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Abstract. We study the asymptotic dynamics for solutions to a system of nonlinear Schrödinger

equations with cubic interactions, arising in nonlinear optics. We provide sharp threshold criteria

leading to global well-posedness and scattering of solutions, as well as formation of singularities

in finite time for (anisotropic) symmetric initial data. The free asymptotic results are proved

by means of Morawetz and interaction Morawetz estimates. The blow-up results are shown by

combining variational analysis and an ODE argument, which overcomes the unavailability of the

convexity argument based on virial-type identities.

1. Introduction

In this paper, we consider the Cauchy problem for the following system of nonlinear Schrödinger

equations with cubic interaction
i∂tu+ ∆u− u = −

(
1

9
|u|2 + 2|v|2

)
u− 1

3
u2v,

iγ∂tv + ∆v − µv = −
(
9|v|2 + 2|u|2

)
v − 1

9
u3,

(1.1)

with initial datum (u, v)|t=0 = (u0, v0). Here u, v : R × R3 → C, u0, v0 : R3 → C, and the

parameters γ, µ are strictly positive real numbers.

The system (1.1) is the dimensionless form of a system of nonlinear Schrödinger equations as

derived in [29] (see also [30]), where the interaction between an optical beam at some fundamental

frequency and its third harmonic is investigated. More precisely, from a physical point of view,

(1.1) models the interplay of an optical monochromatic beam with its third harmonic in a Kerr-type

medium (we refer to [28] for the latter terminology, as well as for a sketch of the derivation of

(1.1)).

Models such as in (1.1) arise in nonlinear optics in the context of the so-called cascading

nonlinear processes. These processes can indeed generate effective higher-order nonlinearities, and

they stimulated the study of spatial solitary waves in optical materials with χ2 or χ3 susceptibilities

(or nonlinear response, equivalently).

Let us mention, following [10], the difference between χ2 (quadratic) and χ3 (cubic) media. The

contrast basically reflects the order of expansion (in terms of the electric field) of the polarization
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vector, when decomposing the electrical induction field appearing in the Maxwell equations as the

sum of the electric field E and the polarization vector P. Indeed, for “small” intensities of the

electric field, the polarization response is linear, while for “large” intensities of E, the vector P
has a non-negligible nonlinear component, denoted by Pnl. Thus, when considering the Taylor

expansion for Pnl, one gets the presence of (at least) quadratic and cubic terms whose coefficients

χj , which depend on the frequency of the electric field E, are called j-th optical susceptibility.

For j = 2, 3, they are usually denoted by χ2 and χ3. Therefore quadratic media arise from

approximation of the type Pnl ∼ χ2E2, and similarly one can define cubic media. The so-called

non-centrosymmetric crystals are typical examples of χ2 materials. Moreover, it can be shown,

see [15], that isotropic materials have χ2n = 0 susceptibility, namely even orders of nonlinear

responses are zero. In the latter case, the leading-order in the expansion of Pnl is cubic, and

these kind of isotropic materials are called Kerr-materials. See the monographs [5,15,31] for more

discussions. In addition, we refer to [1,6, 7, 10,19,24,29,30,36], and references therein, for more

insights on physical motivations and physical results (both theoretical and numerical) about (1.1)

and other NLS systems with cubic and quadratic interactions. Models as in (1.1) are therefore

physically relevant, and they deserve a rigorous mathematical investigation. In particular, we are

interested in qualitative properties of solutions to (1.1).

Our main goal is to understand the asymptotic dynamics of solutions to (1.1), by establishing

conditions ensuring global existence and their long time behavior, or leading to formation of

singularities in finite time.

Let us mention since now on, that once the Strichartz machinery has been established, and this

is nowadays classical, local well-posedness of (1.1) at the energy regularity level (i.e. H1(R3),

mathematically speaking) is relatively straightforward to get (see below for a precise definition of

the functional space to employ a fixed point argument).

The dynamics of solution of NLS-type equation is intimately related to the existence of ground

states (see below for a more precise definition). The analysis of solitons is a very important

physical problem, and the main difference between χ2 media and χ3 media, is that, in the latter

case, the cubic nonlinearity is L2 supercritical, while in the former quadratic nonlinearities are L2

subcritical. The last two regimes dramatically reflect the possibility for the problem to be globally

well-posed, and the stability/instability properties of the solitons are different. See [10] for further

discussions, and a rigorous analysis for solitons in quadratic media.

Regarding system (1.1), existence of ground states and their instability properties were es-

tablished in a recent paper by Oliveira and Pastor, see [28]. Our aim is to push forward their

achievements to obtain a qualitative description of solutions to (1.1), by giving sharp thresholds,

defined by means of quantities linked to the ground state, are sufficient to guarantee a linear

asymptotic dynamics for large time (i.e. scattering) or finite time blow-up of the solutions.

Let us start our rigorous mathematical discussion about (1.1). The existence of solutions

is quite simple to obtain. As said above, it is well-known that (1.1) is locally well-posed in

H1(R3) × H1(R3), (see e.g., [8]). More precisely, for (u0, v0) ∈ H1(R3) × H1(R3), there exist
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T± > 0 and a unique solution (u, v) ∈ X((−T−, T+))×X((−T−, T+)), where

X((−T−, T+)) := C((−T−, T+), H1(R3)) ∩ Lqloc((−T−, T+),W 1,r(R3))

for any Strichartz L2-admissible pair (q, r), i.e., 2
q + 3

r = 3
2 , for 2 ≤ r ≤ 6. See Section 2. In

addition, the maximal times of existence obey the blow-up alternative, i.e., either T+ = ∞, or

T+ <∞ and limt↗T+ ‖(u(t), v(t))‖H1(R3)×H1(R3) =∞, and similarly for T−. When T± =∞, we

call the solution global. Solutions to (1.1) satisfy conservation laws of mass and energy, namely

M3γ(u(t), v(t)) = M3γ(u0, v0), (Mass)

Eµ(u(t), v(t)) =
1

2
(K(u(t), v(t)) +Mµ(u(t), v(t)))− P (u(t), v(t)) = Eµ(u0, v0), (Energy)

where

Mµ(f, g) := ‖f‖2L2(R3) + µ‖g‖2L2(R3), (1.2)

K(f, g) := ‖∇f‖2L2(R3) + ‖∇g‖2L2(R3), (1.3)

P (f, g) :=

ˆ
R3

1

36
|f(x)|4 +

9

4
|g(x)|4 + |f(x)|2|g(x)|2 +

1

9
Re
(
f

3
(x)g(x)

)
dx. (1.4)

It is worth introducing since now the Pohozaev functional

G(f, g) := K(f, g)− 3P (f, g), (1.5)

and, for later purposes, we rewrite the functionals P (see (1.4)) by means of its density: namely

P (f, g) =

ˆ
R3

N(f(x), g(x))dx

where

N(f(x), g(x)) :=
1

36
|f(x)|4 +

9

4
|g(x)|4 + |f(x)|2|g(x)|2 +

1

9
Re
(
f

3
(x)g(x)

)
. (1.6)

The previous conservation laws can be formally proved by usual integration by part, then a

rigorous justification of them can be done by a classical regularization argument, see [8].

In order to introduce other invariance of the equations, let us give the following definition.

Definition 1.1. We say that the initial-value problem (1.1) satisfies the mass-resonance condition

provided that γ = 3.

For γ = 3, (1.1) has the Galilean invariance: namely, if (u, v) is a solution to (1.1), then

uξ(t, x) := eix·ξe−t|ξ|
2iu(t, x− 2tξ), vξ(t, x) := e3ix·ξe−3t|ξ|2iv(t, x− 2tξ)), ξ ∈ R3, (1.7)

is also a solution to (1.1) with initial data (eix·ξu0, e
3ix·ξv0).

Remark 1.1. Notice that if γ 6= 3, the system (1.1) is not invariant under the Galilean transfor-

mations as in (1.7).

As, in this paper, we are interested in long time behavior of solutions to (1.1), let us recall the

notion of scattering.



4 A. H. ARDILA, V. D. DINH, AND L. FORCELLA

Definition 1.2. We say that a global solution (u(t), v(t)) to (1.1) scatters in H1(R3)×H1(R3) if

there exists a scattering state (u±, v±) ∈ H1(R3)×H(R3) such that

lim
t→±∞

‖(u(t), v(t))− (S1(t)u±,S2(t)v±)‖H1(R3)×H1(R3) = 0, (1.8)

where

S1(t) = eit(∆−1) and S2(t) = e
i t
γ

(∆−µ)
(1.9)

are linear Schrödinger propagators.

Note that the set of initial data such that solutions to (1.1) satisfy (1.8) is non-empty, as

solutions corresponding to small H1(R3)×H1(R3)-data do scatter (see Section 2).

As already mention above, it is well-known that the dynamics of nonlinear Schrödinger-type

equations is strongly related to the notion of ground states. Hence, we recall some basic facts

about ground state standing waves related to (1.1). By standing waves, we mean solutions to

(1.1) of the form

(u(t, x), v(t, x)) =
(
eiωtf(x), e3iωtg(x)

)
,

where ω ∈ R is a frequency and (f, g) is a real-valued solution to the system of elliptic equations
∆f − (ω + 1)f +

(
1

9
f2 + 2g2

)
f +

1

3
f2g = 0,

∆g − (µ+ 3γω)g + (9g2 + 2f2)g +
1

9
f3 = 0.

(1.10)

It was proved by Oliveira and Pastor, see [28], that solutions to (1.10) exist, provided that

ω > −min

{
1,
µ

3γ

}
. (1.11)

Moreover, a non-trivial solution (φ, ψ) to (1.10) is called ground state related to (1.10) if it

minimizes the action functional

Sω,µ,γ(f, g) := Eµ(f, g) +
ω

2
M3γ(f, g), (1.12)

over all non-trivial solutions to (1.10). Under the assumption (1.11), the set of ground states

related to (1.10) denoted by

G(ω, µ, γ) := {(φ, ψ) ∈ Aω,µ,γ : Sω,µ,γ(φ, ψ) ≤ Sω,µ,γ(f, g), ∀(f, g) ∈ Aω,µ,γ}

is not empty, where Aω,µ,γ is the set of all non-trivial solutions to (1.10). In particular, G(0, 3γ, γ) 6=
∅.

It was shown (see [28, Theorem 3.10]) that if (u0, v0) ∈ H1(R3)×H1(R3) satisfies

Eµ(u0, v0)M3γ(u0, v0) <
1

2
E3γ(φ, ψ)M3γ(φ, ψ), (1.13)

K(u0, v0)M3γ(u0, v0) < K(φ, ψ)M3γ(φ, ψ), (1.14)

where (φ, ψ) ∈ G(0, 3γ, γ), then the corresponding solution to (1.1) exists globally in time. The

proof of this result is based on a continuity argument and the following sharp Gagliardo-Nirenberg

inequality

P (f, g) ≤ Copt (K(f, g))
3
2 (M3γ(f, g))

1
2 , ∀(f, g) ∈ H1(R3)×H1(R3). (1.15)
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This type of Gagliardo-Nirenberg inequality was established in [28, Lemma 3.5]. Note that

in [28], this inequality was proved for real-valued H1-functions. However, we can state it for

complex-valued H1-functions as well since P (f, g) ≤ P (|f |, |g|) and ‖∇(|f |)‖L2(R3) ≤ ‖∇f‖L2(R3).

We are now in position to state our first main result. The following theorem provides sufficient

conditions to have scattering of solutions. More precisely, for data belonging to the set given by

conditions (1.13) and (1.14), solutions to (1.1) satisfy (1.8), for some scattering state (u±, v±).

Theorem 1.1. Let µ, γ > 0, and (φ, ψ) ∈ G(0, 3γ, γ). Let (u(t), v(t)) the corresponding solution

of (1.1) with initial data (u0, v0) ∈ H1(R3)×H1(R3). Assume that the initial data satisfies (1.13)

and (1.14). Provided that

• (non-radial case) either |γ − 3| < η for some η = η(E3γ((u0, v0)),M3γ((u0, v0))) > 0 small

enough,

• (radial case) or (u0, v0) is radial,

then the solution of (1.1) is global and scatters in H1(R3)×H1(R3).

Our proof of the scattering results is based on the recent works by Dodson and Murphy [13]

(for non-radial solutions) and [12] (for radial solutions), using suitable scattering criteria and

Morawetz-type estimates. In the non-radial case, we make use of an interaction Morawetz estimate

to derive a space-time estimate. In the radial case, we make use of localized Morawetz estimates

and radial Sobolev embeddings to show a suitable space-time bound of the solution.

Let us highlight the main novelties of this paper, regarding the linear asymptotic dynamics. For

the classical focusing cubic equation in H1(R3), scattering (and blow-up) below the mass-energy

threshold, was proved by Holmer and Roudenko in [17] for radial solutions, by exploiting the

concentration/compactness and rigidity scheme in the spirit of Kenig and Merle, see [18]. The

latter scattering result has been then extended to non-radial solution in Duyckaerts, Holmer, and

Roudenko [14]. To remove the radiality assumption, a crucial role is played by the invariance of the

cubic NLS under the Galilean boost, which enables to have a zero momentum for the soliton-like

solution. As observed in Remark 1.1, equation (1.1) lacks the Galilean invariance unless γ = 3.

Hence we cannot rely on a Kenig and Merle road map to achieve our scattering results, and we

instead build our analysis on the recent method developed by Dodson and Murphy, see [12,13]. In

the latter two cited works, Dodson and Murphy give alternative proofs of the scattering results

contained in [14,17], which avoid the use of the concentration/compactness and rigidity method.

They give a shorter proofs, though quite technical, based on Morawetz-type estimates. In our

work, by borrowing from [12,13], we prove interaction Morawetz and Morawetz estimates for (1.1),

and we prove Theorem 1.1 for non-radial solutions which do not fit the mass-resonance condition,

as well as for radially symmetric solutions. In this latter case, instead, we only need (localized)

Morawetz estimates, which are less involved with respect to the interaction Morawetz ones, as we

can take advantage of the spatial decay of radial Sobolev functions.

Our second main result is about formation of singularities in finite time for solutions to (1.1). We

state it for two classes of initial data. Indeed, besides the fact that these initial data must satisfy

the a-priori bounds given by (1.13) and (1.16) – the latter (see below) replacing the condition
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(1.14) yielding to global well-posedness – they can belong either to the space of radial function, or

to the anisotropic space of cylindrical function having finite variance in the last variable. The

Theorem reads as follows.

Theorem 1.2. Let µ, γ > 0, and (φ, ψ) ∈ G(0, 3γ, γ). Let (u0, v0) ∈ H1(R3) × H1(R3) satisfy

either Eµ(u0, v0) < 0 or, if Eµ(u0, v0) ≥ 0, we assume moreover that (1.13) holds and

K(u0, v0)M3γ(u0, v0) > K(φ, ψ)M3γ(φ, ψ). (1.16)

If the initial data satisfy

• either (u0, v0) is radially symmetric,

• or (u0, v0) ∈ Σ3 × Σ3, where

Σ3 :=
{
f ∈ H1(R3) : f(y, z) = f(|y|, z), zf ∈ L2(R3)

}
with x = (y, z), y = (x1, x2) ∈ R2 and z ∈ R,

then the corresponding solution to (1.1) blows-up in finite time.

Let us now comment previous known results about blow-up for (1.1) and the one stated above,

and highlight the main novelties of this paper regarding the blow-up achievements with respect to

the previous literature.

In the mass-resonance case, i.e., γ = 3, and provided µ = 3γ = 9, the existence of finite time

blow-up solutions to (1.1) with finite variance initial data was proved in [28, Theorems 4.6 and 4.8].

More precisely, they proved that if (u0, v0) ∈ Σ(R3)×Σ(R3) with Σ(R3) = H1(R3)∩L2(R3, |x|2dx)

satisfying either E9(u0, v0) < 0 or if E9(u0, v0) ≥ 0, they moreover assumed that

E9(u0, v0)M9(u0, v0) <
1

2
E9(φ, ψ)M9(φ, ψ),

K(u0, v0)M9(u0, v0) > K(φ, ψ)M9(φ, ψ),

where (φ, ψ) ∈ G(0, 9, 3), then the corresponding solution to (1.1) blows-up in finite time. The

proof of the blow-up result in [28] is based on the following virial identity (see Remark 3.3)

d2

dt2
V (t) = 4G(u(t), v(t)), (1.17)

where

V (t) :=

ˆ
|x|2

(
|u(t, x)|2 + 9|v(t, x)|2

)
dx.

Using (1.17), the finite time blow-up result follows from a convexity argument. For the power-

type NLS equation, this kind of convexity strategy goes back to the early work of Glassey, see [16],

for finite variance solutions with negative initial energy. See the works by Ogawa and Tsutsumi

[27] for the removal of the finiteness hypothesis of the variance, but with the addition of the radial

assumption. See the already mentioned paper [17] for an extension to the cubic NLS up to the

mass-energy threshold, of the results by Glassey, and Ogawa and Tsutsumi.

If we do not assume the mass-resonance condition, or we do not assume that µ 6= 3γ, the

identity (1.17) ceases to be valid. Thus the convexity argument is no-more applicable in our

general setting. The proof of Theorem 1.2 above relies instead on an ODE argument, in the same
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spirit of our previous work [11], using localized virial estimates and the negativity property of the

Pohozaev functional (see Lemma 5.1). We point-out that our result not only extends the one in

[28] to radial and cylindrical solutions, but also extends it to the whole range of µ, γ > 0. It worth

mentioning that blow-up in a full generality, i.e. for infinite-variance solutions with no symmetric

assumptions, is still an open problem even for the classical cubic NLS.

We conclude this introduction by reporting some notation used along the paper, and by

disclosing how the paper is organized.

1.1. Notations. We use the notation X . Y to denote X ≤ CY for some constant C > 0.

When X . Y and Y . X (possibly for two different universal constants), we write X ∼ Y, or

equivalently, we use the ‘big O’ notation O, e.g., X = O(Y ). For I ⊂ R an interval, we denote

the mixed norm

‖f‖LqtLrx(I×R3) =

(ˆ
I

(ˆ
R3

|f(t, x)|rdx
) q
r

dt

) 1
q

with the usual modifications when either r or q are infinity. When q = r, we simply write

‖f‖Lqt,x(I×R3). Let f, g ∈ LqtLrx(I × R3), we denote

‖(f, g)‖LqtLrx×LqtLrx(I×R3) := ‖f‖LqtLrx(I×R3) + ‖g‖LqtLrx(I×R3)

and if q = r, we simply write

‖(f, g)‖Lqt,x×Lqt,x(I×R3) := ‖f‖Lqt,x(I×R3) + ‖g‖Lqt,x(I×R3).

The Lp(R3) spaces, with 1 ≤, p ≤ ∞, are the usual Lebesgue spaces, as well as spaces W k,p(R3)

spaces, and their homogeneous versions, are the classical Sobolev spaces. To lighten the notation

along the paper, we will avoid to write R3 (unless necessary), as we are dealing with a three-

dimensional problem.

1.2. Structure of the paper. This paper is organized as follows. In Section 2, we state

preliminary results that will be needed throughout the paper, and we will prove some coercivity

conditions which play a vital role to get the scattering results. In Section 3, we introduce localized

quantities, and we derive localized virial estimates, Morawetz and interaction Morawetz estimates

which will be the fundamental tools to establish the main results. The latter a-priori estimates

will be shown in both radial and non-radial settings. In Section 4, we give scattering criteria for

radial and non-radial solutions. We eventually prove, in Section 5, the scattering results and the

blow-up results, by employing the tools developed in the previous Sections. We conclude with the

Appendixes A and B, devoted to the proofs of some results used along the paper.

2. Preliminary tools

In this section, we introduce some basic tools towards the proof of our main achievements.

Specifically, we give a small data scattering result, as well as useful properties related to the

ground states. We postpone the proof of some of the following results to the Appendix A.
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2.1. Small data theory. We have the following small data scattering result, which will be useful

in the sequel.

Lemma 2.1. Let µ, γ > 0, and T > 0. Suppose that (u, v) is a global H1-solution to (1.1)

satisfying

sup
t∈R
‖(u(t), v(t))‖H1×H1 ≤ E

for some constant E > 0. There exists εsd = εsd(E) > 0 such that if

‖(S1(t− T )u(T ),S2(t− T )v(T ))‖L4
tL

6
x×L4

tL
6
x([T,∞)×R3) < εsd, (2.1)

then the solution scatters forward in time.

Proof. See Appendix A. �

2.2. Variational analysis. We first recall some basic properties of ground states in G(0, 3γ, γ)

and then show a coercivity condition (see (2.8)), which play a vital role to get scattering results.

It was shown in [28, Lemma 3.5] that any ground state (φ, ψ) ∈ G(0, 3γ, γ) optimizes the

Gagliardo-Nirenberg inequality (1.15), that is

Copt =
P (φ, ψ)

(K(φ, ψ))
3
2 (M3γ(φ, ψ))

1
2

.

Using the Pohozaev identities (see [28, Lemma 3.4])

P (φ, ψ) = S0,3γ,γ(φ, ψ) = E3γ(φ, ψ) = M3γ(φ, ψ) =
1

3
K(φ, ψ), (2.2)

we have

Copt =
1

3
(K(φ, ψ)M3γ(φ, ψ))−

1
2 . (2.3)

To employ some Morawetz estimates in the proof of the scattering theorem, we will also use

the following refined Gagliardo-Nirenberg inequality.

Lemma 2.2. Let (φ, ψ) ∈ G(0, 3γ, γ). For any (f, g) ∈ H1 ×H1 and ξ1, ξ2 ∈ R3, we have

P (|f |, |g|) ≤ 1

3

(
K(f, g)M3γ(f, g)

K(φ, ψ)M3γ(φ, ψ)

) 1
2

K(eix·ξ1f, eix·ξ2g). (2.4)

Proof. See Appendix A. �

We conclude this preliminary section by giving the following two coercivity results.

Lemma 2.3. Let µ, γ > 0, and (φ, ψ) ∈ G(0, 3γ, γ). Let (u0, v0) ∈ H1 ×H1 satisfy (1.13) and

(1.14). Then the corresponding solution to (1.1) exists globally in time and satisfies

sup
t∈R

K(u(t), v(t)) ≤ 6Eµ(u0, v0). (2.5)

Moreover, there exists δ = δ(u0, v0, φ, ψ) > 0 such that

K(u(t), v(t))M3γ(u(t), v(t)) ≤ (1− δ)K(φ, ψ)M3γ(φ, ψ) (2.6)

for all t ∈ R.
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Proof. See Appendix A. �

Lemma 2.4. Let µ, γ > 0, and (φ, ψ) ∈ G(0, 3γ, γ). Let (u0, v0) ∈ H1 ×H1 satisfy (1.13) and

(1.14). Let δ be as in (2.6). Then there exists R = R(δ, u0, v0, φ, ψ) > 0 sufficiency large such that

for any z ∈ R3,

K (ΓR(· − z)u(t),ΓR(· − z)v(t))M3γ (ΓR(· − z)u(t),ΓR(· − z)v(t))

≤
(

1− δ

2

)
K(φ, ψ)M3γ(φ, ψ)

(2.7)

uniformly for t ∈ R, where ΓR(x) := Γ
(
x
R

)
with Γ a cutoff function satisfying 0 ≤ Γ(x) ≤ 1 for

all x ∈ R3. Moreover, there exists ν = ν(δ) > 0 independent on t so that for any ξ1, ξ2 ∈ R3, and

any z ∈ R3,

K
(

ΓR(· − z)eix·ξ1u(t),ΓR(· − z)eix·ξ2v(t)
)
− 3P (ΓR(· − z)u(t),ΓR(· − z)v(t))

≥ νK
(

ΓR(· − z)eix·ξ1u(t),ΓR(· − z)eix·ξ2v(t)
) (2.8)

for any t ∈ R.

Proof. See Appendix A. �

3. Virial and Morawetz estimates

This section is devoted to the proof of virial-type, Morawetz-type, and interaction Morawetz-type

estimates, which will be crucial for the proof of the main Theorems 1.1 and 1.2.

3.1. Virial estimates. We start with the following identities. In what follows we use the Einstein

convention, so repeated indices are summed.

Lemma 3.1. Let µ, β, γ > 0, and (u, v) be a H1-solution to (1.1). Then the following identities

hold:

∂t(|u|2 + γβ|v|2) = −2∇ · Im(u∇u)− 2β∇ · Im(v∇v) +
2

3

(
1− β

3

)
Im(u3v), (3.1)

∂t Im(u∂ku+ γv∂kv) =
1

2
∂k∆(|u|2 + |v|2)− 2∂j Re(∂ju∂ku+ ∂jv∂kv) + 2∂kN(u, v), (3.2)

where N is as in (1.6). In particular, we have

∂t(|u|2 + γ2|v|2) = −2∇ · Im(u∇u)− 2γ∇ · Im(v∇v) +
2

3

(
1− γ

3

)
Im(u3v),

∂t(|u|2 + 3γ|v|2) = −2∇ · Im(u∇u)− 6∇ · Im(v∇v).

Proof. See Appendix B. �

A direct consequence of Lemma 3.1 is the following localized virial identity related to (1.1).

Lemma 3.2. Let µ, γ > 0, and ϕ : R3 → R be a sufficiently smooth and decaying function. Let

(u, v) be a H1-solution to (1.1) defined on the maximal time interval (−T−, T+). Define

Mϕ(t) := 2 Im

ˆ
∇ϕ(x) · (∇uu+ γ∇vv)(t, x)dx. (3.3)
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Then we have for all t ∈ (−T−, T+),

d

dt
Mϕ(t) = −

ˆ
∆2ϕ(x)(|u|2 + |v|2)(t, x)dx+ 4 Re

ˆ
∂2
jkϕ(x)(∂ju∂ku+ ∂jv∂kv)(t, x)dx

− 4

ˆ
∆ϕ(x)N(u, v)(t, x)dx.

The following Corollary is easy to get.

Corollary 3.3. Recall the definition of G,N,P in (1.5), (1.6), and (1.4), respectively.

(i) If ϕ(x) = |x|2,
d

dt
M|x|2(t) = 8G(u(t), v(t)). (3.4)

(ii) If ϕ is radially symmetric, by denoting |x| = r, we have

d

dt
Mϕ(t) = −

ˆ
∆2ϕ(x)(|u|2 + |v|2)(t, x)dx+ 4

ˆ
ϕ′(r)

r
(|∇u|2 + |∇v|2)(t, x)dx

+ 4

ˆ (
ϕ′′(r)

r2
− ϕ′(r)

r3

)
(|x · ∇u|2 + |x · ∇v|2)(t, x)dx

− 4

ˆ
∆ϕ(x)N(u, v)(t, x)dx.

(3.5)

(iii) If ϕ is radial and (u, v) is also radial, then

d

dt
Mϕ(t) = −

ˆ
∆2ϕ(x)(|u|2 + |v|2)(t, x)dx+ 4

ˆ
ϕ′′(r)(|∇u|2 + |∇v|2)(t, x)dx

− 4

ˆ
∆ϕ(x)N(u, v)(t, x)dx.

(3.6)

(iv) Denote x = (y, z) with y = (x1, x2) ∈ R2 and z ∈ R. Let ψ : R2 → R be a sufficiently smooth

and decaying function. Set ϕ(x) = ψ(y) + z2. If (u(t), v(t)) ∈ Σ3 × Σ3 for all t ∈ (−T−, T+),

then we have

d

dt
Mϕ(t) = −

ˆ
∆2
yψ(y)(|u|2 + |v|2)(t, x)dx+ 4

ˆ
ψ′′(ρ)(|∇yu|2 + |∇yv|2)(t, x)dx

+ 8
(
‖∂zu(t)‖2L2 + ‖∂zv(t)‖2L2

)
− 8P (u(t), v(t))− 4

ˆ
∆yψ(y)N(u, v)(t, x)dx,

(3.7)

where ρ = |y|.

Proof. See Appendix B. �

We now aim to construct precise localization functions that we will use to get the desired main

results of the paper. Let ζ : [0,∞)→ [0, 2] be a smooth function satisfying

ζ(r) :=

{
2 if 0 ≤ r ≤ 1,

0 if r ≥ 2.

We define the function ϑ : [0,∞)→ [0,∞) by

ϑ(r) :=

ˆ r

0

ˆ τ

0
ζ(s)dsdτ. (3.8)
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For R > 0, we define the radial function ϕR : R3 → R by

ϕR(x) = ϕR(r) := R2ϑ(r/R), r = |x|. (3.9)

We readily check that, ∀x ∈ R3 and ∀r ≥ 0,

2 ≥ ϕ′′R(r) ≥ 0, 2−
ϕ′R(r)

r
≥ 0, 6−∆ϕR(x) ≥ 0.

We are ready to state the first virial estimate for radially symmetric solutions.

Lemma 3.4. Let µ, γ > 0. Let (u, v) be a radial H1-solution to (1.1) defined on the maximal

time interval (−T−, T+). Let ϕR be as in (3.9) and denote MϕR(t) as in (3.3). Then we have for

all t ∈ (−T−, T+),

d

dt
MϕR(t) ≤ 4G(u(t), v(t)) + CR−2K(u(t), v(t)) + CR−2 (3.10)

for some constant C > 0 depending only on µ, γ, and M3γ(u0, v0), where G is as in (1.5).

Proof. By (3.6), we have for all t ∈ (−T−, T+),

d

dt
MϕR(t) = −

ˆ
∆2ϕR(x)(|u|2 + |v|2)(t, x)dx+ 4

ˆ
R3

ϕ′′R(r)(|∇u|2 + |∇v|2)(t, x)dx

− 4

ˆ
∆ϕR(x)N(u, v)(t, x)dx.

We rewrite, using G−K + 3P = 0,

d

dt
MϕR(t) = 8G(u(t), v(t))− 8K(u(t), v(t)) + 24P (u(t), v(t))

−
ˆ

∆2ϕR(x)(|u|2 + |v|2)(t, x)dx+ 4

ˆ
ϕ′′R(r)(|∇u|2 + |∇v|2)(t, x)dx

− 4

ˆ
∆ϕR(x)N(u, v)(t, x)dx

= 8G(u(t), v(t))−
ˆ

∆2ϕR(x)(|u|2 + |v|2)(t, x)dx

− 4

ˆ
(2− ϕ′′R(r))(|∇u|2 + |∇v|2)(t, x)dx+ 4

ˆ
(6−∆ϕR(x))N(u, v)(t, x)dx.

As ‖∆2ϕR‖L∞ . R−2, the conservation of mass implies that∣∣∣∣ˆ
R3

∆2ϕR(x)(|u|2 + |v|2)(t, x)dx

∣∣∣∣ . R−2.

The latter, together with ϕ′′R(r) ≤ 2 for all r ≥ 0, ‖∆ϕR‖L∞ . 1, ϕR(x) = |x|2 on |x| ≤ R, and

Hölder’s inequality, yield

d

dt
MϕR(t) ≤ 8G(u(t), v(t)) + CR−2 + C

ˆ
|x|≥R

|u(t, x)|4 + |v(t, x)|4dx,

where we have used the fact that (see (1.6))

|N(u, v)| . |u|4 + |v|4.
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To estimate the last term, we recall the following radial Sobolev embedding (see e.g., [9]): for a

radial function f ∈ H1(R3), we have

sup
x 6=0
|x||f(x)| ≤ C‖∇f‖

1
2

L2‖f‖
1
2

L2 . (3.11)

Thanks to (3.11) and the conservation of mass, we estimate
ˆ
|x|≥R

|u(t, x)|4dx ≤ sup
|x|≥R

|u(t, x)|2‖u(t)‖2L2

. R−2 sup
|x|≥R

(|x||u(t, x)|)2 ‖u(t)‖2L2

. R−2‖∇u(t)‖L2‖u(t)‖3L2

. R−2‖∇u(t)‖L2

. R−2
(
‖∇u(t)‖2L2 + 1

)
.

It follows that

d

dt
MϕR(t) ≤ 8G(u(t), v(t)) + CR−2 + CR−2

(
‖∇u(t)‖2L2 + ‖∇v(t)‖2L2

)
.

The proof is complete. �

Next we derive localized virial estimates for cylindrically symmetric solutions (we also mention

here [2, 3, 11, 20, 21, 25], for the qualitative analysis of dispersive-type equations in anisotropic

spaces). To this end, we introduce

ψR(y) = ψR(ρ) := R2ζ(ρ/R), ρ = |y| (3.12)

and set

ϕR(x) := ψR(y) + z2. (3.13)

Lemma 3.5. Let µ, γ > 0. Let (u, v) be a Σ3-solution to (1.1) defined on the maximal time

interval (−T−, T+). Let ϕR be as in (3.13) and denote MϕR(t) as in (3.3). Then we have for all

t ∈ (−T−, T+),

d

dt
MϕR(t) ≤ 8G(u(t), v(t)) + CR−1K(u(t), v(t)) + CR−2 (3.14)

for some constant C > 0 depending only on µ, γ, and M(u0, v0).

Proof. By (3.7), we have for all t ∈ (−T−, T+),

d

dt
MϕR(t) = −

ˆ
∆2
yψR(y)(|u|2 + |v|2)(t, x)dx+ 4

ˆ
R3

ψ′′R(ρ)(|∇yu|2 + |∇yv|2)(t, x)dx

+ 8
(
‖∂zu(t)‖2L2 + ‖∂zv(t)‖2L2

)
− 8P (u(t), v(t))− 4

ˆ
∆yψR(y)N(u, v)(t, x)dx,
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where ρ = |y|. It follows that

d

dt
MϕR(t) ≤ 8G(u(t), v(t)) + CR−2 − 4

ˆ
(2− ψ′′R(ρ))(|∇yu|2 + |∇yv|2)(t, x)dx

+ 4 Re

ˆ
(4−∆yψR(y))N(u, v)(t, x)dx.

As ψ′′R(ρ) ≤ 2 and ‖∆yψR‖L∞ . 1, the Hölder’s inequality implies that

d

dt
MϕR(t) ≤ 8G(u(t), v(t)) + CR−2 + C

ˆ
|y|≥R

|u(t, x)|4 + |v(t, x)|4dx. (3.15)

We estimate ˆ
|y|≥R

|u(t, x)|4dx ≤
ˆ
R
‖u(t, z)‖2L2

y
‖u(t, z)‖2L∞y (|y|≥R)dz

≤ sup
z∈R
‖u(t, z)‖2L2

y

(ˆ
R
‖u(t, z)‖2L∞y (|y|≥R)dz

)
.

Set g(z) := ‖u(t, z)‖2L2
y
, we have

g(z) =

ˆ z

−∞
∂sg(s)ds = 2

ˆ z

−∞
Re

ˆ
R2

u(t, y, s)∂su(t, y, s)dyds

≤ 2‖u(t)‖L2
x
‖∂zu(t)‖L2

x

which, by the conservation of mass, implies that

sup
z∈R
‖u(t, z)‖2L2

y
. ‖∂zu(t)‖L2

x
. (3.16)

By the radial Sobolev embedding (3.11) with respect to the y-variable, we have
ˆ
‖u(t, z)‖2L∞y (|y|≥R)dz . R

−1

ˆ
‖∇yu(t, z)‖L2

y
‖u(t, z)‖L2

y
dz

. R−1

(ˆ
‖∇yu(t, z)‖2L2

y
dz

)1/2(ˆ
‖u(t, z)‖2L2

y
dz

)1/2

. R−1‖∇yu(t)‖L2
x
‖u(t)‖L2

x

. R−1‖∇yu(t)‖L2
x
. (3.17)

Collecting (3.16) and (3.17), we get
ˆ
|y|≥R

|u(t, x)|4dx . R−1‖∇yu(t)‖L2
x
‖∂zu(t)‖L2

x

. R−1
(
‖∇yu(t)‖2L2

x
+ ‖∂zu(t)‖2L2

x

)
. R−1‖∇u(t)‖2L2

x
.

The latter and (3.15) give (3.14). The proof is complete. �
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3.2. Interaction Morawetz estimates. Non-radial setting. Following [33], let χ be a de-

creasing radial smooth function such that χ(x) = 1 for |x| ≤ 1 − σ, χ(x) = 0 for |x| ≥ 1, and

|∇χ| . σ−1, where 0 < σ < 1 is a small constant.

Let R > 1 be a large parameter. We define the following radial functions

ΦR(x) =
1

ω3R3

ˆ
χ2
R(x− z)χ2

R(z)dz,

Φ1,R(x, y) =
1

ω3R3

ˆ
χ2
R(x− z)χ4

R(y − z)dz,

where χR(x) := χ
(
x
R

)
and ω3 is the volume of unit ball in R3. We also define the functions

ΨR(x) =
1

|x|

ˆ |x|
0

ΦR(r)dr, ΘR(x) =

ˆ |x|
0

rΨR(r)dr.

We collect below some properties of the above functions.

Remark 3.1 ([13]). Straightforward calculations give:

• the identities ∂jΘR(x) = xjΨR(x) and ∂jΨR(x) =
xj
|x|2 (ΦR(x)−ΨR(x)), and in particular,

∆ΘR(x) = 2ΨR(x) + ΦR(x), ∂2
jkΘR(x) = δjkΦR(x) + Pjk(x)(ΨR(x)− ΦR(x)), (3.18)

where Pjk(x) = δjk −
xjxk
|x|2 with δjk the Kronecker symbol;

• and that the estimates below are satisfied:

ΨR(x)− ΦR(x) ≥ 0, |ΨR(x)| . min

{
1,
R

|x|

}
,

|∇ΦR(x)| . 1

σR
, |∇ΨR(x)| . 1

σ
min

{
1

R
,
R

|x|2

}
,

|ΦR(x)− Φ1,R(x)| . σ, |ΨR(x)− ΦR(x)| . 1

σ
min

{
|x|
R
,
R

|x|

}
.

(3.19)

Let (u, v) be a global H1-solution to (1.1) with initial data (u0, v0) satisfying (1.13) and (1.14).

We define the interaction Morawetz quantity adapted to system (1.1) by

M⊗2
R (t) = 2

¨
Lγ(u, v)(t, y)∇ΘR(x− y) · Im(u∇u+ γv∇v)(t, x)dxdy,

where

Lγ(u, v)(t, x) := (|u|2 + γ2|v|2)(t, x).

From the conservation of mass, (2.5), and (3.19), we have

sup
t∈R
|M⊗2

R (t)| . R.

By Lemma 3.1, we have

∂tLγ(u, v) = −2∇ · Im(u∇u)− 2γ∇ · Im(v∇v) +
2

3

(
1− γ

3

)
Im(u3v) (3.20)

and

∂t Im(u∂ku+ γv∂kv) = −2∂j Re(∂ju∂ku+ ∂jv∂kv) +
1

2
∂k∆(|u|2 + |v|2) + 2∂kN(u, v),
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where we recall that

N(u, v) =
1

36
|u|4 +

9

4
|v|4 + |u|2|v|2 +

1

9
Re(u3v).

Here repeated indices are summed. Moreover, by using integration by parts, we readily see that

d

dt
M⊗2

R (t) =4

¨
Lγ(u, v)(t, y)∇ΘR(x− y) · ∇N(u, v)(t, x)dxdy (3.21)

+

¨
Lγ(u, v)(t, y)∇ΘR(x− y) · ∇∆(|u|2 + |v|2)(t, x)dxdy (3.22)

− 4

¨
Lγ(u, v)(t, y)∂kΘR(x− y)∂j Re(∂ju∂ku+ ∂jv∂kv)(t, x)dxdy (3.23)

+ 2

¨
∂tLγ(u, v)(t, y)∇ΘR(x− y) · Im(u∇u+ γv∇v)(t, x)dxdy. (3.24)

We are able to prove the following interaction Morawetz estimates, which will play a fundamental

role for the proof of the scattering theorem in the non-radial framework.

Proposition 3.6. Let µ, γ > 0, and (φ, ψ) ∈ G(0, 3γ, γ). Let (u0, v0) ∈ H1 ×H1 satisfy (1.13)

and (1.14). Let (u, v) be the corresponding global solution to (1.1). Then for arbitrary small ε > 0,

there exist T0 = T0(ε), J = J(ε), R0 = R0(ε, u0, v0φ, ψ) sufficiently large and σ = σ(ε), η = η(ε)

sufficiently small such that if |γ − 3| < η, then for any a ∈ R,

1

JT0

ˆ a+T0

a

ˆ R0eJ

R0

1

R3

ˆ
R3

Wγ(χR(· − z)u(t), χR(· − z)v(t))

×K(χR(· − z)uξ(t), χR(· − z)vξ(t))dz dR
R
dt . ε, (3.25)

where (uξ(t, x), vξ(t, x)) := (eix·ξu(t, x), eiγx·ξv(t, x)) for some ξ = ξ(t, z, R) ∈ R3 and

Wγ(f, g) =

ˆ
R3

Lγ(f, g)(x)dx.

Proof. Since ∆ΘR(x− y) = 3Φ1,R(x, y) + 3(ΦR −Φ1,R)(x, y) + 2(ΨR −ΦR)(x− y), by integration

by parts, we have

(3.21) =− 12

¨
Lγ(u, v)(t, y)Φ1,R(x− y)N(u, v)(t, x)dxdy (3.26)

− 12

¨
Lγ(u, v)(t, y)(ΦR − Φ1,R)(x− y)N(u, v)(t, x)dxdy (3.27)

− 8

¨
Lγ(u, v)(t, y)(ΨR − ΦR)(x− y)N(u, v)(t, x)dxdy. (3.28)

Again, by integration by parts and Remark 3.1, we have

(3.22) =

¨
Lγ(u, v)(t, y)∇(3ΦR(x− y) + 2(ΨR − ΦR)(x− y)) · ∇(|u|2 + |v|2)(t, x)dxdy. (3.29)
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We will treat (3.27), (3.28), and (3.29) as error terms. Moreover, by Remark 3.1, we get

(3.23) = 4

¨
Lγ(u, v)(t, y)ΦR(x− y)(|∇u|2 + |∇v|2)(t, x)dxdy (3.30)

+ 4

¨
Lγ(u, v)(t, y)(ΨR − ΦR)(x− y)Pjk(x− y) Re(∂ju∂ku+ ∂jv∂kv)(t, x)dxdy. (3.31)

Similarly, by (3.20) and Remark 3.1, we see that

(3.24) = −4

¨
ΦR(x− y) Im(u∇u+ γv∇v)(t, y) · Im(u∇u+ γv∇v)(t, x)dxdy (3.32)

− 4

¨
(ΨR − ΦR)(x− y)Pjk(x− y) Im(u∂ku+ γv∂kv)(t, y) Im(u∂ju+ γv∂jv)(t, y)dxdy

(3.33)

+
4

3

(
1− γ

3

)¨
∇ΘR(x− y) · Im(u∇u+ γv∇v)(t, x) Im(u3v)(t, y)dxdy. (3.34)

Now, let /∇y denote the angular derivative centered at y, namely

/∇yf(x) := ∇f(x)− x− y
|x− y|

(
x− y
|x− y|

∇f(x)

)
and similarly for /∇x. We have

(3.31) + (3.33) = 4

¨
(ΨR − ΦR)(x− y)

(
(| /∇yu|2 + | /∇yv|2)(t, x)(|u|2 + γ2|v|2)(t, y)

− Im(u /∇yu+ γv /∇yv)(t, x) · Im(u /∇xu+ γv /∇xv)(t, y)
)
dxdy.

(3.35)

Hence ψR − φR is radial and non-negative, by the Cauchy-Schwarz inequality, we infer that

(3.31) + (3.33) = (3.35) ≥ 0.

On the other hand, as χR is radial and non-negative, we have

(3.30) + (3.32) =
4

ω3R3

˚
χ2
R(x− z)χ2

R(y − z)
(

(|∇u|2 + |∇v|2)(t, x)(|u|2 + γ2|v|2)(t, y)

− Im(u∇u+ γv∇v)(t, y) · Im(u∇u+ γv∇v)(t, x)
)
dxdydz

=
4

ω3R3

ˆ
B(u, v)(t, z)dz, (3.36)

where

B(u, v)(t, z) : =

ˆ
χ2
R(x− z)(|∇u|2 + |∇v|2)(t, x)dx

ˆ
χ2
R(y − z)(|u|2 + γ2|v|2)(t, y)dy

−
∣∣∣∣ˆ χ2

R(x− z) Im(u∇u+ γv∇v)(t, x)dx

∣∣∣∣2 .
Notice that B(u, v) is invariant under the gauge transformation

(u(t, x), v(t, x)) 7→ (uξ(t, x), vξ(t, x)) := (eix·ξu(t, x), eiγx·ξv(t, x))
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for any ξ ∈ R3. Indeed, we see that

Lγ(uξ, vξ) = Lγ(u, v), Vγ(uξ, vξ) = ξLγ(u, v) + Vγ(u, v),

H(uξ, vξ) = |ξ|2Lγ(u, v) +H(u, v) + 2ξ · Vγ(u, v),

where

Vγ(u, v)(t, x) := Im(u∇u+ γv∇v)(t, x), H(u, v)(t, x) := (|∇u|2 + |∇v|2)(t, x),

which implies that B(uξ, vξ) = B(u, v). Next, we define

ξ(t, z, R) := −

ˆ
χ2
R(x− z)Vγ(u, v)(t, x)dx

ˆ
χ2
R(x− z)Lγ(u, v)(t, x)dx

provided that the denominator is non-zero; otherwise we can define ξ(t, z, R) ≡ 0. With this

choice of ξ, we have ˆ
χ2
R(x− z)Vγ(uξ, vξ)(t, x)dx = 0.

Combining this with (3.36), we infer that

(3.30) + (3.32) =
4

ω3R3

ˆ (ˆ
χ2
R(x− z)H(uξ, vξ)(t, x)dx

ˆ
χ2
R(y − z)Lγ(u, v)(t, y)dy

)
dz.

Therefore, by the above identity, (3.26), (3.27), (3.29), and (3.34), we get

4

ω3R3

ˆ
R3

(ˆ
χ2
R(y − z)Lγ(u, v)(t, y)dy

)
×
(ˆ

χ2
R(x− z)H(uξ, vξ)(t, x)− 3χ4

R(x− z)N(u, v)(t, x)dx

)
dz (3.37)

≤ d

dt
M⊗2

R (t) (3.38)

+

¨
Lγ(u, v)(t, y)(12(ΦR − Φ1,R) + 8(ΨR − ΦR))(x− y)N(u, v)(t, x)dxdy (3.39)

−
¨

Lγ(u, v)(t, y)(3∇ΦR + 2∇(ΨR − ΦR))(x− y) · ∇(|u|2 + |v|2)(t, x)dxdy (3.40)

+
4

3

(γ
3
− 1
)¨

∇ΘR(x− y) · Im(u∇u+ γv∇v)(t, x) Im(u3v)(t, y)dxdy. (3.41)

Now, we consider (3.37). Sinceˆ
|∇(χf)|2dx =

ˆ
χ2|∇f |2dx−

ˆ
χ∆χ|f |2dx,

we getˆ
χ2
R(x− z)H(uξ, vξ)(t, x)dx =

ˆ
H(χR(· − z)uξ, χR(· − z)vξ)(t, x)dx

+

ˆ
χR(x− z)∆ (χR(x− z)) (|u|2 + |v|2)(t, x)dx.

(3.42)
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Thus, substituting (3.42) in (3.37) and using Lemma 2.4 with χR instead of ΓR, we see that there

exists ν > 0 such that

1

JT0

ˆ a+T0

a

ˆ R0eJ

R0

(3.37)
dR

R
dt ≥ 4ν

ω3JT0

ˆ a+T0

a

ˆ R0eJ

R0

1

R3

ˆ
R3

(
Wγ(χR(· − z)u(t), χR(· − z)v(t))

×K(χR(· − z)uξ(t), χR(· − z)vξ(t))dz
)
dR

R
dt

+
4ν

ω3JT0

ˆ a+T0

a

ˆ R0eJ

R0

1

R3

ˆ
R3

Wγ(χR(· − z)u(t), χR(· − z)v(t))

×
(ˆ

R3

χR(· − z)∆ (χR(· − z)) (|u|2 + |v|2)(t, x)dx

)
dz
dR

R
dt.

By the conservation of mass and the fact that ‖∆(χR)‖L∞ . R−2, the absolute value of the second

term in the right hand side can be bounded by

4ν

ω3JT0

ˆ a+T0

a

ˆ R0eJ

R0

CR−2dR

R
dt .

1

JR2
0

.

This implies that

1

JT0

ˆ a+T0

a

ˆ R0eJ

R0

1

R3

ˆ
R3

Wγ(χR(· − z)u(t), χR(· − z)v(t))K(χR(· − z)uξ(t), χR(· − z)vξ(t))dz dR
R
dt

.
1

JT0

ˆ a+T0

a

ˆ R0eJ

R0

(3.37)
dR

R
dt+

1

JR2
0

. (3.43)

Next, as |M⊗2
R (t)| . R, we have∣∣∣∣∣ 1

JT0

ˆ a+T0

a

ˆ R0eJ

R0

(3.38)
dR

R
dt

∣∣∣∣∣ ≤ 1

JT0

ˆ R0eJ

R0

sup
t∈[a,a+T0]

|M⊗2
R (t)|dR

R
.
R0e

J

JT0
. (3.44)

By (3.19), the conservation of mass, (2.5), and Sobolev embedding, we have

∣∣∣ 1

JT0

ˆ a+T0

a

ˆ R0eJ

R0

¨
Lγ(u, v)(t, y)(ΦR − Φ1,R)(x− y)N(u, v)(t, x)dxdy

dR

R
dt
∣∣∣

.
1

JT0

ˆ a+T0

a

ˆ R0eJ

R0

σ
dR

R
dt . σ,

where we have used the fact thatˆ
|Lγ(u, v)(t, y)|dy .M3γ(u(t), v(t)),

ˆ
|N(u, v)(t, x)|dx . ‖(u(t), v(t))‖4L4×L4 . ‖(u(t), v(t))‖4H1×H1 .
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Using (3.19), we see that∣∣∣ 1

JT0

ˆ a+T0

a

ˆ R0eJ

R0

¨
Lγ(u, v)(t, y)(ΨR − ΦR)(x− y)N(u, v)(t, x)dxdy

dR

R
dt
∣∣∣

.
1

σJT0

ˆ a+T0

a

ˆ R0eJ

R0

¨
|Lγ(u, v)(t, y)|min

{
|x− y|
R

,
R

|x− y|

}
|N(u, v)(t, x)|dxdydR

R
dt

.
1

σJT0

ˆ a+T0

a

¨
|Lγ(u, v)(t, y)|

(ˆ R0eJ

R0

min

{
|x− y|
R

,
R

|x− y|

}
dR

R

)
|N(u, v)(t, x)|dxdydt

.
1

σJ
,

where we have used the fact thatˆ ∞
0

min

{
|x− y|
R

,
R

|x− y|

}
dR

R
. 1.

We thus get ∣∣∣∣∣ 1

JT0

ˆ a+T0

a

ˆ R0eJ

R0

(3.39)
dR

R
dt

∣∣∣∣∣ . σ +
1

σJ
. (3.45)

As |∇ΦR(x)|, |∇(ΨR − ΦR)(x)| . 1
σR , we see that∣∣∣∣∣ 1

JT0

ˆ a+T0

a

ˆ R0eJ

R0

(3.40)
dR

R
dt

∣∣∣∣∣ . 1

σJR0
. (3.46)

Finally, as |γ − 3| < η and |∇ΘR(x)| . R, we infer from the conservation of mass, (2.5), and

Sobolev embedding that∣∣∣∣∣ 1

JT0

ˆ a+T0

a

ˆ R0eJ

R0

(3.41)
dR

R
dt

∣∣∣∣∣ . η

JT0

ˆ a+T0

a

ˆ R0eJ

R0

dRdt . η
R0e

J

J
. (3.47)

Combining these estimates (3.43), (3.44), (3.45), (3.46), and (3.47), we obtain

1

JT0

ˆ a+T0

a

ˆ R0eJ

R0

1

R3

ˆ
R3

Wγ(χR(· − z)u(t), χR(· − z)v(t))K(χR(· − z)uξ(t), χR(· − z)vξ(t))dz dR
R
dt

.
1

JR2
0

+
R0e

J

JT0
+ σ +

1

σJ
+

1

σJR0
+ η

R0e
J

J
,

which shows (3.25) by choosing σ = ε, J = ε−3, R0 = ε−1, T0 = eε
−3

, and η = e−ε
−3

. The proof is

complete. �

3.3. Morawetz estimates. Radial setting. We now turn our attention to the proof of the

radial version of the Morawetz estimate which will be essential in the proof of the scattering

theorem in the radially symmetric setting. In this context, we take advantage of the radial Sobolev

embedding to get some spatial decay.
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Lemma 3.7. Let µ, γ > 0, and (φ, ψ) ∈ G(0, 3γ, γ). Let (u0, v0) ∈ H1×H1 be radially symmetric

satisfying (1.13) and (1.14). Then for any T > 0 and R = R(u0, v0, φ, ψ) > 0 sufficiently large,

the corresponding global solution to (1.1) satisfies

1

T

ˆ T

0

ˆ
|x|≤R

2

(
|u(t, x)|

10
3 + |v(t, x)|

10
3

)
dxdt .

R

T
+

1

R2
. (3.48)

Proof. Let ϕR be as in (3.9) and define MϕR(t) as in (3.3). By the Cauchy-Schwarz inequality,

the conservation of mass, and (2.5), we have

sup
t∈R
|MϕR(t)| . R. (3.49)

By (3.6), we have

d

dt
MϕR(t) = −

ˆ
∆2ϕR(x)(|u|2 + |v|2)(t, x)dx+ 4

ˆ
ϕ′′R(r)(|∇u|2 + |∇v|2)(t, x)

− 4

ˆ
∆ϕR(x)N(u, v)(t, x)dx.

As ϕR(x) = |x|2 for |x| ≤ R, we see that

d

dt
MϕR(t) = 8

(ˆ
|x|≤R

(|∇u|2 + |∇v|2)(t, x)dx− 3

ˆ
|x|≤R

N(u, v)(t, x)dx

)

−
ˆ

∆2ϕR(x)(|u|2 + |v|2)(t, x)dx+ 4 Re

ˆ
|x|>R

∂2
jkϕR(x)(∂ju∂ku+ ∂jv∂kv)(t, x)dx

− 4

ˆ
|x|>R

∆ϕR(x)N(u, v)(t, x)dx.

Since ‖∆2ϕR‖L∞ . R−2, the conservation of mass impliesˆ
∆2ϕR(x)(|u|2 + |v|2)(t, x)dx . R−2.

As (u, v) is radially symmetric, we use the fact

∂j =
xj
r
∂r, ∂2

jk =

(
δjk
r
− xjxk

r3

)
∂r +

xjxk
r2

∂2
r

to get

∂2
jkϕR(x)∂ju(t, x)∂ku(t, x) = ϕ′′R(r)|∂ru(t, r)|2 ≥ 0

which implies

Re

ˆ
|x|>R

∂2
jkϕR(x)(∂ju∂ku+ ∂jv∂kv)(t, x) ≥ 0.

On the other hand, by arguing as in the proof of Lemma 3.4, we have∣∣∣∣∣
ˆ
|x|>R

∆ϕR(x)N(u, v)(t, x)dx

∣∣∣∣∣ . R−2K(u(t), v(t)) . R−2.
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Thus we get

d

dt
MϕR(t) ≥ 8

(ˆ
|x|≤R

(|∇u|2 + |∇v|2)(t, x)dx− 3

ˆ
|x|≤R

N(u, v)(t, x)dx

)
+ CR−2 (3.50)

for all t ∈ R. Now, let %R(x) = %(x/R) with % as in (4.13). We haveˆ
|∇(%Ru(t))|2dx =

ˆ
%2
R|∇u(t)|2dx−

ˆ
%R∆%R|u(t)|2dx

=

ˆ
|x|≤R

|∇u(t)|2 −
ˆ
R/2≤|x|≤R

(1− %2
R)|∇u(t)|2dx−

ˆ
%R∆%R|u(t)|2dx

andˆ
N(%Ru, %Rv)(t, x)dx =

ˆ
|x|≤R

N(u, v)(t, x)dx+

ˆ
R/2≤|x|≤R

(N(%Ru, %Rv)−N(u, v)) (t, x)dx.

It follows thatˆ
|x|≤R

(|∇u|2 + |∇v|2)(t, x)dx− 3

ˆ
|x|≤R

N(u, v)(t, x)dx

=

ˆ
(|∇(%Ru)|2 + |∇(%Rv)|2)(t, x)dx− 3

ˆ
N(%Ru, %Rv)(t, x)dx

+

ˆ
R/2≤|x|≤R

(1− %2
R(x))(|∇u|2 + |∇v|2)(t, x)dx

+

ˆ
%R(x)∆%R(x)(|u|2 + |v|2)(t, x)dx− 3

ˆ
R/2≤|x|≤R

(N(%Ru, %Rv)−N(u, v)) (t, x)dx.

As 0 ≤ ρR ≤ 1 and ‖∆%R‖L∞ . R−2, the conservation of mass, (2.5), and the radial Sobolev

embedding, we haveˆ
|x|≤R

(|∇u|2 + |∇v|2)(t, x)dx− 3

ˆ
|x|≤R

N(u, v)(t, x)dx

≥ K(%Ru(t), %Rv(t))− 3P (%Ru(t), %Rv(t)) +O(R−2).

Thanks to (2.8) with %R in place of ΓR and z = ξ1 = ξ2 = 0, there exist R = R(u0, v0, φ, ψ) > 0

sufficiently large and ν = ν(u0, v0, φ, ψ) > 0 such thatˆ
|x|≤R

(|∇u|2 + |∇v|2)(t, x)dx− 3

ˆ
|x|≤R

N(u, v)(t, x)dx ≥ νK(%Ru(t), %Rv(t)) +O(R−2)

for all t ∈ R. This together with (3.50) yield

νK(%Ru(t), %Rv(t)) ≤ d

dt
MϕR(t) + CR−2

for all t ∈ R. Integrating on [0, T ] and using (3.49), we get

1

T

ˆ T

0
K(%Ru(t), %Rv(t))dt .

R

T
+

1

R2
.

In particular, we have
1

T

ˆ T

0
‖∇(ρRu(t))‖2L2dt .

R

T
+

1

R2
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which together with the Gagliardo-Nirenberg inequality

‖u‖
10
3

L
10
3
. ‖∇u‖2L2‖u‖

4
3

L2

imply

1

T

ˆ T

0
‖ρRu(t)‖

10
3

L
10
3
dt .

1

T

ˆ T

0
‖∇(ρRu(t))‖2L2dt .

R

T
+

1

R2
.

By the choice of %R, we obtain

1

T

ˆ T

0

ˆ
|x|≤R

2

|u(t, x)|
10
3 dxdt .

R

T
+

1

R2
.

A similar estimate holds for v. The proof is complete. �

4. Scattering criteria

In this section, we give scattering criteria for solution to (1.1) in the spirit of Dodson and

Murphy [12,13] (see also [33]). Let us start with the scattering criterion for non-radial solutions.

Proposition 4.1. Let µ, γ > 0. Suppose that (u, v) is a global H1-solution to (1.1) satisfying

sup
t∈R
‖(u(t), v(t))‖H1×H1 . E (4.1)

for some constant E > 0. Then there exist ε = ε(E) > 0 small enough and T0 = T0(ε, E) > 0

sufficiently large such that if for any a ∈ R, there exists t0 ∈ (a, a+ T0) such that

‖(u(t), v(t))‖
L5
t,x×L5

t,x([t0−ε−
1
4 ,t0]×R3)

. ε, (4.2)

then the solution scatters forward in the time.

Proof. By Lemma 2.1, it suffices to show that there exists T > 0 such that

‖(S1(t− T )u(T ),S2(t− T )v(T ))‖L4
tL

6
x×L4

tL
6
x([T,∞)×R3) . ε

1
32 . (4.3)

To prove (4.3), we first write

(S1(t− T )u(T ),S2(t− T )v(T )) = (S1(t)u0,S2(t)v0) + i

ˆ T

0
(S1(t− s)F1(s),S2(t− s)F2(s))ds.

By Sobolev embedding, Strichartz estimates, and the monotone convergence theorem, there exists

T1 > 0 sufficiently large such that if T > T1, then

‖(S1(t)u0,S2(t)v0)‖L4
tL

6
x×L4

tL
6
x([T,∞)×R3) . ε. (4.4)

We take a = T1 and T = t0, where a and t0 are as in (4.2), we write

i

ˆ T

0
(S1(t− s)F1(s),S2(t− s)F2(s))ds =: H1(t) +H2(t),

where

Hj(t) = i

ˆ
Ij

(S1(t− s)F1(s),S2(t− s)F2(s))ds, I1 = [0, T − ε−
1
4 ], I2 = [T − ε−

1
4 , T ].
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To estimate H2, we observe that

‖(u, v)‖
L2
t Ẇ

1
2 ,6
x ×L2

t Ẇ
1
2 ,6
x ([T−ε−

1
4 ,T ]×R3)

. 1. (4.5)

Indeed, by Strichartz estimates, fractional chain rule, (4.1), and (4.2), we have

‖(u, v)‖
L2
t Ẇ

1
2 ,6
x ×L2

t Ẇ
1
2 ,6
x ([T−ε−

1
4 ,T ]×R3)

. E + ‖(u, v)‖2
L5
t,x×L5

t,x([T−ε−
1
4 ,T ]×R3)

‖(u, v)‖
L2
t Ẇ

1
2 ,6
x ×L2

t Ẇ
1
2 ,6
x ([T−ε−

1
4 ,T ]×R3)

. E + ε2‖(u, v)‖
L2
t Ẇ

1
2 ,6
x ×L2

t Ẇ
1
2 ,6
x ([T−ε−

1
4 ,T ]×R3)

.

By choosing ε small enough, we get (4.5). By Sobolev embedding and Strichartz estimates, we see

that

‖H2‖L4
tL

6
x×L4

tL
6
x([T,∞)×R3) . ‖(u, v)‖2

L5
t,x×L5

t,x([T−ε−
1
4 ,T ]×R3)

‖(u, v)‖
L2
t Ẇ

1
2 ,6
x ×L2

t Ẇ
1
2 ,6
x ([T−ε−

1
4 ,T ]×R3)

which together with (4.2) and (4.5) imply

‖H2‖L4
tL

6
x×L4

tL
6
x([T,∞)×R3) . ε

2. (4.6)

On the other hand, we claim that

‖H1‖L4
tL

6
x×L4

tL
6
x([T,∞)×R3) . ε

1
32 . (4.7)

In fact, we notice that

H1(t) = (S1(t− T + ε−
1
4 )u(T − ε−

1
4 ),S2(t− T + ε−

1
4 )u(T − ε−

1
4 ))− (S1(t)u0,S2(t)v0)

which, by Strichartz estimates, implies

‖H1‖L4
tL

3
x×L4

tL
3
x([T,∞)×R3) . ‖(u(T − ε−

1
4 ), v(T − ε−

1
4 ))‖L2×L2 + ‖(u0, v0)‖L2×L2 . E.

Moreover, as

‖(F1(t), F2(t))‖L1×L1 . ‖(u(t), v(t))‖3L3×L3 . ‖(u(t), v(t))‖3H1×H1 . E3,

we have from the dispersive estimate (A.2) and Young’s inequality that

‖H1‖L4
tL
∞
x ×L4

tL
∞
x ([T,∞)×R3) .

∥∥∥∥∥∥
ˆ T−ε−

1
4

0
|t− s|−3/2ds

∥∥∥∥∥∥
L4
t ([T,∞))

. ε
1
16 .

By interpolation, we get

‖H1‖L4
tL

6
x×L4

tL
6
x([T,∞)×R3) ≤ ‖H1‖1/2L4

tL
3
x×L4

tL
3
x([T,∞)×R3)

‖H1‖1/2L4
tL
∞
x ×L4

tL
∞
x ([T,∞)×R3)

. ε
1
32

which proves (4.7). Collecting (4.4), (4.6), and (4.7), we obtain (4.3), and the proof is complete. �

Let us give now an analogous of the previous Criterion in the radial setting.
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Proposition 4.2 (Scattering criterion for radial solutions). Let µ, γ > 0. Suppose that (u, v) is a

global H1-solution to (1.1) satisfying

sup
t∈R
‖(u(t), v(t))‖H1×H1 ≤ E (4.8)

for some constant E > 0. Then there exist ε = ε(E) > 0 and R = R(E) > 0 such that if

lim inf
t→∞

ˆ
|x|≤R

(
|u(t, x)|2 + 3γ|v(t, x)|2

)
dx ≤ ε2, (4.9)

then the solution scatters forward in time.

Proof. Let ε > 0 be a small constant. By Lemma 2.1, it suffices to show the existence of

T = T (ε) > 0 such that

‖(S1(t− T )u(T ),S2(t− T )v(T ))‖L4
tL

6
x×L4

tL
6
x([T,∞)×R3) < ε

1
32 . (4.10)

To show this, we follow the argument of [12, Lemma 2.2]. By the Strichartz estimates and the

monotone convergence theorem, there exists T = T (ε) > 0 sufficiently large such that

‖(S1(t)u0,S2(t)v0)‖L4
tL

6
x×L4

tL
6
x([T,∞)×R3) < ε. (4.11)

As in the proof of Proposition 4.1, we write

(S1(t− T )u(T ),S2(t− T )v(T )) = (S1(t)u0,S2(t)v0) +H1(t) +H2(t),

where

Hj(t) = i

ˆ
Ij

(S1(t− s)F1(s),S2(t− s)F2(s))ds, I1 = [0, T − ε−
1
4 ], I2 = [T − ε−

1
4 , T ].

By (4.9) and enlarging T if necessary, we haveˆ
%R(x)

(
|u(T, x)|2 + 3γ|v(T, x)|2

)
dx ≤ ε2, (4.12)

where %R(x) = %(x/R) with % : R3 → [0, 1] a smooth cut-off function satisfying

%(x) =

{
1 if |x| ≤ 1/2,

0 if |x| ≥ 1.
(4.13)

Using the fact (see Lemma 3.1) that

∂t(|u|2 + 3γ|v|2) = −2∇ · Im(u∇u)− 6∇ · Im(v∇v),

(4.8), and ‖∇%R‖L∞(R3) . R
−1, an integration by parts and the Hölder inequality yield∣∣∣∣∂t ˆ %R(x)(|u(t, x)|2 + 3γ|v(t, x)|2)dx

∣∣∣∣ . R−1.

Taking R sufficient large such that R−1ε−
1
4 � ε2, we infer from (4.12) that∥∥∥∥ˆ %R(x)(|u(·, x)|2 + 3γ|v(·, x)|2)dx

∥∥∥∥
L∞t (I2)

. ε2.

This inequality implies that

‖%Ru‖L∞t L2
x(I2×R3) . ε and ‖%Rv‖L∞t L2

x(I2×R3) . ε. (4.14)
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Thanks to the radial Sobolev embedding (3.11), we have from (4.8) and (4.14) that

‖u‖L∞t L3
x(I2×R3) ≤ ‖%Ru‖L∞t L3

x(I2×R3) + ‖(1− %R)u‖L∞t L3
x(I2×R3)

. ‖%R‖1/2L∞t L
2
x(I2×R3)

‖%Ru‖1/2L∞t L
6
x(I2×R3)

+ ‖(1− %R)u‖1/3
L∞t L

∞
x (I2×R3)

‖(1− %R)u‖2/3
L∞t L

2
x(I2×R3)

. ε
1
2 +R−

1
3 . ε

1
2

provided that R > ε−
3
2 . A similar estimate holds for v. In particular, we get

‖(u, v)‖L∞t L3
x×L∞t L3

x(I2×R3) . ε
1
2 . (4.15)

Moreover, we have from the local theory that

‖(u, v)‖L2
tL
∞
x ×L2

tL
∞
x (I2×R3) + ‖(u, v)‖

L2
t Ẇ

1
2 ,6
x ×L2

t Ẇ
1
2 ,6
x (I2×R3)

. (1 + |I2|)
1
2 . ε−

1
8 .

By Sobolev embedding and Strichartz estimates, we see that that

‖H2‖L4
tL

6
x×L4

tL
6
x([T,∞)×R3)

. ‖(u, v)‖L∞t L3
x×L∞t L3

x(I2×R3)‖(u, v)‖L2
tL
∞
x ×L2

tL
∞
x (I2×R3)‖(u, v)‖

L2
t Ẇ

1
2 ,6
x ×L2

t Ẇ
1
2 ,6
x (I2×R3)

. ε
1
4 .

(4.16)

On the other hand, the same argument developed in the proof of (4.7) shows that

‖H1‖L4
tL

6
x×L4

tL
6
x([T,∞)×R3) . ε

1
32 . (4.17)

Collecting (4.11), (4.16), and (4.17), we prove (4.10), and the proof is complete. �

5. Proofs of the main Theorems

By exploiting the tools obtained in the previous parts of the paper, we are now able to prove

the scattering for non-radial and radial solutions to (1.1) given in Theorem 1.1. See [26,33,34] for

analogous results for NLS systems of quadratic type.

5.1. Proof of the scattering results.

Proof of Theorem 1.1 for non-radial solutions. It suffices to check the scattering criterion given

in Proposition 4.1. To this end, we are inspired to [35]. Fix a ∈ R and let ε > 0 be a sufficiently

small constant. Let T0 = T0(ε) > 0 sufficiently large to be chosen later. We will show that there

exists t0 ∈ (a, a+ T0) such that

‖(u, v)‖
L5
t,x×L5

t,x([t0−ε−
1
4 ,t0]×R3)

. ε
3

140 . (5.1)
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By Proposition 3.6, there exist T0 = T0(ε), J = J(ε), R0 = R0(ε, u0, v0, φ, ψ), σ = σ(ε), and

η = η(ε) such that if |γ − 3| < η, then

1

JT0

ˆ a+T0

a

ˆ R0eJ

R0

1

R3

ˆ
R3

Wγ(χR(· − z)u(t), χR(· − z)v(t))

×K(χR(· − z)uξ(t), χR(· − z)vξ(t))dz dR
R
dt . ε.

It follows that there exists R ∈ [R0, e
JR0] such that

1

T0

ˆ a+T0

a

1

R3

ˆ
R3

Wγ(χR(· − z)u(t), χR(· − z)v(t))K(χR(· − z)uξ(t), χR(· − z)vξ(t))dzdt . ε.

In particular,

1

T0

ˆ a+T0

a

1

R3

ˆ
‖χR(· − z)u(t)‖2L2‖∇

(
χR(· − z)uξ(t)

)
‖2L2dzdt . ε

and similarly for v. By the change of variable z = R
4 (w+ θ) with w ∈ Z3 and θ ∈ [0, 1]3, we deduce

from the integral mean value theorem and Fubini’s theorem that there exists θ ∈ [0, 1]3 such that

1

T0

ˆ a+T0

a

∑
w∈Z3

∥∥∥∥χR(· − R

4
(w + θ)

)
u(t)

∥∥∥∥2

L2

∥∥∥∥∇(χR(· − R

4
(w + θ)

)
uξ(t)

)∥∥∥∥2

L2

dt . ε.

By spliting the interval [a+ T0/2, a+ 3T0/4] into T0ε
1
4 subintervals of the same length ε−

1
4 , we

infer that there exists t0 ∈ [a+ T0/2, a+ 3T0/4] such that I0 := [t0 − ε−
1
4 , t0] ⊂ (a, a+ T0) and

ˆ
I0

∑
w∈Z3

∥∥∥∥χR(· − R

4
(w + θ)

)
u(t)

∥∥∥∥2

L2

∥∥∥∥∇(χR(· − R

4
(w + θ)

)
uξ(t)

)∥∥∥∥2

L2

dt . ε
3
4 . (5.2)

In particular, by the classical Gagliardo-Nirenberg inequality

‖f‖4L3 . ‖f‖2L2‖∇f‖2L2 ,

we obtain ˆ
I0

∑
w∈Z3

∥∥∥∥χR(· − R

4
(w + θ)

)
u(t)

∥∥∥∥4

L3

. ε
3
4 . (5.3)

On the other hand, by using the Hölder inequality and the Sobolev embedding, we get∑
w∈Z3

∥∥∥∥χR(· − R

4
(w + θ)

)
u(t)

∥∥∥∥2

L3

.
∑
w∈Z3

∥∥∥∥χR(· − R

4
(w + θ)

)
u(t)

∥∥∥∥
L2

∥∥∥∥χR(· − R

4
(w + θ)

)
u(t)

∥∥∥∥
L6

≤
( ∑
ω∈Z3

∥∥∥χR( · −R
4

(w + θ)
)
u(t)

∥∥∥2

L2

)1/2( ∑
w∈Z3

∥∥∥χR( · −R
4

(w + θ)
)
u(t)

∥∥∥2

L6

)1/2

. ‖u(t)‖L2‖u(t)‖H1 . 1. (5.4)
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For the last line above we used the following: by Sobolev,∑
w∈Z3

∥∥∥χR( · −R
4

(w + θ)
)
u(t)

∥∥∥2

L6

.
∑
w∈Z3

∥∥∥χR( · −R
4

(w + θ)
)
∇u(t)

∥∥∥2

L2
+

1

R2

∥∥∥(∇χ)R

(
· −R

4
(w + θ)

)
u(t)

∥∥∥2

L2

. ‖∇u(t)‖2L2 +
1

R2σ2
‖u(t)‖2L2 . ‖u(t)‖2H1

as |∇χ| . σ−1 and R > R0 = ε−1 = σ−1 (see the end of the proof of Proposition 3.6). It follows

from (5.3), (5.4), and the almost orthogonality that

‖u‖3L3
t,x(I0×R3) .

ˆ
I0

∑
w∈Z3

∥∥∥∥χR(· − R

4
(w + θ)

)
u(t)

∥∥∥∥3

L3

≤
ˆ
I0

∑
w∈Z3

∥∥∥∥χR(· − R

4
(w + θ)

)
u(t)

∥∥∥∥4

L3

 1
2
∑
w∈Z3

∥∥∥∥χR(· − R

4
(w + θ)

)
u(t)

∥∥∥∥4

L2

 1
2

≤

ˆ
I0

∑
w∈Z3

∥∥∥∥χR(· − R

4
(w + θ)

)
u(t)

∥∥∥∥4

L3

 1
2
ˆ

I0

∑
w∈Z3

∥∥∥∥χR(· − R

4
(w + θ)

)
u(t)

∥∥∥∥4

L2

 1
2

. ε
1
4 . (5.5)

On the other hand, by Strichartz estimates, Sobolev embedding and standard continuity argument,

we deduce that

‖u‖L10
t,x(I0×R3) . 〈I0〉

1
10 .

This inequality, (5.5), and interpolation imply that

‖u‖L5
t,x(I0×R3) . ‖u‖

3
7

L3
t,x(I0×R3)

‖u‖
4
7

L10
t,x(I0×R3)

. ε
3

140 .

Similarly, we have

‖v‖L5
t,x(I0×R3) . ε

3
140 .

Therefore, (5.1) holds, and the proof is complete. �

Proof of Theorem 1.1 for radial solutions. We fix ε > 0 and R as in Proposition 4.2. From (3.48)

and the mean value theorem, we infer that there exist sequences of times tn → ∞ and radii

Rn →∞ such that

lim
n→∞

ˆ
|x|≤Rn

(
|u(t, x)|

10
3 + |v(t, x)|

10
3

)
dx = 0. (5.6)

Choosing n sufficiently large so that Rn ≥ R, the Hölder inequality yields

ˆ
|x|≤R

(
|u(t, x)|2 + 3γ|v(t, x)|2

)
dx . R

3
5

(ˆ
|x|≤Rn

|u(t, x)|
10
3 dx

) 3
5

+

(ˆ
|x|≤Rn

|v(t, x)|
10
3 dx

) 3
5


which, by (5.6), shows (4.9). By Proposition 4.2, the solution scatters forward in time. �
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5.2. Proof of the blow-up results. It remains to prove the blow-up results as stated in Theorem

1.2. Let us start with the following observation.

Lemma 5.1. Let µ, γ > 0, and (φ, ψ) ∈ G(0, 3γ, γ). Let (u0, v0) ∈ H1 × H1 satisfy either

Eµ(u0, v0) < 0 or if Eµ(u0, v0) ≥ 0, we assume that (1.13) and (1.16) hold. Let (u, v) be the

corresponding solution to (1.1) with initial data (u0, v0) defined on the maximal time interval

(−T−, T+). Then for ε > 0 sufficiently small, there exists c = c(ε) > 0 such that

G(u(t), v(t)) + εK(u(t), v(t)) ≤ −c (5.7)

for all t ∈ (−T−, T+).

Proof. If Eµ(u0, v0) < 0, then the conservation of energy implies that

G(u(t), v(t)) +
1

2
K(u(t), v(t)) = 3Eµ(u(t), v(t))− 3

2
Mµ(u(t), v(t))

≤ 3Eµ(u(t), v(t)) = 3Eµ(u0, v0).

This shows (5.7) with ε = 1
2 and c = −3Eµ(u0, v0) > 0.

We next consider the case Eµ(u0, v0) ≥ 0. In this case, we assume (1.13) and (1.16). By the

same argument as in the proof of [28, Theorem 4.6] using (1.13) and (1.16), we have

K(u(t), v(t))M3γ(u(t), v(t)) > K(φ, ψ)M3γ(φ, ψ), ∀t ∈ (−T−, T+).

Moreover, by taking ρ = ρ(u0, v0, φ, ψ) > 0 such that

Eµ(u0, v0)M3γ(u0, v0) ≤ 1

2
(1− ρ)E3γ(φ, ψ)M3γ(φ, ψ), (5.8)

we can prove (see again the proof of [28, Theorem 4.6]) the existence of δ = δ(u0, v0, φ, ψ) > 0

such that

K(u(t), v(t))M3γ(u(t), v(t)) ≥ (1 + δ)K(φ, ψ)M3γ(φ, ψ), ∀t ∈ (−T−, T+). (5.9)

Now for ε > 0 small to be chosen later, we have from (5.8), (5.9), and (2.2) that(
G(u(t), v(t)) + εK(u(t), v(t))

)
M3γ(u(t), v(t))

=
(

3Eµ(u(t), v(t))− 3

2
Mµ(u(t), v(t))−

(1

2
− ε
)
K(u(t), v(t))

)
M3γ(u(t), v(t))

≤ 3Eµ(u(t), v(t))M3γ(u(t), v(t))−
(1

2
− ε
)
K(u(t), v(t))M3γ(u(t), v(t))

=
3

2
(1− ρ)E3γ(φ, ψ)M3γ(φ, ψ)−

(1

2
− ε
)

(1 + δ)K(φ, ψ)M3γ(φ, ψ)

= −
(1

2
(ρ+ δ)− ε(1 + δ)

)
K(φ, ψ)M3γ(φ, ψ)

for all t ∈ (−T−, T+). By choosing 0 < ε < ρ+δ
2(1+δ) , the conservation of mass yields

G(u(t), v(t)) + εK(u(t), v(t)) ≤ −
(1

2
(ρ+ δ)− ε(1 + δ)

)
K(φ, ψ)

M3γ(φ, ψ)

M3γ(u0, v0)

for all t ∈ (−T−, T+). The proof is complete. �
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We are now able to provide a proof of Theorem 1.2. To the best of our knowledge, the strategy

of using an ODE argument – when classical virial estimates based on the second derivative in

time of (localized) variance break down – goes back to the work [4], where fractional radial NLS

is investigated. See instead [11,22] for some blow-up results for quadratic NLS systems.

Proof of Theorem 1.2. We only consider the case of radial data, the one for Σ3-data is treated in

a similar manner using (3.14). Let (u0, v0) ∈ H1 ×H1 be radially symmetric and satisfy either

Eµ(u0, v0) < 0 or if Eµ(u0, v0) ≥ 0, we assume that (1.13) and (1.16) hold. Let (u, v) be the

corresponding solution to (1.1) defined on the maximal time interval (−T−, T+). We only show

that T+ < ∞ since the one for T− < ∞ is similar. Assume by contradiction that T+ = ∞. By

Lemma 5.1, we have for ε > 0 sufficiently small, there exists c = c(ε) > 0 such that

G(u(t), u(t)) + εK(u(t), v(t)) ≤ −c (5.10)

for all t ∈ [0,∞). On the other hand, by Lemma 3.10, we have for all t ∈ [0,∞),

d

dt
MϕR(t) ≤ 8G(u(t), v(t)) + CR−2K(u(t), v(t)) + CR−2, (5.11)

where ϕR is as in (3.9) and MϕR(t) is as in (3.3). It follows from (5.10) and (5.11) that for all

t ∈ [0,∞),

d

dt
MϕR(t) ≤ −8c− 8εK(u(t), v(t)) + CR−2K(u(t), v(t)) + CR−2.

By choosing R > 1 sufficiently large, we get

d

dt
MϕR(t) ≤ −4c− 4εK(u(t), v(t)) (5.12)

for all t ∈ [0,∞). Integrating the above inequality, we see that MϕR(t) < 0 for all t ≥ t0 with

some t0 > 0 sufficiently large. We infer from (5.12) that

MϕR(t) ≤ −4ε

ˆ t

t0

K(u(s), v(s))ds (5.13)

for all t ≥ t0. On the other hand, by the Hölder’s inequality and the conservation of mass, we have

|MϕR(t)| ≤ C‖∇ϕR‖L∞ (‖∇u(t)‖L2‖u(t)‖L2 + ‖∇v(t)‖L2‖v(t)‖L2)

≤ C(ϕR,M3γ(u0, v0))
√
K(u(t), v(t)). (5.14)

From (5.13) and (5.14), we get

MϕR(t) ≤ −A
ˆ t

t0

|MϕR(s)|2ds (5.15)

for all t ≥ t0, where A = A(ε, ϕR,M3γ(u0, v0)) > 0. Set

z(t) :=

ˆ t

t0

|MϕR(s)|2ds, t ≥ t0. (5.16)

We see that z(t) is non-decreasing and non-negative. Moreover,

z′(t) = |MϕR(t)|2 ≥ A2z2(t), ∀t ≥ t0.
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For t1 > t0, we integrate over [t1, t] to obtain

z(t) ≥ z(t1)

1−A2z(t1)(t− t1)
, ∀t ≥ t1.

This shows that z(t)→ +∞ as t↗ t∗, where

t∗ := t1 +
1

A2z(t1)
> t1.

In particular, we have

MϕR(t) ≤ −Az(t)→ −∞
as t↗ t∗, hence K(u(t), v(t))→ +∞ as t↗ t∗. Thus the solution cannot exist for all time t ≥ 0.

The proof is complete. �

Appendix A. Proofs of Lemmas 2.1, 2.2, 2.3, and 2.4

Let I ⊂ R be an interval containing zero. We recall that a pair of functions (u, v) ∈
C(I,H1(R3)) × C(I,H1(R3)) is called a solution to the problem (1.1) if (u, v) satisfies the

Duhamel formula

(u(t), v(t)) = (S1(t)u0,S2(t)v0) + i

ˆ t

0
(S1(t− s)F1(s),S2(t− s)F2(s))ds

for all t ∈ I, where

F1(s) :=

(
1

9
|u(s)|2 + 2|v(s)|2

)
u(s) +

1

3
u2(s)v(s),

F2(s) :=
(
9|v(s)|2 + 2|u(s)|2

)
v(s) +

1

9
u3(s).

(A.1)

The linear operators S1 and S2 introduced in (1.9) satisfy the following dispersive estimates: for

j = 1, 2, and 2 ≤ r ≤ ∞,

‖Sj(t)f‖Lr(R3) . |t|−( 3
2
− 3
r )‖f‖Lr′ (R3), f ∈ Lr′(R3) (A.2)

for all t 6= 0, which in turn yield the following Strichartz estimates: for any interval I ⊂ R and

any Strichartz L2-admissible pairs (q, r) and (m,n), i.e., pairs of real numbers satisfying

2

q
+

3

r
=

3

2
, 2 ≤ r ≤ 6. (A.3)

we have, for j = 1, 2,

‖Sj(t)f‖LqtLrx(I×R3) . ‖f‖L2(R3), f ∈ L2(R3),∥∥∥∥ˆ t

0
Sj(t− s)F (s)ds

∥∥∥∥
LqtL

r
x(I×R3)

. ‖F‖
Lm
′

t Ln′x (I×R3)
, F ∈ Lm′t Ln

′
x (I × R3),

where (m,m′) and (n, n′) are Hölder conjugate pairs. We refer the readers to the boos [8, 23,32]

for a general treatment of the Strichartz estimates for NLS equations.

We are ready to prove Lemma 2.1.
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Proof of Lemma 2.1. From the Duhamel formula, we have

(u(t), v(t)) = (S1(t− T )u(T ),S2(t− T )v(T )) + i

ˆ t

T
(S1(t− s)F1(s),S2(t− s)F2(s))ds.

By using Sobolev embedding, Strichartz estimates, and interpolation, we get

‖(u, v)‖L4
tL

6
x×L4

tL
6
x([T,∞)×R3) ≤ ‖(S1(t− T )u(T ),S2(t− T )v(T ))‖L4

tL
6
x×L4

tL
6
x([T,∞)×R3)

+ C‖(F1, F2)‖
L2
tW

1, 65
x ×L2

tW
1, 65
x ([T,∞)×R3)

≤ ‖(S1(t− T )u(T ),S2(t− T )v(T ))‖L4
tL

6
x×L4

tL
6
x([T,∞)×R3)

+ C‖(u, v)‖2L4
tL

6
x×L4

tL
6
x([T,∞)×R3)‖(u, v)‖L∞t L3

x×L∞t L3
x([T,∞)×R3)

≤ ‖(S1(t− T )u(T ),S2(t− T )v(T ))‖L4
tL

6
x×L4

tL
6
x([T,∞)×R3)

+ E‖(u, v)‖2L4
tL

6
x×L4

tL
6
x([T,∞)×R3),

Choosing εsd = εsd(E) > 0 small enough, the standard continuity argument implies that if (2.1)

holds, then

‖(u, v)‖L4
tL

6
x×L4

tL
6
x([T,∞)×R3) . εsd.

Now, for 0 < τ < t, we have

‖(S1(t)u(t),S2(t)v(t))− (S1(τ)u(t),S2(τ)v(τ))‖H1×H1

=

∥∥∥∥ˆ t

τ
(S1(−s)F1(s),S2(−s)F2(s))ds

∥∥∥∥
H1×H1

. ‖(u, v)‖2L4
tL

6
x×L4

tL
6
x([τ,t]×R3)‖(u, v)‖L∞t H1

x×L∞t H1
x([τ,t]×R3) → 0

as τ , t → ∞. Therefore, {(S1(t)u(t),S2(t)v(t))}t→∞ is a Cauchy sequence in H1 × H1. In

particular, the solution (u, v) scatters in the positive time. �

In the following, we provide the proofs for Lemmas 2.2, 2.3, and 2.4.

Proof of Lemma 2.2. By the sharp Gagliardo-Nirenberg inequality (1.15), K(|f |, |g|) ≤ K(f, g),

and (2.3), we get

P (|f |, |g|) ≤ 1

3

(
K(f, g)M3γ(f, g)

K(φ, ψ)M3γ(φ, ψ)

) 1
2

K(f, g).

Thus

P (|f |, |g|) ≤ 1

3
inf

ξ1,ξ2∈R3

((
K(eix·ξ1f, eix·ξ2g)M3γ(f, g)

K(φ, ψ)M3γ(φ, ψ)

) 1
2

K(eix·ξ1f, eix·ξ2g)

)

≤ 1

3
inf

ξ1,ξ2∈R3

(
K(eix·ξ1f, eix·ξ2g)M3γ(f, g)

K(φ, ψ)M3γ(φ, ψ)

) 1
2

× inf
ξ1,ξ2∈R3

K(eix·ξ1f, eix·ξ2g),

which implies (2.4). �
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Proof of Lemma 2.3. By (1.15) and µ > 0, we have

Eµ(u(t), v(t))M3γ(u(t), v(t)) ≥ 1

2
K(u(t), v(t))M3γ(u(t), v(t))− Copt (K(u(t), v(t))M3γ(u(t), v(t)))

3
2

=: G (K(u(t), v(t))M3γ(u(t), v(t)))

for all t ∈ (−T−, T+), where G(λ) := 1
2λ− Coptλ

3
2 . Using (2.3), we compute

G (K(φ, ψ)M3γ(φ, ψ)) =
1

6
K(φ, ψ)M3γ(φ, ψ) =

1

2
E3γ(φ, ψ)M3γ(φ, ψ).

By the conservation of mass and energy, and (1.13), we have

G (K(u(t), v(t))M3γ(u(t), v(t))) ≤ Eµ(u(t), v(t))M3γ(u(t), v(t))

= Eµ(u0, v0)M3γ(u0, v0)

<
1

2
E3γ(φ, ψ)M3γ(φ, ψ) = G (K(φ, ψ)M3γ(φ, ψ))

for all t ∈ (−T−, T+). Using this and (1.16), the continuity argument yields

K(u(t), v(t))M3γ(u(t), v(t)) < K(φ, ψ)M3γ(φ, ψ) (A.4)

for all t ∈ (−T−, T+). The blow-up alternative then implies that T− = T+ =∞. Next, by (1.15),

(2.3), and (A.4), we have

P (u(t), v(t)) ≤ 1

3

(
K(u(t), v(t))M3γ(u(t), v(t))

K(φ, ψ)M3γ(φ, ψ)

) 1
2

K(u(t), v(t)) ≤ 1

3
K(u(t), v(t))

for all t ∈ R. It follows that

Eµ(u(t), v(t)) =
1

2
(K(u(t), v(t)) +Mµ(u(t), v(t)))− P (u(t), v(t)) ≥ 1

6
K(u(t), v(t)) (A.5)

which, by the conservation of energy, implies (2.5).

From (A.5) and (2.3), we see that

K(u(t), v(t))M3γ(u(t), v(t)) ≤ 6Eµ(u(t), v(t))M3γ(u(t), v(t))

= 6

(
Eµ(u(t), v(t))M3γ(u(t), v(t))

E3γ(φ, ψ)M3γ(φ, ψ)

)
E3γ(φ, ψ)M3γ(φ, ψ)

=

(
E3γ(u(t), v(t))M3γ(u(t), v(t))

1
2E3γ(φ, ψ)M3γ(φ, ψ)

)
K(φ, ψ)M3γ(φ, ψ)

(A.6)

for all t ∈ R. On the other hand, by (1.13), there exists δ = δ(u0, v0, φ, ψ) > 0 such that

Eµ(u0, v0)M3γ(u0, v0) ≤ (1− δ)1

2
E3γ(φ, ψ)M3γ(φ, ψ).

Then from (A.6) and the conservation laws of mass and energy, we obtain

K(u(t), v(t))M3γ(u(t), v(t)) ≤ (1− δ)K(φ, ψ)M3γ(φ, ψ)

for all t ∈ R. The proof is complete. �
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Proof of Lemma 2.4. It follows from straightforward calculations that ‖ΓRf‖2L2 ≤ ‖f‖2L2 andˆ
Γ2
R(x)|∇f(x)|2dx =

ˆ
|∇(ΓR(x)f(x))|2dx+

ˆ
ΓR(x)∆ΓR(x)|f(x)|2dx, f ∈ H1.

As ‖∆ΓR‖L∞ . R−2, we infer from (2.6) and the conservation of mass that there exists a

sufficiently large R = R(δ, u0, v0, φ, ψ) so that

K (ΓR(· − z)u(t),ΓR(· − z)v(t))M3γ (ΓR(· − z)u(t),ΓR(· − z)v(t)) ≤
(

1− δ

2

)
K(φ, ψ)M3γ(φ, ψ)

for all t ∈ R. The refined Gagliardo-Nirenberg inequality (2.4) implies that

P (ΓR(· − z)|u(t)|,ΓR(· − z)|v(t)|) ≤ 1

3

(
1− δ

2

) 1
2

K
(

ΓR(· − z)eix·ξ1u(t),ΓR(· − z)eix·ξ2v(t)
)

which in turn implies (2.8) with ν := 1−
(
1− δ

2

) 1
2 > 0. �

Appendix B. Virial Identities

This Appendix is devoted to the proof of the virial identities in Section 3.

Proof of Lemma 3.1. Notice that

∂t(|u|2 + γβ|v|2) = 2 Re(u∂tu+ γβv∂tv). (B.1)

Moreover, multiplying the equation (1.1) with (u, βv) and taking the imaginary part, we have

Re(u∂tu+ γβv∂tv) = − Im(u∆u+ βv∆v)− Im

(
1

3
u3v +

β

9
u3v

)
= − Im(u∆u+ βv∆v) +

1

3

(
1− β

3

)
Im(u3v).

(B.2)

Combining (B.1) and (B.2), we infer that

∂t(|u|2 + γβ|v|2) = −2 Im(u∆u+ βv∆v) +
2

3

(
1− β

3

)
Im(u3v)

= −2∇ · Im(u∇u)− 2β∇ · Im(v∇v) +
2

3

(
1− β

3

)
Im(u3v),

which implies (3.1). On the other hand, we rewrite (1.1) as{
i∂tu+ ∆u = H,

iγ∂tv + ∆v = G,

where H = H1 +H2 +H3 and G = G1 +G2 +G3 with

H1 = u, H2 = −
(

1

9
|u|2 + 2|v|2

)
u, H3 = −1

3
u2v,

G1 = µv, G2 = −(9|v|2 + 2|u|2)v, G3 = −1

9
u3.
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It follows from straightforward computations that

∂t Im(u∂ku+ γv∂kv) =
1

2
∂k∆(|u|2 + |v|2)− 2∂j Re(∂ju∂ku+ ∂jv∂kv)

+ (2 Re(H∂ku)− ∂k Re(Hu)) + (2 Re(G∂kv)− ∂k Re(Gv)). (B.3)

A simple calculation leads to

(2 Re(H1∂ku)− ∂k Re(H1u)) + (2 Re(G1∂kv)− ∂k Re(G1v)) = 0.

Moreover, since

∂k(|u|2|v|2) = 2 Re(u∂ku)|v|2 + 2 Re(v∂kv)|u|2

∂k(|u|4) = 4|u|4 Re(u∂ku), ∂k(|v|4) = 4|v|4 Re(v∂kv),

we obtain that

(2 Re(H2∂ku)− ∂k Re(H2u)) + (2 Re(G2∂kv)− ∂k Re(G2v)) =
1

18
|u|4 +

9

2
|v|4 + 2|u|2|v|2.

Finally, as

∂k Re(u3v) = 3 Re(u2v∂ku) + Re(u3∂kv),

it follows that

(2 Re(H3∂ku)− ∂k Re(H3u)) + (2 Re(G3∂kv)− ∂k Re(G3v)) =
2

9
∂k Re(u3v).

Collecting the above identities, we obtain

(2 Re(H∂ku)− ∂k Re(Hu)) + (2 Re(G∂kv)− ∂k Re(Gv)) = 2∂kN(u, v),

which, together with (B.3), shows (3.2). The proof is complete. �

Proof of Corollary 3.3. The proof of the identity (3.4) is straightforward. The relation (3.5) comes

from the fact that

∂j =
xj
r
∂r, ∂2

jk =

(
δjk
r
− xjxk

r3

)
∂r +

xjxk
r2

∂2
r ,

for radial function. Hence

Re

ˆ
∂2
jkϕ(x)∂ju(t, x)∂ku(t, x)dx =

ˆ
ϕ′(r)

r
|∇u(t, x)|2dx+

ˆ (
ϕ′′(r)

r2
− ϕ′(r)

r3

)
|x · ∇u(t, x)|2dx,

where r = |x|, which in turn implies (3.6).

If ϕ is radial and (u, v) as well,

d

dt
Mϕ(t) = −

ˆ
∆2ϕ(x)(|u|2 + |v|2)(t, x)dx+ 4

ˆ
ϕ′′(r)(|∇u|2 + |∇v|2)(t, x)dx

− 4

ˆ
∆ϕ(x)N(u, v)(t, x)dx.

From the choice of the function ϕ(x) = ψ(y) + z2, we have

d

dt
Mϕ(t) = −

ˆ
∆2
yψ(y)(|u|2 + |v|2)(t, x)dx+ 4 Re

ˆ
∂2
jkψ(y)(∂ju∂ku+ ∂jv∂kv)(t, x)dx

+ 8
(
‖∂zu(t)‖2L2 + ‖∂zv(t)‖2L2

)
− 8P (u(t), v(t))− 4

ˆ
∆yψ(y)N(u, v)(t, x)dx
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which in turn gives (3.7). �
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B70, Res. Inst. Math. Sci. (RIMS), Kyoto, 2018, pp. 1–32. ↑12

[22] T. Inui, N. Kishimoto, and K. Nishimura, Blow-up of the radially symmetric solutions for the quadratic nonlinear

Schrödinger system without mass-resonance, Nonlinear Anal. 198 (2020), 111895, 10. ↑29

https://arxiv.org/abs/2005.02894
https://arxiv.org/abs/2012.10977
https://arxiv.org/abs/2010.14595


36 A. H. ARDILA, V. D. DINH, AND L. FORCELLA

[23] F. Linares and G. Ponce, Introduction to nonlinear dispersive equations, 2nd ed., Universitext, Springer, New

York, 2015. ↑30

[24] V. C. Long, P. Goldstein, and M. Trippenbach, On existence of solitons for the 3rd harmonic of a light beam in

planar waveguides, Acta Phys. Polo. A 5 (2004), no. 105, 437–444. ↑2

[25] Y. Martel, Blow-up for the nonlinear Schrödinger equation in nonisotropic spaces, Nonlinear Anal. 28 (1997),

no. 12, 1903–1908. ↑12

[26] F. Meng and C. Xu, Scattering for mass-resonance nonlinear Schrödinger system in 5D, J. Differential Equations

275 (2021), 837–857. ↑25

[27] T. Ogawa and Y. Tsutsumi, Blow-up of H1 solution for the nonlinear Schrödinger equation, J. Differential

Equations 92 (1991), no. 2, 317–330. ↑6

[28] F. Oliveira and A. Pastor, On a Schrödinger system arising in nonlinear optics, preprint, available at

http://arxiv.org/abs/1810.08231. ↑1, 2, 4, 5, 6, 7, 8, 28

[29] R. A. Sammut, A. V. Buryak, and Y. S. Kivshar, Modification of solitary waves by third-harmonic generation,

Opt. Lett. 22 (1997), no. 18, 1385–1387. ↑1, 2

[30] R. A. Sammut, A. V. Buryak, and Y. S. Kivshar, Bright and dark solitary waves in the presence of third-harmonic

generation, J. Opt. Soc. Am. B 15 (1998), no. 5, 1488–1496. ↑1, 2

[31] C. Sulem and P.-L. Sulem, The nonlinear Schrödinger equation, Applied Mathematical Sciences, vol. 139,

Springer-Verlag, New York, 1999. Self-focusing and wave collapse. ↑2

[32] T. Tao, Nonlinear dispersive equations, CBMS Regional Conference Series in Mathematics, vol. 106, Published

for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical

Society, Providence, RI, 2006. Local and global analysis. ↑30

[33] H. Wang and Q. Yang, Scattering for the 5D quadratic NLS system without mass-resonance, J. Math. Phys. 60

(2019), no. 12, 121508, 23. ↑14, 22, 25

[34] S. Xia and C. Xu, On dynamics of the system of two coupled nonlinear Schrödinger in R3, Math. Meth. Appl.

Sci. 42 (2019), 1–17. ↑25

[35] C. Xu, T. Zhao, and J. Zheng, Scattering for 3d cubic focusing NLS on the domain outside a convex obstacle

revisited, preprint, available at https://arxiv.org/pdf/1812.09445.pdf. ↑25

[36] L. Zhao, F. Zhao, and J. Shi, Higher dimensional solitary waves generated by second-harmonic generation in

quadratic media, Cal. Var. Partial Differential Equations 54 (2015), no. 3, 2657–2691. ↑2

(A. H. Ardila) Universidade Federal de Minas Gerais, ICEx-UFMG, CEP 30123-970, MG, Brazil

Email address: ardila@impa.br
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