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The Lagrangian approach is natural to study issues of turbulent dispersion and mixing.
We propose in this work a general Lagrangian stochastic model for inhomogeneous
turbulent flows, using velocity and acceleration as dynamical variables. The model takes
the form of a diffusion process, and the coefficients of the model are determined via
Kolmogorov theory, and the requirement of consistency with velocity-based models. We
show that this model generalises both the acceleration-based models for homogeneous
flows, as well as velocity-based generalised Langevin models. The resulting closed model is
applied to a channel flow at high Reynolds number, and compared to experiments as well
as direct numerical simulations. A hybrid approach coupling the stochastic model with
a Reynolds-Averaged-Navier-Stokes (RANS) is used to obtain a self-consistent model,
as is commonly used in probability density function methods. Results highlight that
most of the acceleration features are well represented, notably the anisotropy between
stream-wise and wall-normal components and the strong intermittency. These results
are valuable, since the model improves on velocity-based models for boundary layers
while remaining relatively simple. Our model also sheds some light on the statistical
mechanisms at play in the near-wall region.

1. Introduction

Lagrangian stochastic models are widely used to describe complex turbulent
flows (Pope 2000; Fox 2003; Chibbaro & Minier 2014), and are of particular relevance
for turbulent dispersion (Wilson & Sawford 1996), reactive flows (Pope 1985; Fox 2003)
and inertial particles (Minier & Peirano 2001; Peirano et al. 2006; Minier 2016). They
are also appealing when Lagrangian properties are under investigation (Yeung & Pope
1989; Mordant et al. 2002; Meneveau 2011; Watteaux et al. 2019).

Lagrangian stochastic models produce collections of synthetic trajectories that repro-
duce the statistical and, in some less accurate weak sense (i.e. the convergence is assured
only in distribution), the dynamical properties of particles advected by the flow (Kloeden
& Platen 1992; Pope 1985). In this framework, stochastic models focus generally on the
dynamics of the one-point and one-time probability density function (PDF) of the state-
vector of the system (Pope 2000).

The choice of the relevant variables for the model (i. e. the appropriate state-vector)
is key to an accurate description of a given turbulent flow. In particular, it is essential to
retain enough variables to have a state-vector which can be described as Markovian (On-
sager & Machlup 1953; Gardiner 1990; Marconi et al. 2008). Since these models are
mainly conceived to tackle general non-homogeneous flows relevant for applications, the
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state-vector is usually limited to the position and velocity of the fluid particles (x,U).
These observables are modelled as a diffusion process, which is justified in relation to
Kolmogorov theory (Pope 1994a). A variety of models have been proposed for such a
process (Lundgren 1969; Pope 1981), but one of the more widely accepted is the so-called
generalised Langevin model (GLM), which reads as

dxi = Ui dt

dUi = −1

ρ

∂〈P 〉
∂xi

dt+Gij (Uj − 〈Uj〉) dt+
√
C0〈ε〉dWi , (1.1)

where W is an isotropic Wiener process (Gardiner 1990), and

Gij = − 1

TL
δij +Gaij and TL = (

1

2
+

3

4
C0)
−1 k

〈ε〉
, (1.2)

where Gaij is a traceless matrix with the dimension of the inverse of time, k(x) is the

turbulent kinetic energy, 〈ε〉(x) = ν〈|∇u|2〉 is the average dissipation-rate, and C0 is a
dimensionless constant of the model. The specification of C0 and Gij define the particular
model.

These models have some limitations, and their validity may become questionable in
some circumstances. In particular, in stationary isotropic turbulence the auto-correlation
of the velocity for such models is given by (Pope 2000)

ρ(s) =
〈U(t)U(t+ τ)〉

〈U2〉
= exp

(
−|s|
TL

)
. (1.3)

This formula shows that the auto-correlation is non-differentiable at the origin, reflecting
the fact that the velocity process is not differentiable. Only one time-scale, namely TL
that is related to large energy-containing scales, is included in the model, and there
is no Reynolds-number effect. Indeed,the separation of time scales τη � TL, where τη
is the Kolmogorov time-scale τη ≡ (ν/〈ε〉)1/2 allows these models to neglect high time-
frequency behavior, and limit the state-vector to fluid particle position and velocity. This
criterion is no longer met at low Reynolds numbers, with the Reynolds number defined as
Re = UL/ν, where U and L are typical velocity and length of large scales, and ν is the
kinematic viscosity. This assumption is not valid everywhere in a turbulent boundary
layer, where the characteristic time-scale of the flow in the near-wall region is of the
order of the Kolmogorov scale. In this case, there is not a separation of scales sufficient
to justify the Markovian description of the process (x,U).

Some proposals have been made to address these issues in isotropic turbulence (Kras-
noff & Peskin 1971; Sawford 1991) by introducing a second time-scale, which consequently
introduces Reynolds-number dependence. Furthermore, experimental measurements of
Lagrangian fluid acceleration in isotropic flows (Voth et al. 1998, 2002; Mordant et al.
2004b) have motivated several models with the purpose of fitting the experimental data,
but without a sound link to turbulence theory (Gotoh & Kraichnan 2004), with the
notable exception of Lamorgese et al. (2007). An important step forward has been taken
by Pope (2002), who has proposed the use a general diffusion stochastic model for fluid
particle velocity and acceleration, and has considered in detail the case of homogeneous
anisotropic turbulence. The goal of that work was not to propose a specific model,
but rather to show that a diffusion process may reproduce quite well the DNS data
if coefficients are correctly prescribed. However, no attempt has been made to develop
a consistent model for general non-homogenous flows, although this is the more realistic
and relevant situation for applications.

The aim of the work reported here is to propose a first model that includes the
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acceleration of fluid particles for the general case of statistical inhomogeneous turbulence,
and it follows recent experimental and DNS measurements of the acceleration of tracer
particles in a turbulent channel-flow at high Reynolds number (Stelzenmuller et al. 2017).
The model is developed in the general framework of a diffusion process for the fluid
particle velocity and acceleration (Pope 2002), and can be applied also to statistical
unsteady flows, even though the present work is focused on a statistical stationary
channel-flow. The coefficients of the model are not constrained by measurements, but
rather on the basis of Kolmogorov theory and by the general analysis of the behaviour
of the statistical moments, notably the Reynolds stresses, which can be extracted from
the model. In the simplest case of isotropic flows, the model reverts to one that has been
previously proposed (Krasnoff & Peskin 1971; Sawford 1991). In non-homogeneous flows,
when the acceleration can be considered as a fast process, i.e. when the observation
scale is much larger than the characteristic acceleration scale, the model is consistent
instead with the standard Langevin models for the fluid velocity given by Eqs. (1.1).
The resulting model therefore fulfils the criteria set down to characterise an acceptable
model for general applications (Pope 2000; Minier et al. 2014), and thus it could be
applied to realistic flows of practical interest. Still, limitations inherent to the present
approach are expected to require some improvements, at least in specific cases and for
particular questions. Some possible ameliorations are discussed in the conclusions.

As well as being interesting in its own right, we also regard the present model as an
intermediate step in the development of an improved Lagrangian stochastic model for
inertial particles. In particular, the possible Reynolds-number dependency has not yet
been considered for such phenomena.

The paper is organised as follows: in Sec. 2, we propose the new theoretical model
and how to specify the coefficients of the governing equations. The different limit cases
are also discussed. In Sec. 3, the numerical approach is analysed, and we describe the
numerical scheme developed to deal with the set of stochastic equations, which is stiff. In
Sec. 4, the results are reported: mean, variance, and PDF of the acceleration components
are compared against DNS and experimental data. The discussion and the conclusions
are given in Sec. 5

2. Theoretical Model

In this work, we develop a Lagrangian stochastic model which consists of an ordinary
differential equation for U, which models the exact fluid-particle velocity U+, and a
stochastic differential equation (SDE) for an acceleration variable A, which models the
exact acceleration

A+ =
dU+

dt
= A[X+(t), t], (2.1)

where X+(t) is the position of the fluid-particle. The acceleration can be decomposed
into its mean and fluctuating parts, based on the mean (〈P 〉, 〈U〉) and fluctuating (p′,u)
components of the pressure and velocity:

Ai = −1

ρ

∂〈P 〉
∂xi

− 1

ρ

∂p′

∂xi
+ ν

∂2〈Ui〉
∂xk∂xk

+ ν
∂2〈ui〉
∂xk∂xk

. (2.2)

We propose a model in terms of a fluctuating component of the acceleration denoted by
a(t), as suggested in earlier works (Krasnoff & Peskin 1971; Pope 2002). The model we
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propose reads as:

dxi = Ui dt (2.3)

dUi = −1

ρ

∂〈P 〉
∂xi

dt+Dij(Uj − 〈Uj〉) dt+ ai dt, (2.4)

dai = −βaidt+
√
BdWi. (2.5)

Comparing the equations (2.2) and (2.4) reveals that the mean-pressure term is included
in the equation for the particle velocity, as well as a term which is linear in the velocity
fluctuations. This approach follows directly from the form of the first-order models as
expressed by Eq. (1.1), and the linear term models a part of the fluctuating pressure
gradient. Therefore, a(t) models the viscous contribution and pressure effects not taken
into account in the model. In particular,

Dij (Uj − 〈Uj〉) + ai(t) ≡ Ai(t)− 〈Ai(t)|x(t)〉 (2.6)

where x(t) represents the position of the model particle. The tensor coefficients depend
on space x, namely 〈P 〉(x, t) , Dij(x, t) , 〈Ui〉(x, t); as well as in general the coefficients
β and B are functions of x, as will be made explicit shortly.

The structure of the model is such that some terms contributing to acceleration, namely
those evolving on a slower time-scale, are included directly in the equation for the velocity
(2.4); we recognise the mean pressure gradient and the return-to-the-mean term modelling
the pressure fluctuations in the generalised Langevin model (GLM) (Pope 2000, 2002) as
such terms. The other contributions to the acceleration, whose dynamics are generally
faster, are modelled via the stochastic differential equation (2.5) for a(t). The neglected
part of the fluctuating pressure-gradient and the viscous contribution are hence included
in this term. A similar reasoning informs the structure of the model proposed in the
framework of homogeneous turbulence (Pope 2002), when the mean 〈A(t)|x(t)〉 is zero.
In any case, this formulation is equivalent to that based on the total acceleration A(t) =
dU/dt, as pointed out by Sawford (1991) for the isotropic case.

Within the present structure of the model, it is possible to highlight the differences
with respect to models that include only the position and velocity of the fluid parcels
(x,U), as shown in general Eqs. (1.1)-(1.2). Indeed, the model we propose is based on
the idea to retain the GLM modelling for the mean and fluctuating pressure gradients,
while replacing the white noise appearing in the velocity Eq. (1.1) with a differentiable
process a, treated as an independent variable. In particular, we replace the white-noise
term, which is a delta-correlated stochastic process, with a coloured noise, that is a
differentiable process a with a finite correlation time. In this work, we have chosen to
model ai as a Ornstein-Uhlenbeck process (Gardiner 1990). This process is the solution
of the linear stochastic equation (2.5), and is a continuous process with time-correlation
given by

〈ai(t)aj(t′)〉 = 〈a2〉 exp(β(|t− t′|)δij ; (2.7)

as a consequence, the typical time-scale of a(t) is given by β−1. Given that a is the fast
fluctuating part of the total acceleration, this will also be a characteristic time-scale of
the total acceleration, as already pointed out in homogeneous turbulence (Sawford 1991;
Pope 2002). This means that the choice of the time-scale β−1 should be directly related
to the typical correlation-time of the full acceleration.

Some properties of the model can be deduced even before fixing the coefficients. In
the case of homogeneous turbulence, the model takes the form of a linear SDE with
constant coefficients, and therefore it yields Gaussian processes. More specifically, the
two variables a(t) and U(t) are jointly Gaussian. While the one-point pdf of the velocity
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has been found to be Gaussian (Tavoularis & Corrsin 1981), it is well known from
experimental measurements (Voth et al. 1998; La Porta et al. 2001; Mordant et al. 2001)
and numerical simulations (Yeung & Pope 1989) that acceleration is highly non-Gaussian.
This departure from Gaussianity in homogeneous turbulence is not described by the
present model. It is possible to correctly reproduce this intermittent effect by making the
coefficients stochastic processes (Pope & Chen 1990a; Lamorgese et al. 2007). However,
since we consider here non-homogeneous flows we retain constant coefficients, and do
not attempt to represent these higher-order effects. In fact, it is worth emphasising that
the Gaussianity of the model is confined to homogeneous turbulence. For inhomogeneous
flows, non-Gaussian statistics such as the velocity triple correlation can be accurately
calculated by such linear stochastic models, because the coefficients may change in space.
The internal intermittent corrections are usually negligible in these cases (Pope 2000).

In homogeneous isotropic turbulence, the mean gradients are zero and the coefficients
are isotropic, so the three components are statistically independent. In this case, our
model becomes simply

dU = DU dt+ a dt, (2.8)

da = −βadt+
√
BdW. (2.9)

In this way, we retrieve the original model by Krasnoff & Peskin (1971), which is in
turn identical to the model proposed by Sawford (1991) in terms of different coefficients.
In this case, the velocity time-correlation can be calculated analytically as the sum of
two decaying exponentials with two different time-scales, which are the inverse of the
eigenvalues of the system (Pope 2002). The coefficients D, β and B are unique functions
of the variance of the processes 〈a2〉, 〈U2〉 and the integral time-scale TL. This shows
again that the choice of the coefficient β is related to the time-scale of the acceleration.
The fact that our model reverts to this previous model in the isotropic case is valuable
since the predictions of this model are excellent with respect to DNS data (Sawford
1991).

Let us now fix the unknown coefficients. The first requirement we ask of the model is to
be consistent with the Langevin model for non-homogeneous flows given by Eq. (1.1). This
condition fixes immediately Dij = Gij . As displayed in Eq. (1.2), this tensor is composed
of an isotropic term related to the integral time-scale with the possible addition of another
anisotropic trace-less term. The first term forms the core of current PDF approach to
turbulent flows, while the second term allows for a more refined representation of the
Reynolds-stress dynamics through the adequate choice of the matrix Gaij , as explained in
detail by Pope (1994b). In particular, a realisable Reynolds-stress model corresponds to
each acceptable choice of this matrix, and the adding of such a term is important in shear-
flows to reproduce complex behaviour not properly taken into account by the isotropic
term, notably the rapid-distortion effects (Pope 2000). It is important to stress here this
correspondence between the Lagrangian stochastic models of turbulence and the second-
order closures in anisotropic flows. Since in this work we use a refined RANS model (to
obtain average quantities) together with the addition of the acceleration variable in the
stochastic model, we want to appraise the effect of this inclusion and therefore we take
Gaij = 0 for the sake of simplicity. As it will be clear later, even with this approximation
the model is satisfactory.

To fix the coefficients for the acceleration process a(t), first we use dimensional
arguments à la Kolmogorov to give an estimate of the time-scale, and then we impose
that the form given by (1.1) is retrieved in the limit of infinite β, that is when the
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acceleration process is so fast that it can be considered a white noise and adiabatically
eliminated (Gardiner 1990).

Concerning the time-scales of the problem, we consider the time-increment δUτ =
|U(t + τ) − U(t)| and then the second-order Lagrangian structure function DL(τ) =
〈(δUτ )2〉 = v2ηζ(φ), where the Kolmogorov scales have been used, vη ≡ (ν/〈ε〉)1/4, τη ≡
(ν/〈ε〉)1/2, and ζ(φ) is an universal function of a dimensionless time φ = τ/τη. In the
inertial range similarity hypothesis gives DL(τ) ∼ C0〈ε〉 τ, where C0 is the Kolmogorov
constant. This implies for the velocity autocorrelation function that

RL(τ) ≡ 〈U(t)U(t+ τ)〉
〈U2〉

= 1− DL(τ)

2〈U2〉
∼ 1− C0

2

τ

T
, (2.10)

with T the time-scale of large scales, such that RL(τ) ∼ 1 in the inertial range far from
boundaries when τ � T (Monin & Yaglom 2013; Pope 1994a). It is worth remarking
that C0 should not be confused with the model constant C0 as the link between the two
is not straightforward, notably in the inhomogeneous case. This issue will be discussed
later.

We can generalise this result for the correlation of velocity derivatives in the case of
locally isotropic variables

BLn (τ) = 〈d
nU

dtn
(t)

dnU

dtn
(t+ τ)〉 , (2.11)

where the same hypotheses yields

BLn (τ) =

(
vη
τnη

)2

αn(φ) = ν1/2−n〈ε〉n+1/2αn(φ) , (2.12)

where αn(φ) should be universal functions. In particular, using the definition of DL, we
find

BLn (τ) =
(−1)(n−1)

2

d2nDL

dτ2n
, (2.13)

that means

αn(φ) =
(−1)(n−1)

2

d2nζ(φ)

dφ2n
. (2.14)

If τ is in the inertial range, we require that the function BLn be independent of ν. We
then obtain

BLn (τ) ≈ 〈ε〉τ1−2n, i.e. αn(φ) ∼ φ(1−2n). (2.15)

For n = 1, the same formulas give for the mean square of the turbulent acceleration

〈A2〉 = Kν−1/2〈ε〉3/2 (2.16)

where K is a universal constant. Hence we can find the acceleration correlation behaviour

RA(τ) =
〈A(t+ τ)A(t)〉

〈A2〉
∼ τη

τ
(2.17)

and in the same way that of the derivative of acceleration for n = 2

RȦ(τ) ∼
(τη
τ

)3
(2.18)

These formulas show that the turbulent acceleration and higher derivatives are correlated
for a time comparable to τη. Furthermore, the mean acceleration, as displayed by Eq.
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(2.16), as well as its derivatives depend explicitly on the fluid viscosity ν. Since for high-
Re numbers the viscosity affects only the very small scales of turbulent motion, in locally
isotropic turbulence these variables are determined largely by scales l 6 η. On the basis
of these estimates, the fluid particle acceleration timescale β−1 is taken as proportional
to the local Kolmogorov timescale, assuming a constant of proportionality of one we get

β−1 = τη . (2.19)

Our derivation shows also that the higher the derivative the faster the process loses
correlation, so that higher order variables can be considered random noise. Nevertheless,
for τ . τη this reasoning ceases to be true and higher-order models may have some
justification (Reynolds 2003b).

Once the time-scale of the process a is fixed, the requirement of consistency with the
velocity-model (1.1) allows us to fix the diffusion term in (2.5). The stochastic differ-
ential equations (2.3)-(2.5) constitute a diffusion process, or more loosely are Langevin
equations, and therefore correspond to a Fokker-Planck equation for the Lagrangian
pdf (Gardiner 1990). In the case of the incompressible fluids treated here, this equation
is identical to the equation for the Eulerian pdf (Pope 1985). In this way, starting from
equations (2.3)-(2.5), it is possible to formally derive the corresponding equations for the
statistical moments, and notably the Reynolds-stress equations (Pope 1994b)

∂〈uiuj〉
∂t

+ 〈Uk〉
∂〈uiuj〉
∂xk

+
∂〈uiujuk〉

∂xk
=− 〈uiuk〉

∂〈Uj〉
∂xk

− 〈ujuk〉
∂〈Ui〉
∂xk

+ 〈uiaj〉+ 〈ujai〉 −
2

TL
〈uiuj〉.

(2.20)

where the correlations 〈uiaj〉 are solutions of transport equations, which reflect the non-
zero memory effects due to the coloured noise in the velocity. Specifically, the transport
equations for the 〈uiaj〉 correlation are

∂〈uiaj〉
∂t

+〈Uk〉
∂〈uiaj〉
∂xk

+
∂〈uiajuk〉

∂xk
= − 1

TL
〈ajui〉+〈aiaj〉−〈ajuk〉

∂〈Ui〉
∂xk

−〈uiaj〉
τη

; (2.21)

and for the covariance of the process a:

∂〈aiaj〉
∂t

+ 〈Uk〉
∂〈aiaj〉
∂xk

+
∂〈aiajuk〉
∂xk

= −2
〈aiaj〉
τη

+Bδij . (2.22)

The finite value of the timescale τη is responsible for the memory effect, thus, in the limit
of τη → 0, the same source term in the Reynolds-stress equations as given by the model
(1.1) should be found. Considering the limit in the homogeneous case, we have

〈aiaj〉 →
Bτη

2
δij ⇒ 〈uiaj〉 = τη

(
〈aiaj〉 −

〈uiaj〉
TL

)
, (2.23)

and thus,

〈uiaj〉 →
B

2
τη(

1

τη
+

1

TL
)−1; (2.24)

therefore, in order to have the correct limit, it is necessary to impose

B =
C0〈ε〉
τη

(
1

τη
+

1

TL

)
≈ C0〈ε〉

τ2η
(2.25)

In this way, we have fixed all the parameters and the model is complete, except for
the value of the constant C0. Some comments are in order concerning this issue. In
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principle, given the relationship between the Langevin equation (1.1) and the Kolmogorov
theory, one might think that C0 would be related to the Kolmogorov constant C0
and hence should be universal. However, extensive analysis (Sawford & Guest 1988;
Pope 2000) have shown that this is not the case even in homogeneous turbulence, and
this is why we distinguish in the notation between the stochastic model parameter
C0 and the Kolmogorov constant C0. Specifically, even different laboratory data of
homogeneous turbulence are best fitted with different values of C0 (Sawford & Guest
1988), and for exemple excellent agreement with atmospheric data have been obtained
with C0 ≈ 2.1 (Pope 2000), whereas best experimental and numerical experiments
indicate a value greater than 6 (Biferale et al. 2008) for isotropic turbulence. As a matter
of fact, C0 must be considered a free parameter which may be calibrated for different test-
cases. In particular, as detailed in Pope (2000), in the general case of non-homogeneous
flows C0 and the matrix G simply define the particular model, and the only constraint
is that C0 is non-negative and that C0 and Gij are bounded to ensure the realisability
of the model (Pope 1985). No link is now present with the Kolmogorov constant C0. The
value of C0 will be made clear once the numerical approach is presented in the next
section.

Finally, as discussed by Pope (2014), a link can be made between the acceleration-
velocity correlation and Reynolds-stress turbulence models. In the present acceleration-
based model, these correlations appear as closed terms in the equation for the second-
order velocity tensor Eq. (2.20). We can therefore deduce for our model the following
relation

〈uiAj〉 =

〈
p′

ρ

(
∂ui
∂xj

+
∂uj
∂xi

)〉
− 2ν

〈
∂uj
∂xk

∂ui
∂xk

〉
− 1

ρ

(
∂〈p′ui〉
∂xj

+
∂〈p′uj〉
∂xi

)
+ ν∆〈uiuj〉

= 〈uiaj〉+ 〈ujai〉 −
2

TL
〈uiuj〉 ,

(2.26)

where Ai = dUi/dt as above; the second term in the right hand side of the first line is the
pseudo-dissipation that to an excellent approximation is equal to the mean dissipation
εij = (2/3)〈ε〉δij , and the last term is the viscous transport and is known to be negligible
in almost all situations. The second line clarifies how the pressure transport and the
viscous dissipation are modelled in the present picture. Taking the trace of the equation,
the equation for turbulent kinetic energy is retrieved, and hence the mean dissipation
rate is implicitly defined by the relation∑

i

〈uiAi〉 = 2〈uiai〉 −
2

TL
〈uiui〉 ≈ −〈ε〉 . (2.27)

These relations are valuable, since measurements of the velocity-acceleration correlation
allow us to better reproduce the corresponding Reynolds-stress equation terms in the
model.

3. Numerical approach

We study the turbulent flow in a channel between two parallel walls separated by a
distance 2h using the same Reynolds number (Reτ = uτh

ν ≈ 1440) chosen in a recent
campaign of experiments and DNS (Stelzenmuller et al. 2017), where uτ is the friction
velocity associated to the shear stress τw at the wall and ν the kinematic viscosity. In
the following, the superscript + indicates quantities expressed in wall units by uτ and ν.
By convention, x is the stream-wise direction, y the wall-normal and z the span-wise.
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We give a brief account of how experimental data were obtained. More details about
the experimental techniques and their validation can be found in a recent article (Stelzen-
muller et al. 2017), where also the DNS approach is described. Experiments are carried
out with a centerline velocity U0 = 1.75 m s−1, that corresponds to a bulk Reynolds
number Re = U0h/ν = 34 000. The experiment consists of measurements made in
a closed-loop water tunnel. The experimental test section is 3.2 m long with a cross-
section of 37.5 mm× 316 mm. The development length is 155h and the channel height
is 16.9h, ensuring statistical homogeneity in the streamwise and spanwise directions.
The wall unit is δ = ν/uτ = 13 µm in our conditions. Three dimensional particle
trajectories are measured by particle tracking velocimetry (Ouellette et al. 2006) in
a 35 mm× 20 mm× 8 mm measurement volume. Particle velocity and acceleration are
obtained by convolution of the trajectories with Gaussian differentiating kernels, which
also serves to filter out noise from the measurements (Mordant et al. 2004a). The closest
distance at which accurate detection of the particle was possible is y+ = 4 i.e. about
50 µm. Thus our range of measurement spans the interval y+ ∈ [4, 1400] i.e. more than
two orders of magnitude in wall distance.

3.1. Fluid-particle hybrid method

We must solve the stochastic differential equations (2.3)-(2.5) that contain several
mean fields. To cope with this issue, we use here a hybrid RANS/PDF approach. In
this approach, first suitable Reynolds averaged Navier-Stokes (RANS) equations are
solved on a Eulerian grid for the necessary mean quantities, namely 〈U〉, 〈P 〉, 〈ε〉, k. Then,
the stochastic equations are solved through a particle method, and the mean quantities
present in the coefficients are interpolated at the position of the particles (Hockney &
Eastwood 1988). This method guarantees that the mean fields are not noisy, is efficient,
and therefore is the main tool for the practical applications of stochastic models to fluid
flows (Muradoglu et al. 2001; Jenny et al. 2001), and the only viable choice for flows
carrying inertial particles (Peirano et al. 2006).

Concerning the RANS model, we have implemented the standard LRR-IP
model (Launder et al. 1975), with the addition of the near-wall model based on
the elliptic relaxation (Durbin 1991). We have used the same parameters and boundary
conditions suggested in the original proposal (Durbin 1993). These Reynolds-stress
equations together with the equation for 〈ε〉 are solved through a standard finite-
difference method.

As explained in the previous section, on the basis of the choice of C0 and the
matrix G, each Lagrangian stochastic model corresponds to a realisable Reynolds-stress
model (Pope 1994b). This points to a specific issue of consistency in hybrid RANS/PDF
approach (Minier et al. 2014), which can be easily overlooked. In fact, the final results
in terms of Lagrangian particles are deeply impacted by the choice of both the Eulerian
RANS and Lagrangian models, and large errors may be found when the Lagrangian and
RANS models chosen are much different, i.e. inconsistent. In particular, it has been shown
numerically that to directly use DNS values in the coefficients of a standard stochastic
model leads to unphysical results in terms of the Reynolds stress (Chibbaro & Minier
2011). The choice of RANS model should therefore inform the choice of the coefficients
in the Lagrangian stochastic model to ensure that the two models are as consistent as
possible. In our case, the presence of the acceleration variable in the Lagrangian model
makes full consistency between the RANS and Lagrangian models impossible.

We have thus chosen the Lagrangian model in the following way. The RANS models
implemented have three components: 1) the Rotta IP model, 2) the LRR term; and 3)
the elliptic near-wall treatment. We have chosen the C0 and G consistent with the first
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2 terms. Consistency with the Rotta model leads in Lagrangian term to the relation
CR = 1 + 3/2C0 and Ga = 0 in Eq. (1.2) ((Pope 2000). Given that typical value of
CR is in the range 1.5 ÷ 1.8 that signifies C0 ∈ [0.3, 0.55]. Adding the LRR terms,
which gives the LRR-IP model, means for consistency to take would lead to the relations
Gij = −1/2CRδij + C2∂〈U〉i/∂xj and CR = 1 + 3/2C0 + P/ε, from which C0 can
be computed. CR is still the Rotta constant and C2 is a constant of the RANS LRR
model whose standard value is 0.6. For C2 = 0 the Rotta model is retrieved. The third
term models the viscous and pressure contributions which are important near the walls.
Following the rationale behind our model structure, these terms are modelled in the
Lagrangian model by the new acceleration variable, at least to some extent, and therefore
we do not add other terms in the model. In fact, we have tested our results with both
the Rotta (C2 = 0) and the LRR-IP model without finding any notable differences in
the acceleration statistics, provided the near-wall term is added. For this reason, results
are presented in this work only for the simpler Rotta model taking C2 = 0. Moreover,
the results are robust with regard to the choice of the value CR and hence C0, such
that similar results are obtained in the range C0 ∈ [0.2, 1.5]. In the following, we show
the results obtained with C0 = 0.35 which is a standard value and appears to give best
results. A thorough assessment of the impact of changing Reynolds-stress modelling is
certainly interesting for applications and is left to a future work.

3.2. Numerical scheme for the SDEs

The coefficients in the stochastic differential equations may diverge as the wall is
approached. In particular, the matrix Gij in the linear drift term of Eq. (2.4) becomes
negatively unbounded. This can be clearly seen from Eq. (1.2), since approaching the
wall we have

Gij ∼ T−1L δij ∼
−ε
k
δij ∼

−1

y2
δij (3.1)

and because of no-slip condition on the velocity,

(Ui − 〈U〉i) ∼ y . (3.2)

Using this relations in the the stochastic equations (2.3)-(2.5), which are of the form

dX = A dt+ DX dt+ B dW(t), (3.3)

we find that they are stiff, as we have

lim
y→0

det[D] = −∞ , (3.4)

since the drift coefficient [D]U scales with 1/y and remains unbounded for y → 0.

In our system, the matrix Amay cause numerical problems, because the time-scale β−1

may be very small, and instabilities may also arise far from the boundaries if the time-
step is bigger than β−1 and the numerical scheme is not stable. For these reasons, the
stochastic equations must be solved with a special treatment. To address these issues,
we have developed a numerical scheme unconditionally stable for the set of equations
(2.3)-(2.5), using an approach similar to previous works (Dreeben & Pope 1998; Peirano
et al. 2006).

We solve the system (3.3) taking the matrix coefficients A,D,B frozen during a time-
step ∆t in order to obtain analytical solutions using the integrating factor e−Dt. Then,
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the numerical scheme based on analytical solutions reads as:

xn+1
i = xni +AUni +B ani + C [TnLAnU,i] +Ωni , (3.5)

Un+1
i = Uni exp(−∆t/TnL ) + [TnLAnU,i][1− exp(−∆t/TnL )] +Dani + Γni , (3.6)

an+1
i = ani exp(−∆t/τn) + γni . (3.7)

The coefficients A, B, C, D and AU,i are given by:

A = TnL [1− exp(−∆t/TnL )],

B = θn [τn(1− exp(−∆t/τn)−A] with θn = (τTnL )/(τn − TnL ),

C = ∆t−A,
D = θn[exp(−∆t/τn)− exp(−∆t/TnL )],

AU,i = −(1/ρ)∂〈P 〉/∂xi + 〈Ui〉/TL .

The stochastic integrals γi(t), Γi(t), Ωi(t) are given by:

γi(t) =

√
C0〈ε〉
τ

exp(−t/τ)

∫ t

t0

exp(s/τ) dWi(s), (3.8)

Γi(t) = exp(−t/TL)

∫ t

t0

exp(s/Ti) γi(s) ds, (3.9)

Ωi(t) =

∫ t

t0

Γi(s) ds. (3.10)

The stochastic integrals are then numerically solved using the Choleski decomposi-
tion (Peirano et al. 2006).

For the integration of the stochastic differential equations, we have used N = 5× 105

tracer particles. The time-step used is ∆t+ = 4 × 10−2. Concerning the statistics,
time-average is taken on 106 independent steps whenever possible. Instead, conditional
statistics have been obtained tracking an ensemble of 1000 particles for each initial
condition and averaging over 5000 independent ensembles.

4. Results

In Figure 1, mean-velocity profiles from experiments, DNS, and model simulations
are compared. The agreement of mean velocity is overall very good. Notably the model
behaviour is analogous to that of the DNS, yet some small discrepancies can be detected
in the viscous- and buffer- layer (4 < y+ < 50), pointing to a small difference between
experimental and numerical results. As highlighted by Stelzenmuller et al. (2017) the first
experimental points computed in the vicinity of the wall are affected by more important
errors, due to experimental difficulties in the measurements. In particular, the position
is measured with some percent of error.

In Figure 2 the turbulent kinetic energy k is plotted (panel a), as well as each diagonal
component of the Reynolds stress tensor (panel b). Given that we use a hybrid approach,
all the Reynolds stresses are computed in the model by the RANS method. In the
present model only the turbulent kinetic energy k (i.e. the trace of the Reynolds-stress
tensor) is used in the Lagrangian stochastic model, so this is the key quantity for its
performance. As shown in Figure 2 (a), the agreement among the three data sets is quite
satisfactory. In particular, the model correctly represents the physics in the near-wall
region, while it underestimates a little the turbulent energy far from the wall. Figure
2b shows that the Reynolds-stress model equipped with elliptical relaxation gives a
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Figure 1: Mean velocity profiles. Comparison between experiments (points), DNS
(squares-line), and the present model (solid line). All quantities are normalized in wall
units.

satisfactory representation of each component of the Reynolds stress, notably in the
near-wall region. Previous studies (Pope 2000) has shown that these RANS models tend
nonetheless to underestimate the stream-wise component in the log-layer region in very
high-Re flows, and that explains the slight discrepancy already remarked for the turbulent
energy for y+ > 200, see Figure 2 (a). The model used is the best available among
realisable RANS models for general wall-bounded flows (Pope 2000), and the development
of RANS models is not the focus of this work. Furthermore, as explained in section 3.1, it
is more crucial to have consistency between the Eulerian and the Lagrangian model than
to get perfect agreement with experiments at the level of mean fluid observables. The
chosen model is therefore considered satisfactory with regard to the present purpose.

Figure 3 shows the acceleration mean (a) and the acceleration variance (b) profiles
obtained from experiments, DNS, and the model. The average acceleration is well
predicted by the stochastic model in both directions. Notably the model gives correctly
the negative peak of mean stream-wise acceleration at y+ ≈ 7, which is a viscous effect.
This shows that the acceleration model together with a RANS model including the
boundary layer is able to describe this effect, despite the absence of ad-hoc low-Re terms
in the stochastic model. It is also interesting to remark that the anisotropy between
stream-wise and wall-normal acceleration is correctly captured.

Profiles of acceleration variance (Figure 3b) reveal a qualitative overall agreement,
although larger discrepancies are found for the model concerning the acceleration vari-
ance. A slight overestimation of the stream-wise variance is present with respect to
DNS, even though the value found is within the experimental error bars. The other two
components are instead slightly under-estimated, notably the wall-normal component.
Furthermore, the model displays a small degree of anisotropy between the y and z
components, both in amplitude and in the position of the peak, which is found at around
the same position, whereas experiments and DNS show some variability. Yet at their
respective peaks the standard deviation of the acceleration is larger than the magnitude
of the mean acceleration for all sets, which is one of the salient characteristics of the
acceleration process. This indicates that the present stochastic model is able to reproduce
the main features of the acceleration fluctuations that govern the dynamics near the wall,
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Figure 2: Comparison between experiments (points), DNS (squares-lines), and the present
model (solid lines). All quantities are normalized in wall units: (a) Turbulent kinetic
energy. (b) Reynolds stress components.

although it fails to reproduce the anisotropy between the span-wise and the wall-normal
components.

Figure 4 shows y and z components of the acceleration correlation tensor ρij calculated
at different initial wall distances y+0 . Correlations are computed as:

ρij(τ, y0) =
〈A′i(t0, y0)A′j(t0 + τ, y0)〉

〈A′2i (t0, y0)〉1/2〈A′2j (t0 + τ, y0)〉1/2
, (4.1)

where A′j(t0 + τ, y0) = Aj(t0 + τ, y0) − 〈Aj(t0 + τ, y0)〉 is the fluid particle acceleration
fluctuation relative to the Lagrangian average, with i = x, y, or z. The agreement is
satisfactory, showing that the stochastic model fairly reproduces both the inhomogeneity
and the anisotropy of the flow, since all components are different and the decorrelation-
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Figure 3: Mean (panel (a)) and variance (panel (b)) acceleration profiles. Comparison
between experiments (points), stochastic model simulations (squares) and DNS (lines).
Error bars are displayed for the x-component of variance in experiments. As already
remarked, the first experimental data are affected by large errors both in the value and
in the position.

time changes with the distance, as displayed by experiments and DNS. It is worth noting
that the span-wise and wall-normal components as given by stochastic model are a little
more isotropic than the experimental results, yet more similar to DNS ones.

Some small differences for small time-displacements, notably in the near-wall region,
can be traced back to the presence of a white noise in the acceleration process which
overlooks very short-memory effects. For long times, although the overall agreement
remains pretty decent, the stochastic model slightly overestimates the correlation-time,
so that acceleration appears to remain correlated over a longer time. This can be partially
related to the choice of the coefficients of the model, and in particular we have chosen
the time-scale of the acceleration equal to τη, while a coefficient of the order of, but
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Figure 4: Lagrangian auto-correlations of wall-normal (ρyy, left) and span-wise (ρzz,
right) fluid particle acceleration. Experimental results are shown by crossed blue lines,
DNS results by solid green lines, and model results by red circles. Curves are shifted
vertically by increments of 0.5 for clarity. From bottom to top, the curves correspond to
particles located initially at y+0 = 20, 60, 200, 600 and 1000. Horizontal grid lines show
the zero-correlation level for each y+0 .

different from 1 might be used. Moreover, the statistical convergence of the correlations
is particularly difficult and, therefore, a small residual bias error may be also present,
for a finite number of particles have been used. The bias error is inherent to the
stochastic models that include mean fields in the coefficients, whenever these coefficients
are computed as averages over particles (Kloeden & Platen 1992; Xu & Pope 1999; Minier
et al. 2003). This is precisely our case, as pointed out by formula (4.1).

Figure 5 shows the probability distribution function (PDF) of the three acceleration
components. All curves present very long tails corresponding to extremely high acceler-
ation events usually associated with intermittency (Mordant et al. (2002)). The model
closely reproduces the experimental and DNS results. In particular, the model captures
well the skewness of the acceleration, displaying a positive skewness for the wall-normal
component and a negative skewness for the stream-wise component. The span-wise
component is correctly not skewed. The tails of the extreme events (P < 10−4) appear
slightly over-predicted by the model for the stream-wise component. However statistical
error in this range is significant.
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Figure 5: From top to bottom, PDFs of the span-wise (z), wall-normal (y), and stream-
wise (x) fluid particle acceleration. Experiments results are shown as solid black lines,
DNS results as blue lines, model results as red lines. The PDFs are normalized by the root-
mean-square value of acceleration (named σi for each component) Reynolds number. The
PDF displayed represents an average over the whole channel in all cases. In experiments
as well as in numerical simulations, we have released fluid parcels at different initial
positions y+0 , from y+0 = 15 to y+0 = 1200, every y+ = 10. The global pdf is computed
integrating the conditional statistics over y0.

5. Discussion and Conclusions

In this work, we have developed a novel stochastic model including fluid particle
acceleration for general non-homogeneous turbulent flows, focusing on wall-bounded
flows. This model generalises previous propositions of Lagrangian stochastic models for
acceleration in isotropic flows, as well as the velocity-based models for non-homogeneous
flows. Model results are compared against experimental and DNS measurements in a
channel-flow.

The Lagrangian stochastic model proposed has the structure of a diffusion process for
the variables x,U,a, where a is a random acceleration process. The system appears as
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a set of stochastic differential equations, and it is closed using similarity arguments à la
Kolmogorov and consistency with previous models in some limit cases. The coefficients
of the resulting equations are functions of space and time, as well as being dependant
on average fields. To find the fluid averages necessary for calculating the coefficients,
we have used a hybrid RANS/PDF approach, typically used in realistic computations,
where average velocity and Reynolds stress are computed in a Eulerian framework. In
particular, we have chosen the elliptic-relaxation Reynolds-stress model to get a fair
agreement between the RANS fields and the experimental ones.

The inclusion of acceleration in this stochastic model was motivated by the importance
of this variable in the modeling of fast processes, which become especially important in
the near-wall region. The results presented here are useful to disentangle to what extent
the accurate modeling of the acceleration is important, and to what extent more complex
closures are required.

The overall agreement between the model and experiments is good, showing that the
present model captures most of the features revealed by experiments. In particular, the
average acceleration is in very good agreement with experiments and DNS. The La-
grangian autocorrelation given by the model reproduces correctly the time-scale and the
non-homogeneous effects. These results are very encouraging for the modeling approach
we have presented here, especially considering the relative simplicity of the model used
for the acceleration variable, and that no free-parameter has been calibrated.

The PDFs are also fairly well captured, displaying skewness, anisotropy and highly
non-Gaussian tails. In homogeneous turbulence, the very wide tails of the acceleration
PDF are associated to intermittency (Mordant et al. (2001)). In order to reproduce these
features in stochastic models of homogeneous turbulence, a multiplicative component is
added in the noise term to take into account the fluctuations of the dissipation rate
ε that are often assumed to follow log-normal statistics and to have a rather long
correlation time close to TL(Pope & Chen (1990b); Mordant et al. (2002); Reynolds
(2003a); Zamansky et al. (2010)). Our model does not have such a multiplicative term
in eq. (2.5). However, the term B incorporates the dissipation rate 〈ε〉 which varies in
space along the particle trajectory due to the inhomogeneity of the flow. It is thus a
multiplicative term only related to inhomogeneity, and not with respect to the stochastic
fluctuations of ε. This contribution is enough to reproduce the wide-tail PDFs of the
acceleration components. This confirms that in wall flows most of the extreme events are
related to non-homogeneity (Lee et al. 2004). It also shows that the present model is able
to capture the main statistical features of the near-wall structures which are responsible
for the intermittency.

To further assess the acceleration model, we have also carried out simulations with
the present stochastic model coupled with a simpler RANS model without the elliptical
relaxation, see section 3. In this case, we assure consistency with the coefficients used in
the velocity equation, but we lose the description of the near-wall region. For this reason,
such a RANS model is much less accurate in wall flows; notably it is known to exaggerate
the isotropy of the Reynolds stress, and to underestimate the kinetic energy (Pope 2000).
Interestingly, while the results obtained with this simpler model are inferior to those
obtained with the complete model, the qualitative picture is similar and a fair agreement
for all acceleration observables is still obtained. This shows robustness with respect to
the RANS model used for the mean fields.

It is important to discuss now the deficiencies of the present model and to point out
how to improve it:

(a) The anisotropy of the flow is not fully captured in the present framework. While
anisotropy in mean acceleration and the PDF is correctly reproduced, acceleration
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variances in the span-wise and wall-normal directions turn out to be barely different,
yet experiments and DNS show a more significant difference. Even if to a less extent,
the same deficiency is found also looking at the correlations. This issue is mainly related
to the modelling of the slow part of the fluctuating pressure-gradient in the velocity
equation (2.4), which is given in term of the matrix Gij . The simple Langevin model
used here, eq. (1.2) with Gaij = 0 is known to lead towards isotropy with respect to
the two components (Pope 2000). While the additional acceleration variable partially
corrects this tendency, it is found to be insufficient to get a quantitative agrrement.
An elliptical-relaxation model should be implemented also in the Lagrangian stochastic
model, as developed by Dreeben & Pope (1997). Furthermore, that would make the
hybrid RANS/PDF approach more consistent, probably helping to recover a better level
of the amplitude of the variances.

(b) The mean viscous term in the acceleration, Eq. (2.2), and the viscous transport
term in the Reynolds stress equations are neglected in the present approach, as displayed
by Eq. (2.27). These terms are known to be very small except in a tiny region adjacent
to walls (Pope 2000). That is consistent with the fact the mean acceleration is so well
reproduced by the present model. However, the viscous transport term would introduce
explicitly the viscous time-scale in the model and could help to further improve the
prediction of the variances. Various models have been already proposed to include these
terms (Dreeben & Pope 1998; Wac lawczyk et al. 2004).

(c) Although most of the intermittency is already captured, it would be possible to add
also the internal intermittency due to the fluctuations of the turbulent dissipation (Pope
2000; Lamorgese et al. 2007). Of course, these improvements bring a price in terms of
computational and mathematical complexity.

In conclusion, despite some limitations, we believe that the present form of the
stochastic model is adequate to model the acceleration dynamics in wall flows relevant
for applications. As for the general perspectives, concerning fluid flows, it would be
interesting to pursue the analysis of conditional statistics for dispersion studies. Finally,
the present model should be the starting point to develop an acceleration-based model
for inertial particles.
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correlations in lagrangian dynamics: a key to intermittency in turbulence. Phys. Rev. Lett.
89 (25), 254502.
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