4, 12) ` 6

...

(22, 12) ` 6

(2, 14) ` 6

(16) ` 6

As we will be acting on a partition (nk11 , . . . , n
km
m ) via matrices, it will be convenient at some point to use

the notation
(nk11 , . . . , n

km
m ) = (n1, . . . , nm)× [k1, . . . , km],

with round brackets for the parts and square brackets for the multiplicities.
To a given partition (λ1, . . . , λr) we associate the Young shape (also called a Young diagram), a left-

aligned diagram with r rows such that the i-th row contains λi squares. Equivalently, to a partition of the
form (nk11 , . . . , n

km
m ) we associate the shape with k1 + · · · + km rows such that there are k1 rows with n1

squares on top of k2 rows with n2 squares, and so on.
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Example 2.1. For example, the Young shape for (53, 32, 21) ` 23 is

We can always flip any such Young shape, turning the rows into columns, getting a new Young shape
which still represents a partition of the same integer. We shall refer to this new partition as the conjugate
partition and write

λ ∼C µ

to indicate that the partitions λ and µ are conjugate.

Example 2.2. Flipping the Young shape of the partition (53, 32, 21) ` 23 of the previous example gives
us the Young shape

which represents the conjugate partition (62, 51, 32) ` 23.

Explicitly we have
(nk11 , n

k2
2 ) ∼C ((k1 + k2)

n2 , kn1−n2
1 ),

(nk11 , n
k2
2 , n

k3
3 ) ∼C ((k1 + k2 + k3)

n3 , (k1 + k2)
n2−n3 , kn1−n2

1 ).

and in general

(nk11 , . . . , n
km
m ) ∼C ((k1 + . . .+ km)nm , (k1 + . . .+ km−1)

nm−1−nm , . . . , kn1−n2
1 ).

3 Preliminaries on the additive-slow-Farey map

In this section we first recap some results from the theory of continued fractions, we recall the definition of
the Farey map and the construction of the Farey tree, then show the connection between the two worlds.
(Partially reflecting that different mathematical communities work on these maps, they are sometimes
called slow version or additive version of the Gauss map, which is why we sometimes call this the additive-
slow-Farey map).

The basics of continued fractions are in most beginning number theory books. For more in depth
treatment, there is the classic work of Khinchin [22]. To see how continued fractions are naturally linked
to dynamical systems, see Dajani and Kraakamp [11] or Hensley [17].
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3.1 Basic properties of continued fractions

For x ∈ (0, 1) we denote by [a1, a2, . . .], its continued fraction expansion, that is

x =
1

a1 +
1

a2 +
1

a3 + · · ·

,

where aj ≥ 1 for all j. The expansion is finite if and only if x is rational and it is also unique provided that
for finite expansions such as [a1, . . . , ak] we require ak > 1. The convergents of a real number x ∈ (0, 1)
are the elements of the sequence (pj/qj)j≥0 recursively defined as follows:

p0 = 0 q0 = 1

p1 = 1 q1 = a1

pj+1 = aj+1pj + pj−1 qj+1 = aj+1qj + qj−1.

It is easy to show that
pj
qj

= [a1, . . . , aj ].

Note that the sequence of convergents is finite or infinite according to whether x is rational or not. In
particular, if x = [a1, . . . , ak] is rational then the sequence of convergents stops at pk

qk
= x. On the other

hand, if x is irrational then
pj
qj
→ x as j → ∞ and the convergents are the best rational approximations

of x in a precise sense. Another classical result which we shall use in the following is the so-called mirror
formula, that is

qj−1
qj

= [aj , . . . , a1]. (1)

3.2 The Farey map and the Farey tree

Split the unit interval I = [0, 1] into two sub-intervals I0 =
[
1
2 , 1
]

and I1 =
[
0, 12
]
. The Farey map is the

map F : I → I defined to be

F (x) =

{
F0(x) = 1−x

x , if x ∈ I0
F1(x) = x

1−x , if x ∈ I1

It has the two local inverses Φ0 := F−10 : I → I0 and Φ1 := F−11 : I → I1 given by

Φ0(x) =
1

1 + x
and Φ1(x) =

x

1 + x
.

It is well-known that every rational number in (0, 1) can be uniquely described as an element in F =⋃∞
k=0 F

−k(12). Furthermore, F can be ordered as a binary tree, the Farey tree. The recursive construction
works as follows: the root of the tree is 1

2 and the two children of the vertex p
q are its backward images under

the Farey map, namely Φ1

(p
q

)
= p

p+q and Φ0

(p
q

)
= q

p+q . Note that each rational number appears reduced

in lowest terms in the tree because the root 1
2 is. The levels of the Farey tree are the sets Lk = F−k+1(12)

for k ≥ 1, so that

L1 =

{
1

2

}
, L2 =

{
1

3
,
2

3

}
, L3 =

{
1

4
,

2

5
,

3

5
,

3

4

}
, . . .

See Figure 1 to see the structure of the first few levels of the Farey tree.
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Remark 3.1. We are describing here the tree constructed with the inverse branches of the Farey map,
which we call the Farey tree. The “Farey ” tree F̃ is the one defined by the mediant between neighboring
fractions (see [9] for instance). It can be shown that the levels of F̃ and those of “our” Farey tree F
coincide, but in F̃ the fractions of each level appear in ascending order.

Sometimes it is convenient to extend the Farey tree above the root adding 1
1 , which is mapped to 1

2 by
both Φ0 and Φ1. In this case we also set L0 =

{
1
1

}
.

Definition 3.2. For p
q ∈ (0, 1) in lowest terms we shall call the depth of p

q the level of the Farey tree p
q

belongs to. That is, we shall write

depth

(
p

q

)
= k ⇔ p

q
∈ Lk.

If p
q is not in lowest terms, we define its depth as the depth of the reduced form of p

q .

For instance depth
(
2
3

)
= depth

(
10
15

)
= 2 and depth

(
3
8

)
= 4.

L1

L2

L3

L4

1
2

1
3

1
4

1
5

4
5

3
4

3
7

4
7

2
3

2
5

2
7

5
7

3
5

3
8

5
8

Figure 1: The first four levels of the Farey tree.

Starting from a given x ∈ (0, 1), we can iterate the map F , creating an orbit of x, with the iterations
terminating whenever the image is 1

2 . In particular, we can encode a given x ∈ (0, 1) as a sequence of zeros
and ones if we keep track of whether the iterations fall in J0 = (12 , 1) or in J1 = (0, 12). More precisely, we
associate to x the unique binary word σ(x) = σ1σ2 · · · such that

σj ∈ {0, 1} and F j−1(x) ∈ Jσj for every j ≥ 1.

Of course σ(12) is the empty word. We shall refer to σ(x) as the binary sequence of x. We know that
σ(x) is finite if and only if x is rational: this follows immediately because the Farey tree is constructed
by taking backward images of 1

2 under F and it contains all and only the rational numbers in (0, 1). Let
x = p

q ∈ (0, 1) be a rational number and let σ(x) = σ1 · · ·σ`. We have ` = depth (x) − 1 and, from the
definition of σ, also

Fσ` ◦ · · · ◦ Fσ1
(
p

q

)
=

1

2
,

which is the same as
p

q
= Φσ1 ◦ · · · ◦ Φσ`

(
1

2

)
. (2)
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Example 3.3. The orbit of 8
19 under F is

8

19

F17−→ 8

11

F07−→ 3

8

F17−→ 3

5

F07−→ 2

3

F07−→ 1

2
,

so that depth
(

8
19

)
= 6, σ

(
8
19

)
= 10100, and 8

19 = Φ1 ◦ Φ0 ◦ Φ1 ◦ Φ0 ◦ Φ0

(
1
2

)
.

There is a beautiful connection between the Farey tree and continued fractions. Indeed the Farey map
has a simple action on continued fraction expansions. For x = [a1, a2, a3, . . .] (the expansion may be finite
or not) we have

F ([a1, a2, a3, . . .]) =

{
[a1 − 1, a2, a3, . . .] , if a1 > 1

[a2, a3, . . .] , if a1 = 1
.

In other words, F subtracts off a 1 from the first digit of the expansion if it is greater than 1 and deletes
it when it is 1. Note that a1 > 1 if and only if x = [a1, a2, a3, . . .] is in the interval (0, 12), so that more
precisely F1 acts subtracting off a 1 from a1, while F0 acts by deleting it. We now consider again the case
x = p

q rational to see equation (2) in a new light. We know that x = [a1, . . . , ak] has a finite continued
fraction expansion (which is unique, as long as ak > 1) and thus, considering the action of F on the
expansion of x, we have

σ(x) = 1a1−101a2−10 · · · 1ak−2.

We remark that if k = 1 we have σ(x) = 1a1−2. Hence equation (2) can be rewritten as

p

q
= Φa1−1

1 Φ0 ◦ · · · ◦ Φ
an−1−1
1 Φ0 ◦ Φak−2

1

(
1

2

)
=

= Φa1−1
1 Φ0 ◦ · · · ◦ Φ

ak−1−1
1 Φ0 ◦ Φak−1

1

(
1

1

)
. (3)

With the same argument we can also write analogous equations for the convergents
pj
qj

. A consequence of

equation (3) is

depth

(
p

q

)
=

k∑
j=1

aj − 1.

For more details the reader can refer to [9, 19].

3.3 Rewriting the Farey map as matrix multiplication

We can also interpret the Farey map as not acting on the unit interval I in R but as acting on the cone{(
x
y

)
∈ R2 : y ≥ x ≥ 0

}
\
{(

0
0

)}
.

Now the vector (x, y) is representing the real number x
y , so that the unit interval is actually in bijection

with the lines in the cone. In particular, we represent the rational number p
q with the vector ( pq ). Hence

the action of F becomes

F

(
x
y

)
=


F0

(
x
y

)
=

(
y − x
x

)
, if x ≥ y − x

F1

(
x
y

)
=

(
x

y − x

)
, if y − x ≥ x

.
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In this way the Farey map can be seen as the action by left multiplication of column vectors by 2 × 2
matrices, that is

F0

(
x
y

)
=

(
−1 1
1 0

)(
x
y

)
=

(
y − x
x

)
and F1

(
x
y

)
=

(
1 0
−1 1

)(
x
y

)
=

(
x

y − x

)
.

We highlight the two matrices

F0 =

(
−1 1
1 0

)
and F1 =

(
1 0
−1 1

)
.

The two inverse branches of F can also be expressed in terms of multiplication of two matrices, which we
denote by

Φ0 =

(
0 1
1 1

)
and Φ1 =

(
1 0
1 1

)
.

With this convention, equation (2) can be rewritten as(
p
q

)
=
∏̀
j=1

Φσj

(
1
2

)
=

`+1∏
j=1

Φσj

(
1
1

)
,

where ` = depth (p/q)− 1 and the last digit σ`+1 can be either 0 or 1. Thus each rational p
q is encoded by

two matrices, namely ∏̀
j=1

Φσj · Φ0 and
∏̀
j=1

Φσj · Φ1.

Note that they have the same columns in the two possible orders, so that in particular one of the two
has determinant 1 and the other one has determinant −1. We shall refer to the matrix with positive
determinant as the matrix of p

q . We now highlight an important property of these matrices, which we shall
use in the proof of Theorem 4.4.

Lemma 3.4. The set of the matrices of the rationals in the interval (0, 1) is{(
p′ p′′

q′ q′′

)
∈M(2,Z) : 1 ≤ p′ ≤ q′, 0 ≤ p′′ < q′′, p′q′′ − p′′q′ = 1

}
⊆ SL(2,Z).

Proof. Let p
q be a rational in the interval (0, 1) and let(

p′ p′′

q′ q′′

)
be its matrix. By definition p′q′′− p′′q′ = 1 and an easy induction shows that 1 ≤ p′ ≤ q′ and 0 ≤ p′′ < q′′.
One may also look at the two columns as representing the two rationals p′

q′ <
p′′

q′′ with p
q = p′+p′′

q′+q′′ . As it is

well-known the condition p′q′′−p′′q′ = 1 means that the two rationals are neighbours in the Farey sequence
and that the matrix of p

q is nothing but the matrix of the coding described in [9], and the lemma now
follows.

For instance, Example 3.3 can be rewritten in terms of matrices as(
8
19

)
= Φ1Φ0Φ1Φ0Φ0

(
1
2

)
,
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and the matrix of 8
19 is

Φ1Φ0Φ1Φ0Φ0Φ0 =

(
3 5
7 12

)
.

4 Partitions into two different parts

4.1 Partitions generated by the Farey map

In this section we show how to generate integer partitions into two parts by using the dynamics of the
Farey map and the Farey tree.

Let n ≥ 2 be an integer and r be such that 1 ≤ r < n and (r, n) = 1, so that r
n appears in some level

of the Farey tree. If σ( rn) = σ1 · · ·σ` is the binary sequence of r
n introduced in Section 3.2, we have

(
r
n

)
=
∏̀
j=1

Φσj

(
1
2

)
=

`+1∏
j=1

Φσj

(
1
1

)
,

where σ`+1 can be either 0 or 1. Recall that ` = depth (r/n)− 1. For each m = 0, . . . , ` + 1 we split the
above product as (

r
n

)
=

m∏
j=1

Φσj ·
`+1∏

j=m+1

Φσj

(
1
1

)
(4)

and we set (
h2(m) h1(m)
k2(m) k1(m)

)
=

m∏
j=1

Φσj and

(
n2(m)
n1(m)

)
=

`+1∏
j=m+1

Φσj

(
1
1

)
.

Explicitly writing the second component of equation (4), we get

n = k1(m)n1(m) + k2(m)n2(m),

with n1(m) ≥ n2(m). Thus for each m we get a partition of n, namely (n1(m)k1(m), n2(m)k2(m)) ` n, and
the integer m is called the generation of the partition. Note that for m = 0 equation (4) reads(

r
n

)
=

(
1 0
0 1

)(
r
n

)
,

which induces the partition (n1, r0) = (n1) of generation m = 0. On the other hand for m = `+1, whether
σ`+1 = 0 or σ`+1 = 1, we have k1(m) +k2(m) = n and thus the induced partition is (1k2(m), 1k1(m)) = (1n).
Since we are interested in partitions into two distinct parts here, we do not include these two cases in the
following definition.

Definition 4.1. We shall call the sequence of partitions (n1(m)k1(m), n2(m)k2(m)) for m = 1, . . . , ` the
orbit of partitions generated by r

n .

Example 4.2. We again consider Example 3.3 to see how the above construction works in practice. Set
n = 19 and r = 8, so that (

8
19

)
= Φ1Φ0Φ1Φ0Φ0

(
1
2

)
= Φ1Φ0Φ1Φ0Φ0Φi

(
1
1

)
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with i = 0 or i = 1. Choosing i = 0 we then get the following partitions:

m = 0 :

(
8
19

)
= I

(
8
19

)
(80, 191) = (191)

m = 1 :

(
8
19

)
= Φ1

(
8
11

)
=

(
1 0
1 1

)(
8
11

)
(111, 81)

m = 2 :

(
8
19

)
= Φ1Φ0

(
3
8

)
=

(
0 1
1 2

)(
3
8

)
(82, 31)

m = 3 :

(
8
19

)
= Φ1Φ0Φ1

(
3
5

)
=

(
1 1
3 2

)(
3
5

)
(52, 33)

m = 4 :

(
8
19

)
= Φ1Φ0Φ1Φ0

(
2
3

)
=

(
1 2
2 5

)(
2
3

)
(35, 22)

m = 5 :

(
8
19

)
= Φ1Φ0Φ1Φ0Φ0

(
1
2

)
=

(
2 3
5 7

)(
1
2

)
(27, 15)

m = 6 :

(
8
19

)
= Φ1Φ0Φ1Φ0Φ0Φ0

(
1
1

)
=

(
3 5
7 12

)(
1
1

)
(112, 17) = (119)

In case i = 1 the last partition which we get is (17, 112) = (119).

Note that the orbit of partitions of a fraction contains pairwise distinct partitions until the last step.
(This is due to that if we have a partition (2, 1)× [k1, k2], then we can act on it either by F0, in which case
we have the partition (1, 1)× [12, 7] or by F1, in which case we get (1, 1)× [7, 120.) But different fractions
can induce orbits of partitions sharing some element and can even induce the same orbit of partitions, as
the following lemma shows.

Lemma 4.3. Let n ≥ 2 be an integer and r be such that 1 ≤ r < n and gcd(r, n) = 1. Then r
n and n−r

n
induce the same orbit of partitions of n.

Proof. For n = 2 the statement is trivial, so we let n > 2. Note that the fractions r
n and n−r

n are the
two children of r

n−r in the Farey tree, thus they have the same depth and their forward orbits under F

coincide. Without loss of generality we assume r < n
2 , so that r

n <
1
2 <

n−r
n and(

r
n

)
= Φ1

(
r

n− r

)
and

(
n− r
n

)
= Φ0

(
r

n− r

)
.

Moreover, their binary sequences are σ( rn) = 1σ2 · · ·σ` and σ(n−rn ) = 0σ2 · · ·σ`. As a consequence, the
induced partitions at generation m = 1 are both equal to ((n − r)1, r1). Now if ` ≥ 2, let m = 2, . . . , `
and consider (

r
n

)
= Φ1

m∏
j=2

Φσj

(
n2(m)
n1(m)

)
and

(
n− r
n

)
= Φ0

m∏
j=2

Φσj

(
n2(m)
n1(m)

)
.

It is now straightforward to prove that the bottom rows of the two matrices Φ1
∏m
j=2 Φσj and Φ0

∏m
j=2 Φσj

coincide, and so do the induced partitions of n.

We now characterize precisely the partitions which can be obtained through the Farey tree and the
Farey map. We shall give a second proof of this result in Section 4.5.

Theorem 4.4. Let n ≥ 2 be an integer. A partition (nk11 , n
k2
2 ) ` n can be obtained from the dynamics of

the Farey map if and only if gcd(n1, n2) = 1 and gcd(k1, k2) = 1.

10



Proof. (⇒) If gcd(n1, n2) > 1 then the fraction n2
n1

is not in lowest terms and thus it does not appear on
the Farey tree. If gcd(k1, k2) > 1 then a matrix of the form(

∗ ∗
k2 k1

)
cannot have determinant ±1, thus it cannot be a finite product of the matrices Φ0 and Φ1.

(⇐) We are now given a partition (nk11 , n
k2
2 ) ` n with gcd(n1, n2) = 1 and gcd(k1, k2) = 1. To prove

that it is induced from the Farey tree it suffices to show that there exist two integers h1 and h2 such that
0 ≤ h1 < k1, 1 ≤ h2 ≤ k2, and h2k1 − h1k2 = 1. Indeed, if this holds then Lemma 3.4 shows that the
matrix (

h2 h1
k2 k1

)
is a finite product of the matrices Φ0 and Φ1, thus by setting(

r
n

)
=

(
h2 h1
k2 k1

)(
n2
n1

)
we have that r

n is a fraction on the Farey tree and the partition (nk11 , n
k2
2 ) is a member of the orbit of

partitions generated by r
n .

Since gcd(k1, k2) = 1 there exist two integers h̃1 and h̃2 such that h̃2k1 − h̃1k2 = 1. All the solutions to
the equation h2k1 − h1k2 = 1 are

h1(t) = h̃1 − tk1 and h2(t) = h̃2 − tk2,

where t could be any integer number. Without loss of generality we can then assume that both h̃1 and h̃2

are positive. We choose t∗ =
[
h̃1
k1

]
, so that 0 ≤ h1(t∗) < k1. Then

h2(t∗) = h̃2 −
[
h̃1
k1

]
k2 = h̃2 −

(
h̃1
k1
−
{
h̃1
k1

})
k2 =

=
h̃2k1 − h̃1k2

k1
+

{
h̃1
k1

}
k2 =

1

k1
+

{
h̃1
k1

}
k2,

so that 1 ≤ h2(t∗) ≤ k2. By setting h1 = h1(t∗) and h2 = h2(t∗), we finish the proof.

Let pF (2, n) denote the number of partitions of n into two different parts obtained by the Farey map.
Thanks to the previous Theorem 4.4 we can give a formula for pF (2, n).

Corollary 4.5. For n ≥ 2 we have

pF (2, n) =
1

2

 n−1∑
r=1

gcd(r,n)=1

depth
( r
n

)
− ϕ(n)

 , (5)

where ϕ(n) is the Euler totient function. Moreover, pF (2, n) = p(2, n) if and only if n is prime or n = 4.

Proof. Every r
n in the Farey tree, that is with 1 ≤ r < n and gcd(r, n) = 1, generates an orbit of partitions

of n. Each of these orbits contains depth
(
r
n

)
− 1 pairwise distinct partitions because there are just as

11



many fractions strictly above r
n in the Farey tree and up to 1

2 . Counting of all of these partitions yields

n−1∑
r=1

gcd(r,n)=1

(
depth

( r
n

)
− 1
)

=

n−1∑
r=1

gcd(r,n)=1

depth
( r
n

)
− ϕ(n).

Lemma 4.3 shows that each r
n is paired with n−r

n , in the sense they induce the same orbit of partitions.
Moreover, the orbits of partitions generated by two non-paired fractions are disjoint. Thus in the above
counting each partition appears exactly twice.

As for the second part of the theorem we prove the two implications separately.

(⇒) If n is prime and (nk11 , n
k2
2 ) ` n then necessarily gcd(n1, n2) = 1 and gcd(k1, k2) = 1, and thus by

Theorem 4.4 the partition (nk11 , n
k2
2 ) can be obtained from the dynamics of the Farey map. The case n = 4

can be verified explicitly.

(⇐) Suppose that n is composite and n 6= 4, so that n = ab for some a > b ≥ 2. If b ≥ 3 then the partition
((b − 1)a, 1a) cannot be obtained from the dynamics of the Farey map because the multiplicities are not
relatively prime. If b = 2 then n = 2a, a ≥ 3, and the partition ((2(a − 1))1, 21) cannot be obtained as
well.

Remark 4.6. Corollary 4.5 can be compared with the following purely number theoretical expression
obtained by Kim in [18]:

p(2, n) =
1

2

(
n−1∑
r=1

σ0(r)σ0(n− r)− σ1(n) + σ0(n)

)
, (6)

where σj(n) =
∑

d|n d
j . Note that when n is prime then ϕ(n) = n − 1 and σ1(n) − σ0(n) = n − 1 do

coincide1. However the two sums of (5) and (6) does not in general hold termwise, e.g. take n = 11 and
r = 3, so that depth

(
3
11

)
= 5 but σ0(3) · σ0(8) = 2 · 4 = 8.

4.2 Conjugate partitions and continued fractions: Palindromes

Let n ≥ 2 and consider a partition (nk11 , n
k2
2 ) ` n. As recalled in Section 2, by flipping its Young shape one

obtains a new partition of n, the conjugate partition (ñk̃11 , ñ
k̃2
2 ), with ñ1 = k1 + k2, ñ2 = k1, k̃1 = n2, and

k̃2 = n1 − n2. We showed that partitions into two parts can be generated by the dynamics of the Farey
map, thus one may wonder whether there is a way to dynamically characterize also the conjugacy: this is
the content of this section.

Consider again equation (2), which expresses every rational in the Farey as a backward image of 1
2 .

Since 1
2 = Φ0(

1
1) = Φ1(

1
1) we can also rewrite the equation as r

n = Φσ1 ◦ · · · ◦ Φσ` ◦ Φσ`+1

(
1
1

)
, where σ`+1

can be either 0 or 1. Here we make the choice σ`+1 = 1 and we shall call σ1 · · ·σ`1 the extended binary
sequence of r

n . Note that if 1 ≤ r < n
2 then σ1 = 1.

Theorem 4.7 (Palindrome Version 1). Let r be such that 1 ≤ r < n
2 and gcd(r, n) = 1, and suppose that r

n

has extended binary sequence σ1 · · ·σ`1 = 1σ2 · · ·σ`1, with ` = depth
(
r
n

)
− 1. Let (nk11 , n

k2
2 ) be a partition

of n in the m-th generation of the orbit of partitions generated by r
n , that is suppose there is 1 ≤ m ≤ `

1More precisely, when n > 1 then σ1(n) − σ0(n) =
∑

d|n(d− 1) = n− 1 +
∑

d|n, d<n(d− 1) ≥ ϕ(n) and the equality holds
if and only if n is prime.

12



such that (
r
n

)
=

m∏
j=1

Φσj

(
n2
n1

)
=

(
t s
k2 k1

)(
n2
n1

)
.

Then the conjugate partition (ñk̃11 , ñ
k̃2
2 ) is in the (`+1−m)-th generation of the orbit generated by r̃

n , where
r̃
n is the fraction with extended binary sequence 1σ` · · ·σ1 = 1σ` · · ·σ21. In other words,

(
r̃
n

)
=

`−m∏
j=0

Φσ`+1−j

(
ñ2
ñ1

)
=

(
t̃ s̃

k̃2 k̃1

)(
ñ2
ñ1

)
.

Moreover, the continued fraction expansion of r̃
n has the same digits of that of r

n , but in reversed order.

Proof. As already noted, the extended binary sequence σ1 · · ·σ`1 of r
n starts with σ1 = 1. Then by reversing

it we have another sequence starting by 1 and it represents a fraction r̃
n in the same level of the Farey tree

as r
n . By equation (3), the overall effect of this amounts simply to reverse the order of the partial quotients

in the continued fractions expansion, that is

r

n
= [a1, . . . , ak] if and only if

r̃

n
= [ak, . . . , a1].

Note that, since 1 ≤ r < n
2 then a1 > 1, so that the expansion for r̃

n is unambiguously defined, and
viceversa. Setting p−1 = q0 = 1, q−1 = p0 = 0, and

pj
qj

= [a1, . . . , aj ], by the mirror formula (1) we have

[aj , . . . , a1] =
qj−1

qj
for every 1 ≤ j ≤ k. In particular r

n = pk
qk

and r̃
n =

qk−1

qk
.

By adapting some well known facts about the slow-additive-Farey continued fraction algorithm to the
present context, we start setting

Ψh = Φh−1
1 Φ0 =

(
0 1
1 h

)
so that thanks to Equation (3) we can write(

pk
qk

)
= Ψa1 · · ·Ψak

(
0

1

)
and

(
qk−1
qk

)
= Ψak · · ·Ψa1

(
0

1

)
.

Since, as already noted, both a1 and ak are larger than 1, we also have(
pk
qk

)
= Ψa1 · · ·Ψak−1

Φak−1
1

(
1

1

)
and

(
qk−1
qk

)
= Ψak · · ·Ψa2Φa1−1

1

(
1

1

)
We now show that the depth (r/n) − 1 =

∑k
j=1 aj − 2 pairs of partitions of n with two different parts

generated by the dual pair r
n and r̃

n can be obtained as(
pk
qk

)
= Ψa1 · · ·Ψak−j−1

Φ
ak−j−r−1
1

(
n2
n1

)
and

(
qk−1
qk

)
= Ψak · · ·Ψak−j+1

Φr
1

(
ñ2
ñ1

)
(7)

for some j = 0, . . . , k− 1 and r = 0, . . . , ak−j − 1 (with r ≥ 1 for j = 0 and r ≤ a1 − 2 for j = k− 1). We
first note that the choice (j, r) = (0, 0) yields the dual pairs (1n) ` n and (n1) ` n. For (j, r) = (0, 1), a
straightforward calculation gives(

pk
qk

)
= Ψa1 · · ·Ψak−1

Φak−2
1

(
1

2

)
=

(
pk − 2pk−1 pk−1
qk − 2qk−1 qk−1

)(
1

2

)
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and (
qk−1
qk

)
= Φ1

(
qk−1

qk − qk−1

)
=

(
1 0
1 1

)(
qk−1

qk − qk−1

)
thus producing the pair of dual partitions (2qk−1 , 1qk−2qk−1) ` n and (qk − qk−1, qk−1) ` n. We can now
proceed by induction. Suppose that, for some choice of (j, r), (7) produces a pair of dual partitions

(nk11 , n
k2
2 ) and (ñk̃11 , ñ

k̃2
2 ), that is

Ψa1 · · ·Ψak−j−1
Φ
ak−j−r−1
1

(
n2
n1

)
=

(
t s
k2 k1

)(
n2
n1

)
and

Ψak · · ·Ψak−j+1
Φr
1

(
ñ2
ñ1

)
=

(
t̃ s̃

k̃2 k̃1

)(
ñ2
ñ1

)
.

Assuming r < ak−j − 1 we can make the transition from (j, r) to (j, r + 1) and get

Ψa1 · · ·Ψak−j−1
Φ
ak−j−r−2
1

(
n2

n1 + n2

)
=

(
t− s s
k2 − k1 k1

)(
n2

n1 + n2

)
and

Ψak · · ·Ψak−j+1
Φr+1
1

(
ñ2

ñ1 − ñ2

)
=

(
t̃+ s̃ s̃

k̃2 + k̃1 k̃1

)(
ñ2

ñ1 − ñ2

)
=

(
t̃+ s̃ s̃
n1 n2

)(
k1
k2

)
,

where the last identity takes into account the duality of the previous pair. As it can be easily checked, we
obtain a new pair of dual partitions of n. A similar argument applies when r = ak−j −1 and the transition
is from (j, r) to (j + 1, 0).

Example 4.8. We take n = 11, a prime number, so that we know that all the p(2, 11) = 27 partitions
into two parts can be generated from the dynamics of the Farey map. In the following table we show the
orbits generated by r

11 , where we let r = 1, . . . , 5, because Lemma 4.3 implies that for r = 6, . . . , 10 the
orbit generated by r

11 is pointwise the same as that generated by 11−r
11 .

m r = 1 r = 2 r = 3 r = 4 r = 5

1 (10, 1) (9, 2) (8, 3) (7, 4) (6, 5)

2 (9, 12) (7, 22) (5, 32) (42, 3) (52, 1)

3 (8, 13) (5, 23) (33, 2) (33, 12) (42, 13)

4 (7, 14) (3, 24) (24, 13) (23, 15) (32, 15)

5 (6, 15) (25, 1) (22, 17)

6 (5, 16)

7 (4, 17)

8 (3, 18)

9 (2, 19)

This table should clarify the structure of conjugate partitions. For instance, the fractions 2
11 and 5

11
generate orbits of dual partitions, in the sense of the previous Theorem 4.7. That is, if we read the column
r = 2 from top to bottom we find the dual partitions of the column r = 5 read from bottom to top. The
same holds for r = 3 and r = 4. For r = 1 we have an orbit of partitions which is self-dual, meaning that
the dual of the m-th of the column partition is the (10−m)-th one in the same column.
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4.3 The extended Farey map

It will now be more convenient to write partitions as (nk11 , n
k2
2 ) ` n with n1 > n2 ≥ 1 as

(n1, n2)× [k1, k2] ` n.

In part, this is to some extent placing the numbers n1 and n2 on the same footing as the multiplicities k1
and k2.

We start with extending the definition of the original Farey map F to what we call the extended Farey
map, which acts on partitions as follows:

F̃ ((n1, n2)× [k1, k2]) =

{
F̃0((n1, n2)× [k1, k2]) , if n2 ≥ n1 − n2
F̃1((n1, n2)× [k1, k2]) , if n1 − n2 ≥ n2

=

{
(n2, n1 − n2)× [k1 + k2, k1] , if n2 ≥ n1 − n2
(n1 − n2, n2)× [k1, k1 + k2] , if n1 − n2 ≥ n2

The action of F̃ on (n1, n2) is just the action of the Farey map as described in Section 3.3. The corresponding
action on the multiplicities (k1, k2) is the one obtained as follows. We can write

n = k1n1 + k2n2 =

(
k2
k1

)>(
n2
n1

)
,

so that if the action on (n1, n2) is given by Fi, with i = 0 or 1, then

n =

(
k2
k1

)>
ΦiFi

(
n2
n1

)
=

(
Φ>i

(
k2
k1

))>(
Fi

(
n2
n1

))
and the action on the multiplicities is that of Φ>i .

Remark 4.9. In our work for this paper we quickly arrived at the above map F̃ , by simply finding out how
the multiplicities should transform. But once we wrote it down, we saw that we were simply reproducing
the natural extension of the Farey map, as described, for example, by Arnoux and Nogueira [3]. Natural
extensions are a standard tool in dynamical systems which change n to 1 maps into 1 to 1 maps by
extending the dimension of the domain. This gives as an interpretation of the extened Farey map F̃ in
terms of matrix multiplication if we write the partition (n1, n2) × [k1, k2] as the four-dimensional vector
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(n2, n1, k2, k1). Indeed we have

F̃


n2
n1
k2
k1

 =



(
F0 0

0 Φ>0

)
n2

n1

k2

k1

 , if n2 ≥ n1 − n2

(
F1 0

0 Φ>1

)
n2

n1

k2

k1

 , if n1 − n2 ≥ n2

=




−1 1 0 0

1 0 0 0

0 0 0 1

0 0 1 1



n2

n1

k2

k1

 , if n2 ≥ n1 − n2


1 0 0 0

−1 1 0 0

0 0 1 1

0 0 0 1



n2

n1

k2

k1

 , if n1 − n2 ≥ n2

=




n1 − n2
n2

k1

k1 + k2

 , if n2 ≥ n1 − n2


n2

n1 − n2
k1 + k2

k1

 , if n1 − n2 ≥ n2

We wrote this fully out as this will directly generalize to higher dimensions, as we will see in Section 5.

The extended Farey map F̃ maps a partition of n to a new partition of n. Indeed if (n1, n2)×[k1, k2] ` n,
a simple calculation shows that both

(n2, n1 − n2)× [k1 + k2, k1] and (n1 − n2, n2)× [k1, k1 + k2]

are again partitons of n. An immediate consequence of the definition given in Section 4.1 and of the present
construction is that if r is an integer such that 1 ≤ r < n and gcd(r, n) = 1 then repeatedly applying F̃ to
(n, r)× [1, 0] yields exactly the orbit of partitions generated by dynamics of the Farey map starting from
r
n . In particular, the partition (n, r)× [1, 0] eventually maps to (1, 1)× [k1, k2] for some k1 and k2.

Example 4.10. In Example 3.3 we considered the orbit of partitions of 19 generated by 8
19 . We now show

the same orbit of partitions as it can be obtained through the map F̃ :

(19, 8)× [1, 0]
F̃17−→ (11, 8)× [1, 1]

F̃07−→ (8, 3)× [2, 1]
F̃17−→ (5, 3)× [2, 3]

F̃07−→ (3, 2)× [5, 2]
F̃07−→ (2, 1)× [7, 5]

F̃07−→ (1, 1)× [12, 7].

In the last step, exactly as in the construction of Section 4.1, we could have used F̃1 obtaining the partition
(1, 1)× [7, 12].

In the more general setting of the present section there is no need to restrict ourselves to starting with
a vector (n, r) of relatively prime numbers, nor with the vector [1, 0] for the multiplicities. This will allow
us to consider also partitions with non-coprime numbers and/or multiplicities and will be key to proving
the formula for p(2, n) in Section 4.5. (Again, different formula for [(2, n) was shown by Kim [18].)
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Lemma 4.11. Let n ≥ 2 and 1 ≤ r < n. It holds that F̃m((n, r) × [1, 0]) = (n1, n2) × [k1, k2] if and only
if F̃m((dn, dr)× [e, 0]) = (dn1, dn2)× [ek1, ek2] for every d ≥ 1 and e ≥ 1.

Proof. The map F̃ is linear in all of its arguments.

As a consequence of the previous lemma, we can now show that the iterations of the extended Farey map
stop at some point. Suppose that d = gcd(n, r), let n′ = n

d and r′ = r
d , so that gcd(n′, r′) = 1. We know

that
F̃m((n′, r′)× [1, 0]) = (1, 1)× [k1, k2]

for some k1 and k2, and m = depth (r′/n′) = depth (r/n). Thus from Lemma 4.11 it follows that

F̃m((n, r)× [e, 0]) = (d, d)× [ek1, ek2].

In other words, the starting partition (n, r)×[e, 0] is eventually mapped to a partition having equal numbers.

Definition 4.12. We shall call the sequence of partitions Fm((n, r)×[e, 0]) with m = 1, . . . , depth
(
r
n

)
the

orbit of partitions generated by (n, r)× [e, 0] under the extended Farey map. If (n1, n2)× [k1, k2] eventually
maps to (m1,m2)× [l1, l2] under the extended Farey map, then we say that (n1, n2)× [k1, k2] is an ancestor
of (m1,m2)× [l1, l2] and that (m1,m2)× [l1, l2] is a descendant of (n1, n2)× [k1, k2].

We now show how Lemma 4.11 works in practice with some examples.

Example 4.13. Consider the partition

(10, 6)× [6, 9] ` 114,

which is (2 · 5, 2 · 3)× [3 · 2, 3 · 3] ` 2 · 3 · 19. We have

(38, 16)× [3, 0]
F̃17−→ (22, 16)× [3, 3]

F̃07−→ (16, 6)× [6, 3]
F̃17−→ (10, 6)× [6, 9]

F̃07−→ (6, 4)× [15, 6]
F̃07−→ (4, 2)× [21, 15]

F̃07−→ (2, 2)× [36, 21],

ending up with the same orbit as (19, 8)× [1, 0] (as we saw in Example 4.10), but now multiplying all the
parts by 2 and all the multiplicities by 3.

For orbits of partitions generated with the extended Farey map we have this more general version of
Lemma 4.3.

Proposition 4.14. The partitions (n, r)× [e, 0] and (n, n−r)× [e, 0] generate the same orbit of partitions.

Proof. If r = n − r then the result is obvious. So we can assume that r > n − r. Thus we apply F̃0 to
(n, r)× [e, 0] and F̃1 to (n, n− r)× [e, 0] getting

F̃0((n, r)× [e, 0]) = (r, n− r)× [e, e] =

= (n− (n− r), n− r)× [e, e] = F̃1((n, n− r)× [e, 0]).

Thus after the first application of the extended Farey map, we have the same partition.

4.4 Conjugation and palindromes, again

The extended Farey map reflects and respects conjugation.
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Proposition 4.15. The diagram

(n1, n2)× [k1, k2] ∼C (k1 + k2, k1)× [n2, n1 − n2]

F̃0

7−→

7−→ F̃0

(n2, n1 − n2)× [k1 + k2, k1] ∼C (2k1 + k2, k1 + k2)× [n1 − n2, 2n2 − n1]

when n2 ≥ n1 − n2, and the diagram

(n1, n2)× [k1, k2] ∼C (k1 + k2, k1)× [n2, n1 − n2]

F̃1

7−→
7−→ F̃1

(n1 − n2, n2)× [k1, k1 + k2] ∼C (2k1 + k2, k1)× [n2, n1 − 2n2]

when n2 ≤ n1 − n2, are both commutative.

Proof. It is a simple verification using the definition of the map F̃ and the conjugation rule.

Commutative diagrams as the ones shown in the above proposition can be glued together following an
orbit of partitions. As an example, consider

(19, 15)× [1, 0] ∼C (1, 1)× [15, 4]

F̃0

7−→
7−→ F̃0

(15, 4)× [1, 1] ∼C (2, 1)× [4, 11]

F̃1

7−→
7−→ F̃1

(11, 4)× [1, 2] ∼C (3, 1)× [4, 7]

F̃1

7−→
7−→ F̃1

(7, 4)× [1, 3] ∼C (4, 1)× [4, 3]

F̃0

7−→
7−→ F̃0

(4, 3)× [4, 1] ∼C (5, 4)× [3, 1]

F̃0

7−→
7−→ F̃0

(3, 1)× [5, 4] ∼C (9, 5)× [1, 2]

F̃1

7−→
7−→ F̃1

(2, 1)× [5, 9] ∼C (14, 5)× [1, 1]

F̃0

7−→
7−→ F̃0

(1, 1)× [14, 5] ∼C (19, 14)× [1, 0]
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We remark that the last two lines could also have been

(2, 1)× [5, 9] ∼C (14, 5)× [1, 1]

F̃1

7−→
7−→ F̃1

(1, 1)× [5, 14] ∼C (19, 5)× [1, 0].

Hence the act of conjugation can be viewed as simply reversing the arrows of the extended map, and this
can be described by another version of Theorem 4.7.

Theorem 4.16 (palindromes Version 2). Suppose that F̃σ1 , . . . , F̃σ` is a sequence of extended Farey maps
such that

F̃σ` ◦ · · · ◦ F̃σ1((n1, n2)× [k1, k2]) = (n̄1, n̄2)× [k̄1, k̄2].

Then
F̃σ1 ◦ · · · ◦ F̃σ`((k̄1 + k̄2, k̄1)× [n̄2, n̄1 − n̄2]) = (k1 + k2, k1)× [n2, n1 − n2].

Proof. It is a repeated application of Proposition 4.15. To shorten the notation, for j = 1, . . . , ` denote

by λ(j) the partition F̃σj ◦ · · · ◦ F̃σ1((n1, n2) × [k1, k2]) and by λ
(j)
C its conjugate. Now let 1 ≤ j < ` and

suppose that

F̃σ1 ◦ · · · ◦ F̃σj−1(λ
(j)
C ) = λ

(1)
C .

Since λ(j+1) = F̃σj (λ
(j)), Proposition 4.15 yields λ

(j)
C = F̃σj (λ

(j+1)
C ), so that

λ
(1)
C = F̃σ1 ◦ · · · ◦ F̃σj−1(λ

(j)
C ) = F̃σ1 ◦ · · · ◦ F̃σj (λ

(j+1)
C ),

proving the inductive step.

As an application of the previous result about conjugation, we give a new version of Theorem 4.4.

Theorem 4.17. Suppose that (n1, n2) × [k1, k2] ` n with gcd(n1, n2) = 1 and gcd(k1, k2) = 1. Then
there exists some positive integer r relatively prime to n and such that (n, r) × [1, 0] is an ancestor of
(n1, n2)× [k1, k2].

Proof. We start with the partition (n1, n2) × [k1, k2] ` n and consider its conjugate partition, namely
(k1 +k2, k1)× [n2, n1−n2], which is still a partition of n. Since (k1 +k2, k1) = 1 we know that the fraction
k1

k1+k2
appears in some level of the Farey tree, thus there is a sequence of Farey matrices Fσ1 , . . . , Fσ` such

that

Fσ` · · ·Fσ1
(

k1
k1 + k2

)
=

(
1
1

)
.

Hence for the extended maps we have

F̃σ` ◦ · · · ◦ F̃σ1((k1 + k2, k1)× [n2, n1 − n2]) = (1, 1)× [r, s]

with (1, 1)× [r, s] ` n. Note that r+s = n and that Lemma 4.11 implies that (r, n) = 1. Now, the partition
(1, 1)× [r, s] is conjugate to (r + s, r)× [1, 0] = (n, r)× [1, 0], thus by the Power of Palindromes we have

F̃σ1 · · · F̃σ`((n, r)× [1, 0]) = (n1, n2)× [k1, k2]

and we are done.
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4.5 Formula for p(2, n)

We now use the previous results to describe the partitions which can be obtained through the extended
Farey map and derive the formula for p(2, n).

Theorem 4.18. Let n ≥ 2 be an integer. Every partition of n can be obtained from the dynamics of the
extended Farey map F̃ .

Proof. Consider a partition (n1, n2)× [k1, k2] of n and let d = gcd(n1, n2) and e = gcd(k1, k2). By setting
n′1 = n1

d , n′2 = n2
d , k′1 = k1

e , k′2 = k2
e we have that

(n′1, n
′
2)× [k′1, k

′
2] `

n

de

is by construction a partition with relatively prime numbers and multiplicities. Thus there exists h such
that

(
n
de , h

)
× [1, 0] is an ancestor of (n′1, n

′
2)× [k′1, k

′
2] . Hence by Lemma 4.11 we have that(n

e
, hd
)
× [e, 0]

is an ancestor of (dn′1, dn
′
2)× [ek′1, ek

′
2] = (n1, n2)× [k1, k2].

Theorem 4.19. Let n ≥ 2 be an integer number. Then

p(2, n) =
1

2

n−1∑
r=1

(
depth

( r
n

)
− 1
)
σ0((r, n)).

Proof. To shorten the notation, we denote by O(λ) the orbit of partition generated by the extended Farey
map starting from the partition λ. We claim that the set of the partitions of n into two parts is

P =
⋃

1≤r≤n
2

⋃
e|gcd(r,n)

O
((n

e
,
r

e

)
× [e, 0]

)
.

It is clear that each partition of this set is a partition of n into two parts. For the converse we consider a
partition (n1, n2) × [k1, k2] of n. By arguing as in the proof of Theorem 4.18 we have that there exists h
such that

(
n
e , hd

)
× [e, 0] is an ancestor of our partition. Furthermore, it is possible to choose h such that

1 ≤ h ≤ n
2de . Thus our partition (n1, n2)× [k1, k2] is in the orbit of

(
n
e ,

r
e

)
× [e, 0], where r = hde. We have

that de ≤ r ≤ n
2 and also that e is a divisor of (r, n) since it divides both n and r, thus our partition is in

the set P .

To prove the formula for p(2, n) it now suffices to count the elements of the above set P . For each 1 ≤ r ≤ n
2

we consider the σ0((r, n)) disjoint orbits generated by
(
n
e ,

r
e

)
× [e, 0]. Each of them contains

depth

(
r/e

n/e

)
− 1 = depth

( r
n

)
− 1

pairwise distinct partitions of n. Thus the number of partitions in P is∑
1≤r≤n

2

∑
e|gcd(r,n)

(
depth

( r
n

)
− 1
)

=
∑

1≤r≤n
2

(
depth

( r
n

)
− 1
)
σ0((r, n)).

If we extend the first sum over 1 ≤ r ≤ n− 1 we are counting each partition twice due to Proposition 4.14,
for which (n, r)× [e, 0] gives rise to the same descendants as (n, n− r)× [e, 0].
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Example 4.20. Here are all the partitions of n = 12 into two numbers:

(11, 1)× [1, 1] (10, 2)× [1, 1] (10, 1)× [1, 2] (9, 3)× [1, 1]
(9, 1)× [1, 3] (8, 4)× [1, 1] (8, 2)× [1, 2] (8, 1)× [1, 4]
(7, 5)× [1, 1] (7, 1)× [1, 5] (6, 3)× [1, 2] (6, 2)× [1, 3]
(6, 1)× [1, 6] (5, 2)× [2, 1] (5, 1)× [2, 2] (5, 1)× [1, 7]
(4, 2)× [2, 2] (4, 1)× [2, 4] (4, 2)× [1, 4] (4, 1)× [1, 8]
(3, 1)× [3, 3] (3, 2)× [2, 3] (3, 1)× [2, 6] (3, 1)× [1, 9]
(2, 1)× [5, 2] (2, 1)× [4, 4] (2, 1)× [3, 6] (2, 1)× [2, 8]
(2, 1)× [1, 10]

Thus p(2, 12) = 29. Indeed we have

29 =

(
depth

(
1

12

)
− 1

)
σ0(gcd(1, 12)) +

(
depth

(
2

12

)
− 1

)
σ0(gcd(2, 12)) +

+

(
depth

(
3

12

)
− 1

)
σ0(gcd(3, 12)) +

(
depth

(
4

12

)
− 1

)
σ0(gcd(4, 12)) +

+

(
depth

(
5

12

)
− 1

)
σ0(gcd(5, 12)) +

(
depth

(
6

12

)
− 1

)
σ0(gcd(6, 12)).

Let us see how each fraction r
12 with 1 ≤ r ≤ 6 will produce

(
depth

(
r
12

)
− 1
)
σ0((r, 12)) distinct partitions

of 12 into two parts. We start with the two values of r for which σ0((r, 12)) = 1 namely r = 1 and r = 5.
We have

(12, 1)× [1, 0]
F̃17−→ (11, 1)× [1, 1]

F̃17−→ (10, 1)× [1, 2]

F̃17−→ (9, 1)× [1, 3]
F̃17−→ (8, 1)× [1, 4]

F̃17−→ (7, 1)× [1, 5]

F̃17−→ (6, 1)× [1, 6]
F̃17−→ (5, 1)× [1, 7]

F̃17−→ (4, 1)× [1, 8]

F̃17−→ (3, 1)× [1, 9]
F̃17−→ (2, 1)× [1, 10]

This accounts for precisely depth (1/12)−1 = 10 of the desired partitions. Further, each of these will occur
uniquely. Similarly, for r = 5 we have

(12, 5)× [1, 0]
F̃17−→ (7, 5)× [1, 1]

F̃07−→ (5, 2)× [2, 1]
F̃17−→ (3, 2)× [2, 3]

F̃07−→ (2, 1)× [5, 2]

giving us depth (5/12)− 1 = 4 additional partitions. Now we consider r = 2 and see the partitions linked
to the fraction 2/12. In this case gcd(r, n) = 2, so that we have two different choices for e, namely e = 1
and e = 2. Choosing e = 1 we start with

(12, 2)× [1, 0]
F̃17−→ (10, 2)× [1, 1]

F̃17−→ (8, 2)× [1, 2]
F̃17−→ (6, 2)× [1, 3]

F̃17−→ (4, 2)× [1, 4]

giving us depth (2/12)− 1 = 4 additional partitions. Choosing e = 2 we also have

(6, 1)× [2, 0]
F̃17−→ (5, 1)× [2, 2]

F̃17−→ (4, 1)× [2, 4]
F̃17−→ (3, 1)× [2, 6]

F̃17−→ (2, 1)× [2, 8]
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giving us another 4 partitions. Now we consider r = 3, that is the fraction 3/12. For e = 1 we have

(12, 3)× [1, 0]
F̃17−→ (9, 3)× [1, 1]

F̃17−→ (6, 3)× [1, 2]

giving us depth (3/12)− 1 = 2 partitions. But we also have the choice e = 3, yielding

(4, 1)× [3, 0]
F̃17−→ (3, 1)× [3, 3]

F̃17−→ (2, 1)× [3, 6]

giving us 2 more partitions. The remaining cases r = 4, r = 5 and r = 6 work in the same way and
complete the list of partitions of 12.

5 On partitions into many parts

In this section we begin the extension of the construction explained in Sections 3 and 4. The Farey map
may be defined to act on a cone in R2 as in Section 3.3, and we used it to generate partitions into two
parts. To generate partitions into n different parts it is necessary to consider a map acting on a subset of
RN . To this aim we consider the Triangle map and its slow version studied in [7, 15].

5.1 Background on the additive-slow-Triangle map

The Triangle map has been introduced in [15] to define a type of multidimensional continued fraction
algorithm. Multidimensional continued fractions have been developed and studied over the years for many
reasons (for a background see Schweiger [28] or Karpenkov [21]). Historically, the first such algorithm (now
called the Jacobi-Perron algorithm) was created to answer a question of Hermite, which was to find an
analogue of the classical fact that a real number has an eventually periodic continued fraction expansion
if and only if the number is a quadratic irrational. This problem is still open. Another motivation was to
find methods for good simultaneous Diophantine approximations of n-tuples of real numbers (for example,
see Lagarias [23]). By now, multidimensional continued fractions provide a rich source of examples in
dynamical systems, automata theory and many other areas. For background on and applications of the
Triangle map for multidimensional continued fractions, see [4,6–8,14,15,20,21,27,29]. Almost all of these
papers are concerned with the three dimensional case.

Set

4 := {(x1, . . . , xn) ∈ Rn : 1 > x1 > · · · > xn > 0}
40 := {x1, . . . , xn) ∈ 4 : x1 + xn > 1}
41 := {x1, . . . , xn) ∈ 4 : x1 + xn < 1}

When n = 2, we have

40

41

(0, 0) (1, 0)

(1, 1)

(12 ,
1
2)
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The slow-Triangle map T : 40 ∪41 →4 is

T (x1, . . . , xn) =

{
T0(x1, . . . , xn), if x1 + xn > 1
T1(x1, . . . , xn), if x1 + xn < 1

=


(
x2
x1
, . . . , xnx1 ,

1−x1
x1

)
, if x1 + xn > 1(

x1
1−xn , . . . ,

xn
1−xn

)
, if x1 + xn < 1

It can be checked that Ti : 4i →4 is one-to-one and onto. In analogy with the construction in Section 3.2,
any point x̄ ∈ 4 is associated to a binary sequence of zeros and ones i(x̄) = (i0, i1, i2, . . .) by encoding
whether its iterations fall in 40 or 41, that is by the rule Tn(x̄) ∈ 4in . We call i(x̄) the additive-slow-
Triangle sequence of x̄. If we concatenate the 1’s we can associate x̄ to a sequence of nonnegative integers,
a sequence that is called the multiplicative-fast-Triangle sequence and is the analogue of the continued
fraction expansion of a real number. Either of these sequences tells us a lot about the point x̄. For
example, when n = 3, if the sequence is eventually periodic, then both x1 and x2 are no worse than cubic
irrationals, both in the same number field of degree less than or equal to three.

Remark 5.1. With respect to [7, 15] we have not defined the map T on the boundary of 4 and on the
hyperplane x1 +xn = 1. In earlier work, such points are a set of measure zero and hence are ignored. This
creates a problem, though, when we start to link these maps with partitions, as we will discuss in Section
6.

It is natural, and in analogy to Section 3.3 for the Farey map, to pass from points (x1, . . . , xn) in Rn
to vectors (x0, . . . , xn) in Rn+1 (or points (x0, . . . , xn) in RPn+1) via sending (x1, . . . , xn) to (1, x1, . . . , xn)
with inverse map (x0, . . . , xn)→ (x1/x0, . . . , xn/x0). Then, by an abuse of notation, we set

4 := {(x0, . . . , xn) ∈ Rn+1 : x0 > x1 > · · · > xn > 0}
40 := {(x0, . . . , xn) ∈ 4 : x1 + xn > x0}
41 := {(x0, . . . , xn) ∈ 4 : x1 + xn < x0}

and define the slow-Triangle map T : 40 ∪41 →4 by

T (x0, . . . , xn) =

{
T0(x0, . . . , xn), if x1 + xn > x0
T1(x0, . . . , xn), if x1 + xn < x0

=

{
(x1, x2, . . . , xn, x0 − x1), if x1 + xn > x0
(x0 − xn, x1, x2, . . . , xn), if x1 + xn < x0

By writing the row vector (x0, . . . , xn) instead as the column vector x, the action of T is given by left
multiplication by (n+ 1)× (n+ 1) matrices:

T (x) =

{
T0 (x) , if x1 + xn > x0
T1 (x) , if x1 + xn < x0
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where

T0 =


0 1 0 · · · 0
0 0 1 · · · 0

...
0 0 0 · · · 1
1 −1 0 · · · 0

 and T1 =


1 0 0 · · · 0 −1
0 1 0 · · · 0 0

...
0 0 0 · · · 0 1


For later use, note that

τ0 := T−10 =



1 0 0 · · · 0 1
1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0

...
0 0 0 · · · 1 0


and τ1 := T−11 =


1 0 0 · · · 0 1
0 1 0 · · · 0 0

...
0 0 0 · · · 0 1

 .

As a technical aside, it is important that both the matrices τ0 and τ1 have nonnegative entries, as it
is in the case for Φ0 and Φ1 in Section 3.3. As we will see, this is what allows the Triangle map to be
used to understand partitions. This is not necessarily the case for all multidimensional continued fraction
algorithms.

Following the construction in Section 4, we jump to the definition of the extended map given in Section
4.3. The extended slow-Triangle map T̃ , which can be thought of as the natural extension of T , is defined
by

T̃ ((n1, . . . , nm)× [k1, . . . , km]) =

{
T̃0((n1, . . . , nm)× [k1, . . . , km]), if n2 + nm > n1
T̃1((n1, . . . , nm)× [k1, . . . , km]), if n2 + nm < n1

=


(n2, n3, . . . , nm, n1 − n2),×[k1 + k2, k3, k4, . . . , km, k1],

if n2 + nm > n1
(n1 − nm, n2, n3, . . . , nm)× [k1, . . . , km−1, k1 + km],

if n2 + nm < n1

which can be read as the action of two m×m matrices on column vectors in R2m, with the matrices(
T0 0
0 τ>0

)
,

(
T1 0
0 τ>1

)
.

5.2 Link with integer partitions

We now simply repeat what we did in Section 4, but now for the slow-Triangle map. Consider a partition
(nk11 , . . . , n

km
m ) ` n with n1 > · · · > nm, also written as (n1, . . . , nm) × [k1, . . . , km] ` n. As n1 > · · · >

nm > 0, we can act on by the extended map. The key, both in the definition of the natural extension and
for our use in partition theory, is that if

(nk11 , . . . , n
km
m ) ` n,

then
(nk1+k22 , nk33 , . . . , n

km
m , (n1 − n2)k1) ` n
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and
((n1 − nm)k1 , nk22 , . . . , n

km−1
m−1 , n

k1+km
m ) ` n.

This proves the following result.

Proposition 5.2. The extended slow-Triangle map T̃ sends a partition of n to a new partition of n. Thus
if (n1, . . . , nm)× [k1, . . . , km] ` n, then

T̃ ((n1, . . . , nm)× [k1, . . . , km]) ` n.

We can iterate the extended map T̃ and create an orbit of partitions. As before, start with some

(n1, . . . , nm)× [1, 0, . . . , 0] ` n.

This a 0th generation partition, which we write as

(n1(0), . . . , nm(0))× [k1(0), . . . , km(0)].

Acting on this vector by T̃ gets us the first generation partition

T̃ ((n1(0), . . . , nm(0))× [k1(0), . . . , km(0)]) = (n1(1), . . . , nm(1))× [k1(1), . . . , km(1)].

and recursively we obtain (n1(a), . . . , nm(a)) × [k1(a), . . . , km(a)] for integers a ≥ 1. This relates the
dynamics of the map T with the sequence of partitions obtained by T̃ .

An example is :

a (x, y) n1(a) n2(a) n3(a) k1(a) k2(a) k3(a) T̃

0 (9/11, 4/11) 11 9 4 1 0 0 T̃0
1 (4/9, 2/9) 9 4 2 1 0 1 T̃1
2 (4/7, 2/7) 7 4 2 1 0 2 T̃1
3 (4/5, 2/5) 5 4 2 1 0 3 T̃0
4 (2/4, 1/4) 4 2 1 1 3 1 T̃1
5 (2/3, 1/3) 3 2 1 1 3 2

We stop here, for now, as (2/3, 1/3) is on the line x + y = 1. We will deal with these boundary type
points in Section 6.

Another example, in one dimension higher, is

a (x, y, z) n1(a) n2(a) n3(a) n4(a) k1(a) k2(a) k3(a) k4(a) T̃

0 (7/14, 6/14, 5/14) 14 7 6 5 1 0 0 0 T̃1
1 (6/9, 5/9, 2/9) 9 7 6 5 1 0 0 1 T̃0
2 (6/7, 5/7, 2/7) 7 6 5 2 1 0 1 1 T̃0
3 (5/6, 2/6, 1/6) 6 5 2 1 1 1 1 1

Here we stop, as 5/6 + 1/6 = 1 and is hence on the line x+ z = 1. Again, in Section 6 we will see how to
continue this orbit.

In analogue to Proposition 4.14 we have:

Proposition 5.3. For n2 + nm > n1, the partitions

(n1, . . . , nm)× [1, 0, . . . , 0] and (n1, n3, . . . , nm, n1 − n2)× [1, 0, . . . , 0]
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will have the same generations after generation 0.

Proof. As n2 + nm > n1, we first apply T̃0 to (n1, . . . , nm) × [1, 0, . . . , 0] and T̃1 to
(n1, n3, . . . , nm, n1 − n2)× [1, 0, . . . , 0] to get

T̃0((n1, . . . , nm)× [1, 0, . . . , 0] = (n2, n3, . . . , nm, n1 − n2)× [1, 0, . . . , 0, 1]

= T̃1((n1, n3, . . . , nm, n1 − n2)× [1, 0, . . . , 0]).

Thus after the first application of the extended slow-Triangle map, we have the same partition.

5.3 Conjugation and Palindromes for the slow-additive-Triangle map

Here we extend the results of Section 4.4 to the slow-Triangle map. A partition (n1, . . . , nm)× [k1 . . . , km]
is conjugate to

(k1 + . . .+ km, k1 + . . .+ km−1, . . . k1)× [nm, nm−1 − nm, . . . , n1 − n2]

(see Section 2). We again have that the extended slow-Triangle map reflects and respects conjugation.

Proposition 5.4. The diagram

(n1, . . . , nm)× [k1 . . . , km] ∼C (k1 + . . .+ km, . . . k1)× [nm, nm−1 − nm, . . . , n1 − n2]

T̃0
7−→

7−→ T̃0

(n2, . . . , n1 − n2)× [k1 + k2, k3, . . . , km, k1] ∼C (2k1 + k2 + . . .+ km, k1 + k2 + . . .+ km, k1 + k2)

×[n1 − n2, nm−1 + n2 − n1, . . . , n2 − n3]

when n2 + nm > n1 and the diagram

(n1, . . . , nm)× [k1 . . . , km] ∼C (k1 + . . .+ km, . . . k1)× [nm, nm−1 − nm, . . . , n1 − n2]

T̃1

7−→

7−→ T̃1

(n1 − nm, n2, . . . , nm)× [k1, . . . , km−1, k1 + km] ∼C (2k1 + k2 + . . .+ km, k1 + . . .+ km−1, . . . , k1)

×[nm, nm−1 − nm, . . . , n1 − nm − n2]

when n2 + nm < n1 are both commutative.

As before, the proof is a simple calculation. Thus for the slow-Triangle map we still have that the act
conjugation can be viewed as simply reversing the arrows of the extended map, giving us the following
result.

Theorem 5.5 (The Power of Palindromes: Higher Dimension). Suppose that T̃i1 , . . . , T̃iN is a sequence of
extended slow-Triangle maps such that

T̃iN ◦ · · · ◦ T̃i1((n1, . . . , nm)× [k1 . . . , km]) = (n̄1, . . . , n̄m)× [k̄1 . . . , k̄m]

Then
T̃i1 ◦ · · · ◦ T̃iN ((k̄1 + . . .+ k̄m, . . . k̄1)× [n̄m, n̄m−1 − n̄m, . . . , n̄1 − n̄2])

= (k1 + . . .+ km, . . . k1)× [nm, nm−1 − nm, . . . , n1 − n2]
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6 The map T̃D on the boundary and “Allowable Partitions”

6.1 The definition and naturalness of T̃D

The original additive-slow-Triangle map T acting on the space x0 > x1 > · · · > xm > 0 is simply not
defined on the hyperplane x0 = x1 + xm. Before now, much of the work on this map has been concerned
with it as a dynamical system. As this hyperplane has measure zero, it could be conveniently ignored. But
when applied to partitions, this means we would be ignoring many perfectly reasonable partitions. In this
section we will show how to extend the map T̃ to the hyperplane x0 = x1 + xm. (This map was originally
defined in work done in parallel to this paper in [5].)

We start with an example. Consider the partition (6, 5, 2, 1) × [1, 1, 1, 1] ` 14. If we naively apply T̃0
and T̃0, we have

(6, 5, 2, 1)× [1, 1, 1, 1]
T̃0−→ (5, 2, 1, 1)× [2, 1, 1, 1]

(6, 5, 2, 1)× [1, 1, 1, 1]
T̃1−→ (5, 5, 2, 1)× [1, 1, 1, 2]

Both of these images would be a strange way for writing the partitions, as the natural notation would be
to concatenate common terms. But after concatenation, we get the same partition:

(6, 5, 2, 1)× [1, 1, 1, 1]→ (5, 2, 1)× [2, 1, 2].

This leads to the following map T̃D:

T̃D((n1, . . . , nm)× [k1, . . . , km]) = (n2, . . . , nm)× [k1 + k2, k3, . . . , km−1, k1 + km]

whenever
n1 = n2 + nm.

This allows us to extend the orbits in 5.2:

a (x, y) n1(a) n2(a) n3(a) k1(a) k2(a) k3(a) T̃

0 (9/11, 4/11) 11 9 4 1 0 0 T̃0
1 (4/9, 2/9) 9 4 2 1 0 1 T̃1
2 (4/7, 2/7) 7 4 2 1 0 2 T̃1
3 (4/5, 2/5) 5 4 2 1 0 3 T̃0
4 (2/4, 1/4) 4 2 1 1 3 1 T̃1
5 (2/3, 1/3) 3 2 1 1 3 2 T̃D
6 (1/2) 2 1 4 3

and
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a (x, y, z) n1(a) n2(a) n3(a) n4(a) k1(a) k2(a) k3(a) k4(a) T̃

0 (7/14, 6/14, 5/14) 14 7 6 5 1 0 0 0 T̃1
1 (7/9, 6/9, 5/9) 9 7 6 5 1 0 0 1 T̃0
2 (6/7, 5/7, 2/7) 7 6 5 2 1 0 1 1 T̃0
3 (5/6, 2/6, 1/6) 6 5 2 1 1 1 1 1 T̃D
4 (2/5, 1/5) 5 2 1 2 1 2 T̃1
5 (2/4, 1/4) 4 2 1 2 1 4 T̃1
6 (2/3, 1/3) 3 2 1 2 1 6 T̃D
7 (1/2) 2 1 3 8

Thus changing the dimension allows us to create longer trees.

6.2 Allowable partitions

When first starting to explore the link between the slow-Triangle map and partitions, we did many exam-
ples. We set up charts of all possible orbits for various (n1, n2, n3) × [1, 0, 0] and we quickly realized that
the multiplicity vectors [k1, k2, k3] in these orbits could only fit certain patterns. These difficulties remain
in higher dimensions.

Definition 6.1. A vector of multiplicities [k1, . . . , km] is allowable if there are integers n1 > · · · > nm > 0
with n1 6= n2 + nm and integers a1 > · · · > am > 0 such that the partition (a1, . . . , am)× [k1, . . . , km] is a
descendant of (n1, . . . , nm)× [1, 0, . . . , 0].

This leads to the natural question of which partitions into m parts stem from an iteration of the
extended slow-Triangle map starting from a root (n1, . . . , nm)× [1, 0, . . . , 0]. What matters here, as we will
see, is the multiplicity vector [k1, . . . , km]. Under T̃0,

[k1, . . . , km]→ [k1 + k2, k3, . . . , km, k1]

and under T̃1,
[k1, . . . , km]→ [k1, k2, . . . , km−1, km + k1].

For notation, suppose we are iterating a partition. At the pth step, label the corresponding multiplicity
as

[k1(p), . . . , km(p)].

Further, recall that
[k1(0), . . . , km(0)] = [1, 0, . . . , 0].

Proposition 6.2. For any orbit with root (n1, . . . , nm)× [1, 0, . . . , 0] we have

(i) For all p, k1(p) > 0.

(ii) If there is an i > 1 so that
ki(p), ki+1(p), . . . , km(p) > 0,

then
ki(p+ 1), ki+1(p+ 1), . . . , km(p+ 1) > 0.

(iii) If k1(p) < k1(p+ 1), then k2(p) > 0.

(iv) A vector [k1, 0, k3, . . . , km] with k1 > 1 is not an allowable multiplicity.
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(v) A vector [k1, . . . , km−1, 0] with k2 > 0, is not an allowable multiplicity.

(vi) A vector [k, k2, . . . , km−1, k] with k > 0 is not an allowable multiplicity.

Proof. By simply looking at the maps T̃0 and T̃1, we can see that the first condition is true.
Noting that T̃0 sends the first term in the multiplicity to the last and shifts to the left the others, and

that T̃1 leave all the terms alone, save for adding the first term to the last, we see that the second and
third conditions are true.

The first three conditions give us the fourth condition, since the initial first term must be 1.
The fifth condition is true since applying either T̃0 or T̃1 to the initial [1, 0, . . . , 0] will give us

[1, 0, . . . , 1],

meaning that the last term can never return to zero.
To show the sixth condition, suppose that [k, k2, . . . , km−1, k, ] is allowable. Then it is the image of an

allowable multiplicity from T̃0 or from T̃1. Now, the inverse of this multiplicity by T̃0 is

[k, 0, k2, . . . , km−1]

which is not allowable. The inverse of this multiplicity by T̃1 is

[k, k2, . . . , km−1, 0]

which is also not allowable.

As an example, this means that the partition of 20 given by

(5, 4, 3)× [2, 1, 2]

cannot be obtained from any possible sequences of T̃0 and T̃1 from any

(20, n2, n3)× [1, 0, 0].

6.3 Capturing non-allowable partitions

We just saw that the partition (5, 2, 1)× [2, 1, 2] ` 14 is the image of (6, 5, 2, 1)× [1, 1, 1, 1] under the map
T̃D. But Proposition 6.2 seems to state that (5, 2, 1)× [2, 1, 2] is nonallowable. Of course this is not at all
a contradiction, as Proposition 6.2 is only about possible images of T̃0 and T̃1. This “merging dimensions”
allows us to capture all partitions.

Part of this comes down to the inverses of the three maps T̃0, T̃1, which are T̃D. As described in [5],
the maps T̃0 and T̃1 are one-to-one, each having the following inverses: for k1 > km,

(n1, . . . , nm)× [k1, . . . , km]
T̃−1
0−−→ (n1 + nm, n1, n2, n3, . . . , nm−1)× [km, k1 − km, k2, k3, . . . , km−1]

and for k1 < km ,

(n1, . . . , nm)× [k1, . . . , km]
T̃−1
1−−→ (n1 + nm, n2, . . . , . . . , nm)× [k1, . . . , . . . , km−1, km − k1].

The map T̃D that changes dimensions though is not one-to-one. If

K = min(k1 + k2, k1 + km)− 1,
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then TD is a K to one map. Explicitly, for any k = 1, . . . ,min(k1, km−1)− 1, an inverse is

(n1, . . . , nm)× [k1, . . . , km]
T̃−1
D−−→ (n1 + nm, n1, . . . , nm−1)× [k, k1 − k, k2, . . . , km−2, km−1 − k].

This allows us to fit any partition into an eventual image of some (n, n2, . . . , nm)×[1, . . . , 0]. This creates
a network of interrelations among partitions, a network that overall remains to be fully understood.

7 On other multidimensional continued fraction algorithms

There are many different multidimensional continued fraction algorithms. (To get a feel of how many
there are, see Schweiger [28] and Karpenkov [21].) Each has their own strengths and weaknesses. All are
trying to generalize the many wonderful properties of traditional continued fractions to higher dimensional
analogs. Historically, the two main sources of inspiration have been trying to find good Diophantine
approximation properties and trying to find methods for understanding algebraic numbers via periodicity
properties (generalizing the classical fact that a real number is a quadratic irrational if and only if its
continued fraction expansion is eventually periodic.)

When we started this project, we assumed that each of the other well known multidimensional continued
fraction algorithms would provide their own dynamical interpretation of partitions. This is quite false, as
we will now see. To give a flavor of other multidimensional continued fractions algorithms and why they
are not useful at all for studying partition numbers, we will look at the Mönkemeyer algorithm and then
the Cassaigne algorithm. We then turn to the language of triangle partition maps, which is an attempt to
put various multidimensional continued fraction algorithms into a single framework. We will see in terms of
this framework, hardly any multidimensional continued fraction algorithm can be used in partition theory.
Thus in the context of linking dynamics with partition numbers, it seems that the triangle map is unusual
(though as we will also see not unique).

7.1 Mönkemeyer

The Mönkemeyer map is a particularly good multidimensional continued fraction algorithm for generalizing
the classical Minkowksi Question Mark function, as shown by Panti [25]. For ease of notation, we will only
treat the case of m = 3.

Here we will simply write down the map. Set

4 = {(x, y) ∈ R2 : 1 > x > y > 0}
40 = {(x, y) ∈ 4 : x+ y > 1}
41 = {(x, y) ∈ 4 : x+ y < 1}

exactly the same as in Section 5. The slow-Mönkemeyer map M : 40 ∪41 →4 is

M(x, y) =

{
M0(x, y), if x+ y > 1
M1(x, y), if x+ y < 1

=


(
1−y
x , x−yx

)
, if x+ y > 1(

x
1−y ,

x−y
1−y

)
, if x+ y < 1

As in Section 3.3 and Section 5, we pass from points (x, y) in R2 to vectors (z, x, y) in R3 (or points
(z : x : y) in RP2) via sending (x, y) to (1, x, y) with inverse map (z, x, y)→ (x/z, y/z). Then, by an abuse
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of notation, as before, we again set

4 := {(z, x, y) ∈ R3 : z > x > y > 0}
40 := {(z, x, y) ∈ 4 : x+ y > z}
41 := {(z, x, y) ∈ 4 : x+ y < z}.

This allows us to define the slow-Mönkemeyer map T : 40 ∪41 →4 by

M(z, x, y) =

{
M0(z, x, y), if x+ y > z
M1(z, x, y), if x+ y < z

=

{
(x, z − y, x− y), if x+ y > z
(z − y, x, x− y), if x+ y < z

By writing the row vector (z, x, y) as a column vector, the action of M is given by left multiplication by
3× 3 matrices:

M

 z
x
y

 =


M0

 z
x
y

 , if x+ y > z

M1

 z
x
y

 , if x+ y < z

=



 x
z − y
x− y

 , if x+ y > z z − y
x

x− y

 , if x+ y < z

where

M0 =

0 1 0
1 0 −1
0 1 −1

 and M1 =

1 0 −1
0 1 0
0 1 −1


and

m0 := M−10 =

1 1 −1
1 0 0
1 0 −1

 and m1 := M−11 =

1 1 −1
0 1 0
0 1 −1

 .

Note that the entries for both m0 and m1 have negative entries. This is the technical reason why the
Mönkemeyer map will not be good to understand partitions.

As seen in the earlier sections, we need to look at the extended slow-Mönkemeyer map M̃ (the natural
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extension of M), which is

M̃((n1, n2, n3)× [k1, k2, k3]) =

{
M̃0((n1, n2, n3)× [k1, k2, k3]), if n2 + n3 > n1
M̃1((n1, n2, n3)× [k1, k2, k3]), if n2 + n3 < n1

=

{
(n2, n1 − n3, n2 − n3)× [k1 + k2 + k3, k1,−k1 − k3], if n2 + n3 > n1
(n1 − n3, n2, n2 − n3)× [k1, k1 + k2 + k3,−k1 − k3], if n2 + n3 < n1

which can be read as the action of two 6× 6 matrices on column vectors in R6, with the matrices(
M0 0
0 m>0

)
,

(
M1 0
0 m>1

)
.

If we try to see, for example, what the partition

(7, 5, 4)× [3, 2, 4] ` 47

would map to under M̃ , we get

M̃((7, 5, 4)× [3, 2, 4]) = (5, 3, 2)× [9, 3,−7].

That −7 for one of the multiplicities means that this dynamical system will not generate partitions.

7.2 Cassaigne

This algorithm is of fairly recent vintage. Back in the early 1940s, Morse and Hedlund [24] started
investigating infinite words. They showed that any infinite word made up from an alphabet of two letters
whose linear complexity is bounded by n (meaning that there are no more than n subwords of length n)
must actually be eventually periodic. An infinite word w whose linear complexity is exactly n+ 1 is called
Sturmian, meaning that there are exactly n + 1 subwords of length n in w. Morse and Hedlund not only
showed that Sturmian words exist but more so that all such words stem from continued fraction expansions
of real numbers. This is quite amazing. (For more see Arnoux’s work in Chapter 6 of N. Pytheas Fogg ’s
Substitutions in Dynamics, Arithmetics, and Combinatorics [13].

The natural question then arises for methods to generalize this link of continued fractions with infinite
words of low complexity. The Cassaigne algorithm, as described by Cassaigne, Labbé and Leroy [10], is a
multidimensional continued fraction algorithm that produces infinite words on three letters whose linear
complexity is exactly 2n + 1. We could now describe how this algorithm acts on vectors in the cone 4
via matrix multiplication, etc. We will instead simply write down the extended slow-Cassaigne map M̃ ,
which is

C̃((n1, n2, n3)× [k1, k2, k3]) =

{
(n2, n3, n2 + n3 − n1)× [k1 + k2, k1 + k3,−k1], if n2 + n3 > n1

(n1 − n3, n2, n2 − n3)× [k1, k1 + k2 + k3,−k1 − k3], if n2 + n3 < n1

Looking at the partition
(7, 5, 4)× [3, 2, 4] ` 47

again, we see that
C̃((7, 5, 4)× [3, 2, 4]) = (5, 4, 2)× [5, 7,−3].

That −3 for one of the multiplicities means that this dynamical system will also not generate partitions.
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7.3 Triangle Partition Maps

There are many multidimensional continued fractions. For each of these we can look at the corresponding
extended map and see if the maps on the multiplicities keeps all the terms positive. This seems like an
almost endless process. In [12], a family of multidimensional continued fractions was created which seems
to capture all known multidimensional continued fractions (in a certain well-defined sense). The method is
to first create a list of 216 different multidimensional continued fractions, parameterized by S3 × S3 × S3,
where S3 is the set of permutations of three elements. Thus given some (σ, τ0, τ1) ∈ S3 × S3 × S3 we
associate a multidimensional continued fraction which we will denote by T (σ, τ0, τ1), which in turn stems
from two maps

T0(σ, τ0, τ1), T1(σ, τ0, τ1)

and corresponding extended versions

T̃ (σ, τ0, τ1), T̃0(σ, τ0, τ1), T̃1(σ, τ0, τ1).

It can be calculated that the Triangle map is T (e, e, e), that Mönkemeyer is T (e, 132, 23) and that Cassaigne
is T (e, 23, 23).

For the generating list of 216 different multidimensional continued fraction algorithms, we can explicitly
compute for each the corresponding extended version. What struck us initially as a somewhat surprising
fact is that only four of these maps can be used to study partitions, meaning that for all but four some of
the multiplicities will be negative. These four are

T (e, e, e), T (13, 12, 12), T (12, e, 12), T (132, 12, e).

Though the first is the Triangle map, the other three do not have names and have never really been studied
before.

While all four of these maps give rise to different dynamical systems, there is the phenomenon of
“twinning” (see Section 8.1 in [16]), which is that

T̃0(e, e, e) = T̃1(13, 12, 12),

T̃1(e, e, e) = T̃0(13, 12, 12),

T̃0(12, e, 12) = T̃1(132, 12, e)

T̃1(12, e, 12) = T̃0((132, 12, e)

This means really there are only two different T (σ, τ0, τ1) maps that can be used to study partitions. As
T (12, e, 12) has never really been studied before, we will briefly describe it here. Set

4 := {(x, y) ∈ R2 : 1 > x > y > 0}
40(12, e, 12) := {(x, y) ∈ 4 : 2y > x}
41(12, e, 12) := {(x, y) ∈ 4 : 2y < x}
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40(12, e, 12)

41(12, e, 12)

(0, 0) (1, 0)

(1, 1)

(1, 12)

The map T (12, e, 12) : 40(12, e, 12) ∪41(12, e, 12)→4 is

T (x, y) =

{
T0(x, y), if 2y > x
T1(x, y), if 2y < x

=


(

y
1+y−x ,

x−y
1+y−x

)
, if 2y > x(

x−y
1−y ,

y
1−y

)
, if 2y < x

The extended T̃ (12, e, 12), which can be thought of as the natural extension of T (12, e, 12), is

T̃ (12, e, 12)((n1, n2, n3)× [k1, k2, k3]) =

{
T̃0(12, e, 12)((n1, n2, n3)× [k1, k2, k3]), if 2n3 > n2
T̃1(12, e, 12)((n1, n2, n3)× [k1, k2, k3]), if 2n3 < n2

=

{
(n1 + n3 − n2, n3, n2 − n3)× [k1, k2 + k3, k1 + k2], if 2n3 > n2

(n1 − n3, n2 − n3, n3)× [k1, k2, k1 + k2 + k3], if 2n3 < n2

As the multiplicities will never be negative, we have orbits of partition numbers. But these orbits will be
different than the corresponding orbits for the Triangle map, as can be seen by comparing the orbit of

(11, 9, 4)× [1, 0, 0]

via T̃ (12, e, 12), which is

m (x, y) n1(m) n2(m) n3(m) k1(m) k2(m) k3(m) T̃i(12, e, 12)

0 (9/11, 4/11) 11 9 4 1 0 0 T̃1(12, e, 12)

1 (5/7, 4/7) 7 5 4 1 0 1 T̃0(12, e, 12)

2 (4/6, 1/6) 6 4 1 1 1 1 T̃1(12, e, 12)

3 (3/5, 1/5) 5 3 1 1 1 3 T̃1(12, e, 12)
4 (2/4, 1/4) 4 2 1 1 1 5

(stopping here, for now, as (2/4, 1/4) is on the line 2y = x) to the orbit under the triangle map T̃ (e, e, e)
given in the table in Section 5.2.

Unfortunately, while T̃ (12, e, 12) does provide a map of partitions to partitions, almost any example
will show that this map does not respect conjugation, and hence the analog of Proposition 5.4 is false.
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7.4 Selmer and Brun

Recently Matthew Phang [26] has shown that two classical multi-dimensional continued fractions, the
Selmer algorithm (see Chapter 7 in Schweiger [28] ) and the Brun algorithm (Chapter 4 in [28] ), both can
be used to produce maps from partitions to partitions. Neither though respect conjugation and hence for
both of these the analog of Proposition 5.4 are also false.

8 Questions

We view this paper as only a start. For example, in [5] many new identities among partitions are given
using the dynamics of the triangle map applied to partitions. This work also gives a process to discover
many new partition identities. This strikes as quite promising.

In this paper, we have spent a lot of time on the special case of partitioning a number into two numbers,
with multiplicity, in large part due to the richness behind the classical Farey map and its corresponding
Farey tree. This correspondence is what is key to our formula for p(2, n). Recently, two of the authors, with
Sara Munday, [7] have developed an analogous tree structure for the slow-Triangle map (see also [8]). Thus
suggests that there will be a rich analog of the Farey tree, a possible Triangle graph. This is underlying
Subsection 6.3. We hope to pursue this in future work.
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