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The Semiclassical Initial Value Representation

The inclusion of Nuclear Quantum Effects (NQEs) in the evaluation of spectroscopical fea-

tures is not a trivial task, but in some cases can be fundamental for the sake of a complete de-

scription of the system. Within a quantum dynamical approach to vibrational spectroscopy,

observing anharmonic overtones, combination bands, Fermi’s resonances, anharmonic Zero

Point Energy (ZPE), and tunneling splittings is possible. In this framework, the power spec-

tra of a system composed of N degrees of freedom with Hamiltonian Ĥ is defined as the

Fourier Transform (FT) of the surviving amplitude of an arbitrary reference state |Ψ⟩

I(E) =
1

2πℏ

∫ +∞

−∞
⟨Ψ
∣∣∣e− i

ℏ Ĥt
∣∣∣Ψ⟩ e

i
ℏEt dt. (S1)

Equation S1 can be evaluated exactly only for simple model systems. Other ”numerically

exact” methods can make highly accurate estimates for small molecular systems.1–3 Another

way to evaluate eq. S1, is to find an approximate form of the time evolution operator (e−
i
ℏ Ĥt).

In Feynman’s Path Integral (PI) representation of the propagator, the total amplitude for a

system evolving from a point in space q(0) to q(t), is given by considering all of the possible

infinite paths that connect the two points in space.4

⟨q(t)
∣∣e− i

ℏ Ĥt
∣∣q(0)⟩ = ∫ q(t)

q(0)

D[q] e
i
ℏS(q(t)) , (S2)

where D[q] includes the PI prefactor which accounts for the weight of every path and

S(q(t)) is the action along the considered path. Most of the paths included in the exact

PI representation of the propagator are non-classical. It is anyway possible to apply a

stationary phase approximation to the PI propagator, so that only paths which make the

action stationary (classical paths) are considered. Quantum mechanical effects retained as

second-order deviations of the action and also by the sum over classical paths. This kind of

approximation of the PI is also known as the semiclassical (SC) approximation5,6
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⟨q(t)
∣∣∣e− i

ℏ Ĥt
∣∣∣q(0)⟩ ≈ ∑

roots

√√√√ 1

(2πℏ)N

∣∣∣∣∣ ∂q(t)∂p(0)

∣∣∣∣∣
−1

e
i
ℏS(q(t),q(0)) , (S3)

where
∣∣∣ ∂q(t)∂p(0)

∣∣∣ is the determinant of the matrix obtained from the second-order deviations

of the action. The sum of equation S3 runs over the ”roots” which are the paths that make

the action functional stationary, S(q(t),q(0)) is the classical action between the points in

space q(0) and q(t)

S(q(t),q(0)) =

∫ t

0

[
p(τ)q̇(τ)−H(p(τ),q(τ))

]
dτ. (S4)

In this way, quantum effects are reproduced by considering all the classical trajectories

that connect two points in space in a given time. In a practical way, this approximation of

the propagator is problematic for two reasons. The most evident is related to the fact that in

multidimensional cases the double boundary condition becomes more and more challenging

to satisfy. The other issue arises in the so-called caustic points where
∣∣∣ ∂q(t)∂p(0)

∣∣∣ = 0 and the

prefactor matrix becomes non-invertible. A fundamental step in the development of the semi-

classical propagator was carried out by Miller, which led to the Initial Value Representation

(IVR).7 In this way the double boundary problem was eased up and the problem of caustic

points was solved. Further developments of the semiclassical propagator were perpetrated

by Heller, Herman, Kay, and Kluk8–12 (HHKK) in different instances to solve the issue of

the double boundary conditions and rewrote the propagator in terms of coherent states in

phase-space representation. In this way, initial conditions are sampled with an importance

Monte Carlo (MC) sampling based on the Husimi distribution

e
− i

ℏ Ĥt

HHKK =
1

(2πℏ)N

∫∫
dp(0)dq(0) C (p(0),q(0), t) e

i
ℏS(p(0),q(0),t) |p(t),q(t)⟩ ⟨p(0),q(0)| ,

(S5)

where C (p(0),q(0), t) is the HHKK prefactor defined as
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C(p(0),q(0), t) =

√√√√∣∣∣∣∣12
(
∂q(t)

∂q(0)
+ Γ−1

∂p(t)

∂p(0)
Γ− iℏ

∂q(t)

∂p(0)
Γ +

iΓ−1

ℏ
∂p(t)

∂q(0)

)∣∣∣∣∣, (S6)

which contains the block of the monodromy matrix of the system. |p(t),q(t)⟩ and

⟨p(0),q(0)| are coherent states for which

⟨x
∣∣p(t),q(t)⟩ = (det(Γ)

πN

)1/4

e−
1
2

(
x−q(t)

)
Γ
(
x−q(t)

)
+ i

ℏp(t)
(
x−q(t)

)
, (S7)

where Γ is the width of the Gaussian, which in our case is a diagonal matrix with

non-zero elements equal to the harmonic frequencies of the system. Finally S(p(0),q(0), t)

is the classical action evaluated along the trajectory originated by the phase-space point

(p(0),q(0)).

The practical application of the HHKK propagator, see equation (S5), still presents issues

when dealing with molecular systems. A problem comes from the fact that the number

of MC samples required to achieve convergence scales exponentially with the number of

degrees of freedom due to the strongly oscillatory behavior of the integrand. The second

issue instead arises from the pre-exponential factor, see equation (S6), introduced in the

HHKK representation. In fact, some of the trajectories exhibit a ”chaotic” behavior where

this term displays exponential growth. For this reason, trajectories displaying this chaotic

behavior needs to be rejected making the MC convergence even harder to achieve. Starting

from the HHKK propagator, for equation (S1) Kaledin and Miller proposed a time averaging

filter13–16 (TA SCIVR) in order to ease the MC convergence issues

I(E) =
1

(2πℏ)N

∫∫
dp(0)dq(0)

1

2πℏT

∣∣∣∣∣
∫ T

0

dt ⟨Ψ
∣∣p(t),q(t)⟩ e

i
ℏ

[
S(p(0),q(0),t)+Et+ϕ(p(0),q(0),t)

]∣∣∣∣∣
2

,

(S8)
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where ⟨Ψ
∣∣p(t),q(t)⟩ is the overlap between the reference state which is usually chosen

to be a coherent state, and the Gaussian coherent state centered at the phase space point

(p(t),q(t)). ϕ(p(0),q(0), t) is the phase of the HHKK pre-exponential factor. In this way

the phase space integrand is a positive defined real function and this speeds up the MC

convergence. The evaluation of the monodromy matrix elements still represents a huge

computational bottleneck to the whole family of semiclassical methods, since it requires the

computation of the Hessian matrices of the potential along the trajectories.17,18 Within this

framework, the computation of vibrational spectra of small and medium-sized molecular

systems becomes possible if a fitted PES is available. Indeed, the number of trajectories

and therefore of Hessian matrices required to achieve convergence is still prohibitive for ab

initio on-the-fly calculations. To solve this problem the multiple coherent (MC) SCIVR19,20

method was developed. This method is based on a pivotal work published by Heller and

De Leon21 in which it was demonstrated that with a single trajectory run at the ”correct”

energy it is possible to obtain accurate semiclassical eigenenergies and eigenfunctions. In MC

SCIVR the assumption made is that a reliable frequency calculation for molecular systems

can be made by means of a single trajectory run near the actual but unknown energy. The

easiest and most intuitive way to run trajectories near the true quantum mechanical values

is to start from quantized harmonic conditions


pi(0) =

√
ℏωi(2ni + 1)

qi(0) = q
(eq)
i

, (S9)

where the initial momentum in mass-scaled coordinates for the normal mode i is propor-

tional to the square root of the corresponding harmonic frequency ωi and the vibrational

quantum number ni. The initial position is chosen to be equal to the equilibrium geometry.

Another feature that makes the MC-SCIVR method convenient for spectroscopic calcula-

tions of large molecular systems is the choice of the reference state, which in this method is

a basis set composed of Gaussian coherent states

S5



|Ψ(K)⟩ =
N∏

J=1

(
ε1,J |p(K)

J (0), q
(K)
J (0)⟩+ ε2,J |−p

(K)
J (0), q

(K)
J (0)⟩

)
. (S10)

By choosing the value of epsilon as +1,−1 or 0 for different elements of the base it is

possible to enhance the signal of the desired normal modes in the power spectrum. In MC

SCIVR the integration over the phase space is substituted with a summation over all the

trajectories

I(E) =
1

(2πℏ)N

Ntraj∑
K

1

2πℏT

∣∣∣∣∫ T

0

dt e
i
ℏ [S(p(K)(0),q(K)(0),t)+Et+ϕ(p(K)(0),q(K)(0),t)] ⟨Ψ(K)

∣∣p(K)(t),q(K)(t)⟩
∣∣∣∣2 .

(S11)

Even though this step of development permits on-the-fly computation of quantum me-

chanical power spectra, it is still problematic to obtain well resolved and intense signal from

systems with a large number of degrees of freedom. The problem derives from the fact that

the overlap between the coherent state and the reference state is actually a product of overlap

integrals between coherent states of all degrees of freedom featured in the system

⟨Ψ
∣∣p(t),q(t)⟩ = (

ε1,1 ⟨p1(0), q1(0)
∣∣p1(t), q1(t)⟩+ ε2,1 ⟨−p1(0), q1(0)

∣∣p1(t), q1(t)⟩)×(
ε1,2 ⟨p2(0), q2(0)

∣∣p2(t), q2(t)⟩+ ε2,2 ⟨−p2(0), q2(0)
∣∣p2(t), q2(t)⟩)×

...

×
(
ε1,N ⟨pN(0), qN(0)

∣∣pN(t), qN(t)⟩+ ε2,N ⟨−pN(0), qN(0)
∣∣pN(t), qN(t)⟩) .

(S12)

By observing equation (S12), it becomes evident that as the number of degrees of freedom

increases, the likelihood of one of the elements in the product approaching zero also increases.
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This will cause the whole overlap integral to have a value near to zero, causing the spectrum

to be noisy and with poor resolution. A divide and conquer (DC SCIVR) approach to the

semiclassical method was proposed to overcome this problem.22,23 The working formula in

the multiple coherent case is the following

Ĩ(E) =
1

(2πℏ)M

Ntraj∑
K

1

2πℏT

∣∣∣∣∣
∫ T

0

dt e
i
ℏ [S̃(p̃(K)(0),q̃(K)(0),t)+Et+ϕ̃(p̃(K)(0),q̃(K)(0),t)] ⟨Ψ̃(K)

∣∣p̃(K)(t), q̃(K)(t)⟩

∣∣∣∣∣
2

.

(S13)

The main difference between this formula and the original one of equation (S11) is that

the dynamical quantities in equation (S13) are projected onto M -dimensional subspaces.

In practice with this approach a full dimensional classical trajectory is evolved on the true

potential, while the evaluation of the monodromy matrix elements and the overlap between

coherent states is made only on the normal modes of the selected subspaces. The projection

of the action is convoluted, since in complex systems the potential is non-separable. A

working approximation to solve this problem comes from considering a trivial case where

the potential depends directly on the M degrees of freedom of the selected subspace. The

remaining N −M degrees of freedom are treated as parameters, and, in addition, to account

for the non-separability of the potential, a time-dependent external field is summed to the

first term

Ṽ (qM(t)) = V (qM(t);qeq
N−M) + λ(t) , (S14)

where Ṽ (qM(t)) is the projected potential and λ(t) is the external field.

λ(t) = V (qM(t);qN−M(t))− V (qM(t);qeq
N−M)− V (qeq

M ;qN−M(t)) . (S15)

By representing the projected potential as in equations S14 and S15, the approximation

is exact in the separable case. The dimensions and content of the subspaces are chosen by
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evaluating how much normal modes are coupled with each other.24

Computational details

The thymidine geometry was first optimized using Gaussian 1625 at the B3LYP/6-31g*26–31

level of theory with Grimme’s dispersion corrections (GD3).32 A sphere with 15 Å radius

filled with water molecules was generated using the Packmol tool.33 The number of water

molecules was chosen to reproduce the density of liquid water. With the TINKER34 software

suite repulsive walls were put on the edge of the solvation sphere, and the optimization of

the system was done. Subsequently, the thymidine optimized geometry was inserted in the

water sphere, and an optimization with the AMOEBABIO1835 force field (FF) of the water

molecules was carried on. The QM/MM calculations were made using an in-house modified

version of the Gaussian software which is interfaced with TINKER. In this case, a further

full optimization is carried on. The numerical equilibrium Hessian matrix is then computed

and diagonalized to identify the vibrational normal modes of interest. Initial conditions

for the dynamics were chosen according to equation (S9), with ni set equal to zero for all

the normal modes. A 3000-step NV E trajectory with 0.2 fs timestep was propagated, and

Hessian matrices along the trajectory were calculated every 100 steps. With the calculated

matrices along the trajectory, an average matrix was evaluated in order to divide the system

into vibrational subspaces. The elements of the monodromy matrix along the trajectory

are then calculated by using a finite difference scheme in which only the required elements

are considered.36 The semiclassical vibrational spectra were then computed according to

equation (S13). For the PCM calculations, the optimization of the thymidine molecule was

done at the same level of theory used in the simulation with the explicit solvent, with the

addition of the PCM solvent implemented in Gaussian 16. The analytical Hessian matrix

at the equilibrium configuration was used to compute and identify the vibrational normal

modes. The NV E MD simulation was then carried out with the same software and the
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same number of steps and time-step as before. The initial conditions are set in the same

way as the QM/MM run. In this case, the second derivative matrices along the trajectory

were evaluated at each step.

Table S1: Summary the calculated frequencies for the different levels of theory in cm−1

Harmonic
Str. C5C6 Str. C4O MAE ∆

B3LYP@6-31g*/AMOEBA 1720 1738 20 18
B3LYP@6-31g*/AMOEBA (no pol) 1711 1767 29 87

B3LYP@6-31g*/TIP3P 1719 1806 52 87
B3LYP@6-31g*/PCM 1709 1743 11 34

AMOEBABIO18 1619 1664 69 45
Quasiclassical Trajectory

Str. C5C6 Str. C4O MAE ∆
B3LYP@6-31g*/AMOEBA 1684 1695 20 11

B3LYP@6-31g*/AMOEBA (no pol) 1663 1748 42 85
B3LYP@6-31g*/TIP3P 1691 1780 44 89
B3LYP@6-31g*/PCM 1699 1722 11 23

AMOEBABIO18 1612 1618 95 5
MC DC SCIVR

Str. C5C6 Str. C4O MAE ∆
B3LYP@6-31g*/AMOEBA 1689 1701 15 12

B3LYP@6-31g*/AMOEBA (no pol) 1660 1748 44 88
B3LYP@6-31g*/TIP3P 1687 1791 52 104
B3LYP@6-31g*/PCM 1660 1748 5 10

AMOEBABIO18 1621 1634 82 13
Experiment

Str. C5C6 Str. C4O
1710 1710

Analysis of the trajectories

The different spectroscopic signals obtained by fine-tuning the solvent model can be ratio-

nalized by means of trajectory analysis. To analyze how the solvent arranges around specific

areas of the molecule it is possible to calculate the Radial Distribution Function (RDF). In

this work, we are interested in observing the behavior of two normal modes, the C4O and

C5C6 stretches. One of them is strongly localized in the C4 carboxylic group and the other
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between the C5 and C6 atoms. Therefore, the average RDF37 was calculated both between

the C5− C6 and C4−O atoms and all of the water molecules.

0
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C5C6 - Water

Figure S1: Radial Distribution Function (RDF) calculated between C4 − O and water
molecules (upper panel) and between C5 − C6 and water molecules (lower panel). The
calculations have been carried out for all of the tested QM/MM approaches.

By observing the calculated RDFs in Figure S1, it is possible to observe that by removing

the polarization from the MM part, the water molecules tend to stay more distant from the

thymidine molecule. By impoverishing the electrostatic description of the solvent, like in

the QM/TIP3P case, it is clear that the solvent molecules tend to be even more distanced

with respect to a multipolar description like in the QM/AMOEBA case with no polariza-

tion included. This could be one of the reasons why the non polarizable QM/MM models

reproduce a spectroscopic behavior similar to the isolated thymidine molecule.

The PCM results are in good agreement compared to both the experimental data and the

polarizable QM/AMOEBA approach. This leads us to think that no significant directional

interactions between the solvent and the central molecule occur. To verify this, a search for

hydrogen bond interactions between the solvent molecules and the thymidine molecule was
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made along the QM/AMOEBA trajectory using the MDAnalysis library.38,39 The search has

been made for two cases when the thymidine atoms serve as acceptors (O and N atoms

involved) and water acts as a donor (H atoms involved), and vice versa. A first search for

interactions was made by setting a distance cutoff of 2.5 Å and an angle cutoff of 170◦, which

means that all of the non-bonded interactions between the selected group of atoms with a

distance greater than the cutoff are automatically excluded. The angle cutoff excludes all the

non-bonded interactions where the donor-hydrogen-acceptor angle value is below the cutoff.

This first search led to zero interactions found and for this reason, less severe parameters

were tested. It was observed that by elongating the distance cutoff and keeping the angle

cutoff the same still no interactions were found. Finally by setting the distance cutoff to 3.0

Å and the angle cutoff to 120◦ some interactions were observed.

Figure S2: Picture of the thymidine molecule in the minimum geometry where hydrogen
bonds are highlighted as purple for acceptors and green for donors

This set of search parameters actually corroborated the hypothesis that the interactions

are not strongly directional. Therefore, we can affirm that the PCM results are not due to

compensations of error and can be justified. Moreover, thanks to this analysis we are able

to conclude that the degeneration of the two Raman signals observed in the experiment is

mainly due to dispersive interactions of the molecule with the solvent.
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