
Total Environment Research Themes 8 (2023) 100083

Available online 6 October 2023
2772-8099/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Development and comparison of adaptive data-driven models for thermal 
comfort assessment and control 

Giulia Lamberti a,b,*, Roberto Boghetti c, Jérôme H. Kämpf c, Fabio Fantozzi a, 
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A B S T R A C T   

Thermal comfort prediction is an important issue, as it can largely influence occupants’ well-being and buildings’ 
energy consumption. Nowadays, models used to assess thermal comfort have been increasingly discussed, and a 
growing number of data-driven models with several input parameters developed. Although these models allow 
reasonably accurate predictions of thermal comfort, using complex algorithms to determine thermal comfort 
might be unsuitable for some use cases, such as quick estimations or real-time control of Heating, Ventilation, 
and Air Conditioning (HVAC) systems. 

In this paper, a data-driven model was developed based on 61710 samples of subjective responses associated 
with environmental parameters from field studies available in two ASHRAE databases. Two models resulted from 
this analysis, one with higher accuracy and one simplified, which improved the prediction in comparison to other 
regression models and PMV. 

However, since thermal comfort cannot be conceived as a punctual condition, comfort areas were derived, i.e., 
respective comfort ranges at 90%, 80%, and 70% of thermal acceptability. The result is that the error in the 
prediction of the new models is below the 90% acceptable range, which means that the models’ error does not 
lead to a reduction in the evaluation of occupant comfort. 

Built upon influential parameters, these models enable thermal comfort estimates and occupant-centered 
HVAC control. The notion of comfort as a non-fixed state empowers more flexible building management 
criteria, reducing energy use while upholding indoor comfort.    

List of Symbols 
G Griffiths’ constant (◦C− 1) 
HVAC Heating Ventilation and Air Conditioning 
Icl Clothing insulation (clo) 
M Metabolic rate (met) 
MAE Mean Absolute Error 
PMV Predicted Mean Vote 
PD Percentage of Dissatisfied 
PPD Predicted Percentage of Dissatisfied 
RH Relative humidity (%) 
RMSE Root Mean Square Error 
Ta Air temperature (◦C) 
Tcomf Comfort temperature (◦C) 

TCV Thermal Comfort Vote 
Tg Globe temperature (◦C) 
Top Operative temperature (◦C) 
Tout Mean monthly outdoor temperature (◦C) 
TSV Thermal Sensation Vote 
Tr Mean radiant temperature (◦C) 
Va Air velocity (m/s) 

1. Introduction 

The importance of healthy indoor conditions in buildings has 
become more evident due to increased time spent indoors. Thermal 
comfort plays a crucial role in people’s well-being, productivity, and 
energy consumption (Lamberti, 2020; Zhang et al., 2019). Previous 
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studies have extensively examined indoor thermal comfort (Enescu, 
2017; Fantozzi and Rocca, 2020), with Fanger’s rational and the adap
tive being the primary models used (Djongyang et al., 2010). 

Fanger’s rational model (Fanger, 1970) evaluates occupants’ thermal 
sensations using the Predicted Mean Vote (PMV) index, which is based 
on four environmental (air temperature, relative humidity, mean 
radiant temperature, and air velocity) and two individual (metabolic 
rate and clothing insulation) parameters. The rational model considers 
the heat balance between the human body and the environment and was 
developed through subjective climate chamber experiments. This model 
is widely used for thermal comfort analysis, particularly in the design 
phase, but its numerous input parameters make it challenging for real- 
time control of HVAC systems. 

To overcome this limitation and account for adaptive processes 
occurring in buildings, the adaptive model was derived from field 
studies (Humphreys et al., 2016). Thermal adaptation, encompassing 
behavioural, physiological, and psychological aspects (Brager and de 
Dear, 1998), recognizes occupants as active contributors to comfort 
creation, not merely passive subjects. Factors like building type (Rupp 
et al., 2019), climate (Lamberti et al., 2023), and ventilation mode 
(Kumar, 2022) significantly shape occupants’ thermal perception and 
adaptability and should be considered in comfort analysis. The impor
tance of adaptation in different settings has become particularly relevant 
(Oliveri et al., 2016; Castilla et al., 2018) and passive strategies, based 
on occupants’ adaptive capacities, can also improve thermal comfort 
conditions (Zinzi et al., 2021). In this case, the only parameters involved 
in the adaptive relationship are the indoor and outdoor temperatures. 
Although this greatly simplifies the model and makes it more suitable for 
quick estimations and real-time control, it reduces thermal comfort to 
the relationship between indoor and outdoor temperatures, without 
considering all the other parameters that are involved in the heat bal
ance (Fanger and Toftum, 2002). 

To consider the issue that the original adaptive models reduce the 
prediction of thermal sensation to the relationship between indoor and 
outdoor temperature only, machine learning algorithms have been 
recently used, leveraging the increasing availability of field data. 
Indeed, data-driven models present high flexibility in input parameters 
(Xie et al., 2020) so that they can consider aspects such as skin tem
perature (Dai et al., 2017), personal characteristics (Li et al., 2017; Lee 
et al., 2017; Zhao et al., 2014), or occupants’ interaction with control 
systems (Kim et al., 2018). Several studies comprised the input param
eters of PMV including in some cases outdoor temperature or HVAC 
operation mode (Jiang and Yao, 2016; Lu et al., 2019). 

In particular, they have been applied to the prediction of different 
indices, such as 3-points Thermal Sensation Vote (TSV) (Chaudhuri 
et al., 2018; Chaudhuri et al., 2019; Wang et al., 2019), 7- points 
Thermal Sensation Vote (Jiang and Yao, 2016; Lu et al., 2019; Rana 
et al., 2013; Wang et al., 2014; Wu et al., 2018; Du et al., 2019), Thermal 
Preference Vote (Dai et al., 2017; Li et al., 2017; Lee et al., 2017; Kim 
et al., 2018), or Thermal Comfort Vote (TCV) (Farhan et al., 2015; 
Cosma and Simha, 2019). 

To build data-driven models, different algorithms were used, which 
showed a median predictive accuracy of 84% with a standard deviation 
of around 15% (Xie et al., 2020). While it is true that this predictive 
performance is better than that of the PMV (Xie et al., 2020; Cheung 
et al., 2019) and thus shows how promising the use of these algorithms is 
for better understanding the parameters that most influence thermal 
comfort, they often require a greater number of input parameters for 
predicting thermal comfort indices. 

In addition, while more complex algorithms have improved thermal 
sensation prediction compared to the PMV model (Xie et al., 2020), their 
effectiveness is limited due to the subjective nature of occupant- 
perceived thermal sensations. Variability in individual experiences of 
thermal comfort exists, making precise individual predictions imprac
tical and unnecessary. A pragmatic alternative is to focus on “comfort 
zones” rather than specific conditions (Humphreys et al., 2016). 

With the purpose of developing a model suitable for real-time HVAC 
system control, two primary challenges were identified. Firstly, the 
current adaptive models overlook various factors influencing the heat 
balance between the human body and the environment, thereby 
impacting thermal sensation. Secondly, these adaptive models were 
initially designed to simplify comfort prediction, prioritizing accessi
bility for building professionals. 

Although it has been shown in numerous studies that the PMV often 
fails in predicting comfort (Cheung et al., 2019; Humphreys and Nicol, 
2002), there is a need to develop models that can accurately predict 
occupant comfort using a minimal set of input parameters. These models 
should be suitable for quick estimations and real-time control. 

This paper aims to fill this gap by developing a data-driven model 
that:  

1. Is based on a considerable amount of data, to account for adaptive 
processes, which are only detectable from field studies.  

2. Selects and includes the parameters that are most relevant to thermal 
perception. 

3. Allows real-time control and is suitable for use by building practi
tioners, in line with the original adaptive model.  

4. Presents a satisfying predictive performance, suitable for its use in 
building management. 

To overcome the problem that laboratory studies may not represent 
accurately occupants’ behaviour, ASHRAE’s databases including data 
from real buildings well-spread around the world were used (de Dear, 
1998; Földváry Ličina et al., 2018). 

2. Methodology 

In this section, the methodology used for developing the model is 
described (Fig. 1). Rows with parameters Ta, Tr, RH, Va, Icl, M, Tout, 
PMV, and TSV were extracted from ASHRAE databases. PMV was 
recalculated for comparison with user-perceived TSV. Filtering retained 
comfort data (excluding thermal stress), resulting in 62,317 to 61,710 
records. Then, the filtered dataset was split into 90% training and 10% 
test sets. Once the baseline was established, a polynomial regression to 
create two thermal sensation prediction models was performed and the 
test set was used for validation. Further methodology details are pro
vided in the following paragraphs. 

2.1. Data source and preparation 

2.1.1. Description of the databases 
There are several quality-controlled thermal comfort databases 

available for scientific studies, such as the ASHRAE RP-884 database 
developed in the 1990 s, with 25,616 samples (de Dear, 1998), the Smart 
Control and Thermal Comfort database developed in the 2000 s 
(McCartney and Nicol, 2002), with 27,284 samples, and the more recent 
ASHRAE Database II, which has the largest size with 81,968 samples 
(Földváry Ličina et al., 2018). 

Previously, machine learning algorithms predicted thermal comfort 
using individual databases (Lu et al., 2019; Farhan et al., 2015; Luo 
et al., 2020; Gao et al., (2019); Zhou et al., 2020). Addressing concerns 
from researchers encouraging broader samples (McCartney and Nicol, 
2002), ASHRAE’s Databases Database II and RP-884 were combined, 
integrating global field studies with a consistent methodology. Utilizing 
both databases offers a comprehensive, extended data range. 

Selected model parameters include air temperature (Ta), mean 
radiant temperature (Tr), relative humidity (RH), air velocity (Va), 
clothing insulation (Icl), metabolic rate (M), and mean monthly outdoor 
temperature (Tout). When the mean radiant temperature was absent but 
the globe temperature (Tg) was available, Tr was derived using the ISO 
7726 standard (ISO 7726, 2001). The six parameters (Ta; Tr, RH, Va, Icl, 
M) correspond to those in Fanger’s PMV model, while outdoor 
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temperature (Tout) reflects adaptability, foundational to the adaptive 
model. 

Then, Fanger’s Predicted Mean Vote (PMV) was calculated. The 
database already includes the values of PMV for each entry however, as 
it is possible for a database of this size to contain errors (Cheung et al., 
2019; Humphreys and Nicol, 2002), PMV was recalculated using the 
pythermalcomfort Python library (Tartarini and Schiavon, 2020) to 
ensure consistency. Samples with missing values of Ta; Tr or Tg, RH, Va, 
Icl, M, Tout, and TSV were excluded from the study. As a result, the 
considered database had a size of 62,317 observations, obtained from 
studies carried out from 1982 to 2016. 

The Thermal Sensation Vote (TSV), which represents occupants’ 
thermal sensation on a 7-points scale (from − 3 cold to + 3 hot), was also 
extracted from the databases for the comparison between the predicted 
and real thermal sensation. The data originates from peer-reviewed field 
studies, capturing effective thermal experiences of occupants in real 
environments. Thermal Sensation Votes (TSV) were gathered using 
combined questionnaires and instrumental measurements within the 
same spatial and temporal context. This approach enabled the correla
tion of individual thermal responses with concurrent environmental 
parameters. Rigorous quality checks and validation procedures were 
applied to all submissions to mitigate potential transmission errors 
(Földváry Ličina et al., 2018). 

2.1.2. Data filtration 
After an initial analysis (see Supplementary Material), data was 

filtered and values beyond practical ranges were excluded. Acceptability 
ranges were defined based on thermal comfort standards for each input 
feature (ISO 7726, 2001; ISO 7730, 2006). 

For instance, Ta and Tr below 10 ◦C were omitted due to cold stress 
risk. No upper limit was set, considering diverse climates. A wide hu
midity range of 10–90% was accepted since studies were performed in 
dry and humid climates. Air velocity ranged from 0.0 to 3.0 m/s, typical 
for indoor settings. Parameters like metabolic rates below 0.8 Met 
(sleeping condition) and clothing insulation below 0.0 clo were dis
regarded. PMV and TSV were limited to − 3 to + 3 as per ASHRAE. 
Duplicate samples were removed, resulting in 607 exclusions. 

Then, the dataset was split: 90% for training (baseline identification 
and model building), and 10% for testing model validation. 

2.2. Baseline identification 

The model aims to predict occupants’ thermal sensation (7-point 
scale) using the identified parameters (Ta, Tr, RH, Va, Icl, M, Tout). After 
identifying influential parameters through field studies, the model aims 
for user-friendliness such as adaptive models. It seeks improved pre
dictability compared to PMV and linear models, approaching complex 
algorithms’ performance. 

Model performance is assessed using Mean Absolute Error (MAE), 
Root Mean Square Error (RMSE), and Bias. Lower values indicate higher 
precision. Bias detects systematic overestimation/underestimation by 

the predictive model. These error indices can be calculated as follows. 

MAE =

∑n
i=1|pi − ai|

n
(1)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(pi − ai)

2

n

√
√
√
√
√

(2)  

Bias =
∑n

i=1(pi − ai)

n
(3)  

where pi is the predicted value; ai is the target value, and n is the number 
of samples. 

For comparison, the predictive performance of PMV was also 
assessed using these three indices (MAE, RMSE, and Bias). 

Then, the performance of a linear least squares regression model, 
eventually regularized with different values of L1 (Lasso) and L2 (Ridge) 
penalties, as well as combinations of both (Elastic Net), was calculated 
and used as a baseline that the proposed model is expected to improve, 
and a primary comparison between this approach and Fanger’s PMV 
prediction was provided. 

Linear regression is one of the simplest data-driven modelling algo
rithms, and it has the advantage that its results can be easily understood 
and interpreted. Ridge regression (Hoerl and Kennard, 1970) extends it 
by introducing the L2 penalty to reduce the variability of the model and 
to mitigate the problem of multicollinearity, as it penalises higher pre
dictors’ coefficients, effectively shrinking them to values that can be 
close, but not equal, to zero. The Lasso regression (Tibshirani, 1996) 
uses a similar approach with the introduction of the L1 penalty term, 
which allows the parameters to be effectively reduced to zero. In this 
way, redundant or not useful predictors are removed, which should lead 
to a simpler and potentially better model. Finally, the Elastic Net 
regression (Zou and Hastie, 2005) is a method that combines both the L1 
and L2 penalties used in the Lasso and Ridge regression models. 

The models were built and optimized using Python’s Scikit-learn li
brary (Pedregosa et al., 2011). A 5x5-fold cross-validated random search 
was made to find optimal values of the regularization parameters. The 
Scikit-learn implementations of these models use the hyperparameters 
alpha to control the strength of the total penalty term, while in Elastic 
Net the l1_ratio controls the ratio of penalty assigned to the L1 term. The 
range of values tested was 0.05 – 50 for alphas on a logarithmic scale and 
0.05–0.95 on the l1_ratio with steps of 0.05. For the Lasso, Ridge, and 
Elastic Net regressions, 100 different regularization penalty parameters 
(alphas) were tested and for the Elastic Net, 19 different mixing pa
rameters between Lasso and Ridge (l1_ratio) were examined. 

2.3. Polynomial regression 

To enhance model performance, an instance selection algorithm was 
applied to training data, commonly used in classification but less 
explored in regression (Song et al., 2017; Arnaiz-González et al., 2016; 

Fig. 1. Flow chart showing the procedures used for developing the thermal comfort models.  
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Arnaiz-González et al., 2016). This technique undersamples training 
data, retaining model predictiveness while reducing questionnaire data 
noise. The instance selection methodology applied was based on clus
tering, similar to common filter methods used for classification (Olvera- 
López et al., 2010). 

Specifically, complete-linkage hierarchical agglomerative clustering 
(Nielsen, 2016) was employed, allowing control over same-cluster 
element distances. This possibility, coupled with a different pre
liminary scaling of each feature, results in the ability to impose a 
maximum difference between extreme values of each feature inside a 
cluster. These constraints were chosen as the limit values beyond which 
the thermal environment is perceived differently by occupants accord
ing to the international standard ISO 7726 (ISO 7726, 2001). The limit 
values of thermal environment perception, coinciding with the 
maximum distances of each feature allowed in a single cluster, are re
ported in Table 1. 

Employing this approach, 44,264 clusters emerged from the filtered 
database. Instance selection during model training retained central 
samples from each cluster, refining the dataset. 

From the filtered database, the parameters were combined in poly
nomials of degree 5th or lower, resulting in a total of 792 polynomials 
(also called predictor variables or input features in the context of data- 
driven modelling). To select the polynomials that influence the most 
thermal perception of the building’s occupants, a Lasso regression was 
applied to the training set. In fact, Lasso can shrink the independent 
variable to 0, effectively removing predictors that are redundant or non- 
correlated with the target variable. Before applying the Lasso regression, 
each feature was also scaled to a range (0,1) using the MinMaxScaler. 
While scaling features do not affect the performance of linear least 
square regression models, this step was necessary to measure the relative 
importance of the polynomials as a function of the Lasso coefficients. 
The Lasso regression was then applied using 5x5-fold cross-validation to 
find the optimal value of alpha. 

Thermal sensation evaluation was approached as regression, align
ing with global comfort theories, as thermal comfort analysis typically 
forecasts group thermal perceptions, not individual responses. This is 
achieved through data binning, averaging sensations under similar 
conditions. TSV and PMV are expressed as continuous real values within 
the − 3 to + 3 range, facilitating direct comparison. 

3. Results and analysis 

3.1. Data analysis 

ASHRAE’s databases include global studies across diverse climatic 
zones, illustrated in Fig. 2 (see Supplementary Material for data distri
bution). The dataset contains 29,236 records from naturally ventilated, 
23,149 from air-conditioned, and 9325 from mixed-mode buildings. 
Predominantly, studies were conducted in temperate (Zone C, 38,061 
records), tropical (Zone A, 11,015 records), dry (Zone B, 7118 records), 
and continental (Zone D, 5516 records) climates. 

Observations were primarily gathered in summer (27778 records), 
followed by winter (22922 records), spring (5054 records), and autumn 
(2542 records). Data were also available for wet (2300 records) and dry 
(1114 records) seasons. 

Noteworthy building types encompass offices (38567 records), 
schools (11552 records), residential buildings (7845 records), senior 
centres (449 records), light industrial factories (118 records), and other 
categories (3179 records). 

Table 2 provides parameter descriptions, including assumed ranges, 
mean values, and predefined acceptability ranges. 

Table 3 presents the parameter correlation matrix. TSV’s weak cor
relations with other inputs reflect personal thermal sensation variability. 
Notably, TSV displays a notable link with air/mean radiant tempera
tures (r = 0.37), underscoring their impact on thermal perception. 
Additionally, TSV exhibits a significant correlation with clothing insu
lation (r = -0.18), indicating occupants’ adaptive responses. This 
adaptability is reinforced by Icl’s correlations with Ta (r = -0.44), Tr (r =
-0.45), and Tout (r = -0.37). 

However, TSV’s correlation with metabolic rate is minimal (r = 0.05) 
due to limited sedentary activity variation in the sample. TSV’s 
connection with RH is also weak (r = -0.03), despite RH’s broad range 
(10% to 90%), reflecting the complex role of RH in thermal comfort 
(Djamila, 2017). Similarly, TSV’s correlation with air velocity is modest 
(r = 0.05), influenced by low indoor variability. The effect of outdoor 
temperature on TSV is low (r = 0.03), potentially due to database- 
specific building variations. 

Noteworthy is the correlation between Icl and Tout, underscoring 
outdoor temperature’s significance in thermal sensation, particularly in 
naturally ventilated settings. The correlation matrix underscores occu
pants’ real-world adaptability, evident through clothing insulation’s 
impact on thermal perception. 

3.2. Model’s baseline 

The model is based on field studies, enabling the evaluation of user 
comfort within real environments, which allow to consider thermal 
adaptation. 

PMV was used as a baseline, following previous studies on data- 
driven models (Xie et al., 2020). Simple regression models were also 
used as a reference for predictive ability. It was not possible to consider 
as baselines other data-driven models in the literature due to their 
classification-based approach for TSV evaluation, as discussed earlier. 

PMV’s predictive performance was evaluated using three error 
indices. It showed a MAE of 0.991, indicating an average error of 
approximately one point on ASHRAE’s 7-point scale. The RMSE was 
1.276, slightly higher than the standard deviation of TSV (SDTSV =

1.268), while the Bias was low at − 0.003, indicating no systematic 
underestimation or overestimation of thermal comfort. 

Simple regression models, including linear regression (MAE = 0.873, 
RMSE = 1.135, and Bias = 0.000), Ridge regression (MAE = 0.873, 
RMSE = 1.135, and Bias = 0.000), Lasso (MAE = 0.872, RMSE = 1.145, 
and Bias = 0.000), and Elastic Net (MAE = 0.872, RMSE = 1.145, and 
Bias = 0.000), showed improved predictive performance compared to 
PMV across all three evaluation indices. 

The predictive model developed in the next section should aim to 
further enhance the performance achieved by these simple linear 
models. 

3.3. Prediction of the Thermal Sensation Vote 

The relevant environmental and individual parameters were com
bined into polynomials, resulting in 792 features for regression models. 
Lasso regression was then used to select important parameters and 
reduce predictors to 37 polynomials, as shown in Table 4. 

The MAE, RMSE, and Bias of the cross-validations, calculated as the 
average value of the validation sets of each fold, were 0.867, 1.121, and 

Table 1 
Limit values of the input parameters used for clustering data.   

Parameter Limit 
value 

Unit 

Environmental 
parameters 

Air temperature (Ta) 0.5 (◦C) 
Relative humidity (RH) 5 (%) 
Mean radiant temperature (Tr) 2 (◦C) 
Air velocity (Va) 0.05 (m/ 

s) 
Mean monthly outdoor 
temperature (Tout) 

1 (◦C) 

Individual parameters Clothing insulation (Icl) 0.1 (clo) 
Metabolic rate (M) 0.1 (Met)  
TSV 1 (-)  
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0.001 respectively. The most relevant polynomial is composed of the 
product of Ta and Tr, revealing the significance that these two parame
ters have on thermal sensation. 

For instance, fitting a linear regression with this polynomial only led 
to a MAE, RMSE, and Bias of 0.886, 1.165, and 0.003 respectively. Fig. 3 
reports the Lasso coefficients of the different features in the subset, 
which show their relative importance in determining the thermal 
sensation. In blue, the features used for the model of Eq. (4), while in 
light blue the features used for the model of Eq. (5) are reported. 

The feature comprising Ta and Tr stands out as the most important, 
confirming their influence on the perception of the thermal environment 
in the adaptive model. However, the effects of relative humidity, out
door temperature, and metabolic rate included in Eq. (4) should not be 
neglected. 

To make the utilization of the 37 terms in the polynomial equations 

from Lasso regression more practical, it was essential to further simplify 
the model’s complexity. The objective was to identify the minimum 
number of polynomials necessary to attain comparable accuracy. This 
involved repeating curve fitting with progressively larger predictor 
subsets until the error approximated that of the full polynomial model. 
Employing 5x5-fold cross-validation ensured accurate MAE, RMSE, and 
Bias estimation for each model. The process was halted after the third 
iteration. 

Across the combinations, MAE ranged from 0.866 to 0.947, RMSE 
spanned from 1.128 to 1.261, and Bias fluctuated between − 0.012 and 
0.017. Given consistently low Bias, always under the recommended ±
0.25 threshold (Humphreys and Nicol, 2002), and RMSE below TSV’s 
standard deviation (SD = 1.307 for the clustered dataset), MAE was 
chosen as the criterion for selecting the optimal combination, priori
tizing model accuracy. 

The best model found, resulting in a MAE of 0.866, a RMSE of 1.128, 
and a Bias of 0.008 on the cross-validation, was: 

TSVI = 0.0039Ta⋅Tr − 3.3259⋅10− 8T2
r ⋅RH⋅T2

out + 4.5622⋅10− 7⋅T3
a ⋅RH⋅M

− 2.1152
(4)  

This equation suggests that the combination of the most important 
features that determine the thermal sensation includes Ta, Tr, RH, Tout, 
and M. 

However, this model includes parameters that are difficult to control 
in real-time, such as mean radiant temperature or metabolic rate, which 
is typically estimated using tables based on the activity performed for 
global thermal comfort assessment (Cheung et al., 2019). To simplify 
further the equation another combination was considered, which had 
slightly higher MAE and RMSE, but lower Bias (MAE = 0.872, RMSE =

Fig. 2. Geographical distribution of the data contained in ASHRAE’s databases.  

Table 2 
Description of the Databases’ parameters.  

Parameter Acceptability 
range 

Range 
assumed 

Mean 
value 

Air temperature Ta (◦C) ≥ 10 10.0 – 42.7 24.0 
Relative humidity RH (%) 10 – 90 10 – 89 47 
Mean radiant temperature Tr (◦C) ≥ 10 10.0 – 49.5 24.2 
Air velocity Va (m/s) 0 – 3 0.00 – 2.81 0.13 
Clothing insulation Icl (clo) ≥ 0 0.03 – 2.87 0.73 
Metabolic rate M (Met) ≥ 0.8 0.8 – 4.5 1.2 
Mean monthly outdoor 

temperature Tout (◦C) 
– − 24.9 – 35.0 17.5 

PMV − 3 to + 3 − 3 to + 3 0.13 
TSV − 3 to + 3 − 3 to + 3 0.16  

Table 3 
Correlation matrix expressing the correlation coefficient (r) between the different parameters.   

TSV Ta RH Va Tr M Icl Tout 

TSV 1 0.37 − 0.03 0.05 0.37 0.05 − 0.18 0.03 
Ta 0.37 1 0.16 0.39 0.93 − 0.07 − 0.44 0.53 
RH − 0.03 0.16 1 0.22 0.19 − 0.08 − 0.30 0.50 
Va 0.05 0.39 0.22 1 0.36 − 0.06 − 0.16 0.36 
Tr 0.37 0.93 0.19 0.36 1 − 0.05 − 0.45 0.52 
M 0.05 − 0.07 − 0.08 − 0.06 − 0.05 1 − 0.04 − 0.10 
Icl − 0.18 − 0.44 − 0.30 − 0.16 − 0.45 − 0.04 1 − 0.37 
Tout 0.03 0.53 0.50 0.36 0.52 − 0.10 − 0.37 1  
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1.136, Bias = 0.001). With this equation, it is possible to predict thermal 
sensation with few environmental parameters that are easy to measure, 
maintaining the predictive performance close to the previous one. 

TSVII = − 0.0228Tout − 1.9492⋅10− 6RH2⋅Tout + 0.1867Ta − 3.8609 (5)  

Table 5 summarizes the indices of error for MAE, RMSE, and Bias for 
simple regression models (linear, Lasso, Ridge, and Elastic Net), PMV, 
and the two developed models. It can be noticed that the best predictive 
performance is achieved with the Model of Eq. (4). 

It can be noticed that the correlation matrix reveals a consistent in
verse relationship between TSV and Icl. This means that an adaptive 
tendency to adjust clothing’s thermal insulation based on perceived 
warmth or coldness, and vice versa to experience warmth or coldness 
while donning more or less insulated clothing. However, in the derived 
models, Icl is not included in the equations. This outcome, rigorously 
derived, aligns with adaptive models, which recognise the adaptive 
equation in the relationship between outdoor and indoor temperatures. 

3.4. Validation and boundaries of the model 

The databases employed in this analysis encompass typical envi
ronments, which implies that the model’s predictions might deviate 
under extreme conditions. To assess the models’ performance, the 

variations in environmental parameters were investigated, focusing on 
Bias as the error indicator (Fig. 4). For comparison purposes, PMV was 
included, aligning with prior research (Xie et al., 2020). 

The models’ validity was evaluated by establishing accurate pre
diction ranges for both environmental and individual parameters. Fig. 4 
illustrates the difference between predicted and actual thermal sensa
tion values across diverse parameters. This assessment was carried out 
on the test set, confirming the models’ reliability and setting their 
operational boundaries. The models were calculated based on an 
acceptable Bias range of ± 0.25 points on the TSV scale (Humphreys and 
Nicol, 2002). In Fig. 4, it’s evident that despite significant response 
variability, the new models exhibit a tendency to decrease the Bias be
tween predicted and observed thermal sensations compared to PMV. 

The new models perform well in predicting sensations within indoor 
air temperatures of 10 ◦C to 35 ◦C, albeit overestimating for temper
atures beyond 35 ◦C. Unlike the original PMV model, valid from 10 ◦C to 
30 ◦C, the new models improve and extend predictive capacity. 
Regarding models in Eq. (4) and (5), distinctions mainly emerge in 
10–15 ◦C and 35–40 ◦C ranges, often beyond moderate comfort, 
requiring specialized indices for heat or cold stress. For accurate thermal 
sensation forecasts using the new models, maintaining air temperature 
within 15–35 ◦C is advised. The range could potentially expand to 
10–35 ◦C with minor precision reduction (Table 6). Beyond these limits, 
model performance might decrease, elevating heat or cold stress risks. 

Bias remained consistent across various relative humidity ranges 
(Fig. 4), indicating occupants’ modest sensitivity to humidity modifi
cations. Overall, the proposed models slightly surpass PMV in predictive 
capability, with median Bias often within acceptable thresholds. 
Particularly, models Eq. (4) and (5) display greater enhancements over 
PMV for relative humidity values surpassing 60%. While not immedi
ately perceptible, relative humidity considerably impacts long-term 

Table 4 
Features selected after the application of the Lasso regression.  

ID Features ID Features 

1 Ta • Tr 20 Tr • RH • Tout 

2 Tr • RH3 • Icl 21 Ta • Icl • Tout
2 

3 Tout
5 22 Ta • RH2 • Icl

2 

4 Tr
2 23 RH • Va

2 • M • Tout 

5 Ta
3 • Tr • RH 24 RH2 • M 

6 RH • Icl
4 25 RH3 • M 

7 Tout 26 Va • Tout
4 

8 Tr • Tout
4 27 Ta

2 • Tr • RH • M 
9 Icl • Tout

4 28 Ta
2 • RH • Va • Icl 

10 Ta
2 • RH • M • Tout 29 Tr

2 • RH • Tout
2 

11 Ta • M • Icl • Tout
2 30 M • Tout 

12 RH3 31 Ta • Va • Icl 

13 Va
2 • Tout

3 32 Va 

14 Icl
2 33 Ta

2 • RH2 • Tout 

15 Ta • Icl • Tout 34 RH • Va • M3 

16 Ta • M 35 Va • Icl
2 • Tout

2 

17 M • Icl 36 Ta • Va • M2 • Icl 

18 RH2 • Tout 37 Ta
3 • RH • M 

19 Ta    

Fig. 3. Lasso coefficients associated to the different features.  

Table 5 
MAE, RMSE and Bias for simple regression models, PMV and the two developed 
models.  

Model MAE RMSE Bias 

Linear regression  0.873  1.135 0.000 
Lasso regression  0.872  1.135 0.000 
Ridge regression  0.873  1.135 0.000 
Elastic Net regression  0.872  1.135 0.000 
PMV  0.991  1.276 − 0.003 
Model Eq (4)  0.866  1.128 0.008 
Model Eq (5)  0.872  1.136 0.001  
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Fig. 4. Bias between the predicted and real thermal sensation against different parameters. On the x-axis the range of the parameters is reported, and the number of 
samples is reported below them. In grey Bias in PMV, in blue bias in model of Eq. (4), and in light blue Bias in model of Eq. (5). (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 
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health (Taylor, 2020). The models suggest suitability within 10–80% 
relative humidity (Table 6), but maintaining values between 40% and 
60% is advisable. 

Bias trends for mean radiant temperature parallel those of air 
temperature (Fig. 4). Model Eq. (4) is less accurate within 10–15 ◦C, 
excelling in higher mean radiant temperatures (>30 ◦C), where PMV 
tends to overestimate sensations. However, the new models tend to 
overestimate thermal sensations above 35 ◦C. For optimal model per
formance, use within 15–35 ◦C or 10–35 ◦C with slight precision 
reduction (Table 6) is recommended, still surpassing PMV. Beyond these 
ranges, model predictive capability wanes, heightening heat or cold 
stress likelihood. 

Indoor environments typically feature limited air velocity, with 
most samples within 0.0 to 0.5 m/s range (Fig. 4). This accounts for Bias 
distribution’s variability in this range, although models exhibit reduced 
variability. These models often overestimate sensations in 0.5–1.0 m/s 
and 1.5–2.0 m/s ranges. The 2.0–2.5 m/s range has few samples due to 
the rarity of such high velocities in daily life. Accuracy within 0.5–1.0 
m/s slightly falls below ± 0.25 range. Generally, predictions within 
0.0–0.5 m/s can be deemed accurate, extending to 0.0–1.5 m/s with 
minimal precision reduction (Table 6). 

Clothing insulation significantly influences occupants’ thermal 
sensation. The new models notably enhance predictive performance, 
particularly within the 1.2–2.0 clo range. Higher insulation values (>2 
clo) yield relatively fewer samples (Fig. 4) as occupants indoors typically 
avoid excessively warm clothing. As such, applying the new models 
within the 0–1.6 clo range is recommended, extendable up to 2.4 clo 
with slightly increased uncertainty (Table 6). 

Metabolic rate strongly impacts thermal sensation, but accurate 
estimation can be challenging, leading to consistent bias. Bias remains 
relatively low within 0.8–1.5 Met range (Fig. 4). Model Eq. (4) improves 
predictions even for higher Met values (1.5–2.5 Met), while model Eq. 
(5) underestimates sensations in 1.5–2.0 Met range. All models over
estimate sensations for high metabolic rates (3.5–4.0 Met). Notably, the 
database includes limited samples with Met values > 2.0 Met, as typical 
indoor environments (offices, residential buildings, schools) rarely 
exhibit such high activity levels. Hence, applying the two models within 
0.8–2 Met range is recommended (Table 6). 

Mean monthly outdoor temperature is not a PMV input, but its 
inclusion in models of Eq. (4) and (5) accounts for its significance in 
thermal adaptation. Very low temperatures (-25 ◦C to − 15 ◦C) result in 
poor predictive performance for all models, while accuracy improves for 
higher temperatures (especially − 5◦C to 35 ◦C) (Fig. 4). Limited sample 
size exists within the − 15 ◦C to − 5◦C range, with model Eq. (5) exhib
iting a tendency to overestimate sensations. Consequently, model Eq. (5) 
should be restricted to − 5◦C to 35 ◦C range, while model Eq. (4) can 
potentially extend to lower temperatures down to − 15 ◦C (Table 6). 

For precise thermal sensation prediction, free from systematic 

overestimation or underestimation, Bias was calculated for each pre
dicted range. PMV and models Eq. (4) and (5) cover the − 3 to + 3 TSV 
range, shown on the x-axis of Fig. 4. This allows measuring Bias between 
predicted and observed sensations when the model predicts specific 
sensations, illustrating model performance on the 7-point ASHRAE 
scale. Overall, the two new models demonstrate lower errors than PMV 
in practical conditions, despite being simplified and requiring fewer 
input parameters. On average, these models tend to reduce PMV’s 
overestimation/underestimation for TSV < -1 or TSV > 1. However, it’s 
important to acknowledge that values close to ± 3 might indicate heat 
or cold stress situations, demanding careful utilization of thermal com
fort indices. 

4. Discussion 

4.1. Definition of the “comfort areas” 

Enhancing predictive accuracy is crucial, yet not the sole determi
nant of efficacy. Comfort is better understood as a range rather than a 
fixed state, in line with adaptive principles (Lamberti et al., 2023). This 
section compares the “comfort zones” established by conventional 
adaptive models with those originating from the present models. 

To derive the thermal comfort range it was assumed a relative hu
midity of 50%, a metabolic rate of 1.2 met, and a uniform environment 
(Ta = Tr = Top, where Top is the operative temperature), as recom
mended by international standards (EN 16798-1, 2019). These values 
were chosen as they are typical of many indoor environments, but the 
model can accommodate different conditions within the defined 
boundaries in Table 6. 

Using these assumptions, the comfort temperatures were obtained 
for the models of Eq. (4) and (5), and the relationship between outdoor 
temperature (Tout) and comfort temperature (Tcomf) was analysed 
through regression analysis for Tout ranging from 10 to 35 ◦C. This 
relationship is depicted by the solid line in Fig. 5. There is to notice that, 
based on adaptive thermal comfort research, achieving comfort for 
operative temperatures up to 35 ◦C is possible only in certain types of 
climates (Rawal et al., 2022), which were included in the development 
of the current models. 

For models of Eq. (4) and (5) the acceptability ranges were calculated 
for 90% acceptability (Category I, dotted line), with the assumption that 
TSV=±0.5 and a Percentage of Dissatisfied (PD) equal to 10%, for 80% 
acceptability (Category II, dashed line) assuming TSV=±0.8 and PD =
20%, and for 70% acceptability (Category III, dashed and dotted line) 
assuming TSV=±1.1 and PD = 30% (ISO 7730, 2006). 

Table 7 shows the ranges that define the comfort areas for Eqs. (4) 
and (5). It will be necessary to add and subtract respectively ΔUP and 
ΔLOW to the above equations to obtain the desired comfort ranges. It can 
be observed that the comfort temperature ranges for Models of Eq. (4) 
and (5) are larger than those given by the EN 16798–1 standard (EN, 
2019). 

This means that occupants have a significant adaptive capacity and 
can be in comfort situations over a wide temperature range. It should be 
noted, however, that it is appropriate to refer mainly to Categories I and 
II, as Category III leads to environmental conditions that may be toler
able within certain limits, but plausibly not conditions of comfort for a 
large proportion of individuals. 

The relationship between Tout and Tcomf for the model of Eq. (4) is 
represented by a curve (Fig. 5). It is possible to notice that the comfort 
temperature increases significantly with the outdoor temperature, while 
it remains stable for lower Tout. This is because at lower temperatures 
heating systems are usually provided while cooling systems not always 
are. 

Thus, people present increased adaptation to higher outdoor tem
peratures, which can have significant implications also on energy con
sumption. This trend is in line with adaptive thermal comfort, which 
shows that below a certain outdoor temperature, the comfort 

Table 6 
Boundaries of PMV, models of Eq. (4) and (5).  

Parameter PMV Model Eq. (4) Model Eq. (5) 

Air temperature Ta (◦C) 10.0 – 
30.0 

(10*)15.0 – 
35.0 

(10*)15.0 – 
35.0 

Relative humidity RH (%) – 10.0 – 80.0 10.0 – 80.0 
Partial vapour pressure (Pa) 0 – 2700 – – 
Mean radiant temperature Tr (◦C) 10.0 – 

40.0 
15.0 – 35.0 15.0 – 35.0 

Air velocity Va (m/s) 0 – 1 0.0 – 0.5 
(1.5*) 

0.0 – 0.5 
(1.5*) 

Clothing insulation Icl (clo) 0.0 – 2.0 0.0 – 1.6 
(2.4*) 

0.0 – 1.6 
(2.4*) 

Metabolic rate M (Met) 0.8 – 4.0 0.8 – 2.0 0.8 – 2.0 
Mean monthly outdoor temperature 

Tout (◦C) 
– − 15.0 – 35.0 − 5.0 – 35.0 

Model prediction − 3 to + 3 − 3 to + 3 − 3 to + 3 

*Extended value reduces the precision. 
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temperature remains constant (Humphreys et al., 2016). The comfort 
temperatures reached with the model of Eq. (4) are similar to the ones 
given by EN 16798–1 standard (EN, 2019) but with an increased comfort 
area and a non-linear relationship between Tout and Tcomf. 

The model of Eq. (5), like the original adaptive model (EN, 2019) 
presents instead a linear relationship between Tout and Tcomf (Fig. 5) but 
the adaptation is lower and the slope is less steep. Concerning the 
comfort temperatures, they result lower than the ones given by stan
dards (EN, 2019) especially for high Tout, while the range of comfort in 
model of Eq. (5) is again wider than the original adaptive model. 

In comparison to the adaptive model of EN 16798–1 (EN, 2019), the 
two models are favourable as they can be used not only for the fixed 
environmental and individual parameters (low metabolic rate, fixed 
range of humidity, etc.) but within the acceptability range discussed in 
the previous section. Furthermore, the increased range of comfort 
temperatures has implications on energy consumption, even if the use of 
the model of Eq. (4) is more appropriate to this aim. 

4.2. Practical applications of the new models 

Since these models were developed for actual use in building man
agement, it is necessary to understand how much the possible error in 
the prediction of the thermal sensation of the two models (Table 5) can 
affect thermal comfort. To this aim, the temperature variation associated 
with an MAE of 0.866 (Model of Eq. (4)) and 0.872 (Model of Eq. (5)) 
must be investigated. 

To quantify the error in the prediction of TSV in terms of tempera
ture, Griffiths’ method was used. (Griffiths, 1990). According to this 
method, the comfort temperature can be calculated as follows (Eq. (6)): 

Tcomf = Top +
TSV

G
(6)  

where Tcomf is the comfort temperature, and G is the Griffiths’ constant 

(◦C− 1), assumed equal to 0.50 (Humphreys et al., 2013). Although 
recent studies show that the Griffiths constant can also be a variable, this 
value was chosen because it was estimated from the data available in the 
ASHRAE databases, which were also used for the development of the 
new models. 

Assuming that Tcomf is equal to Top (i.e. occupants in comfortable 
conditions), a MAE of 0.866 means that the model predicts a TSV equal 
to this value and thus an error in Tcomf of 1.73 ◦C. In the case of the 
model in Eq. (5) (MAE = 0.872), the error in the prediction of Tcomf is 
1.74 ◦C. 

Comparing these results with Table 7, the error of about 1.7 ◦C is 
below the 90% acceptable range corresponding to Category I. This 
means that the error of the new models is, on a practical level, accept
able, as it does not actually lead to a reduction in users’ comfort. 

In general, these effective models are valuable for thermal comfort 
prediction. When real-time data on mean radiant temperature and 
metabolic rate are available, Eq. (4) is recommended. Alternatively, Eq. 
(5) predicts accurate thermal sensation using only indoor air tempera
ture, relative humidity, and monthly mean outdoor temperature. 

4.3. Limitations and future studies 

Although the two new models were developed using a comprehen
sive database, they present some limitations. Indeed, data were mostly 
collected in the comfort area of Thermal Sensation Vote (TSV) and few 
cases reported TSV out of the range ± 2. For this reason, models of Eq. 
(4) and (5) perform better when discomfort is not too high, and in the 
case of extreme conditions indices for heat or cold stress should be 
adopted. Future studies should select a wider range of input parameters, 
especially for the metabolic rate that remained in a restricted range, 
despite a large amount of data. 

Furthermore, for the development of the model, a database 
comprehensive of a wide range of building types, operation modes, and 
climates was used. However, the perception of thermal comfort can be 

Fig. 5. Relationship between mean Tout and Tcomf for the model of Eq. (4) (a), and model of Eq. (5) (b), assuming RH = 50%, M = 1.2 met, and Ta = Tr = Top. Legend: 
comfort temperature (solid line), 90% acceptability range (dotted line), 80% acceptability range (dashed line), and 70% acceptability range (dashed and dotted line). 

Table 7 
Upper (ΔUP), lower (ΔUP), and total (ΔTOT) ranges of comfort temperatures for the models of Eq. (4), (5), and EN16798-1 (EN, 2019) standard.   

Model Eq. (4) Model Eq. (5) EN 16798–1  
ΔUP 

(◦C) 
ΔLOW 

(◦C) 
ΔTOT 

(◦C) 
ΔUP 

(◦C) 
ΔLOW 

(◦C) 
ΔTOT 

(◦C) 
ΔUP 

(◦C) 
ΔLOW 

(◦C) 
ΔTOT 

(◦C) 

Category I  2.3  2.6 4.9  2.6  2.7 5.3  2.0  3.0  5.0 
Category II  3.5  4.4 7.9  4.2  4.3 8.5  3.0  4.0  7.0 
Category III  4.7  6.5 11.2  5.9  5.9 11.8  4.0  5.0  9.0  
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also influenced by the background and the level of expectations of the 
users, which can be a function of the previously mentioned issues. 
Although predictive ability has been shown to be satisfactory, future 
studies should focus on the analysis of different building types, opera
tion modes, expectation levels, etc. 

Finally, future research should be focused on assessing not only the 
thermal sensation, but also preference and acceptability, and to consider 
possible diversities among them. 

Despite these limitations, the proposed models constitute a useful 
and user-friendly approach that improves the prediction if compared to 
previous thermal comfort models and can be used by researchers and 
practitioners to assess thermal comfort and possibly reduce the associ
ated energy consumption. 

5. Conclusions 

In this study, two original data-driven models to predict the thermal 
sensation of buildings’ occupants were developed, using a wide sample 
of field studies from ASHRAE databases, which allow to account for 
thermal adaptation. The purpose was to develop a data-driven model 
that (i) includes the adaptive processes, (ii) selects and includes the most 
relevant parameters in thermal perception, (iii) can be practically used 
for real-time control, and (iv) presents a good predictive performance. 

The first point was addressed by developing the models on large 
databases based on field studies, which allows to account for adaptation. 

The second point was fulfilled by having included in the analysis all 
the parameters that are considered to be involved in the perception of 
the thermal environment, which are air temperature (Ta), mean radiant 
temperature (Tr), relative humidity (RH), air velocity (Va), clothing 
insulation (Icl), metabolic rate (M) and outdoor monthly air temperature 
(Tout). These parameters were combined in polynomials and used to fit a 
Lasso regression to define which subset of combinations has the highest 
predictive power concerning the thermal sensation in real case studies 
and therefore select the parameters that most influence it. 

The third point was considered by providing easy-to-use equations to 
define the thermal sensation in buildings, namely Eq. (4), and (5). 

Finally, the new models improved the predictive performance when 
compared to simpler regression models or the typically used PMV, as 
shown in Table 5. In particular, the predictive performance of the model 
of Eq. (5) is slightly reduced (MAE = 0.872, Bias = 0.001, RMSE =
1.136) if compared to Eq. (4) (MAE = 0.866, RMSE = 1.128, Bias =
0.008), but it is significantly lower than the PMV. 

The two new models present an increased performance if compared 
to simple linear models and to Fanger’s PMV, providing a model that can 
be easily applied by practitioners and that takes into account influential 
parameters in the perception of comfort. Furthermore, in comparison to 
the original adaptive model, these new models can also be used for 
variable environmental and individual parameters. 

With these models it was also possible to define “comfort areas”, 
taking into account an occupant acceptability of 90%, 80%, and 70% 
(Categories I, II, III respectively). In addition, by deriving the accept
ability ranges for conditions typically found indoors (RH = 50%, M =
1.2 met, Ta = Tr = Top), it was shown that the comfort ranges found for 
the new models are wider than the adaptive ones, especially for Cate
gories II and III (by about 1 ◦C for Category II and 2 ◦C for Category III), 
resulting in energy savings in their use. 

In conclusion, leveraging extensive comfort databases enabled the 
development of two improved models to predict thermal sensation, ac
counting for multiple influencing factors, that surpass the accuracy of 
commonly employed ones. These models could be integrated into an 
updated database version, offering calculated comfort indices aligned 
with respondents’ subjective thermal perception. 
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Abstract 
Thermal comfort prediction is an important issue, as it can largely influence occupants’ well-being and buildings’ 

energy consumption. Nowadays, models used to assess thermal comfort have been increasingly discussed, and a 

growing number of data-driven models with several input parameters developed. Although these models allow 

reasonably accurate predictions of thermal comfort, using complex algorithms to determine thermal comfort might be 

unsuitable for some use cases, such as quick estimations or real-time control of Heating Ventilation, and Air 

Conditioning (HVAC) systems. 

In this paper, a data-driven model was developed based on 61710 samples of subjective responses associated with 

environmental parameters from field studies available in two ASHRAE databases. Two models resulted from this 

analysis, one with higher accuracy and one simplified, which improved the prediction in comparison to other regression 

models and PMV. 

However, since thermal comfort cannot be conceived as a punctual condition, comfort areas were derived, i.e., 

respective comfort ranges at 90%, 80%, and 70% of thermal acceptability. The result is that the error in the prediction 

of the new models is below the 90% acceptable range, which means that the models' error does not lead to a reduction 

in the evaluation of occupant comfort. 

Built upon influential parameters, these models enable thermal comfort estimates and occupant-cantered HVAC control. 

The notion of comfort as a non-fixed state empowers more flexible building management criteria, reducing energy use 

while upholding indoor comfort. 
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Thermal comfort – Data-driven model – PMV – Adaptive thermal comfort – ASHRAE database 

 

 

 

 

 

 

 
  
  

 

 

  



2 

 

Supplementary materials 

 

Data analysis 

 

In this section, the data obtained from the filtration to remove the outliers are analysed. The acceptability 

ranges considered were: 

Air temperature:  Ta ≥ 10°C,  

Relative humidity:  10% ≥ RH ≥ 90%,  

Mean radiant temperature: Tr ≥ 10°C,  

Air velocity:   0 m/s ≥ Va ≥ 3 m/s,  

Clothing insulation:  Icl ≥ 0 clo,  

Metabolic rate:   M ≥ 0.8 met,  

Predicted Mean Vote:  -3 ≥ PMV ≥ +3,  

Thermal Sensation Vote: -3 ≥ TSV ≥ +3. 

 

Figure S1 shows the number of samples per publication included in the analysis and Figure S2 the year 

distribution of the studies. Studies were also classified per type of building (Figure S3), climate zone (Figure 

S3), operation mode (Figure S4), and season (Figure S4), as these aspects can influence the perception of the 

thermal environment.  

To understand the variability of the parameters considered, the distribution of air temperature, globe 

temperature, mean radiant temperature, mean monthly outdoor temperature (Figure S5), relative humidity 

(Figure S6), air velocity, metabolic rate, and clothing insulation (Figure S7) is reported. Figure S8 shows the 

distribution of the calculated PMV, clipped PMV (PMV was clipped for values between -3 and +3 to 

compare it with the TSV), and for the TSV obtained from the subjective responses. The scatter matrix, 

showing the correlation between the different parameters is reported in Figure S9. 

 
 

 

Figure S1. Number of samples per publication. 
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Figure S2. Year distribution of the studies. 

 

  

Figure S3. Number of samples for type of building (left) and climate zone (right). 

 

  
Figure S4. Number of samples for operation mode (left) and season (right). 
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Figure S5. Distribution of the air temperature (Ta), globe temperature (Tg), mean radiant temperature (Tr), and mean 

monthly outdoor temperature (Tout). 

 

 
Figure S6. Distribution of the relative humidity (RH). 
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Figure S7. Distribution of the air velocity (Va), metabolic rate (M), and clothing insulation (Icl). 

 

 
Figure S8. Distribution of the PMV (before and after being clipped) and of the Thermal Sensation Vote (TSV). 
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Figure S9. Scatter matrix of the considered parameters 
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