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Featured Application: Mortars formulated with different types of industrial wastes with im-
proved mechanical properties can be obtained and used in civil engineering applications.

Abstract: Short chopped fibers coated by epoxy resin of different length (5 to 10 mm length) were
added at low volume content (about 4.6% on the composite) to alkali-activated fly ash or metakaolin
mortars. These uncured scraps derive from the production of carbon fiber-reinforced polymer
composites and they are not presently recycled, despite their outstanding mechanical properties.
The workability, microstructure, porosity, and physical and mechanical properties (mainly flexural
strength) of the derived materials were investigated. Superior flexural strength and increased
toughness were obtained. An acid treatment of the scraps further improved the mechanical properties
of the mortars by changing the chemical structure of the surface, thus increasing the interaction with
the inorganic phase. These results foster the use of these wastes to improve the performance of low
carbon footprint building materials such as alkali-activated composites in the building industry.

Keywords: epoxy/carbon fibers composites; recycling; industrial wastes; alkali-activated mortars;
mechanical properties; fly ashes

1. Introduction

Epoxy resins reinforced by carbon fibers have outstanding mechanical properties and,
because of their low density, high values of specific strength and modulus. As a result, they
are applied in many sectors, such as the automotive, aeronautical, and nautical industries.
Moreover, their demand is forecast to grow in the future [1,2]. A large quantity of scraps
is generated during production and, at present, these scraps are discarded. The recovery
of bare fibers is either energy consuming (pyrolysis of the matrix) [3,4] or involves the
dissolution of the epoxy matrix through complex chemical reactions [5,6]. The direct reuse
of the scraps has been proposed for other types of composites, such as in the formulation
of alkali-activated mortars (AAMs). These promising materials [7,8] are used as binders
as an alternative to traditional Portland cement, which has a significant carbon dioxide
footprint [9]. Although characterized by a lower environmental impact, AAMs suffer from
a number of drawbacks, such as extreme brittleness and low dimensional stability. The
most frequently used solution to these problems is the addition of fibers. Polypropylene
fibers [10], in addition to steel [11] or basalt [12] fibers, are commonly used for this task.
The possible reuse of composite scraps [13] to obtain a similar improvement could provide
a large environmental benefit. In this research, the effect of untreated scraps of different
length on the properties of mortars formulated with metakaolin or fly ashes activated by
alkaline solutions was investigated. The added amount of waste (about 4.6 vol% of the
mortars) was derived from previous studies [13], which proved how this amount provided
the best conditions to obtain good mechanical properties in similar materials. Moreover, a
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mild chemical pre-treatment of the scraps was performed to investigate a possible means
to improve the fibers–matrix interactions. In this case, the aim of the chemical treatment
was not to dissolve the epoxy resin surrounding the fibers, but only to modify the outer
surface of the epoxy layer.

2. Materials and Methods
2.1. Composites Waste Scraps

Pre-preg off-cuts derived from the production of carbon fiber/epoxy composites
(CF/EP), hereafter defined as waste scraps (WS), were kindly supplied by REGLASS
(Minerbio, BO, Italy). The as-received scraps had an almost rectangular shape with side
dimensions ranging from 10 to 40 cm. They were made of multiple CF/EP impregnated
layers with an average thickness of 300 ± 20 µm. The density of WS is 1.55 ± 0.05 g/cm3.

The original multiple layer sheets were treated for 1 h at 130 ◦C to complete the
cross-linking reactions and then shredded to obtain fibers bundles with the length of either
5 ± 1 mm or 10 ± 1 mm, and lateral size ranging from 3 to 6 mm (Figure 1).
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Figure 1. Chopped bundles of WS with 5 (a) and 10 (b) mm length.

Some chopped bundles of both lengths were immersed in a sulfuric acid solution
(0.2 M) for 1 h. The treated surfaces were submitted to ATR IR analysis over the wavenum-
ber range of 650–4000 cm−1 using a PerkinElmer Spectrum One FT-IR spectrometer
equipped with a Universal ATR sampling accessory. A total of 32 scans were taken for
each spectrum at a resolution of 2 cm−1. Figure 2a shows the infrared spectra of the treated
and untreated composites. As can be seen, the thermal treatment promotes the full curing
of the epoxy resin. The ring opening reaction creates some –OH groups as evidenced
by appearance of a weak band centered at 3350 cm−1. In the treated samples, the same
band becomes more intense and a small band appears at 1730 cm−1. This band is probably
related to the presence of carbonyl groups derived from the partial resin degradation. These
results agree with those reported in the literature [14,15]. In addition, SEM micrographs
(Figure 2b) of the samples (FEI, XL20 Scanning Electron Microscope), obtained after gold
metallization, highlighted that the treatment affects only the surface of the scraps.
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Figure 2. (a) FT-IR spectra of the treated and untreated fiber bundles. (b) SEM micrographs of the untreated and
treated scraps.

2.2. Activators

Sodium hydroxide (NaOH) reagent grade (Carlo Erba, Milano, Italy) and sodium
silicate (Na2SiO3) solution (Ingessil, Verona, Italy), a viscous liquid produced for the
cement industry with a water content of 57 wt% and a SiO2/Na2O ratio of 3, were used as
alkaline activators.

2.3. Binders

Fly ashes (Type F) were derived from the plant of Torrevaldaliga (Roma, Italy) and had
the following chemical composition: SiO2 49.37%, Al2O3 29.63%, 0.05 Na2O%, K2O 0.06%,
CaO 6.63%, MgO 1.05%, Fe2O3 2.71%, SO3 0.33%, loss on ignition 3.28%. The average
dimension (D50) was 22 µm.
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Metakaolin was obtained by calcining commercial kaolin (Argirec B24, AGS Mineraux,
Clerac, France) at 700 ◦C for 5 h. The D50 was 40 µm.

2.4. Aggregate

Normalized silica sand conforming to the EN 196-1 Standard was used as fine aggre-
gate (max diameter 0.7 mm).

2.5. Mixing Procedures and Compositions

A Hobart machine conforming to the EN 196-1 Standard was used. Sodium hydroxide
8M solution and sodium silicate were dosed according to the quantities determined in
previous experiments [13,16] according to the different binders. The aim of the added
quantities was to maintain an appropriate Si/Al and Na/Al ratio. The activators were first
mixed together and cooled to room temperature. Subsequently, binder, sand, and water
were added. The mixing procedure lasted 7 min. Eventually, the scraps were added and
the fresh mortars were mixed for an addition 2 minutes. Table 1 shows the composition
of all the investigated mortars and their labels. It should be highlighted that the reported
results refer to this mixing procedure. Different mixing conditions may lead to different
microstructures and consequently different results. Mortar workability was reduced by
the addition of waste to a maximum of 10% in the case of 10 mm bundles and 4% for
5 mm bundles. However, these reductions allowed the efficient filling of the molds without
the formation of any macroscopic defects. By comparison, longer fibers (15 mm) altered
the rheological behavior of the mortars, thus implying the necessity to introduce either a
superplasticizer additive or an additional quantity of water. The present study was thus
limited to this maximum length to ensure other mix-design parameters were not altered.
From the fresh mortars, specimens of 25 × 25 × 100 mm were cast in silicone molds and
kept in polyethylene bags at 23 ± 2 ◦C for 24 h. After demolding, they were stored at
23 ± 2 ◦C and 70 ± 5% R.H. until the scheduled test times. The same fresh mortars were
used to cast the specimens for pull-out tests (see next paragraph).

Table 1. Mortar composition (g) and labels.

Sample Metakaolin Fly Ash Na2SiO3 NaOH Water Sand WS

M 0 100 0 30 30 10 100 0
M 5 1 100 0 30 30 10 100 10

M 10 1 100 0 30 30 10 100 10
F 0 0 100 38 8 7 100 0

F 5 1 0 100 38 8 7 100 9
F 10 1 0 100 38 8 7 100 9

1 Mortars containing treated waste of 5 and 10 mm are labelled as M 5_T, M 10_T, F 5_T, and F 10_T.

The volume fraction of waste scraps (WS) in all of the investigated mortars was about
4.6 vol% of the composite amount.

2.6. Tests
2.6.1. Water Absorption

The amount of absorbed water at room temperature and atmospheric pressure was
determined following the EN 772-21 Standard on samples of 25 × 25 × 50 mm at 28 days
of curing.

2.6.2. Mechanical Characterization

Flexural strength (three point bending test) and compressive strength were determined
at 25 ± 2 ◦C and 60 ± 5% R.H. using a 100 kN testing machine (Wolpert-Amsler) after
28 days of curing. A testing rate of 10 mm/min was used. At least 5 samples were tested in
flexural mode, 10 samples in compression mode.



Appl. Sci. 2021, 11, 6110 5 of 10

2.6.3. Pull-Out Test

To evaluate the adhesion/interaction between the waste composite surfaces and the ma-
trix, a modified pull-out test was performed. Waste composite sheets (40 × 150 × 0.3 mm)
were partially embedded in the alkali-activated mortar (Figure 3). After 28 days of curing
in the same conditions as those previously described, the loose extremity of the sheet was
clamped to the mobile head of the testing machine while the mortar was clamped to the
second plate. The maximum tensile shear stress required to pull out the embedded fraction
of the composite sheet from the mortar was determined. A rate of 1.0 mm/min was applied
in the test.
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3. Results

Figure 4 shows the water absorption for all of the investigated samples. The waste
addition tends to reduce the amount of absorbed water. The effect is larger in fly ash mate-
rials than in metakaolin materials (about 10% maximum for metakaolin and 19% maximum
for fly ash), due to the different characteristics of the precursors. No remarkable differences
were detected for the different waste length, or for the treated and untreated wastes.
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These results show that waste addition, at least at this amount, does not create porosi-
ties in the composites, either as air entrained or due to the imperfect adhesion between the
matrix and the waste, i.e., from the creation of a porous interphase transition zone. The
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slight decrease can be ascribed to the substitution of a porous fraction (the matrix) with
a nonporous one, the waste. The almost unchanged values of the treated fibers vs. the
untreated fibers may imply good interaction of the unmodified epoxy resin surrounding
the fibers with the ceramic matrix, as found in other research [17–19].

Figure 5 shows the flexural strength of the investigated composites. A progressive
increase in the strength of the mortars takes place after adding the waste. Both the length
value (from 5 to 10 mm) and the surface modification of the waste increase this mechani-
cal property.
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Compared to the completely brittle, catastrophic behavior of the unmodified mortars,
a toughening effect appears in the modified mortars. The bending behavior of the modified
mortars can be defined as a deflection-softening effect. This effect increases as the length of
the waste bundles increases or when the acid treatment of the scraps is carried out. The
trend is thus consistent with that observed for flexural strength values (Figure 5).

Regarding the compressive strength of the mortars, no significant changes were found
(Figure 8) in all of the modified mortars compared to the unmodified mortars.
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The reduction in porosity previously observed (Figure 4) derived from the presence of
the nonporous volume of the scraps (4.6 vol%) is insufficient to change the mechanical re-
sponse of the composite, i.e., the porosity of the 3D geopolymerized network is unchanged,
and the prevailing, continuous matrix still governs the compressive properties.
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In Figure 9, the results of the pull-out tests are shown. In both matrices, the shear
stress required to pull out the waste composite increases. This effect is due to different
contributions, as discussed below.
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4. Discussion

The direct use in mortars of waste carbon fibers that are embedded in the epoxy matrix
allows the elimination of onerous pretreatments that would increase the economic and
environmental costs of the process. Moreover, a reliable and complete removal of the
polymeric matrix through those methods is difficult to obtain, thus creating an uneven
surface in the reinforcement. Treatments may also damage the fibers, reducing their
mechanical properties. Consequently, the use of recycled fibers in building materials may
be compromised [20]. The good interaction of the epoxy resin with the alkali activated
phase enables the homogeneous dispersion of the waste, up to the amount investigated here,
without compromising the workability of the new composites. Both effects are supported
by the reduction in the overall porosity of the mortars, which suggests increased durability
of the same materials, a feature that will be further investigated in future experiments. By
comparison, negative effects on the porosity were found by adding waste carbon fiber epoxy
composites with micrometric dimensions [21]. From a mechanical perspective, the presence
of the fibers increases the flexural strength of the mortars and inhibits brittle fracturing.
Following the first crack in the matrix, the fiber bridging and pull-out effects enable
energy dissipation. As found elsewhere, in either cement Portland composites [22,23] or
in metakaolin geopolymers [24], the increased length of the fibers increases the flexural
strength and ductility of the materials. The observed effect is higher than that found
previously in Portland cement mortars [25]. The proposed acid treatment affects only the
surrounding matrix and the fibers remain undamaged. However, it increases the density
of permanent dipoles on the external surface of the epoxy layers, and the concentration
of hydroxyl functional groups, as evidenced by FT-IR analysis. These functional groups
can interact with the hydroxyl groups in the alkali-activated network, creating a stronger
link between the two phases through hydrogen bonds. This last reaction may provide
the greatest contribution to the enhanced adhesion; however, it should be noted that, in
similar systems [26], the creation of Si-O-C strong covalent bonds was detected. A last
possible contribution may result from the different smoothness of the pristine and treated
epoxy surface. The chemical treatment may create a rougher surface, providing a higher
mechanical interlocking with the geopolymeric matrix. This final possible contribution
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deserves deeper investigation. The effect of the different transition zone on the pull-out
behavior of fibers in geopolymer has been previously determined [27]. The effect of
surface treatments on recycled CF/EP has been discussed in previous research, however, a
traditional Portland cement matrix was used. Thus, the aims were different from those of
this research, in which alkaline solutions were used [20] to eliminate the residual of the
epoxy matrix on the fibers, whose presence was considered to be detrimental, to increase
the adhesion between the carbon fibers and the cementitious matrix. This treatment
increased the tensile strength of the composites but no improvements in the compressive
strength were obtained, and the proposed conditions could damage the fibers during a
long contact time. In the case proposed in this paper, the etching treatment simply increases
the interaction between the matrix and the reinforcement.

5. Conclusions

This research proved that is possible to reinforce alkali-activated mortars by simply
adding untreated scraps of cross-linked carbon fiber/epoxy resin composite, thus increas-
ing both the flexural strength and the toughness of the obtained materials. The good
interaction between the epoxy and the ceramic matrix allows a uniform dispersion of the
second phase. A mild etching treatment of the scraps, which is capable of increasing the
interaction between the matrix and the reinforcement, was proposed. Although using this
treatment will increase the environmental and economic impact of the process, a further
increase in the mechanical properties can be obtained. The simultaneous recycling of
different industrial wastes can lower the overall impact of building materials.
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