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Abstract
We give an elementary symmetric function expansion for the expressions 𝑀Δ𝑚𝛾𝑒1Π𝑒

∗
𝜆

and 𝑀Δ𝑚𝛾𝑒1Π𝑠
∗
𝜆

when
𝑡 = 1 in terms of what we call 𝛾-parking functions and lattice 𝛾-parking functions. Here, Δ𝐹 and Π are certain
eigenoperators of the modified Macdonald basis and 𝑀 = (1−𝑞) (1− 𝑡). Our main results in turn give an elementary
basis expansion at 𝑡 = 1 for symmetric functions of the form 𝑀Δ𝐹𝑒1Θ𝐺𝐽 whenever 𝐹 is expanded in terms of
monomials, 𝐺 is expanded in terms of the elementary basis, and 𝐽 is expanded in terms of the modified elementary
basis {Π𝑒∗

𝜆
}𝜆. Even the most special cases of this general Delta and Theta operator expression are significant; we

highlight a few of these special cases. We end by giving an 𝑒-positivity conjecture for when 𝑡 is not specialized,
proposing that our objects can also give the elementary basis expansion in the unspecialized symmetric function.
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1. Introduction

Delta and Theta operators, denoted byΔ𝐹 andΘ𝐹 for a choice of symmetric function 𝐹, are fundamental
symmetric function operators in the theory of Macdonald polynomials. Since their introduction, these
operators have been shown to have incredible properties and connections to other areas of interest.
In introducing a brief history of these operators, we will point out some of these connections. For
definitions of the symmetric functions discussed here, we refer the reader to Section 3.

Often, this area of study has three aspects. There is the symmetric function side, the representation
theoretical side, and a combinatorial description. By giving Schur function expansions of the symmetric
function side, one is able to give the multiplicities of irreducible representations in the representation
theoretical side via the Frobenius map, which sends irreducible characters of the symmetric group to
Schur functions: Let 𝐴𝜆 denote Young’s irreducible representation of the symmetric group 𝑆𝑛 indexed
by the partition 𝜆 ⊢ 𝑛. For any graded module

𝑉 =
⊕
𝛼

𝑉𝛼 with 𝑉𝛼 ≃
⊕
𝜆⊢𝑛

𝑛𝛼𝜆 𝐴
𝜆,

the graded Frobenius characteristic produces the symmetric function

F (𝑉) =
∑︁
𝜆⊢𝑛

𝑠𝜆

∑︁
𝛼

𝑛𝛼𝜆𝑄
𝛼 .

On the other hand, when the combinatorial expansion of a symmetric function is Schur positive,
it predicts the existence of a representation theoretical side. As we will describe here, when dealing
with Macdonald polynomials, the representations associated to these expansions are often natural and
important for a variety of areas of study.

As proved in [Hai02] and conjectured in [GH96], Δ𝑒𝑛𝑒𝑛 gives the bigraded Frobenius characteristic
for the space of 𝑆𝑛 coinvariants of the polynomial ring with two sets of commuting variables. More
precisely, if 𝑌𝑛 = 𝑦1, . . . , 𝑦𝑛 and 𝑍𝑛 = 𝑧1, . . . , 𝑧𝑛 are two sets of commuting variables, then 𝜎 ∈ 𝑆𝑛
acts diagonally on the space of polynomials in 𝑌𝑛, 𝑍𝑛 by sending 𝑦𝑖 ↦→ 𝑦𝜎𝑖

and 𝑧𝑖 ↦→ 𝑧𝜎𝑖
. The space of

diagonal coinvariants is given by the quotient

R (2,0) =
C[𝑌𝑛, 𝑍𝑛]

(C[𝑌𝑛, 𝑍𝑛]𝑆𝑛+ )
,

where (C[𝑌𝑛, 𝑍𝑛]𝑆𝑛+ ) is the ideal generated by 𝑆𝑛-invariants with no constant term. This space is N2

graded, and we can record the grading by setting 𝑄 (𝑟 ,𝑠) = 𝑞𝑟 𝑡𝑠 . Then Haiman’s theorem states that

Δ𝑒𝑛𝑒𝑛 = F (R (2,0) ).

The symmetric function Δ𝑒𝑛𝑒𝑛 is most often denoted ∇𝑒𝑛, where ∇ is the Bergeron-Garsia nabla
operator defined in [BG99]. Haiman proves this equality through algebraic geometrical means, realizing
this ring through the Hilbert scheme of points on the plane. Hogancamp showed that the hook Schur
functions in this symmetric function give the triply graded Khovanov-Rozansky homology for (𝑛, 𝑛+1)-
torus knots. There is a more general statement involving (𝑛, 𝑛𝑚 ± 1) torus knots, though we will not go
into detail [Hog17].
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On the combinatorial side, there is the Shuffle theorem, conjectured in [HHL+05b] and proved by
Carlsson and Mellit [CM18]. This conjecture stated that ∇𝑒𝑛 can be written as a sum over labeled
Dyck paths. Carlsson and Mellit in fact prove the compositional refinement conjectured in [HMZ12]
via the identity ∇𝑒𝑛 =

∑
𝛼⊨𝑛 ∇𝐶𝛼. Their methods introduced a Dyck Path Algebra. Mellit expanded

this idea in order to prove the related Rational Shuffle theorem [Mel21], and then showed that the triply
graded Khovanov-Rozansky homology for (𝑚, 𝑛)-torus knots can be realized through the Elliptic Hall
or Schiffmann algebra [Mel22]. On symmetric functions, this algebra can be generated by using the
operators of multiplication by 𝑒1 andΔ𝑒1 . Theta operators can also be viewed as elements of this algebra.

The Delta conjecture [HRW18] gives a similar combinatorial description to the symmetric function
Δ′
𝑒𝑛−𝑘−1𝑒𝑛. Soon after, Zabrocki [Zab19] gave a corresponding 𝑆𝑛-module for this symmetric function,

stating that if we introduce a new set of anticommuting variables 𝑇𝑛 = 𝜏1, . . . , 𝜏𝑛, and set

R (2,1) =
C[𝑌𝑛, 𝑍𝑛, 𝑇𝑛]

(C[𝑌𝑛, 𝑍𝑛, 𝑇𝑛]𝑆𝑛+ )
,

then
∑

𝑘 𝑢
𝑘Δ′

𝑒𝑛−𝑘−1𝑒𝑛 gives F (R (2,1) ), the triply graded Frobenius characteristic for the space of 𝑆𝑛
coinvariants in two sets of commuting variables and one set of anti-commuting variables.

The methods used by Carlsson and Mellit in the proof of the shuffle theorem relied on the compo-
sitional refinement of the statement; however, the symmetric function Δ′

𝑒𝑛−𝑘−1𝐶𝛼 is not combinatorial.
Theta operators were then introduced in [DIVW21] in order to give a compositional refinement of the
Delta conjecture, using that Δ′

𝑒𝑛−𝑘−1𝑒𝑛 = Θ𝑒𝑘∇𝑒𝑛−𝑘 and the fact that Θ𝑒𝑘∇𝐶𝛼 is indeed combinatorial.
This refinement ultimately led to a proof of the compositional Delta theorem [DM22]. Most recently,
the extended Delta conjecture was also proved in [BHM+23], giving the combinatorial description for
Δℎ𝑎Δ

′
𝑒𝑘−1𝑒𝑛. This is realized through a connection to 𝐺𝐿𝑚 characters and the 𝐿𝐿𝑇 polynomials of

[LLT97].
If we introduce yet another set of anticommuting variables and let R (2,2) be the 𝑆𝑛 coinvariants

with two sets of commuting and two set of anticommuting variables, then it was also conjectured in
[DIVW21] that

F (R (2,2) ) =
∑︁
𝑟 ,𝑠≥0

𝑢𝑟𝑣𝑠Θ𝑒𝑟Θ𝑒𝑠∇𝑒𝑛−𝑟−𝑠 , (1.1)

meaning the Frobenius characteristic of R (2,2) is given via Theta operators. The purely fermionic case
R (0,2) , involving only the portion with anticommuting variables (obtained by setting 𝑞 = 𝑡 = 0 in (1.1))
has recently been proved in [IRR23]. For the R (1,1) case (found by setting 𝑡 = 𝑢 = 0 in (1.1)) the graded
dimension of the coinvariant space with one set of commuting variables and one set of anticommuting
variables has been shown in [RW23] to agree with the conjectured formula.

Theta operators have shown remarkable positivity properties. In [DILB+22], the authors give a
conjectural formula for Θ𝑒𝜆𝑒1 when 𝑞 = 1, in terms of tiered trees, known as Theta Tree Conjecture.
When 𝜆 has two parts, via [DILB+22, Theorem 7.2], this expression directly relates to the (conjectured)
Frobenius characteristic of R (2,2) ; when 𝜆 = 1𝑛, it was shown to be the generating function for the Kac
polynomial of certain quivers, adding yet another geometrical meaning to symmetric functions arising
in the study of Macdonald polynomials and its related operators. In the same work, the authors also
give a very similar formula for 𝑀Δ𝑒1Π𝑒

∗
𝜆
, which is an expression that arises naturally when working

with Theta operators; the analogous statement is known as the Symmetric Theta Tree Conjecture, and
the combinatorial objects involved exhibit nicer symmetries.

This conjecture leads us to the study of the expression Ξ 𝑒𝜆 B 𝑀Δ𝑒1Π𝑒
∗
𝜆
, and, in the same fashion

as the Extended Delta Conjecture, to the more general expression Δ𝑚𝛾
Ξ 𝑒𝜆 (and Δ𝑚𝛾

Ξ 𝑠𝜆). In this
work, we show a positive 𝑒-expansion for these symmetric functions when 𝑡 = 1. One can hope that,
exploiting the many symmetric function identities involving Theta operators [DR23], these results can
directly relate to the aforementioned conjectures.
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If a symmetric function is positive in some basis, then setting 𝑡 = 1 (or 𝑞 = 1) leaves the ungraded
multiplicities intact. Therefore, giving an expansion at 𝑡 = 1 would predict the combinatorial objects
enumerated by these symmetric functions without the specialization. Even more, we find that certain
symmetric functions are not Schur positive, yet become positive in the elementary basis when 𝑡 = 1.
And even more surprising, we have Conjecture 13.1 which predicts that the expression Δ𝑚𝛾

Ξ 𝑠𝜆 is
𝑒-positive after substituting 𝑞 = 1 + 𝑢 (rather than substituting 𝑡 = 1).

The main strategy of our work is to expand the symmetric function, when 𝑡 = 1, as a series in 𝑞.
One of the amazing aspects of this method, found in [HR18], is the use of the combinatorial formula
for forgotten symmetric functions and their principal evaluation. The terms in the series are sums of
certain signed combinatorial objects. After applying a weight-preserving, sign-reversing involution, we
are able to get a finite number of positive fixed points, which bĳectively correspond to some set of
labeled polyominoes. The end result is found by adjusting the polyomino picture to get an expansion in
terms of what we call 𝛾-parking functions:

Theorem 1.1. For any two partitions 𝜆 and 𝛾, there is a family of labeled polyominoes PF
𝛾

𝜆
, called

𝛾-parking functions of content 𝜆, and a statistic area giving

Δ𝑚𝛾
Ξ 𝑒𝜆

��
𝑡=1

=
∑︁

𝑝∈PF
𝛾

𝜆

𝑞area(𝑝)𝑒𝜂 (𝑝) . (1.2)

This gives a combinatorial expansion for Ξ 𝑒𝜆 |𝑡=1 that is different from the one given in [DILB+22]
in terms of tiered trees, and leaves the interesting problem of finding a correspondence between the two,
which would be enough to bĳectively prove the Symmetric Theta Conjecture.

Using the same methods that prove Theorem 1.1, we also show

Theorem 1.2. For any two partitions 𝜆 and 𝛾, there is a family of labeled polyominoes LPF𝛾

𝜆
, called

lattice 𝛾-parking functions of content 𝜆, and a statistic area giving

Δ𝑚𝛾
Ξ 𝑠𝜆

��
𝑡=1

=
∑︁

𝑝∈LPF
𝛾

𝜆′

𝑞area(𝑝)𝑒𝜂 (𝑝) . (1.3)

It is now natural to ask whether this expression also has an interpretation in terms of tiered trees, and
if there are further generalizations of these identities.

2. Combinatorial definitions

In this section we aim to introduce the combinatorial objects that will give us the symmetric function
expansions we are interested in.

2.1. Words

Definition 2.1. A word of length 𝑟 is an element 𝑤 = (𝑤1, . . . , 𝑤𝑟 ) ∈ N𝑟 . We denote the length by
ℓ(𝑤) B 𝑟 and the size by |𝑤 | B ∑

𝑖 𝑤𝑖 .

Let 𝑤 be a word of length 𝑟 . We let 𝑚𝑖 (𝑤) be the number of indices 𝑗 such that 𝑤 𝑗 = 𝑖, that is, 𝑚𝑖 (𝑤)
is the multiplicity of 𝑖 in 𝑤; we denote the multiplicity type of 𝑤 as 𝑚(𝑤) = 0𝑚0 (𝑤)1𝑚1 (𝑤)2𝑚2 (𝑤) · · · .
If 𝑤 ∈ N𝑟

+ (it has no 0 entries), then we call it a composition and write 𝑤 ⊨ |𝑤 |. There is a class of words
that is of special interest to us.

Definition 2.2. A lattice word is a word 𝑤 = (𝑤1, . . . , 𝑤𝑟 ) ∈ N𝑟
+ such that, for all 1 ≤ 𝑖, 𝑗 ≤ 𝑟 , we have

𝑚 𝑗+1 (𝑤1, . . . , 𝑤𝑖) ≤ 𝑚 𝑗 (𝑤1, . . . , 𝑤𝑖),



Forum of Mathematics, Sigma 5

that is, a word such that every prefix has at least as many 1s as 2s, at least as many 2s as 3s, and so on.

Denote by 𝑅(𝑤) the set of all words 𝛼 = (𝛼1, . . . , 𝛼𝑟 ) whose entries can be rearranged to give 𝑤, or
𝑚(𝛼) = 𝑚(𝑤). If 𝛼1 ≥ 𝛼2 ≥ · · · ≥ 𝛼𝑟 > 0, then 𝛼 is a partition, written 𝛼 ⊢ |𝛼 |. It will be convenient
to write a sequence of words ®𝑤 = (𝑤1, . . . , 𝑤𝑟 ), with 𝑤𝑖 ∈ N𝑟𝑖 , as a vector. The type of ®𝑤, denoted by
𝑚( ®𝑤), is the multiplicity type of the concatenation 𝑤1 · · ·𝑤𝑟 = (𝑤1

1, 𝑤
1
2, . . . , 𝑤

2
1, 𝑤

2
2, . . . , . . . ).

Definition 2.3. We define the sets of word vectors of length 𝛽 and content 𝛼, composition vectors of
size 𝛽 rearranging to 𝛼, and partition vectors of size 𝛽 rearranging to 𝛼 as

WV(𝛼, 𝛽) B { ®𝑤 | ℓ(𝑤𝑖) = 𝛽𝑖 and 𝑚( ®𝑤) = 0 |𝛽 |−ℓ (𝛼)1𝛼12𝛼2 · · · }
CR(𝛼, 𝛽) B { ®𝑤 | 𝑤𝑖 ⊨ 𝛽𝑖 and 𝑤1 · · ·𝑤ℓ (𝑤) ∈ 𝑅(𝛼)}
PR(𝛼, 𝛽) B { ®𝑤 | 𝑤𝑖 ⊢ 𝛽𝑖 and 𝑤1 · · ·𝑤ℓ (𝑤) ∈ 𝑅(𝛼)}

The first is the set of sequences of words where the collective multiplicity of 𝑖 is 𝛼𝑖 and sequence 𝑗
has length 𝛽 𝑗 . If ℓ(𝛼) < |𝛽 |, then it is impossible to do this without allowing 0 entries, of which there
must be |𝛽 | − ℓ(𝛼). The second set is the sequence of compositions whose sizes are determined by 𝛽
and whose parts collectively rearrange to 𝛼; and the last set is the set of sequences of partitions whose
sizes are determined by 𝛽 and whose collective union of parts rearranges to 𝛼.

Example 2.4. For 𝛼 = (1, 1, 2, 1, 3, 1), 𝛽 = (3, 1, 5), we have ((1, 2, 5), (3), (4, 3, 5, 5, 6)) ∈ WV(𝛼, 𝛽),
((2, 1), (1), (1, 3, 1)) ∈ CR(𝛼, 𝛽), ((2, 1), (1), (3, 1, 1)) ∈ PR(𝛼, 𝛽).

Definition 2.5. We define the descent set of a word 𝑤 as Des(𝑤) B {1 ≤ 𝑖 < 𝑟 | 𝑤𝑖 > 𝑤𝑖+1}, and the
ascent set as Asc(𝑤) B {1 ≤ 𝑖 < 𝑟 | 𝑤𝑖 < 𝑤𝑖+1}. We have the following statistics.

maj(𝑤) B
∑︁

𝑖∈Des(𝑤)
𝑖, comaj(𝑤) B

∑︁
𝑖∈Des(𝑤)

(𝑛 − 𝑖),

revmaj(𝑤) B
∑︁

𝑖∈Asc(𝑤)
(𝑛 − 𝑖), revcomaj(𝑤) B

∑︁
𝑖∈Asc(𝑤)

𝑖.

Note that revmaj and revcomaj are actually the maj and comaj of the reverse word, hence the name.

2.2. 𝛾-Dyck paths

We need to recall this classical definition.

Definition 2.6. A parallelogram polyomino of size 𝑚 × 𝑛 is a pair of lattice paths (𝑃,𝑄) from (0, 0) to
(𝑚, 𝑛), consisting of unit North and East steps, such that 𝑃 (the top path) lies always strictly above 𝑄
(the bottom path), except on the endpoints.

Definition 2.7. The area of a parallelogram polyomino of size 𝑚 × 𝑛 is defined as

area(𝑃,𝑄) B (# of lattice cells between 𝑃 and 𝑄) − (𝑚 + 𝑛 − 1).

Since the two paths 𝑃 and 𝑄 do not touch between the endpoints, 𝑚 + 𝑛 − 1 is the minimal number of
unit cells between them.

We can now introduce our new objects.

Definition 2.8. Let 𝛾 ⊢ 𝑚. A 𝛾-Dyck path of size 𝑛 is a parallelogram polyomino of size (𝑚 + 𝑛 + 1) × 𝑛
such that the bottom path does not have two consecutive North steps, and if 𝛼𝑖 is the number of East
steps of the bottom path on the line 𝑥 = 𝑖 − 1, then (𝛼1 − 1, 𝛼2, . . . , 𝛼𝑛) rearranges to 𝛾 + 1𝑛 B
(𝛾1 + 1, . . . , 𝛾ℓ (𝛾) + 1, 1, . . . , 1).
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Figure 1. A parallelogram polyomino with area 20.

In other words, we start from a “staircase” path with two East steps on the 𝑥-axis and one East step
on each other line 𝑥 = 𝑖 for 1 ≤ 𝑖 < 𝑛, and we insert on each of these lines a number of East steps given
by the parts of 𝛾, in some order.

Remark 2.9. Notice that ∅-Dyck paths are essentially the same thing as classical Dyck paths. Indeed,
𝛾 = ∅ implies 𝑚 = 0, so the polyomino is of size (𝑛 + 1) × 𝑛 and the bottom path is the staircase as
mentioned above. This given, the requirement that the two paths do not touch is exactly asking that the
top path lies always weakly above the diagonal 𝑥 = 𝑦 (see Figure 2 for an example). The importance of
this fact will be apparent in Section 12.2.

Figure 2. A ∅-Dyck path.

Definition 2.10. A labeled 𝛾-Dyck path, is a 𝛾-Dyck path in which each North step of the top path
is assigned a positive integer label such that consecutive North steps are assigned strictly increasing
labels. A labeled 𝛾-Dyck path will be denoted as a triple 𝑝 = (𝑃,𝑄, 𝑤), where 𝑃 is the top path, 𝑄 is
the bottom path, and 𝑤 is the word formed by the labels when read from bottom to top. The content of a
labeled 𝛾-Dyck path is the weak composition 𝛼 ⊨𝑤 𝑛 whose parts 𝛼𝑖 give the number of 𝑖’s appearing in
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the labeling (or 𝑚(𝑤) = 0𝑛−ℓ (𝛼)1𝛼12𝛼2 . . . ). A 𝛾-parking function is a labeled 𝛾-Dyck path of content
1𝑛. For our convenience, we will also refer to labeled 𝛾-Dyck paths of content 𝛼 as 𝛾-parking functions
of content 𝛼, and denote them by PF

𝛾
𝛼.

1

2

2

1

1

2

1

2

2

1

1

2

2

1

1

2

2

1

1

2

Figure 3. The set of (2)-parking functions of height 2.

Definition 2.11. A lattice 𝛾-Dyck path is a labeled 𝛾-Dyck path in which the sequence of labels, read
bottom to top, is a lattice word. Notice that the content of a lattice word is necessarily a partition. As
above, for our convenience, we will also refer to lattice 𝛾-Dyck paths with content 𝜆 as lattice 𝛾-parking
functions with content 𝜆, and denote them by LPF

𝛾

𝜆
.

Definition 2.12. The 𝑒-composition 𝜂(𝑝) of a labeled 𝛾-Dyck path 𝑝 = (𝑃,𝑄, 𝑤) is defined as follows:
let 𝑃 be the path obtained from 𝑃 by removing the first East step after the 𝑖th North step for every
𝑖 ∉ Asc(𝑤); 𝜂(𝑝) is the composition whose parts are the lengths of the maximal sequences of consecutive
North steps appearing in 𝑃, from the bottom to the top (see Figure 4 for an example).

1

4

5

3

1

2

5

×
×

×

−→

1

4

5

3

1

2

5

Figure 4. The 𝑒-composition of a labeled 𝛾-Dyck path. In this case, 𝜂(𝑝) = (4, 2, 1).
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3. Symmetric function preliminaries

The standard reference for Macdonald polynomials is Macdonald’s book [Mac95]. For some reference
on modified Macdonald polynomials, plethystic substitution, and Delta operators, we have [Hag08] and
[BGHT99]. As a reference for Theta operators, we have [DIVW21] and [DR23].

We represent partitions by their Young diagram. For a partition 𝜇 and a cell 𝑐 ∈ 𝜇, we let 𝑎(𝑐), 𝑙 (𝑐),
𝑎′ (𝑐), and 𝑙′ (𝑐) denote the arm, leg, coarm, and coleg of the cell. This gives the number of cells in 𝜇
strictly to the right, above, to the left, and below of 𝑐, respectively. See Figure 5 for an example.

𝑐co-arm arm

le
g

co
-le

g

Figure 5. Limbs and co-limbs of a cell in a partition.

From here on, we set 𝑀 B (1 − 𝑞) (1 − 𝑡). For any partition 𝜇, we define the constants

Π𝜇 B
∏

𝑐∈𝜇/(1)
1 − 𝑞𝑎′ (𝑐) 𝑡𝑙

′ (𝑐) , 𝐵𝜇 B
∑︁
𝑐∈𝜇

𝑞𝑎
′ (𝜇) 𝑡𝑙

′ (𝜇) ,

𝑤𝜇 B
∏
𝑐∈𝜇

(
𝑞𝑎 (𝑐) − 𝑡𝑙 (𝑐)+1

) (
𝑡𝑙 (𝑐) − 𝑞𝑎 (𝑐)+1

)
.

Recall the ordinary Hall scalar product gives the orthogonality relation

⟨𝑠𝜆, 𝑠𝜇⟩ B 𝜒(𝜆 = 𝜇), (3.1)

where, for any proposition 𝐴, 𝜒(𝐴) = 1 if 𝐴 is true, and 0 otherwise. The ∗-scalar product may be given
by setting for any two symmetric functions 𝐹 and 𝐺,

⟨𝐹, 𝐺⟩∗ B ⟨𝐹, (𝜔𝐺) [𝑀𝑋]⟩ (3.2)

where 𝜔 is the algebra isomorphism on symmetric functions defined by 𝜔(𝑒𝑛) B ℎ𝑛. Note that 𝜔 is
also an isometry and an involution.

The modified Macdonald basis is orthogonal with respect to the ∗-scalar product, that is,

⟨H̃𝜆, H̃𝜇⟩∗ = 𝑤𝜇𝜒(𝜆 = 𝜇). (3.3)

We recall the definition of Delta operators, which are eigenoperators of the modified Macdonald
basis indexed by symmetric functions [BGHT99].

Definition 3.1. For 𝐹 ∈ Λ, we define the operator Δ𝐹 : Λ → Λ by setting Δ𝐹 H̃𝜇 B 𝐹 [𝐵𝜇] H̃𝜇 on the
Macdonald basis and extending by linearity. We then define Δ̃𝐹𝐺 B Δ𝐹𝐺 |𝑡=1.

We now introduce the 𝑞-Pochhammer symbol.
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Definition 3.2. For 𝑟 ∈ N, we define the 𝑞-Pochhammer symbol as

(𝑎; 𝑞)𝑛 B (1 − 𝑞) (1 − 𝑎𝑞) · · · (1 − 𝑎𝑞𝑟−1),

and for 𝜇 a partition we set

(𝑎; 𝑞)𝜇 B (𝑎; 𝑞)𝜇1 · · · (𝑎; 𝑞)𝜇ℓ (𝜇) .

Remark 3.3. When 𝑡 = 1, the modified Macdonald basis specializes as

H̃𝜇 [𝑋; 𝑞, 1] = (𝑞; 𝑞)𝜇ℎ𝜇
[
𝑋

1 − 𝑞

]
;

this means that, on the space of symmetric functions with coefficients in Q(𝑞) (rather than Q(𝑞, 𝑡)), the
operator Δ̃𝐹 can be defined by setting

Δ̃𝐹ℎ𝜇

[
𝑋

1 − 𝑞

]
= 𝐹

[
ℓ (𝜇)∑︁
𝑖=1

[𝜇𝑖]𝑞

]
ℎ𝜇

[
𝑋

1 − 𝑞

]
.

This specialization will be useful later.

We now define the Theta operators.

Definition 3.4 ([DIVW21, (28)]). For any homogeneous symmetric function 𝐹 ∈ Λ we define the Theta
operators Θ𝐹 : Λ → Λ as follows. For any homogeneous symmetric function 𝐺 ∈ Λ, we set

Θ𝐹𝐺 B


0 if deg 𝐹 ≥ 1 and deg𝐺 = 0
𝐹 · 𝐺 if deg 𝐹 = 0 and deg𝐺 = 0
Π(𝐹

[
𝑋
𝑀

]
·Π−1𝐺) otherwise.

We will often use the common shorthand

𝐹∗ [𝑋] B 𝐹

[
𝑋

𝑀

]
.

Also notice that, from the definition, one has Θ𝐹 + Θ𝐺 = Θ𝐹+𝐺 and Θ𝐹Θ𝐺 = Θ𝐹𝐺 .

In [DILB+22], the authors give a (conjectural) combinatorial formula forΘ𝑒𝜆𝑒1 (when 𝑡 = 1) in terms
of rooted tiered trees, and then a very similar formula for 𝑀Δ𝑒1Π𝑒

∗
𝜆
[𝑋] (also when 𝑡 = 1) in terms

of 0-rooted tiered trees, which have nicer symmetries. The expression 𝑀Δ𝑒1Π𝑒
∗
𝜆
[𝑋] seems to have

surprising positivity properties and pops up in various symmetric function identities (cf. [BHIR23]).
For this reason, it is convenient to define the following.

Definition 3.5. We define the linear operator Ξ: Λ → Λ as

Ξ 𝐹 B 𝑀Δ𝑒1Π𝐹
∗ [𝑋] .

In the remainder of this work, we will show another combinatorial expansion for Ξ 𝑒𝜆 |𝑡=1, different
from the one in [DILB+22]. We will actually prove a more general result, namely an expansion for
Δ̃𝑚𝛾

Ξ 𝑒𝜆, which has the remarkable property of being 𝑒-positive. Without the specialization 𝑡 = 1, the
expression Ξ 𝑒𝜆 is conjecturally Schur positive, but that fails in general when 𝛾 ≠ ∅, making the global
𝑒-positivity when 𝑡 = 1 even more remarkable.
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4. Preliminary manipulations and specializations

In this section we go through some algebraic manipulations, in order to give a combinatorial meaning
to the symmetric function Δ̃𝑚𝛾

Ξ 𝑒𝜆.

Lemma 4.1. For 𝜆 ⊢ 𝑛 and 𝛾 any partition, we have

Δ𝑚𝛾
Ξ 𝑒𝜆 =

∑︁
𝜇⊢𝑛

𝑚𝛾 [𝐵𝜇]
𝑀𝐵𝜇Π𝜇

𝑤𝜇

⟨ℎ𝜆, H̃𝜇⟩ H̃𝜇 .

Proof. By (3.3) and (3.2), we have

𝑒∗𝜆 =
∑︁
𝜇⊢𝑛

H̃𝜇

𝑤𝜇

⟨𝑒∗𝜆, H̃𝜇⟩∗ =
∑︁
𝜇⊢𝑛

H̃𝜇

𝑤𝜇

⟨ℎ𝜆, H̃𝜇⟩.

Now by Definition 3.5 and Definition 3.1, we have

Δ𝑚𝛾
Ξ 𝑒𝜆 = Δ𝑚𝛾

𝑀Δ𝑒1Π𝑒
∗
𝜆 =

∑︁
𝜇⊢𝑛

𝑚𝛾 [𝐵𝜇]
𝑀𝐵𝜇Π𝜇

𝑤𝜇

⟨ℎ𝜆, H̃𝜇⟩ H̃𝜇,

as desired. □

We will break up these summation terms by analyzing each of the three factors, specializing 𝑡 to 1
for each one individually.

Lemma 4.2. For 𝜇 ⊢ 𝑛, we have

𝑀𝐵𝜇Π𝜇

𝑤𝜇

����
𝑡=1

= (−1)𝑛−ℓ (𝜇) (𝑞; 𝑞)−1𝜇
∑︁

𝛼∈𝑅 (𝜇)
(1 − 𝑞𝛼1 ).

Proof. It follows immediately from the definition that 𝐵𝜇 |𝑡=1 =
∑ℓ (𝜇)

𝑖=1 [𝜇𝑖]𝑞 . Let

𝐴1 =

(1 − 𝑞)∏ 𝑐∈𝜇
𝑎′ (𝑐)≠0

(1 − 𝑞𝑎′ (𝑐) 𝑡𝑙
′ (𝑐) )∏

𝑐∈𝜇
𝑎 (𝑐)≠0

(𝑞𝑎 (𝑐) − 𝑡𝑙 (𝑐)+1)∏𝑐∈𝜇 (𝑡𝑙 (𝑐) − 𝑞𝑎 (𝑐)+1)

and

𝐴0 =

(1 − 𝑡)∏ 𝑐∈𝜇
𝑎′ (𝑐)=0

(1 − 𝑞𝑎′ (𝑐) 𝑡𝑙
′ (𝑐) )∏

𝑐∈𝜇
𝑎 (𝑐)=0

(𝑞𝑎 (𝑐) − 𝑡𝑙 (𝑐)+1)
.

We have that 𝑀Π𝜇/𝑤𝜇 = 𝐴1 · 𝐴0, where 𝐴1 collects the term that do not vanish when 𝑡 = 1, and 𝐴0
collects the terms that evaluate to 0 when 𝑡 = 1.

Now, evaluating 𝐴1 we get

𝐴1 |𝑡=1 =

(1 − 𝑞)∏ 𝑐∈𝜇
𝑎′ (𝑐)≠0

(1 − 𝑞𝑎′ (𝑐) )∏
𝑐∈𝜇

𝑎 (𝑐)≠0
(𝑞𝑎 (𝑐) − 1) ∏

𝑐∈𝜇
(1 − 𝑞𝑎 (𝑐)+1)

,
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and since∏
𝑐∈𝜇

𝑎′ (𝑐)≠0
(1 − 𝑞𝑎′ (𝑐) )∏

𝑐∈𝜇
𝑎 (𝑐)≠0

(𝑞𝑎 (𝑐) − 1)
= (−1)𝑛−ℓ (𝜇) and

∏
𝑐∈𝜇

(1 − 𝑞𝑎 (𝑐)+1) = (𝑞; 𝑞)𝜇,

we have

𝐴1 |𝑡=1 = (−1)𝑛−ℓ (𝜇) (1 − 𝑞)(𝑞; 𝑞)𝜇
.

To evaluate 𝐴0, notice first that

𝐴0 =

(1 − 𝑡)∏ 𝑐∈𝜇
𝑎′ (𝑐)=0

(1 − 𝑡𝑙′ (𝑐) )∏
𝑐∈𝜇

𝑎 (𝑐)=0
(1 − 𝑡𝑙 (𝑐)+1)

=
(1 − 𝑡) (𝑡; 𝑡)ℓ (𝜇)−1

(𝑡; 𝑡)𝑚1 (𝜇) · · · (𝑡; 𝑡)𝑚𝑛 (𝜇)
=

1

[ℓ(𝜇)]𝑡

[
ℓ(𝜇)

𝑚1 (𝜇), . . . , 𝑚𝑛 (𝜇)

]
𝑡

,

where 𝑚𝑖 (𝜇) is the multiplicity of 𝑖 in 𝜇. When we set 𝑡 = 1, we get the usual cyclic multinomial.
Putting the pieces together, we get

𝑀𝐵𝜇Π𝜇

𝑤𝜇

����
𝑡=1

=
(−1)𝑛−ℓ (𝜇)
ℓ(𝜇)

(
ℓ(𝜇)

𝑚1 (𝜇), . . . , 𝑚𝑛 (𝜇)

)
(1 − 𝑞)
(𝑞; 𝑞)𝜇

ℓ (𝜇)∑︁
𝑖=1

[𝜇𝑖]𝑞 .

Now we can interpret this product combinatorially. First, note that

(1 − 𝑞)
ℓ (𝜇)∑︁
𝑖=1

[𝜇𝑖]𝑞 =

ℓ (𝜇)∑︁
𝑖=1

(1 − 𝑞𝜇𝑖 ),

and that (
ℓ(𝜇)

𝑚1 (𝜇), . . . , 𝑚𝑛 (𝜇)

)
= #𝑅(𝜇)

is the number of rearrangements 𝛼 = (𝛼1, . . . , 𝛼ℓ) ∈ R(𝜇) of the parts of 𝜇. Therefore,

#𝑅(𝜇) ·
ℓ (𝜇)∑︁
𝑖=1

(1 − 𝑞𝜇𝑖 ) =
∑︁

𝛼∈R(𝜇)

ℓ (𝜇)∑︁
𝑖=1

(1 − 𝑞𝛼𝑖 ).

This corresponds to selecting a rearrangement 𝛼 of 𝜇 then selecting some 𝑖 from 1 to ℓ(𝜇). Equiv-
alently, we can first select a rearrangement 𝑟 , take 1 − 𝑞𝛼1 , then circularly rearrange 𝛼, keeping this
selection of 1 − 𝑞𝛼1 . Since there are ℓ(𝜇) circular rearrangements, we have that

#𝑅(𝜇)
ℓ(𝜇)

ℓ (𝜇)∑︁
𝑖=1

(1 − 𝑞𝜇𝑖 ) =
∑︁

𝛼∈𝑅 (𝜇)
(1 − 𝑞𝛼1 )

and so we can conclude that

𝑀𝐵𝜇Π𝜇

𝑤𝜇

����
𝑡=1

= (−1)𝑛−ℓ (𝜇) (𝑞; 𝑞)−1𝜇
∑︁

𝛼∈𝑅 (𝜇)
(1 − 𝑞𝛼1 ),

as desired. □
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Lemma 4.3. For 𝜆, 𝜇 ⊢ 𝑛, we have

⟨H̃𝜇, ℎ𝜆⟩
���
𝑡=1

=
∑︁

®𝑤∈WV(𝜆,𝜇)
𝑞revmaj( ®𝑤) .

Proof. We recall the classical result (see [Sta99] and [Hag08]) that

(𝑞; 𝑞)𝑛ℎ𝑛
[
𝑋

1 − 𝑞

]
=

∑︁
𝑤=(𝑤1 ,...,𝑤𝑛 ) ∈N𝑛

+

𝑞maj(𝑤)𝑥𝑤1 · · · 𝑥𝑤𝑛

=
∑︁

𝑤=(𝑤1 ,...,𝑤𝑛 ) ∈N𝑛
+

𝑞comaj(𝑤)𝑥𝑤1 · · · 𝑥𝑤𝑛

=
∑︁

𝑤=(𝑤1 ,...,𝑤𝑛 ) ∈N𝑛
+

𝑞revmaj(𝑤)𝑥𝑤1 · · · 𝑥𝑤𝑛
.

For our purposes, we need the last of these equalities, involving the reverse major index. Recall that
⟨ℎ𝜆, 𝑚𝜇⟩ = 𝜒(𝜆 = 𝜇). Since the homogeneous basis is multiplicative, this means that〈

(𝑞; 𝑞)𝜇ℎ𝜇
[
𝑋

1 − 𝑞

]
, ℎ𝜆

〉
=

〈
ℓ (𝜇)∏
𝑖=1

∑︁
𝑤∈N𝜇𝑖

+

𝑞revmaj(𝑤)𝑥𝑤1 · · · 𝑥𝑤𝜇𝑖
, ℎ𝜆

〉
=

∑︁
®𝑤∈WV(𝜆,𝜇)

𝑞revmaj( ®𝑤) ,

where revmaj( ®𝑤) = revmaj(𝑤1) + · · · + revmaj(𝑤𝑛). Now by Remark 3.3, we have

⟨H̃𝜇, ℎ𝜆⟩
���
𝑡=1

=
∑︁

®𝑤∈WV(𝜆,𝜇)
𝑞revmaj( ®𝑤) ,

as desired. □

Let us recall the Cauchy identity.

Proposition 4.4 (Cauchy identity). For any two expressions 𝑋,𝑌 , and any two dual bases {𝑢𝜆}𝜆, {𝑣𝜆}
under the Hall scalar product, we have

ℎ𝑛 [𝑋𝑌 ] =
∑︁
𝜆⊢𝑛

𝑢𝜆 [𝑋]𝑣𝜆 [𝑌 ] .

We now get to the final term of our product.

Lemma 4.5. For 𝜇 ⊢ 𝑛, we have

H̃𝜇 [𝑋; 𝑞, 1] = (𝑞; 𝑞)𝜇
∑︁
𝜂⊢𝑛

𝑒𝜂 [𝑋]
∑︁

®𝜈∈PR(𝜂,𝜇)
𝑓 ®𝜈

[
1

1 − 𝑞

]
.

Proof. Recall that (see Remark 3.3)

H̃𝜇 [𝑋; 𝑞, 1] = (𝑞; 𝑞)𝜇ℎ𝜇
[
𝑋

1 − 𝑞

]
.

Now by Proposition 4.4, using the fact that the elementary symmetric functions and forgotten symmetric
functions are dual, we have

ℎ𝑛

[
𝑋

1 − 𝑞

]
=
∑︁
𝜆⊢𝑛

𝑒𝜆 [𝑋] 𝑓𝜆
[

1

1 − 𝑞

]
. (4.1)
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Applying (4.1) to each factor in ℎ𝜇 [𝑋/(1 − 𝑞)] and collecting 𝑒𝜂 terms, we obtain

H̃𝜇 [𝑋; 𝑞, 1] = (𝑞; 𝑞)𝜇
∑︁
𝜂⊢𝑛

𝑒𝜂 [𝑋]
∑︁

®𝜈∈PR(𝜂,𝜇)
𝑓 ®𝜈

[
1

1 − 𝑞

]
where 𝑓 ®𝜈 = 𝑓𝜈1 𝑓𝜈2 · · · 𝑓𝜈ℓ (𝜇) . □

Putting everything together, we get the following.

Proposition 4.6. For any 𝜆 ⊢ 𝑛 and 𝛾 any partition, we have

Δ̃𝑚𝛾
Ξ 𝑒𝜆 =

∑︁
𝜂⊢𝑛

𝐷
𝛾

𝜆,𝜂
(𝑞)𝑒𝜂 ,

where

𝐷
𝛾

𝜆,𝜂
=
∑︁
𝛽⊨𝑛

∑︁
®𝑤∈WV(𝜆,𝛽)

∑︁
®𝜈∈PR(𝜂,𝛽)

𝑞revmaj( ®𝑤)𝑚𝛾

[∑︁
𝑖

[𝛽𝑖]𝑞

]
(−1)𝑛−ℓ (𝛽) (1 − 𝑞𝛽1 ) 𝑓 ®𝜈

[
1

1 − 𝑞

]
.

Proof. By combining Lemma 4.1, 4.2, 4.3, and 4.5, we get the expansion

Δ̃𝑚𝛾
Ξ 𝑒𝜆 =

∑︁
𝜂⊢𝑛

𝑒𝜂

∑︁
𝜇⊢𝑛

(−1)𝑛−ℓ (𝜇)
∑︁

𝛽∈R(𝜇)
(1 − 𝑞𝛽1 )𝑚𝛾

[∑︁
𝑖

[𝛽𝑖]𝑞

]
×

∑︁
®𝑤∈WV(𝜆,𝜇)

𝑞revmaj( ®𝑤)
∑︁

®𝜈∈PR(𝜂,𝜇)
𝑓 ®𝜈

[
1

1 − 𝑞

]
.

Now, instead of summing over all 𝜇 then summing over all compositions 𝛽 ∈ 𝑅(𝜇) that rearrange to 𝜇,
we can instead just sum over all compositions 𝛽, and the thesis follows. □

Corollary 4.7. For any 𝜆 ⊢ 𝑛, we have

Ξ 𝑒𝜆 |𝑡=1 =
∑︁
𝜂⊢𝑛

∑︁
𝛽⊨𝑛

∑︁
®𝑤∈WV(𝜆,𝛽)

∑︁
®𝜈∈PR(𝜂,𝛽)

𝑞revmaj( ®𝑤) (−1)𝑛−ℓ (𝛽) (1 − 𝑞𝛽1 ) 𝑓 ®𝜈
[

1

1 − 𝑞

]
𝑒𝜂 .

Proof. Just set 𝛾 = ∅ in Proposition 4.6. □

5. Forgotten symmetric functions

For 𝜇 ⊢ 𝑛 of length ℓ, the combinatorial formula for the forgotten symmetric function 𝑓𝜇 [ER91] is
given by

𝑓𝜇 [𝑋] = (−1)𝑛−ℓ
∑︁

𝛼∈R(𝜇)

∑︁
𝑖1≤···≤𝑖ℓ

𝑥
𝛼1
𝑖1

· · · 𝑥𝑎ℓ
𝑖ℓ
.

Now, substituting 𝑋 = (1 − 𝑞)−1, we get the expansion

𝑓𝜇

[
1

1 − 𝑞

]
= (−1)𝑛−ℓ

∑︁
𝛼∈R(𝜇)

∑︁
0≤𝑖1≤···≤𝑖ℓ

(
𝑞𝑖1

)𝛼1 · · ·
(
𝑞𝑖ℓ

)𝑎ℓ
. (5.1)

Definition 5.1. Let 𝜇 ⊢ 𝑛. A column-composition tableau of type 𝜇 is a pair𝐶 = (𝛼, 𝑐) where 𝛼 ∈ R(𝜇)
is a composition that rearranges to 𝜇, and 𝑐 = (𝑐1 ≤ 𝑐2 ≤ · · · ≤ 𝑐𝑛) is a sequence such that

𝑐𝑖 < 𝑐𝑖+1 =⇒ 𝑖 ∈ {𝛼1, 𝛼1 + 𝛼2, . . . , 𝛼1 + · · · + 𝛼ℓ−1}.
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We denote by CC𝜇 the set of column-composition tableaux of type 𝜇, and by CC𝜇 the subset of
those such that 𝑐1 = 0. For 𝐶 ∈ CC𝜇, we define the length of 𝐶 as ℓ(𝐶) = |𝜇 | and size of 𝐶 as
|𝐶 | = 𝑐1 + 𝑐2 + · · · + 𝑐𝑛. We will write 𝑐𝑖 (𝐶) for 𝑐𝑖 when we need to specify the column-composition
tableau.

We can depict the elements of CC𝜇 as follows.

1. First, draw a row of size |𝜇 | which we call the base, and then depict the composition 𝛼 ∈ R(𝜇) by
separating the columns of the base with vertical bars; for instance, when 𝜇 = (3, 2, 2, 2, 1, 1, 1) and
𝛼 = (2, 1, 2, 1, 2, 1, 3) we draw the base as

2. Next, draw 𝑐𝑖 cells above the 𝑖th column of the base; in continuing our example, if
𝑐 = (0, 0, 0, 1, 1, 1, 1, 1, 3, 3, 3, 3), we draw it as

Let us define the 𝑞-enumerators

CC𝜇 B
∑︁

𝐶∈CC𝜇

𝑞 |𝐶 | and CC𝜇 B
∑︁

𝐶∈CC𝜇

𝑞 |𝐶 | ,

which are power series in 𝑞. Then, by construction we have the following.

Proposition 5.2. For any partition 𝜇, we have

𝑓𝜇

[
1

1 − 𝑞

]
= (−1) |𝜇 |−ℓ (𝜇) CC𝜇 and (1 − 𝑞) |𝜇 | 𝑓𝜇

[
1

1 − 𝑞

]
= (−1) |𝜇 |−ℓ (𝜇)CC𝜇 .

Proof. In Equation (5.1), each term in the principal evaluation of 𝑓𝜇 is given by selecting a rearrangement
𝛼 of 𝜇, and choosing 𝑖1 ≤ · · · ≤ 𝑖ℓ (𝜇) . This uniquely determines an element (𝛼, 𝑐) ∈ CC𝜇 where the
first 𝛼1 columns 𝑐1, . . . , 𝑐𝛼1 are of size 𝑖1, the next 𝛼2 columns 𝑐𝛼1+1, . . . , 𝑐𝛼1+𝛼2 are of size 𝑖2, and so
on. Since then

|𝜇 |∑︁
𝑖=1

𝑐𝑖 =

ℓ (𝜇)∑︁
𝑗=1

𝛼 𝑗𝑖 𝑗 ,

we see that 𝑞 | (𝛼,𝑐) | equals the term in Equation (5.1) corresponding to choosing 𝛼 and 𝑖1 ≤ · · · ≤ 𝑖ℓ (𝜇) .
The second equality follows from the fact that if (𝛼, 𝑐) ∈ 𝐶𝐶𝜇, then so is (𝛼, 𝑐 + 1𝑛), where

𝑐 + 1𝑛 = (𝑐1 + 1, . . . , 𝑐𝑛 + 1). This defines an injective map, and we have

𝑞 |𝜇 | CC𝜇 =
∑︁

𝐶∈CC𝜇

𝑐1 (𝐶 )>0

𝑞 |𝐶 |
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Therefore

CC𝜇 −𝑞 |𝜇 | CC𝜇 =
∑︁

𝐶∈CC𝜇

𝑐1=0

𝑞 |𝐶 | ,

which gives the last equality in the proposition. □

We conclude this section with the following results.

Lemma 5.3. For any ®𝜈 ∈ PR(𝜂, 𝛽), we have

(−1)𝑛−ℓ (𝛽) (1 − 𝑞𝛽1 ) 𝑓 ®𝜈
[

1

1 − 𝑞

]
= (−1)ℓ (𝜂)−ℓ (𝛽)CC𝜈1CC𝜈2 · · ·CC𝜈ℓ (𝛽) .

Proof. Using Proposition 5.2, we can replace each 𝑓𝜈 [1/(1− 𝑞)] with CC𝜈 . Since 𝜈1 ⊢ 𝛽1, we can also
replace (1 − 𝑞𝛽1 )CC𝜈1 with CC𝜈1 . Finally, since ℓ(𝜈1) + · · · + ℓ(𝜈ℓ (𝛽) ) = ℓ(𝜂), we have

(−1)𝑛−ℓ (𝛽) (−1)ℓ (𝜈1 )− |𝜈1 | · · · (−1)ℓ (𝜈ℓ (𝛽) )− |𝜈ℓ (𝛽) | = (−1)ℓ (𝜂)−ℓ (𝛽) ,

and the thesis follows. □

Proposition 5.4. For 𝜂, 𝜆 ⊢ 𝑛 and 𝛾 any partition, we have

𝐷
𝛾

𝜆,𝜂
=
∑︁
𝛽⊨𝑛

∑︁
®𝑤∈WV(𝜆,𝛽)

∑︁
®𝜈∈PR(𝜂,𝛽)

𝑞revmaj( ®𝑤)𝑚𝛾

[∑︁
𝑖

[𝛽𝑖]𝑞

]
(−1)ℓ (𝜂)−ℓ (𝛽)CC𝜈1CC𝜈2 · · ·CC𝜈ℓ (𝛽) .

Proof. It follows immediately from Proposition 4.6 and Lemma 5.3. □

6. Combinatorial expansions

Recall that we are trying to compute the coefficient in the expansion Δ̃𝑚𝛾
Ξ 𝑒𝜆 =

∑
𝜂 𝐷

𝛾

𝜆,𝜂
𝑒𝜂 , using

the formula in Proposition 5.4. We interpret the terms showing up there by labeling a sequence of
column-composition tableaux.

Definition 6.1. A labeled column-composition tableaux is a triple (𝐶, 𝑤, 𝑙), where 𝐶 is a column-
composition tableau, 𝑤 ∈ Nℓ (𝐶 )

+ , and 𝑙 ∈ Nℓ (𝐶 )

Definition 6.2. Let 𝜆, 𝜂 ⊢ 𝑛, and 𝛾 ⊢ 𝑚 such that ℓ(𝛾) ≤ 𝑛. A sequence of labeled column-composition
tableaux of type 𝜆, 𝜂, 𝛾 is a tuple of labeled column-composition tableaux (𝐶𝑖 , 𝑤𝑖 , 𝑙𝑖)1≤𝑖≤𝑟 such that,
for 𝛽 = (𝛽1, . . . , 𝛽𝑟 ), 𝛽𝑖 = ℓ(𝐶𝑖), we have:

1. 𝐶1 ∈ CC𝜈1 and 𝐶𝑖 ∈ CC𝜈𝑖 for 𝑖 > 1, for some ®𝜈 ∈ PR(𝜂, 𝛽);
2. ®𝑤 = (𝑤1, . . . , 𝑤𝑟 ) ∈ WV(𝜆, 𝛽);
3. ®𝑙 = (𝑙1, . . . , 𝑙𝑟 ) ∈ WV(𝑚(𝛾), 𝛽).

In other words, a sequence of labeled column-composition tableaux of type 𝜆, 𝜂, 𝛾, is a tuple of
column-composition tableaux of sizes 𝛽1, . . . , 𝛽𝑟 such that 𝑐1 (𝐶1) = 0, so that to each tableau we
associate a partition 𝜈𝑖 ⊢ 𝛽𝑖 and two words 𝑤𝑖 , 𝑙𝑖 such that ®𝜈 rearranges to 𝜂, the global content of ®𝑤 is
given by 𝜆, and the letters of 𝑙 are the parts of 𝛾 followed by an appropriate number of trailing zeros.

We denote by LC
𝛾

𝜆,𝜂
the set of sequences of column-composition tableaux of type 𝜆, 𝜂, 𝛾. For

𝑇 = (𝑇𝑖)1≤𝑖≤𝑟 ∈ LC
𝛾

𝜆,𝜂
, we set 𝑤(𝑇𝑖) = 𝑤𝑖 and 𝑙 (𝑇𝑖) = 𝑙𝑖 .
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Definition 6.3. For 𝑇 = (𝑇𝑖)1≤𝑖≤𝑟 ∈ LC
𝛾

𝜆,𝜂
, with 𝑇𝑖 = (𝐶𝑖 , 𝑤𝑖 , 𝑙𝑖), let 𝜈𝑖 be the type of𝐶𝑖 , let 𝛽𝑖 B |𝜈𝑖 |,

and let

𝑢(𝑙𝑖) B
𝛽𝑖∑︁
𝑗=1

𝑙𝑖𝑗 · (𝛽𝑖 − 𝑗).

We define

weight(𝑇𝑖) B |𝐶𝑖 | + revmaj(𝑤𝑖) + 𝑢(𝑙𝑖) and sign(𝑇𝑖) B (−1)ℓ (𝜈𝑖 )−1.

Notice that, for every letter in 𝑤𝑖 or 𝑙𝑖 , its contribution to the weight only depends on the letter itself
and the number of letters to its right. Also notice that the sign is given by the parity of the number of
vertical bars in 𝐶𝑖 . Finally, we define

weight(𝑇) B
𝑟∑︁
𝑖=1

weight(𝑇𝑖) and sign(𝑇) B
𝑟∏
𝑖=1

sign(𝑇𝑖).

Example 6.4. We are now going through an example in full detail. Let 𝜆 = (3, 2, 2, 2), 𝜂 =

(3, 2, 1, 1, 1, 1), 𝛾 = (4, 3, 2, 2, 1), so |𝜆 | = |𝜂 | = 9 and ℓ(𝛾) = 5 ≤ 9. For our convenience, we add four
trailing zeros to 𝛾, so 𝛾 = (4, 3, 2, 2, 1, 0, 0, 0, 0).

To build an element of LC𝛾

𝜆,𝜂
, first choose 𝛽 ⊨ 9 such that some permutation of 𝜂 refines 𝛽, say

𝛽 = (3, 1, 5). Next, select 𝜈𝑖 ⊢ 𝛽𝑖 , say 𝜈1 = (2, 1), 𝜈2 = (1), 𝜈3 = (3, 1, 1), so that the union of parts is
𝜂. Then, pick 𝐶1 ∈ CC𝜈1 and 𝐶𝑖 ∈ CC𝜈𝑖 for 𝑖 > 1; say for example

(note that 𝑐1 (𝐶1) = 0). Since 𝜆 = (3, 2, 2, 2), we have 𝑚(𝜆) = (1, 1, 1, 2, 2, 3, 3, 4, 4). Pick any
permutation of it and split it into parts of lengths given by the sizes of the parts of 𝛽, say for example
®𝑤 = ((2, 1, 2), (4), (3, 4, 1, 3, 1)). Write these words into the bases of the tableaux. We get

212 4 13143

Finally, pick any permutation of the parts of 𝛾, and again split it into parts of lengths given by the sizes of
the parts of 𝛽, say ®𝑙 = ((0, 2, 0), (1), (2, 0, 4, 3, 0)). Write it underneath the bases of the tableaux. We get

212

020

4

1

13143

03402
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which is an element of LC(4,3,2,2,1)
(3,2,2,2) , (3,2,1,1,1,1) We now want to compute the weight and the sign of this

sequence. Since there are 3 vertical bars, we have that the sign is given by (−1)3.
We can compute the weight of this sequence of labeled column-composition tableaux in three steps.

First count the number of cells above the base rows: there are 2, 1, and 5 + 4 = 9 cells respectively, so
the total weight given by the cells is 12.

The weight corresponding to the labels in the base is found by taking the reverse major index of each
individual base. We compute this by taking∑︁

𝑤𝑖
𝑗
<𝑤𝑖

𝑗+1

#{cells in the same base and on the right of 𝑤𝑖
𝑗 }.

In the above example, we have that 𝑤1 = (2, 1, 2) has an ascent in position 2, and there is one cell to its
right. Therefore revmaj(𝑤1) = 1. Since 𝑤2 has length 1, it has no ascents. Finally, 𝑤3 = (3, 4, 1, 3, 1)
has an ascent in position 1 and one in position 3. There are 4 cells to the right of the label in position
2, and 2 cells to the right of the last ascent. Therefore, revmaj(𝑤3) = 4 + 2, and the total contribution
given by ®𝑤 is 7.

The last step is to calculate the contribution of labels underneath the base rows. For this, we will say
a label 𝑙𝑖

𝑗
has 𝛽𝑖 − 𝑗 cells on its right, since these are the number of cells in its base row to the right of

the label. We take ∑︁
𝑖, 𝑗

𝑙𝑖𝑗 ×#{cells in the same base and on the right of 𝑙𝑖𝑗 }.

The first nonzero label from the left is a 2 in the second column of 𝑇1. There is one cell to its right,
meaning this label contributes by 2 · 1 to the weight. The next nonzero label is a 1, but there are no cells
to its right, so its contribution is 1 · 0 = 0. Similarly, 𝑇2 has size 1 so its contribution is also 0. Finally,
in 𝑇3, the first label 2 has 4 cells to its right (so it contributes 2 · 4). The next label is a 4 and it has 2
cells to its right (so it contributes 4 · 2). The last nonzero label is a 3 and it has one cell to its right (so it
contributes 3 · 1). Therefore, the labels under the base rows collectively contribute a factor of 𝑞2+8+8+3
to the weight. Putting everything together, we have

weight(𝑇) = (2 + 1 + 9) + (1 + 0 + 4 + 2) + (2 + 8 + 8 + 3) = 40

and sign(𝑇) = (−1)3 = −1.

The following proposition is an immediate consequence of our construction.

Proposition 6.5. For 𝜂, 𝜆 ⊢ 𝑛 and 𝛾 any partition, we have

𝐷
𝛾

𝜆,𝜂
=

∑︁
𝑇∈LC𝛾

𝜆,𝜂

𝑞weight(𝑇 ) sign(𝑇).

Proof. Recall that, by Proposition 5.4, we have

𝐷
𝛾

𝜆,𝜂
=
∑︁
𝛽⊨𝑛

∑︁
®𝑤∈WV(𝜆,𝛽)

∑︁
®𝜈∈PR(𝜂,𝛽)

𝑞revmaj( ®𝑤)𝑚𝛾

[∑︁
𝑖

[𝛽𝑖]𝑞

]
(−1)ℓ (𝜂)−ℓ (𝛽)CC𝜈1CC𝜈2 · · ·CC𝜈ℓ (𝛽) .

Fix now a composition 𝛽 ⊨ 𝑛 such that some permutation of 𝜂 refines 𝛽, a word vector ®𝑤 ∈ WV(𝜆, 𝛽),
and a partition vector ®𝜈 ∈ PR(𝜂, 𝛽). We want to study the summand

𝑞revmaj( ®𝑤)𝑚𝛾

[∑︁
𝑖

[𝛽𝑖]𝑞

]
(−1)ℓ (𝜂)−ℓ (𝛽)CC𝜈1 CC𝜈2 · · ·CC𝜈ℓ (𝛽) . (6.1)
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From the combinatorial formula for the monomial symmetric functions, we have

𝑚𝛾

[
[𝛽1]𝑞 + · · · + [𝛽ℓ (𝛽) ]𝑞

]
=

∑︁
®𝑙∈WV(𝑚(𝛾) ,𝛽)

𝑞𝑢(𝑙
1 )+···+𝑢(𝑙ℓ (𝛽) ) . (6.2)

Substituting (6.2) in (6.1), we get∑︁
®𝑙∈WV(𝑚(𝛾) ,𝛽)

(−1)ℓ (𝜂)−ℓ (𝛽)𝑞𝑢(𝑙1 )+···+𝑢(𝑙ℓ (𝛽) )𝑞revmaj( ®𝑤)CC𝜈1 CC𝜈2 · · ·CC𝜈ℓ (𝛽)

and now every monomial in this expansion corresponds to a choice of ®𝑙 ∈ WV(𝑚(𝛾), 𝛽), 𝐶1 ∈ CC𝜈1 ,
and 𝐶𝑖 ∈ CC𝜈𝑖 for 𝑖 > 1, giving the term

(−1)ℓ (𝜂)−ℓ (𝛽)𝑞revmaj( ®𝑤)𝑞𝑢(𝑙
1 )+···+𝑢(𝑙ℓ (𝛽) )𝑞 |𝐶

1 |+·· ·+|𝐶ℓ (𝛽) | =
ℓ (𝛽)∏
𝑖=1

(−1)ℓ (𝜈𝑖 )−1𝑞revmaj(𝑤𝑖 )+𝑢(𝑙𝑖 )+|𝐶𝑖 | .

For each summand, let now 𝑇 ∈ LC
𝛾

𝜆,𝜂
be defined as 𝑇𝑖 = (𝐶𝑖 , 𝑤𝑖 , 𝑙𝑖); this correspondence is bĳective,

and we have sign(𝑇) = ∏ℓ (𝛽)
𝑖=1 (−1)ℓ (𝜈𝑖 )−1 and

weight(𝑇) =
ℓ (𝛽)∑︁
𝑖=1

revmaj(𝑤𝑖) + 𝑢(𝑙𝑖) + |𝐶𝑖 |.

The thesis now follows. □

7. A weight-preserving, sign-reversing involution

Our goal is to now give a positive expansion for the coefficients 𝐷𝛾

𝜆,𝜂
(𝑞). To achieve this result, we will

define a weight-preserving, sign-reversing involution 𝜓 : LC
𝛾

𝜆,𝜂
→ LC

𝛾

𝜆,𝜂
whose fixed points𝑈𝛾

𝜆,𝜂
give

𝐷
𝛾

𝜆,𝜂
(𝑞) =

∑︁
𝑇∈𝑈𝛾

𝜆,𝜂

𝑞weight(𝑇 ) .

To construct 𝜓, we need to introduce a split map. Suppose 𝑆 = (𝐶, 𝑤, 𝑙) is one of the possible
labeled column-composition tableaux appearing in a sequence 𝑇 ∈ LC

𝛾

𝜆,𝜂
. Let 𝐶 = (𝛼, 𝑐), and recall

that this means that the vertical bars appearing in 𝐶 are in positions 𝛼1, 𝛼1 + 𝛼2, . . . , 𝛼1 + · · · + 𝛼ℓ−1.
Let 𝑑 = #{1 ≤ 𝑖 ≤ 𝛼1 | 𝑤𝑖 < 𝑤𝑖+1}, that is, 𝑑 = asc(𝑤1, . . . , 𝑤𝛼1+1) (we don’t count the last position
if 𝛼 has just one part).

The idea is the following. If 𝑆 at least one bar, i.e. 𝛼 ≠ (𝛼1), then we set split(𝑆) = (𝑆1, 𝑆2), where
𝑆1 is the portion of 𝑆 occurring before the first vertical bar, and 𝑆2 is obtained from the portion of 𝑆
after the first vertical bar by adding 𝑑 + |𝑙1 | cells to each column, |𝑙1 | being the sum of the labels in 𝑙
appearing before the first bar (see Example 7.2 for a pictorial realization). More formally, we have the
following definition.

Definition 7.1. Suppose that 𝑆 has at least one bar, i.e. 𝛼 ≠ (𝛼1). Then we say that 𝑆 can split, and
define split(𝑆) B (𝑆1, 𝑆2), with

𝑆1 = ((𝛼1, (𝑐1, . . . , 𝑐𝛼1 )), 𝑤1, 𝑙1),
𝑆2 = (((𝛼2, . . . , 𝛼ℓ), (𝑐𝛼1+1 + 𝑑 + |𝑙1 |, . . . , 𝑐 |𝛼 | + 𝑑 + |𝑙1 |)), 𝑤2, 𝑙2).
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where we define

𝑤1 = (𝑤1, . . . , 𝑤𝛼1 ), 𝑤2 = (𝑤𝛼1+1, . . . , 𝑤 |𝛼 | ),
𝑙1 = (𝑙1, . . . , 𝑙𝛼1 ), 𝑙2 = (𝑙𝛼1+1, . . . , 𝑙 |𝛼 | ).

Example 7.2. Let 𝑆((𝛼, 𝑐), 𝑤, 𝑙), 𝛼 = (3, 1, 1), 𝑐 = (1, 1, 1, 1, 2), 𝑤 = (7, 4, 7, 7, 5), 𝑙 = (0, 0, 2, 0, 3).
We split it after 𝛼1 = 3 cells. We have 1 ascent in (7, 4, 7, 7) so 𝑑 = 1, and we have |𝑙1 | = 0 + 0 + 2 = 2,
so we add 3 cells to each column in 𝑆2, and get

split

©«
57747

30200

ª®®®®®®®®®®®®®¬
=

747

200

,
57

30

(7.1)

Proposition 7.3. The map split is weight-preserving: if split(𝑆) = (𝑆1, 𝑆2), then weight(𝑆) =

weight(𝑆1) + weight(𝑆2).

Proof. Suppose split(𝑆) = (𝑆1, 𝑆2). Let 𝑆 = (𝐶, 𝑤, 𝑙), 𝐶 = (𝛼, 𝑐) with 𝛼1 = 𝑣, and let ℓ(𝐶) = 𝑛. Let
us denote 𝑆1 = (𝐶1, 𝑤1, 𝑙1) and 𝑆2 = (𝐶2, 𝑤2, 𝑙2).

By definition, the weight has three components, one coming from the total size, one coming from
the revmaj of the word 𝑤, and one coming from the labels 𝑙.

Let 𝑑 = asc(𝑤1, . . . , 𝑤𝑣+1). By definition of split, the number of cells above 𝑆1 stays the same, while
the number of cells above 𝑆2 increases by ℓ(𝐶2) (𝑑 + |𝑙1 |) = (𝑛 − 𝑣) (𝑑 + |𝑙1 |), so the first component of
the total weight increases by the same amount.

By definition of revmaj, we have

revmaj(𝑤) =
∑︁

𝑖∈Asc(𝑤)
(𝑛 − 𝑖)

=
∑︁

𝑖∈Asc(𝑤1 )
(𝑛 − 𝑖) +

∑︁
𝑖∈Asc(𝑤2 )

(𝑛 − (𝑣 + 𝑖)) + 𝜒(𝑤𝑣 < 𝑤𝑣+1) (𝑛 − 𝑣)

=
∑︁

𝑖∈Asc(𝑤1 )
(𝑛 − 𝑣 + 𝑣 − 𝑖) +

∑︁
𝑖∈Asc(𝑤2 )

(𝑛 − 𝑣 − 𝑖) + 𝜒(𝑤𝑣 < 𝑤𝑣+1) (𝑛 − 𝑣)

= (𝑛 − 𝑣) · 𝑑 + revmaj(𝑤1) + revmaj(𝑤2),

so the second component of the total weight decreases by (𝑛 − 𝑣) · 𝑑.
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Finally, by definition of 𝑢, we have

𝑢(𝑤) =
𝑛∑︁
𝑖=1

𝑙𝑖 · (𝑛 − 𝑖) =
𝑣∑︁
𝑖=1

𝑙𝑖 · (𝑛 − 𝑖) +
𝑛∑︁

𝑖=𝑣+1
𝑙𝑖 · (𝑛 − 𝑖)

=

𝑣∑︁
𝑖=1

𝑙𝑖 · (𝑛 − 𝑣 + 𝑣 − 𝑖) +
𝑛−𝑣∑︁
𝑖=1

𝑙𝑖 · (𝑛 − 𝑣 − 𝑖) = (𝑛 − 𝑣) |𝑙1 | + 𝑢(𝑙1) + 𝑢(𝑙2),

so the third component of the total weight decreases by (𝑛 − 𝑣) |𝑙1 |.
All these changes cancel out and so the weight is preserved, as desired. □

Definition 7.4. Given two labeled column-composition tableaux 𝑆1, 𝑆2, we define

asc(𝑆1; 𝑆2) B asc(𝑤(𝑆1)𝑤(𝑆2)1),

that is, the number of ascents in the word of 𝑆1 followed by the first letter of 𝑆2.

Lemma 7.5. Let 𝑆1, 𝑆2 be two labeled column-composition tableaux. There exists 𝑆 such that split(𝑆) =
(𝑆1, 𝑆2) if and only if

𝑐1 (𝑆2) ≥ 𝑐ℓ (𝑆1) + asc(𝑆1; 𝑆2) + |𝑙 (𝑆1) | (7.2)

If such 𝑆 exists, then it is unique; we say that 𝑆1 can join 𝑆2 and set join(𝑆1, 𝑆2) = 𝑆.

Proof. If such 𝑆 exists, then (7.2) holds by construction. Suppose that (7.2) holds. Then we can define
𝑆 as the labeled column composition tableau obtaining by decreasing the size of each column of 𝑆2
by asc(𝑆1; 𝑆2) + |𝑙 (𝑆1) | and then concatenating it to 𝑆1, also concatenating their words. Equation (7.2)
ensures that the result is still a column-composition tableau.

It is now immediate that split(𝑆) = (𝑆1, 𝑆2) and that such 𝑆 is unique. □

The following lemma is crucial to ensure that our sign-reversing, weight-preserving bĳection is well
defined.

Lemma 7.6. Let 𝑆1, 𝑆 be labeled column-composition tableaux, and let split(𝑆) = (𝑆2, 𝑆3). Then 𝑆1
can join 𝑆2 if and only if it can join 𝑆.

Proof. Since 𝑐1 (𝑆2) = 𝑐1 (𝑆), then (7.2) holds for 𝑆1 and 𝑆2 if and only if it holds for 𝑆1 and 𝑆. □

We can now define our bĳection as follows.

Definition 7.7. Given 𝑇 = (𝑇1, . . . , 𝑇𝑟 ) ∈ LC
𝛾

𝜆,𝜂
, define 𝜓(𝑇) by the following process:

1. if 𝑟 = 0, then 𝜓(𝑇) B 𝑇 ;
2. if 𝑇1 can split, then 𝜓(𝑇) B (split(𝑇1), 𝑇2, . . . , 𝑇𝑟 );
3. if 𝑇1 cannot split and 𝑇1 can join 𝑇2, then 𝜓(𝑇) B (join(𝑇1, 𝑇2), 𝑇3, . . . , 𝑇𝑟 );
4. otherwise we inductively define 𝜓(𝑇) B (𝑇1, 𝜓(𝑇2, . . . , 𝑇𝑟 )).

Theorem 7.8. Let

𝑈
𝛾

𝜆,𝜂
=

{
𝑇 ∈ LC

𝛾

𝜆,𝜂
| 𝑇 has no vertical bars, and for all 𝑖

𝑐1 (𝑇𝑖+1) < 𝑐ℓ (𝑇𝑖 ) (𝑇𝑖) + asc(𝑇𝑖;𝑇𝑖+1) + |𝑙 (𝑇𝑖) |
}
.

Then
𝐷

𝛾

𝜆,𝜂
(𝑞) =

∑︁
𝑇∈𝑈𝜆,𝜂

𝑞weight(𝑇 ) .
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Proof. Since we are using the split map and its inverse, Proposition 7.3 ensures that 𝜓 is weight-
preserving. Furthermore, split and join either remove or add a single vertical bar, so 𝜓 is sign-reversing.

We have to make sure that 𝜓 is an involution. Let 𝑇 = (𝑇1, . . . , 𝑇𝑟 ) ∈ LC
𝛾

𝜆,𝜂
. If 𝜓(𝑇) = 𝑇 , then

clearly 𝜓2 (𝑇) = 𝑇 .
Suppose that 𝜓(𝑇) = (𝑇1, . . . , 𝑇𝑖−1, split(𝑇𝑖), 𝑇𝑖+1, . . . , 𝑇𝑟 ). Let split(𝑇𝑖) = (𝑆1, 𝑆2). By construc-

tion, 𝑇1, . . . , 𝑇𝑖−1 cannot split, and 𝑇𝑗 cannot join 𝑇𝑗+1 for 𝑗 < 𝑖. By Lemma 7.6, since 𝑇𝑖−1 cannot join
𝑇𝑖 , it also cannot join 𝑆1. By construction, 𝑆1 and 𝑆2 can join, so 𝜓2 (𝑇) = 𝑇 .

Suppose instead that 𝜓(𝑇) = (𝑇1, . . . , 𝑇𝑖−1, join(𝑇𝑖 , 𝑇𝑖+1), 𝑇𝑖+2, . . . , 𝑇𝑟 ). We have that, by construc-
tion, 𝑇1, . . . , 𝑇𝑖−1 cannot split, and 𝑇𝑗 cannot join 𝑇𝑗+1 for 𝑗 < 𝑖. By Lemma 7.6, since 𝑇𝑖−1 cannot join
𝑇𝑖 , it also cannot join join(𝑇𝑖 , 𝑇𝑖+1). By construction, join(𝑇𝑖 , 𝑇𝑖+1) can split, so again 𝜓2 (𝑇) = 𝑇 and 𝜓
is an involution.

The set of fixed points is the set of labeled column composition whose parts cannot split or be joined,
and the conditions for that to hold are exactly the conditions given in the definition of𝑈𝛾

𝜆,𝜂
. □

342

020

1

2

2113

0112

2

3

Figure 6. A fixed point of 𝜓.

Example 7.9. We can read the type of the element in Figure 6 as follows. Since the rows have
lengths 3, 1, 4, 1 respectively, we know that 𝜂 = (4, 3, 1, 1). Since the words in the base rows are
(2, 4, 3), (1), (3, 1, 1, 2), (2), which have multiplicities given by 13233241, we have 𝜆 = (3, 3, 2, 1).
Lastly, the labels underneath the rows rearrange to (3, 2, 2, 2, 1, 1, 0, 0, 0), meaning 𝛾 = (3, 2, 2, 2, 1, 1).

8. A bĳection to ascent polyominoes

In this section we define an intermediate family of objects that will turn out handy to describe our
bĳection between the fixed points of 𝜓 and 𝛾-parking functions, namely ascent labeled polyominoes.

Definition 8.1. An 𝑚 × 𝑛 ascent labeled parallelogram polyomino is a triple (𝑃,𝑄, 𝑤) such that (𝑃,𝑄)
is an 𝑚 × 𝑛 parallelogram polyomino (as in Definition 2.6), and 𝑤 ∈ N𝑛 is such that if 𝑄 has no East
steps on the line 𝑦 = 𝑖 − 1 (or has only 1 East step if 𝑖 = 1, since the first step of 𝑄 must be East), then
𝑤𝑖 ≥ 𝑤𝑖+1.

Definition 8.2. Let (𝑃,𝑄, 𝑤) be an ascent labeled parallelogram polyomino. Let 𝜆 ⊨ 𝑛 be the content
of 𝑤 (that is, 𝑚(𝑤) = 1𝜆12𝜆2 · · · ), and let 𝜂 ⊢ 𝑛 be the partition whose block sizes are the lengths of the
maximal streaks of North steps in 𝑃, in some order. Let

𝛽𝑖 B #{East steps of 𝑄 on the line 𝑦 = 𝑖 − 1} − 𝜒(𝑖 = 1) − 𝜒(𝑖 ∈ Asc(𝑤)),

and let 𝛾 be the partition obtained by rearranging (𝛽1, . . . , 𝛽𝑛) and removing zeros.
We define type(𝑃,𝑄, 𝑤) = (𝜆, 𝜂, 𝛾), and call P𝛾

𝜆,𝜂
the set of ascent labeled polyominoes of type

(𝜆, 𝜂, 𝛾). Note that the height is fixed by the type but the width isn’t, as it depends on the number of
ascents in 𝑤.
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We will now give a bĳection 𝜑 : 𝑈𝛾

𝜆,𝜂
→ P𝛾

𝜆,𝜂
from the set of fixed points of 𝜓 of given type, and

ascent labeled parallelogram polyominoes of the same type.
In order to describe the bĳection, for 𝑇 = (𝑇1, . . . , 𝑇𝑟 ) ∈ 𝑈𝛾

𝜆,𝜂
, we need to define a triple 𝜑(𝑇) =

(𝑃(𝑇), 𝑄(𝑇), 𝑤(𝑇)) corresponding to the polyomino and its labels.

Definition 8.3. Let 𝑇 = (𝑇1, . . . , 𝑇𝑟 ) ∈ 𝑈𝛾

𝜆,𝜂
, with 𝑇𝑖 = (𝐶𝑖 , 𝑤𝑖 , 𝑙𝑖). First, we define 𝑤(𝑇) B 𝑤1 · · ·𝑤𝑟

(the concatenation).
Next, let 𝑙 (𝑇) = 𝑙1 · · · 𝑙𝑟 and let 𝑟𝑖 (𝑇) = 𝑙 (𝑇)𝑖 + 𝜒(𝑖 ∈ Asc(𝑤)). We define

𝑄(𝑇) B 𝐸𝐸𝑟1 (𝑇 )𝑁𝐸𝑟2 (𝑇 )𝑁 · · · 𝐸𝑟𝑛 (𝑇 )𝑁,

that is, the path with 𝑟𝑖 (𝑇) East step on the line 𝑦 = 𝑖 − 1, plus 1 if 𝑖 = 1.
Finally, let 𝑠𝑖 (𝑇) = 𝑐ℓ (𝑇𝑖 ) (𝑇𝑖) + asc(𝑇𝑖;𝑇𝑖+1) + |𝑙𝑖 | − 𝑐1 (𝑇𝑖+1), which is guaranteed to be positive by

the fact that 𝑇 is a fixed point of 𝜓. We set

𝑃(𝑇) B 𝑁ℓ (𝑇1 )𝐸 𝑠1 (𝑇 )𝑁ℓ (𝑇2 )𝐸 𝑠2 (𝑇 ) · · · 𝑁ℓ (𝑇𝑛 )𝐸 𝑠𝑛 (𝑇 )𝐸.
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Figure 7. The image 𝜑(𝑇) of the fixed point in Figure 6.

Example 8.4. We demonstrate the bĳection for the sequence of labeled column composition tableaux
𝑇 ∈ 𝑈 (3,2,2,2,1)

(3,3,1,1) , (4,3,1,1) appearing in Figure 6. We have 𝑤 = 𝑤(𝑇) = (2, 4, 3, 1, 3, 1, 1, 2, 2) and 𝑙 =
𝑙 (𝑇) = (0, 2, 0, 2, 2, 1, 1, 0, 3).

We have Asc(𝑤) = {1, 4, 7}, so we get

𝑄(𝑇) = 𝐸𝐸0+1𝑁𝐸2+0𝑁𝐸0+0𝑁𝐸2+1𝑁𝐸2+0𝑁𝐸1+0𝑁𝐸1+1𝑁𝐸0+0𝑁𝐸3+0𝑁.

Finally, we have 𝑠1 (𝑇) = 0 + 1 + 2 − 2 = 1, 𝑠2 (𝑇) = 2 + 1 + 2 − 0 = 5, 𝑠3 (𝑇) = 0 + 1 + 4 − 2 = 3, and
𝑠4 (𝑇) = 2 + 0 + 3 − 0 = 5, so we end up with

𝑃(𝑇) = 𝑁3𝐸1𝑁1𝐸5𝑁4𝐸3𝑁1𝐸5𝐸.

We refer to Figure 7 for the image of 𝑇 under 𝜑. The North steps of 𝑃(𝑇) are labeled with the
word 𝑤 written from bottom to top. The North segments are also distinguished in our picture with a
red line on its left. We see that the vertical segments of 𝑃(𝑇) have lengths 3, 1, 4, 1, which rearranges
to 𝜂 = (4, 3, 1, 1). The green segments highlight the horizontal segments of 𝑄(𝑇) (ignoring the first,
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mandatory East step), and along each horizontal line, we have lengths (1, 2, 0, 3, 2, 1, 2, 0, 3). Since
Asc(𝑤) = {1, 4, 7}, we subtract term by term to see that

(1, 2, 0, 3, 2, 1, 2, 0, 3) − (1, 0, 0, 1, 0, 0, 1, 0, 0) = (0, 2, 0, 2, 2, 1, 1, 0, 3)

has nonzero parts that rearrange to 𝛾 = (3, 2, 2, 2, 1, 1), as expected.
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Figure 8. A pictorial description of 𝜑−1.

Theorem 8.5. The map 𝜑(𝑇) = (𝑃(𝑇), 𝑄(𝑇), 𝑤(𝑇)) is a bĳection between 𝑈𝛾

𝜆,𝜂
and P𝛾

𝜆,𝜂
such that

weight(𝑇) = area(𝜑(𝑇)), that is, 𝜑 is weight-preserving.

Proof. We describe the inverse 𝜑−1 instead. Starting with 𝑆 = (𝑃,𝑄, 𝑤) ∈ P𝛾

𝜆,𝜂
, for each maximal

vertical segment in 𝑃, draw the maximal rectangle contained in 𝑆 that has that streak as one of the sides
and whose perimeter does not contain any East step in 𝑄. Then slide all of the labels in these vertical
segments to the opposite side of the maximal rectangle (see Step 2 of Figure 8).

To construct (𝑇1, . . . , 𝑇ℓ (𝜆) ), we can determine the tableaux by looking at the rectangles: if 𝑇𝑖 =

(𝐶𝑖 , 𝑤𝑖 , 𝑙𝑖), then 𝐶𝑖 is the column-composition tableau obtained by rotating the rectangle delimited by
the 𝑖th vertical segment in 𝑆; 𝑤𝑖 is the sequence of labels appearing in the rectangle, read from bottom
to top; if 𝑙 = 𝑙1 · · · 𝑙ℓ (𝜆) , then 𝑙 𝑗 + 𝜒( 𝑗 ∈ Asc(𝑤)) is the number of cells of 𝑆 in the 𝑗th row that are
outside the maximal rectangle and whose bottom segment is an East step of𝑄 (since the condition on 𝑃
forces 𝑙 𝑗 ≥ 0, so if 𝑗 ∈ Asc(𝑤), then there must be at least one such cell). This is better seen by rotating
𝑆 by 90 degrees clockwise (as in Figure 8, Step 3). Let us call this rotated picture 𝑆′.

We should note that since (𝑃,𝑄, 𝑤) gives a parallelogram polyomino, the 𝑖 + 1th vertical segment
in 𝑃 occurs strictly right of the 𝑖th vertical segment and also strictly left of 𝑄. Using the translation to
𝑇 = 𝜑−1 (𝑆), this is equivalent to say that

𝑐1 (𝑇𝑖+1) < 𝑐ℓ (𝑇𝑖 ) (𝑇𝑖) +
ℓ (𝑇𝑖 )∑︁
𝑗=1

𝜒( 𝑗 ∈ Asc(𝑤𝑖𝑤𝑖+1)) +
ℓ (𝑇𝑖 )∑︁
𝑗=1

𝑙𝑖
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or rather
𝑐1 (𝑇𝑖+1) < 𝑐ℓ (𝑇𝑖 ) (𝑇𝑖) + asc(𝑇𝑖;𝑇𝑖+1) + |𝑙 (𝑇𝑖) |.

Since the defining property making 𝑃 a path above 𝑄 with respect to 𝑤 converts directly to the defining
relation for elements 𝑇 ∈ 𝑈𝛾

𝜆,𝜂
, then 𝜑 is a bĳection.

2 2 2

1 1 3 1 2

1

Figure 9. 𝜑 is weight-preserving.

We are now going to show that 𝜑 is weight-preserving. First, draw a path along the cells of 𝑆′ starting
from the top left cell, and moving East if there are labels directly East, and moves South otherwise
(see Figure 9). Now the area can be computed by counting the number of unit cells with no dashed
line through it, those cells covering the minimal area we remove as normalization. The area above the
dashed line equals the weight contribution in the 𝑇𝑖 given by the cells above the base row.

The cells below the dashed line will be counted in the following way: In 𝑆′, directly South of the
label 𝑤 𝑗 , there are by construction 𝑙 𝑗 + 𝜒( 𝑗 ∈ Asc(𝑤)) cells which are adjacent to the path on the left.
Each of these cells have the same number of cells weakly East of them, namely the number of cells
between 𝑤 𝑗 and the next base row. The number of cells in these rows is then

(𝑙 𝑗 + 𝜒( 𝑗 ∈ Asc(𝑤))) ×#{cells in the same base and on the right of 𝑤 𝑗 }.

Taking the sum over all 𝑗 , we get the number of cells below the dashed line. But now the second and
the third factor contributing to weight(𝑇) are exactly∑︁

𝑗∈Asc(𝑤)
#{cells in the same base and on the right of 𝑤 𝑗 }

and ∑︁
𝑗

𝑙 𝑗 ×#{cells in the same base and on the right of 𝑤 𝑗 }

(as we described in Example 6.4).
Finally, it is immediate to see that the number of cells on the dashed blue line is exactly 𝑚 + 𝑛 − 1.

So by Definition 2.7, indeed weight(𝑇) = area(𝜑(𝑇)), as desired. □

In the end, we get the following result.

Theorem 8.6.
Δ𝑚𝛾

Ξ 𝑒𝜆
��
𝑡=1

=
∑︁
𝜂⊢𝑛

𝑒𝜂

∑︁
𝑆∈P𝛾

𝜆,𝜂

𝑞area(𝑆) .



Forum of Mathematics, Sigma 25

Proof. It follows immediately from Theorem 7.8 and Theorem 8.5. □

9. 𝛾-Parking Functions

In this section we complete the construction by giving a weight-preserving bĳection between P𝛾

𝜆,𝜂
and

the set

PF
𝛾

𝜆,𝜂
B {𝑝 ∈ PF

𝛾

𝜆
| 𝜂(𝑝) = 𝜂}

of 𝛾-parking function with content 𝜆 and 𝑒-composition 𝜂, part of which we have already seen in
Definition 2.12.

It is slightly easier to describe the inverse, so that is what we will do.

Definition 9.1. Let 𝑝 = (𝑃,𝑄, 𝑤) be a labeled 𝛾-Dyck path. We define 𝜄(𝑝) = (𝑃,𝑄, 𝑤), where 𝑃 and
𝑄 are the paths obtained from 𝑃 and 𝑄 respectively by removing, for every 𝑖 ∉ Asc(𝑤), the first East
step of 𝑃 on the line 𝑦 = 𝑖 and the first East step of 𝑄 on the line 𝑦 = 𝑖 − 1.

See Figure 10 for an example.

Theorem 9.2. The map 𝜄 defines a bĳection between PF
𝛾

𝜆,𝜂
and P𝛾

𝜆,𝜂
such that area(𝑝) = area(𝜄(𝑝)).

Proof. First, notice that 𝑖 ∉ Asc(𝑤) means that 𝑤𝑖 ≥ 𝑤𝑖+1, and so there must be an East step of 𝑃 on
the line 𝑦 = 𝑖 as the labeling is strictly increasing along columns; then, notice that by definition we
have at least an East step of 𝑄 on each line; finally, since the first East step of 𝑃 on the line 𝑦 = 𝑖 must
necessarily be strictly on the left of the first East step of 𝑄 on the line 𝑦 = 𝑖 − 1, then (𝑃,𝑄) is still a
parallelogram polyomino.

Now, since𝑄 has at least one East step on each line (two on the line 𝑦 = 0), and we are only removing
steps on lines 𝑦 = 𝑖 − 1 where 𝑖 ∉ Asc(𝑤), then 𝑄 is guaranteed to have at least one East step on each
line 𝑦 = 𝑖 − 1 where 𝑖 ∈ Asc(𝑤) (two on the line 𝑦 = 0 if 1 ∈ Asc(𝑤)). This means that 𝜄(𝑝) is an ascent
labeled polyomino.

By construction, the word is the same and so the content is also the same; by Definition 2.12, the
𝑒-composition of 𝑝 is exactly given by the lengths of the maximal vertical segments of 𝑃, and by
Definition 8.2 the last component of the type must be 𝛾. It follows that 𝜄(𝑝) ∈ P𝛾

𝜆,𝜂
.

Since the algorithm that defines 𝜄 is invertible, the map is bĳective. Finally, notice that the number
of cells in the 𝑖th row decreases by 1 if 𝑖 ∉ Asc(𝑤) and stays the same if 𝑖 ∈ Asc(𝑤), so we lose
ℓ(𝑤) − asc(𝑤) cells; on the other hand, the width of the polyomino also decreases by ℓ(𝑤) − asc(𝑤),
so the area stays the same. □

As a corollary, we get the desired 𝑒-expansion.

Theorem 9.3.

Δ𝑚𝛾
Ξ 𝑒𝜆

��
𝑡=1

=
∑︁

𝑝∈PF
𝛾

𝜆

𝑞area(𝑝)𝑒𝜂 (𝑝) .

Proof. It follows immediately from Theorem 8.6 and Theorem 9.2. □

Example 9.4. Looking at Figure 3, we have the 𝑒-expansion

Δ𝑚2 Ξ 𝑒11
��
𝑡=1

= 𝑒11 + 𝑒2 + 𝑞𝑒2 + 𝑒11 + 𝑒11 + 𝑞𝑒11 + 𝑞𝑒11 + 𝑞2𝑒11 + 𝑞2𝑒2 + 𝑞3𝑒2
= (𝑞3 + 𝑞2 + 𝑞 + 1)𝑒2 + (𝑞2 + 2𝑞 + 3)𝑒11,

which is indeed correct.
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Figure 10. A pictorial description of 𝜄 for a ∅-parking function.

10. Using different labelings

Our construction generalizes to a broader framework, in which we use a different family of labelings
and a different statistic on words. If these new labelings satisfy certain properties, then the construction
we just described still holds and allows us to give a combinatorial expansion of different families of
symmetric functions.

To this end, let us analyze the construction of an element 𝑇 ∈ LC
𝛾

𝜆,𝜂
and the computation of its

statistic. Let ®𝑤(𝑇) = (𝑤1, . . . , 𝑤𝑟 ) ∈ WV(𝜆, 𝛽) with 𝛽 ∈ 𝑅(𝜂), and let 𝑤(𝑇) = 𝑤1 · · ·𝑤𝑟 be the
concatenation, that is, the word in the base rows of 𝑇 read from left to right. The key property of revmaj
we use in Proposition 7.3 and Lemma 7.6 is that it is computed by taking a subset of letters of 𝑤(𝑇)
and summing the number of letters to the right of, and in the same base as, each letter in the subset. But
these two results do not depend on the subset itself. In the end, we can give the following definition.

Definition 10.1. Let 𝑊 be any set of words, and let 𝜌 : 𝑊 → N be any statistic on 𝑊 . We say that 𝜌
looks right if

𝜌(𝑤) =
∑︁

𝑖∈𝑆 (𝑤)
(ℓ(𝑤) − 𝑖)

for any subset-picking function 𝑆 : 𝑊 → 2N such that 𝑆(𝑤) ⊆ {1, . . . , ℓ(𝑤)}.

Notice that 𝑆 completely determines 𝜌, meaning that for any subset-picking function 𝑆, the statistic
𝜌(𝑤) B ∑

𝑖∈𝑆 (ℓ(𝑤) − 𝑖) looks right. We can extend the definition to vectors as follows.

Definition 10.2. Let 𝑊𝑉 be any set of word vectors, and let ®𝜌 : 𝑊𝑉 → N be any statistic on 𝑊𝑉 . We
say that ®𝜌 looks right if, for ®𝑤 = (𝑤1, . . . , 𝑤𝑟 ) ∈ 𝑊𝑉 , we have

®𝜌( ®𝑤) =
𝑟∑︁
𝑖=1

𝜌(𝑤𝑖)

where 𝜌 is a statistic that is defined on all the entries of word vectors in𝑊𝑉 and that looks right. With
an abuse of notation, we write 𝜌 for ®𝜌.

Let𝑊 ⊆ N𝑛, let LC𝛾
𝑛,𝜂 =

⋃
𝜆⊨𝑤𝑛 LC

𝛾

𝜆,𝜂
(i.e. there is no restriction on the word, as we are taking the

union over all the weak compositions), and let

LC
𝛾

𝑊,𝜂
B

{
𝑇 ∈ LC

𝛾
𝑛,𝜂 | 𝑤(𝑇) ∈ 𝑊

}
.
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Let 𝜌 be any statistic defined on the set of subwords of words in 𝑊 that looks right. For 𝑇 ∈ LC
𝛾

𝑊,𝜂
,

with the same notation as in Definition 6.3 let

weight(𝑇𝑖) B |𝐶𝑖 | + 𝜌(𝑤𝑖) + 𝑢(𝑙𝑖), weight(𝑇) B
ℓ (𝜂)∑︁
𝑖=1

weight(𝑇𝑖).

For any composition 𝛽, let WV(𝛽) =
⋃

𝜆⊨𝑤𝑛 WV(𝜆, 𝛽), that is, the set of word vectors ®𝑤 =

(𝑤1, . . . , 𝑤ℓ (𝛽) ) such that ℓ(𝑤𝑖) = 𝛽𝑖 . We define

𝑊 (𝛽) B { ®𝑤 ∈ WV(𝛽) | 𝑤1 · · ·𝑤ℓ (𝛽) ∈ 𝑊},

which is the subset of such vectors that concatenate to a word in𝑊 . Note that 𝜌 extends to𝑊 (𝛽) so that
it looks right.

Let

𝐷
𝛾

𝑊,𝜂
(𝑞) B

∑︁
𝛽⊨𝑛

∑︁
®𝑤∈𝑊 (𝛽)

∑︁
®𝜈∈PR(𝜂,𝛽)

𝑞𝜌( ®𝑤)𝑚𝛾

[∑︁
𝑖

[𝛽𝑖]𝑞

]
(−1)𝑛−ℓ (𝛽) (1 − 𝑞𝛽1 ) 𝑓 ®𝜈

[
1

1 − 𝑞

]
.

We have the following analogue of Theorem 7.8.

Theorem 10.3. Let

𝑈
𝛾

𝑊,𝜂
B

{
𝑇 ∈ LC

𝛾

𝑊,𝜂
| 𝑇 has no vertical bars, and ∀𝑖, 𝑐1 (𝑇𝑖+1) < 𝑐ℓ (𝑇𝑖) + 𝑠(𝑇𝑖;𝑇𝑖+1) + |𝑙 (𝑇𝑖) |

}
,

where 𝑠(𝑇𝑖;𝑇𝑖+1) B |𝑆(𝑤𝑖 · 𝑤𝑖+1
1 ) |. Then

𝐷
𝛾

𝑊,𝜂
(𝑞) =

∑︁
𝑇∈𝑈𝛾

𝑊,𝜂

𝑞weight(𝑇 ) .

Proof. The same argument as in Proposition 7.3 and Lemma 7.6 holds if we replace asc with any
statistic that looks right. In this case, we replaced asc with 𝜌, which looks right by hypothesis, so the
statement holds. □

Definitions 8.1 and 8.2 generalize as follows.

Definition 10.4. Let 𝑊 be a set of words of length 𝑛, and let 𝑆 be a subset-picking function on 𝑊 . An
𝑆-labeled parallelogram polyomino is a triple (𝑃,𝑄, 𝑤) where 𝑤 ∈ 𝑊 , and (𝑃,𝑄) is a parallelogram
polyomino such that if 𝑄 has no East steps on the line 𝑦 = 𝑖 − 1 (or has only 1 East step if 𝑖 = 1, since
the first step of 𝑄 must be East), then 𝑖 ∉ 𝑆(𝑤).

Definition 10.5. Let (𝑃,𝑄, 𝑤) be an 𝑆-labeled parallelogram polyomino. Let 𝜂 ⊢ 𝑛 be the partition
whose block sizes are the lengths of the maximal streaks of North steps in 𝑃, in some order. Let

𝛽𝑖 B #{East steps of 𝑄 on the line 𝑦 = 𝑖 − 1} − 𝜒(𝑖 = 1) − 𝜒(𝑖 ∈ 𝑆(𝑤)),

and let 𝛾 be the partition obtained by rearranging (𝛽1, . . . , 𝛽𝑛) and removing zeros.
We define type(𝑃,𝑄, 𝑤) = (𝑊, 𝜂, 𝛾), and call P𝛾

𝑊,𝜂
the set of S-labeled polyominoes of type

(𝑊, 𝜂, 𝛾). Once again, the width depends on the cardinality of 𝑆(𝑤) and it’s not constant through the set.

Finally, using the same argument as in Theorem 8.5, with the statistic 𝜌 (that looks right)
corresponding to 𝑆, we have the following.
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Theorem 10.6.
𝐷

𝛾

𝑊,𝜂
(𝑞) =

∑︁
𝑃∈P𝛾

𝑊,𝜂

𝑞area(𝑃) .

In particular, for 𝑆 = Des, our labeled polyominoes (𝑃,𝑄, 𝑤) enumerated by 𝐷𝛾

𝜆,𝜂
can be interpreted

in two different ways: in one, the path 𝑄 has forced East steps at the descents of 𝑤, in the other it has
forced East steps at the ascents of 𝑤. Both are valid combinatorial interpretations.

Finally, the map 𝜄 from Definition 9.1 also generalizes, by replacing the condition 𝑖 ∉ Asc(𝑤) with
𝑖 ∉ 𝑆(𝑤). Of course, the set of 𝛾-Dyck paths we get in the end will not necessarily have strictly increasing
columns, but rather the condition that if 𝑤𝑖 , 𝑤𝑖+1 are in the same column, then 𝑖 ∈ 𝑆(𝑤).

11. Applications to Schur functions

We can now use the idea of choosing different labelings to get similar results for other instances of
Δ̃𝑚𝛾

Ξ 𝐹. One interesting case that our technique can handle is when 𝐹 is a Schur function (rather than
an elementary symmetric function). We now find an 𝑒-expansion for Δ̃𝑚𝛾

Ξ 𝑠𝜆.
The idea is to mimic what we did in Section 4. We have the expansion

𝑠∗𝜆 =
∑︁
𝜇⊢𝑛

H̃𝜇

𝑤𝜇

⟨𝑠∗𝜆, H̃𝜇⟩∗ =
∑︁
𝜇⊢𝑛

H̃𝜇

𝑤𝜇

⟨𝑠𝜆′ , H̃𝜇⟩,

where again in the last step we went from the ∗-scalar product to the ordinary Hall scalar product.
We can handle the term ⟨𝑠𝜆′ , H̃𝜇⟩ by using the specialization at 𝑡 = 1 of the Macdonald polynomials

[Mac95, Hag08, HHL05a]. Combining [Hag08, Equation (2.26), (2.30)] and specializing 𝑡 = 1, we get
the formula

⟨𝑠𝜆, H̃𝜇⟩
���
𝑡=1

= 𝐾𝜆,𝜇 (𝑞, 1) =
∑︁

𝑇∈SYT(𝜆)
𝑞comaj(𝑇,𝜇) ,

where SYT(𝜆) is the set of standard Young tableaux of shape 𝜆, and comaj(𝑇, 𝜇) is computed as
follows: first, partition the entries of 𝑇 in blocks according to 𝜇, i.e. one block containing the entries
going from 1 to 𝜇1, one block containing the entries going from 𝜇1 + 1 to 𝜇1 + 𝜇2, and so on; then, for
1 ≤ 𝑗 ≤ |𝜆 |, check if 𝑗 and 𝑗 + 1 are in the same block, say the 𝑖th block, and check if 𝑗 + 1 occurs in a
row above 𝑗 in 𝑇 ; if they do, add 𝜇1 + · · · + 𝜇𝑖 − 𝑗 to comaj(𝑇, 𝜇).

We want to convert this statement into one about words. Recall that a lattice word 𝑤 = (𝑤1, . . . , 𝑤𝑛)
is a word such that for every 𝑖 and 𝑗 ,

𝑚 𝑗+1 (𝑤1, . . . , 𝑤𝑖) ≤ 𝑚 𝑗 (𝑤1, . . . , 𝑤𝑖).

This means that when read from the left, the number of 𝑗’s encountered is, at every moment, greater than
or equal to the number of 𝑗 + 1’s. If 𝑚 𝑗 (𝑤) = 𝜆 𝑗 , then we say 𝑤 has content 𝜆, and write 𝑤 ∈ LW(𝜆).
Notice that, since 𝑤 is a lattice word, then 𝜆 must be a partition. The following result is classical, but
we add a proof for completeness.

Lemma 11.1. For any partition 𝜆, there is a bĳection between lattice words with content 𝜆 and standard
Young tableaux of shape 𝜆.

Proof. Given a lattice word 𝑤 ∈ LW(𝜆), let 𝑇 be the standard Young tableau obtained by putting 𝑖 in
the 𝑤th

𝑖
row. Since 𝑤 has content 𝜆, then 𝑇 has shape 𝜆, and since 𝑤 is a lattice word, then 𝑇 is indeed a

standard Young tableau. It is clear that this construction is reversible and hence bĳective. See Figure 11
for an example. □

If a tableau 𝑇 is the image of a lattice word 𝑤 via this bĳection, we say that 𝑤 encodes 𝑇 .
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Figure 11. The standard Young tableau of shape (4, 3, 2) encoded by the lattice word 112132132.

For any composition 𝛽, recall that WV(𝛽) is the set of word vectors ®𝑤 = (𝑤1, . . . , 𝑤ℓ (𝛽) ) such that
ℓ(𝑤𝑖) = 𝛽𝑖 . We define

LW(𝜆, 𝛽) B { ®𝑤 ∈ WV(𝛽) | 𝑤1 · · ·𝑤ℓ (𝛽) ∈ LW(𝜆)},

which is the subset of vectors that concatenate to a lattice word with content 𝜆. Recall that

revmaj( ®𝑤) =
ℓ (𝛽)∑︁
𝑖=1

revmaj(𝑤𝑖).

We have the following.

Lemma 11.2. If 𝑤 ∈ LW(𝜆) encodes 𝑇 ∈ SYT(𝜆), for ®𝑤 ∈ LW(𝜆, 𝛽) that concatenates to 𝑤, we have

revmaj( ®𝑤) = comaj(𝑇, 𝛽).

Proof. Let 1 ≤ 𝑖 ≤ ℓ(𝛽), let Σ𝑖 (𝛽) B 𝛽1 + · · · + 𝛽𝑖 , and let

Asc𝛽,𝑖 (𝑤) B {Σ𝑖−1 (𝛽) + 𝑟 | 𝑟 ∈ Asc(𝑤𝑖)},

that is, the set Asc(𝑤𝑖) relabeled so that its entries give the positions of the ascents in 𝑤 rather than in
𝑤𝑖 . By definition,

revmaj(𝑤𝑖) =
∑︁

𝑟∈Asc(𝑤𝑖 )
(𝛽𝑖 − 𝑟) =

∑︁
𝑗∈Asc𝛽,𝑖 (𝑤)

(Σ𝑖 (𝛽) − 𝑗).

If 𝑗 ∈ Asc𝛽,𝑖 (𝑤), then necessarily 𝑗 + 1 ≤ Σ𝑖 (𝛽) (because 𝑤 𝑗 must occur within 𝑤𝑖), so 𝑗 and 𝑗 + 1
belong to the same block of 𝑇 according to 𝛽; moreover, we have 𝑤 𝑗 < 𝑤 𝑗+1, so 𝑗 + 1 occurs in a row
above 𝑗 in 𝑇 . This means that the contribution of 𝑗 to comaj(𝑇, 𝛽) is exactly Σ𝑖 (𝛽) − 𝑗 , so taking the
sum over all 𝑗 we get

revmaj( ®𝑤) = comaj(𝑇, 𝛽)

as desired. □

It is important to remark that

H̃𝜇 [𝑋; 𝑞, 1] = (𝑞; 𝑞)𝜇ℎ𝜇
[

1

1 − 𝑞

]
,

which is a multiplicative basis. This means that, when evaluating 𝑡 = 1, the order of the parts of 𝜇
doesn’t matter and we can use compositions rather than partitions, the combinatorial argument being
exactly the same. Putting everything together, we have the following expansion.
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Figure 12. The 𝑒-expansion for Δ̃𝑚1 Ξ 𝑠21.

Proposition 11.3. 〈
𝑠𝜆, (𝑞; 𝑞)𝛽ℎ𝛽

[
1

1 − 𝑞

]〉
=

∑︁
®𝑤∈LW(𝜆,𝛽)

revmaj( ®𝑤).

Using this expansion, the same argument we used in Section 4 to prove Proposition 4.6 leads us to
the following.

Proposition 11.4. For any 𝜆 ⊢ 𝑛 and 𝛾 ⊢ 𝑚, we have

Δ̃𝑚𝛾
Ξ 𝑠𝜆 =

∑︁
𝜂⊢𝑛

𝑒𝜂 𝐶
𝛾
𝑠𝜆 ,𝜂 (𝑞),

where

𝐶
𝛾
𝑠𝜆 ,𝜂 =

∑︁
𝛽⊨𝑛

∑︁
®𝑤∈LW(𝜆′ ,𝛽)

∑︁
®𝜈∈PR(𝜂,𝛽)

𝑞revmaj( ®𝑤)𝑚𝛾

[∑︁
𝑖

[𝛽𝑖]𝑞

]
(−1)𝑛−ℓ (𝛽) (1 − 𝑞𝛽1 ) 𝑓 ®𝜈

[
1

1 − 𝑞

]
.
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Since our statistic is still revmaj, we still have 𝑆(𝑤) = Asc(𝑤), so we can repeat the whole
construction starting from lattice words instead, and get lattice 𝛾-Dyck paths. In the end, we get the
following.

Theorem 11.5.
Δ̃𝑚𝛾

Ξ 𝑠𝜆 =
∑︁

𝑝∈LPF
𝛾

𝜆′

𝑞area(𝑝)𝑒𝜂 (𝑝) .

Example 11.6. For 𝜆 = (2, 1) and 𝛾 = (1), we have

Δ̃𝑚𝛾
Ξ 𝑠𝜆 = (𝑞 + 2)𝑒111 + (𝑞3 + 4𝑞2 + 6𝑞 + 4)𝑒21 + (𝑞4 + 2𝑞3 + 2𝑞2 + 𝑞)𝑒3.

The corresponding combinatorial expansion is shown in Figure 12, and we indeed see that they coincide.

12. Special cases

Our construction yields a lot of special cases that are of interest and that find matches in the literature.
In this section, we aim to go through some of them.

12.1. The extended Delta theorem when 𝑡 = 1

From the fundamental fact that Ξ 𝑒𝑛 = 𝑒𝑛, as a corollary of our construction we obtain a special case
of the results in [HR18], [Rom17], and [Rom19]. Here, the polyominoes in P𝛾

(𝑛) ,𝜂 are precisely the set
of parallelogram polyominoes whose top path has vertical segments whose lengths rearrange to 𝜂, and
whose bottom path has horizontal segments (ignoring the first step of the path) whose lengths rearrange
to 𝛾. There is only one word labeling the polyominoes, consisting of only 1’s. There are no descents or
ascents in this word. Our bĳection to 𝛾-parking functions produces a pair of paths (𝑃′, 𝑄′) where 𝑃′

has no consecutive North steps, and the bottom path has lengths rearranging to 𝛾 + 1𝑛.
The same result can be used to derive the 𝑡 = 1 case of the Extended Delta Theorem ([HRW18,

DM22, BHM+23]). In fact, there is an explicit bĳection between appropriate families of our objects and
the objects appearing in the theorem; it states the following.

Theorem 12.1 (Extended Delta Theorem). For 𝑚, 𝑛, 𝑘 ∈ N, we have the monomial expansion

Δℎ𝑚𝑒𝑛−𝑘 𝑒𝑛 =
∑︁

𝑝∈LD(𝑛,𝑚)∗𝑘
𝑞dinv(𝑝) 𝑡area(𝑝)𝑥𝑝 .

Here, LD(𝑛, 𝑚)∗𝑘 is the set of labeled Dyck paths of size 𝑚 + 𝑛, with 𝑚 zero labels (that cannot be
in the first column) and 𝑘 decorated double rises (i.e North steps preceded by North steps; the first step
also counts as a double rise); dinv(𝑝) is the number of diagonal inversions of the path (that we do not
define); area(𝑝) is the number of whole squares between the path and the main diagonal in rows that
do not contain decorations; and 𝑥𝑝 is the product of the variables indexed by labels of the path, where
𝑥0 = 1. For our purposes, it will be more convenient to consider paths with decorated double falls (i.e
East steps followed by East steps; the last step also counts as a double fall), which is clearly equivalent.

Note that the symmetric function is also symmetric in 𝑞 and 𝑡, so we can set 𝑞 = 1, 𝑡 = 𝑞 and since
the area does not depend on the labels, this gives us an 𝑒-expansion of the symmetric function when
𝑡 = 1. We are going to show that this expansion coincides with ours. Since the content of the labeling
is (𝑛), it is more convenient to use ascent polyominoes, rather than 𝛾-parking functions, and disregard
the labeling altogether.

Indeed, ℎ𝑚𝑒𝑛−𝑘 is monomial-positive: the coefficient of 𝑚𝛾 is the number of ways one can fill ℓ(𝛾)
ordered boxes with 𝑚 green balls and 𝑛− 𝑘 blue balls, such that the 𝑖th box contains 𝛾𝑖 balls in total and
no box contains 2 or more green balls. In our language, this means that the 𝑒-expansion of Δℎ𝑚𝑒𝑛−𝑘 𝑒𝑛
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will be given by all the 𝛾-parking functions of content (𝑛) such that the bottom path is obtained by
starting with 𝐸𝑁𝑛, then inserting 𝑛 − 𝑘 East steps in different rows colored green, and then inserting 𝑚
more blue East steps in any possible way.

The bĳection we give is essentially a combination of [DIVW22, Theorem 6.17] (see also [DIVW19,
Theorem 6.1]) and [Rom17, Theorem 2], disregarding the labels. We will not give a rigorous proof, but
we will go through an example in detail, and the generalization follows.

Example 12.2. Let 𝑛 = 7, 𝑘 = 4, and 𝑚 = 3.
Step 1. We start with the bottom path 𝐸𝑁7, we add 𝑛− 𝑘 = 3 East steps in different rows (in green in

the picture), and then we add 𝑚 = 3 East steps anywhere (in blue in the picture). To compute the area,
we ignore the cells that touch the bottom path; the cells that do contribute are shaded.

Step 2. For each blue step (the ones coming from ℎ𝑚) we insert a North step in the bottom path
right before it, and insert a North step in the top path in the column one unit to the left. We mark the
North steps added to the top path with a • symbol, to denote that they will be the “empty” valleys in the
final picture. We highlight these steps in red. Notice that the area does not change in the process, as the
number of shaded cells in each column does not change.

•

•

•

Step 3. For each pair of consecutive North steps in the bottom path, we insert an East step in between
them, and an East step in the top path in the same column, on the right side of the already present East
step. We mark these extra East steps with a ∗ symbol. We do the same in the first row if there is no green
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step there. By construction, in the top path, these added steps have another East step to the left. We do
not shade the area in the newly introduced column. We won’t need the previous colours anymore, so we
highlight again in red these new steps.

•

•

•

∗

∗

∗ ∗

Step 4. Now, we move the ∗ symbols one column to the left, and we move all the shaded cells that
end up under a ∗ one column to the right. Then, we draw the diagonal 𝑦 = 𝑥.

•

•

•

∗

∗

∗ ∗

Step 5. The part of the top path going from (0, 0) to (𝑚+𝑛, 𝑚+𝑛) is now a Dyck path. By construction,
it has 𝑚 marked valleys and 𝑛 − 𝑘 decorated double falls (i.e. pairs of consecutive East steps). The area
of the path is the number of whole cells between the path and the diagonal that are not in columns
containing a ∗, which are exactly the shaded cells. The lengths of the vertical segments, ignoring the
parts containing a marked valley, are also preserved. It follows that this procedure yields a bĳection that
preserves both the area and the 𝑒-composition, as desired.
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12.2. The parking function case

When 𝜆 = 1𝑛 and 𝛾 = ∅, then elements in PF∅
1𝑛 are constructed by selecting a ∅-Dyck path and writing

the numbers 1, . . . , 𝑛 along the North segments of the top path so that the columns are increasing. This
is precisely the set of parking functions in the classical sense.

2

4

7

5

1

3

8

6

Figure 13. A parking function of size 8.

Figure 13 shows an element of PF8 = PF∅
(18 ) (the parking functions of size 8), drawn in the style of

our ∅-parking functions. Its area is 10.
Indeed, we have

Ξ 𝑒1𝑛 |𝑡=1 =
∑︁

𝑝∈PF𝑛

𝑞area(𝑝)𝑒𝜂 (𝑝) ,

which suggests that the combinatorial description given in [DILB+22, Conjecture 6.4] should hold. In
fact, it is known that spanning trees on the complete graph on {0, 1, . . . , 𝑛} 𝐾𝑛+1, rooted at 0, 𝑞-weighted
with 𝜅-inversions, are in bĳection with parking functions of size 𝑛, 𝑞-weighed with the area. To prove
the conjecture, one should show that the 𝑒-expansion (or, likely easier, the 𝑚-expansion) is preserved
by the bĳection.

We actually have that [DILB+22, Conjecture 6.1], which is very close to this statement, is actually
solved for the symmetric function Θ𝑒1𝑛 𝑒1 (evaluated at 𝑡 = 1), of which it provides a monomial
expansion. At the moment the relation between the 𝑒-expansion we just provided and the monomial
expansion of [DILB+22, Theorem 4.5] remains unclear.

13. Concluding remarks

We conclude this paper with a few remarks and a discussion on possible future directions.

13.1. Combinatorial expansions

We should remark that our identities have multiple consequences. For one, for any 𝐹 which has a positive
expansion in terms of the monomial basis, we have found that Δ̃𝐹 Ξ 𝑒𝜆 and Δ̃𝐹 Ξ 𝑠𝜆 are 𝑒-positive, and
their expansion can be given in terms of 𝛾-parking functions.

When 𝐹 equals 𝑠𝜇, 𝑒𝜇, ℎ𝜇 or (−1) |𝜇 |−ℓ (𝜇) 𝑓𝜇, we can get a set of combinatorial objects by labeling
the bottom path of 𝛾-parking functions (as is done in [Rom19, HR18, Rom17] and in Example 12.2).
Furthermore, if𝐺 expands positively in terms of the Schur basis, then we have also found that Δ̃𝐹 Ξ𝐺 is
𝑒-positive. We can similarly get expansions for these symmetric functions in terms of lattice 𝛾-parking
functions.
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13.2. 𝑒-positivity

Many of these symmetric functions become 𝑒-positive after the substitution 𝑞 = 1 + 𝑢 (without
substituting 𝑡 = 1). For instance, Δ𝑚𝛾

Ξ 𝑒𝑛 seems to exhibit this 𝑒-positivity phenomenon.

Conjecture 13.1. If 𝐹 is monomial positive, and 𝐺 is Schur positive, then

Δ𝐹 Ξ𝐺
���
𝑞→1+𝑢

is 𝑒-positive, i.e. the coefficients of the 𝑒-expansion are polynomials in N[𝑢, 𝑡].
In particular, if 𝐺 is 𝑒-positive, the same result holds.

The case 𝛾 = (𝑘) and 𝐺 = 𝑒𝑛 follows from the proof of the Delta theorem and the 𝑒-positivity on
vertical strip 𝐿𝐿𝑇 polynomials proved in [D’A20].

If this conjecture is true, then our combinatorial objects would also give the combinatorial expansions
for these symmetric functions. To be more precise, these symmetric functions would enumerate the
number of 𝛾-parking functions (or lattice 𝛾-parking functions) where some subset of its area cells are
chosen. It remains to find a 𝑡 statistic that would give the entire symmetric function.

Conjecture 13.2. There exists a statistic tstat from pairs (𝑝, 𝑆) with 𝑝 ∈ PF
𝛾

𝜆
and 𝑆 ⊆ Area(𝑝) subset

of the area cells of 𝑝, such that

Δ𝑚𝛾
Ξ 𝑒𝜆

��
𝑞→1+𝑢 =

∑︁
𝑝∈PF

𝛾

𝜆

∑︁
𝑆⊆Area(𝑝)

𝑢#𝑆𝑡tstat(𝑝,𝑆)𝑒𝜂 (𝑝) .

13.3. 𝐺-parking functions, labeled Dyck paths, tiered trees

It might be possible to apply the construction of the previous subsection in a much broader context.
Indeed, we have a statistic-preserving map between ∅-Dyck paths with content 𝛼 and some subset of
𝛼-tiered trees rooted at 0 (as in [DILB+22, Conjecture 6.4]), which we can obtain using results about
𝐺-parking functions [BTW87, Dha90] (see also [PYY17]) for appropriate multipartite graphs.

This connection may give a proof of [DILB+22, Conjecture 6.4], provided that one finds a way to
translate the 𝑒-expansion into the monomial expansion. It is also possible that investigating this further
would lead to the discovery of a bistatistic on rooted tiered trees that describes the symmetric function
in full (without the need to specialize 𝑡 = 1).

13.4. The two-part case

When 𝜆 = (𝑛, 𝑚) and 𝛾 = ∅, our objects are exactly the so-called two-car parking functions, that
is, labeled Dyck paths of size 𝑚 + 𝑛 with 𝑛 labels equal to 1 and 𝑚 labels equal to 2. By [DIVW22,
Theorem 3.11], we know that these objects are in fact in bĳection with (unlabeled) parallelogram
polyominoes of size (𝑚 + 1) × (𝑛 + 1), and the bĳection preserves the area.

In light of the statement in the previous subsection, this is not surprising, as we know that par-
allelogram polyominoes are in bĳection with (unlabeled) (𝑛, 1, 𝑚)-tiered rooted trees [DILB+22,
Proposition 7.4]. In fact, the bĳection is given for labeled objects; as before, this potentially allows
us to get a monomial expansion, but this does not seem to coincide with the 𝑒-expansion provided by
our theorems. As for the more general case of the previous subsection, this matter is worth investigating.

It might be worth noting that (unlabeled) parallelogram polyominoes are also in bĳection with Dyck
words in the alphabet {0 ≤ 0 ≤ 1 ≤ 1 ≤ 2 ≤ . . . }, starting with either 0 or 0, with 𝑚 non-barred letters
and 𝑛 barred letters, with an area statistic given by the sum of the letters.
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