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Abstract. This work develops novel rational Krylov methods for updating a large-scale matrix
function f(A) when A is subject to low-rank modifications. It extends our previous work in this
context on polynomial Krylov methods, for which we present a simplified convergence analysis. For
the rational case, our convergence analysis is based on an exactness result that is connected to work
by Bernstein and Van Loan on rank-one updates of rational matrix functions. We demonstrate the
usefulness of the derived error bounds for guiding the choice of poles in the rational Krylov method
for the exponential function and Markov functions. Low-rank updates of the matrix sign function
require additional attention; we develop and analyze a combination of our methods with a squaring
trick for this purpose. A curious connection between such updates and existing rational Krylov
subspace methods for Sylvester matrix equations is pointed out.
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1. Introduction. The need for computing matrix functions or associated quan-
tities arises in a variety of applications, including network analysis [9,21], signal pro-
cessing [41], machine learning [45], and differential equations [31]. In many of these
applications, slight changes of the problem setting, such as removing a vertex in a
graph or changing a parameter in a differential equation, induce a low-rank change
of the matrix. In this work, we discuss new methods for updating the matrix func-
tion under such changes. Specifically, assuming that a matrix function f(A) has been
computed and A is modified by a low-rank matrix D, we aim at computing the update

(1) f(A+D)− f(A)

in a way that is cheaper than computing f(A + D) from scratch. Such an update is
also useful when only some quantities associated with f(A), such as the trace or the
diagonal entries, are of interest.

In [5], we have introduced and analyzed an algorithm for efficiently approximat-
ing (1) by projection onto polynomial Krylov subspaces. While this algorithm often
shows satisfactory convergence, especially for entire functions like the matrix expo-
nential and matrices with a “favorable” spectral distribution, convergence can also be
very slow in other cases. In particular, this can happen when A has eigenvalues close
to a singularity of f . A typical example is the matrix square root A1/2 for a symmet-
ric positive definite matrix A with eigenvalues close to zero. Rational Krylov spaces
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can lead to much faster convergence in such situations; at least this is indicated by
existing work on approximating the action of the matrix function on a vector, f(A)b,
and solving matrix equations; see [17,27,28,33,42].

The main goal of this paper is thus to extend the techniques of [5] to incorporate
rational Krylov subspaces and to analyze the convergence of the resulting algorithms.
At the same time, we will also show that the original convergence analysis in [5] can
be significantly simplified by using recent results from [16].

The work of Bernstein and Van Loan in [12] extends the Sherman–Morrison for-
mula [40] for updating matrix inverses to rational matrix functions. In particular,
Theorem 3 in [12] gives an analytic expression for the update (1) and shows that it
has rank at most m if f is a rational function of degree m and D has rank one. In
principle, it would be possible to exploit the good approximation properties of rational
functions in the context of (1) by first replacing f with a suitable low-degree rational
approximation r and then using the formula from [12, Theorem 3] to approximate the
update

f(A+D)− f(A) ≈ r(A+D)− r(A).

We will discuss the relation of this approach to our new method in Section 3.3.
The remainder of this paper is organized as follows. We begin by briefly describing

a general subspace projection approach for the computation of the update (1) in
Section 2. The particular choice of rational Krylov subspaces in this approach is then
discussed in Section 3. In addition, we show that the proposed rational Krylov method
is exact when approximating updates of certain rational functions and discuss the
connection of our approach to the generalized Sherman–Morrison formula for rational
functions from [12]. In Section 4, we analyze the convergence of our methods for
several important matrix functions. Afterwards, in Section 5, we specifically focus on
the matrix sign function and its peculiarities in the context of approximating low-rank
updates; we conclude by showing a connection to Sylvester equations.

2. A subspace projection approach for low-rank updates. In this section,
we present a general subspace projection approach for approximating the update (1),
which includes the algorithm from [5] as well as our newly proposed algorithm.

Let A ∈ Cn×n and D ∈ Cn×n be such that both f(A) and f(A + D) are well
defined. In the following, we describe how an approximation to f(A + D) − f(A) is
extracted from two subspaces Um,Vm ⊆ Cn of (low) dimension mU and mV , respec-
tively. Considering orthonormal bases Um, Vm of Um,Vm, we let Gm := U∗mAUm and
Hm := V ∗mA

∗Vm denote the compressions of A and A∗, respectively. We then use an
approximation of the form

f(A+D)− f(A) ≈ UmXm(f)V ∗m,

where Xm(f) is the (1,2)-block of the (small) matrix function

(2) f

([
Gm U∗mDVm
0 H∗m + V ∗mDVm

])
.

In [5], this particular choice of Xm(f) was motivated by a polynomial exactness
property for polynomial Krylov subspaces. We will see below, in Theorem 3.3, that an
analogous property holds for rational Krylov subspaces. A more intuitive explanation,
not tied to specific subspaces, is the observation [5, Lemma 2.2] that

(3) f

([
A D
0 A+D

])
=

[
f(A) f(A+D)− f(A)

0 f(A+D)

]
.
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Note that the compression onto Um ⊕ Vm of the block matrix on the left-hand side
of (3) corresponds to the matrix used in (2).

The described subspace projection approach is summarized in Algorithm 1, which
encompasses Algorithm 2 from [5].

Algorithm 1 Subspace projection approach for approximating f(A+D)− f(A)

1: Compute orthonormal bases Um ∈ Cn×mU , Vm ∈ Cn×mV of subspaces Um,Vm.
2: Compute compressions Gm = U∗mAUm and Hm = V ∗mA

∗Vm.

3: Compute matrix function Fm = f

([
Gm U∗mDVm
0 H∗m + V ∗mDVm

])
.

4: Set Xm(f) = Fm(1 :mU ,mU + 1:mU +mV ).
5: Return UmXm(f)V ∗m.

In the Hermitian case, A = A∗ and D = D∗, it is sensible to choose Um = Vm,
and thus Um = Vm. In turn, Gm = H∗m and the computation of the update simplifies.
Using the relation (3), one observes that

(4) Xm(f) = f
(
U∗m(A+D)Um

)
− f

(
U∗mAUm

)
= f

(
Gm + U∗mDUm

)
− f(Gm).

The stopping criterion proposed in [5] uses the difference of two iterates as a
simple error estimator, i.e.,

(5) ‖f(A+D)− UmXm(f)V ∗m‖ ≈ ‖Um+dXm+d(f)V ∗m+d − UmXm(f)V ∗m‖

for some small integer d ≥ 1, where ‖ · ‖ denotes the spectral norm of a matrix. When
the subspaces are nested and, in turn, the orthonormal bases can be chosen to be
nested (as it is, e.g., the case for Krylov subspaces and the Arnoldi method), we have

‖Um+dXm+d(f)V ∗m+d − UmXm(f)V ∗m‖ =

∥∥∥∥Xm+d(f)−
[
Xm(f) 0

0 0

]∥∥∥∥ .
Hence, there is no need to explicitly form Um+dXm+d(f)V ∗m+d or UmXm(f)V ∗m. The
heuristic (5) is often observed to give fairly accurate approximations to the exact
error even for small values of d, say d = 1 or d = 2. A notable exception is when
Algorithm 1 (almost) stagnates as m increases; in this case a small value of d might
lead to severe underestimates; see [5, Section 6.2] for an example.

3. Block rational Krylov subspace projection. In this section, we combine
Algorithm 1 with rational Krylov subspaces. We assume that D is of rank ` and can
thus be written as D = BC ∗ for block vectors B ,C ∈ Cn×` of full rank.

While a polynomial Krylov subspace with respect to A and B = [b1, . . . .b`] takes
the form

Km(A,B) = colspan
{
B , AB , . . . , Am−1B

}
= Km(A, b1) + · · ·+Km(A, b`),

the rational Krylov subspaces considered in this work take the form

qm(A)−1Km(A,B) = colspan
{
qm(A)−1B , qm(A)−1AB , . . . , qm(A)−1Am−1B

}
,(6)

for a polynomial qm(z) = (z − ξ1)(z − ξ2) · · · (z − ξm) of degree m and fixed poles
ξ1, . . . , ξm ∈ C. Choosing some of the poles to be infinite corresponds to reducing the
degree of qm.
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Remark 3.1. When choosing one pole to be infinite, our definition (6) coincides
with the subspace qm−1(A)−1Km(A,B) that is more commonly found in the literature;
see, e.g., [26]. Note that B ∈ qm−1(A)−1Km(A,B) while this property fails to hold
in general for qm(A)−1Km(A,B). One of the motivations for our choice (6) is that
it nicely connects to the (generalized) Sherman–Morrison formula; see Section 3.3
below.

Adapting the usual rational Arnoldi method [19] to (6), Algorithm 2 is used to
compute an orthonormal basis Um =

[
U1, . . . ,Um

]
of qm(A)−1Km(A,B). In the case

of an infinite pole ξj = ∞, line 4 of Algorithm 2 is replaced by Wj ← AUj−1 for

j > 1 and line 1 is replaced by B̃ ← A−1B for j = 1.

Algorithm 2 Block Rational Arnoldi method

1: B̃ ← (A− ξ1I)−1B
2: U1 ← orthonormal basis of B̃ .
3: for j = 2, 3, . . . ,m do
4: Wj ← (A− ξjI)−1AUj−1.
5: for k = 1, . . . , j − 1 do
6: αk,j−1 ← U ∗kWj .
7: Wj ←Wj −Ukαk,j−1

8: end for
9: Uj ← orthonormal basis of Wj .

10: end for

The description of Algorithm 2 assumes dim
(
qm(A)−1Km(A,B)

)
= m`, that is,

all block vectors Wj have full rank. We will make this assumption from here on when
discussing algorithms. Deflation techniques for removing linearly dependent columns
are discussed, e.g., in [19, Section 6].

We conclude our discussion of rational Krylov subspaces with a variation of an
existing exactness result for rational matrix functions [26, Lemma 4.6].

Lemma 3.2. Let Πm−1/qm denote the space of all rational functions with numer-
ator degree at most m − 1 and denominator qm(z). Let Um be an orthonormal basis
of qm(A)−1Km(A,B). Then

r(A)B = Umr(U
∗
mAUm)U∗mB ,

provided that r(A) and r(U∗mAUm) are well-defined.

Proof. Consider r = p/qm for arbitrary p ∈ Πm−1. We start by noting that
qm(A)−1Km(A,B) = Km(A,Q) with Q = qm(A)−1B . By existing results for (poly-
nomial) Krylov subspaces, see [39, Lemma 3.1] and [26, Lemma 3.9], which can be
applied completely analogously in the block Krylov setting, we obtain

(7) p(A)Q = Ump(U
∗
mAUm)U∗mQ ,

as well as
U∗mB = U∗mqm(A)Q = qm(U∗mAUm)U∗mQ .

The latter relation is equivalent to U∗mQ = qm(U∗mAUm)−1U∗mB and gives, when
inserted into (7), the desired relation:

r(A)B = p(A)Q = Ump(U
∗
mAUm)qm(U∗mAUm)−1U∗mB = Umr(U

∗
mAUm)U∗mB .
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3.1. Algorithm. For computing an approximation of f(A + BC ∗) − f(A), we
utilize Algorithm 2 to compute orthonormal bases Um, Vm of rational Krylov sub-
spaces

Um = qm(A)−1Km(A,B), Vm = q̄m(A∗)−1Km(A∗,C ),

where qm(z) = (z−ξ1) · · · (z−ξm) and q̄m(z) = (z−ξ1) · · · (z−ξm) are both determined
by the same set of poles ξ1, . . . , ξm. Although it is in principle possible to choose a
different set of poles for Vm, we are not aware of advantages of such a choice. Once
Um, Vm have been computed, we apply the general subspace projection approach,
Algorithm 1, with these bases. For ease of reference, Algorithm 3 summarizes the
resulting procedure.

Algorithm 3 Rational Krylov subspace approximation of f(A+ BC ∗)− f(A)

1: Perform m steps of Algorithm 2 to compute an orthonormal basis Um of
qm(A)−1Km(A,B) and set Gm = U∗mAUm.

2: Perform m steps of Algorithm 2 to compute an orthonormal basis Vm of
q̄m(A∗)−1Km(A∗,C ) and set Hm = V ∗mA

∗Vm.

3: Compute matrix function Fm = f

([
Gm (U∗mB)(V ∗mC )∗

0 H∗m + (V ∗mB)(V ∗mC )∗

])
.

4: Set Xm(f) = Fm(1 : m,m+ 1 : 2m).
5: Return UmXm(f)V ∗m.

Several remarks concerning the implementation of Algorithm 3 are in order:
1. The efficient and stable implementation of rational Arnoldi methods requires

some care, including the need for reorthogonalization; it is therefore advisable
to build on available toolboxes, like, e.g., the RKToolbox by Berljafa, Elsworth
and Güttel [11].

2. In contrast to the (standard) Arnoldi method, the compressed matrices Gm
and Hm do not contain the orthogonalization coefficients from Algorithm 2
explicitly. There are procedures which, possibly under additional conditions
on the poles, circumvent the additional computation of the products U∗mAUm
and V ∗mA

∗Vm and compute Gm, Hm from m` ×m` matrices containing the
orthogonalization coefficients and the poles; see, e.g., [19, 26,27] for details.

3. Assume that A is Hermitian and the rank-` update can be written in the
form D = BJB∗ for some B ∈ Cn×` and J ∈ C`×`, that is, the columns
of D and D∗ span the same subspace of Cn. In particular, this is the case
when D is also Hermitian. Further, let us suppose that the poles are closed
under complex conjugation, that is, ξ is a pole if and only if ξ̄ is a pole, and
both poles ξ, ξ̄ have the same multiplicity. In particular, this holds when all
poles are real. Then qm(A)−1Km(A,B) = q̄m(A∗)−1Km(A∗,BJ∗). In turn,
one can choose Vm = Um and Step 2 in Algorithm 3 can be skipped and
the corresponding remarks for Algorithm 1 apply. Specifically, we have the
simplified expression Xm(f) = f

(
Gm + U∗mBJB∗Um

)
− f(Gm).

4. When A is Hermitian, the (standard) block Arnoldi method reduces to the
block Lanczos method [24]. Similarly, there exist short-term recurrences for
extended Krylov subspaces, which only use the poles 0 and ∞ repeatedly,
see, e.g., [17, 32,42].

5. Each iteration of Algorithm 2 with a finite pole requires the solution of a
shifted block linear system. The efficiency of Algorithm 3 largely depends
on how efficiently these linear systems can be solved. When using a direct
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sparse factorization such as the sparse LU factorization, it is advantageous to
use only a few different poles, allowing for the frequent reuse of factorizations
when poles repeat. In the non-Hermitian case, two shifted linear systems—
one with A and one with A∗—have to be solved at each iteration of the
method. It is worth pointing out that it suffices to compute only one factor-
ization A− ξjI = LU, because this immediately gives the other factorization
A∗ − ξjI = U∗L∗.

3.2. Exactness properties. In [5], it was shown that the polynomial Krylov
subspace approximation for the update f(A + BC ∗) − f(A) is exact when f is a
polynomial of a certain degree. The following theorem extends this result to rational
Krylov subspaces.

Theorem 3.3. Given A ∈ Cn×n, B ,C ∈ Cn×` and qm(z) = (z− ξ1) · · · (z− ξm),
with ξ1, . . . , ξm ∈ C, the approximation returned by Algorithm 3 is exact for every
r ∈ Πm/qm, that is,

r(A+ BC ∗)− r(A) = UmXm(r)V ∗m,

provided that r(A), r(A+ BC ∗) as well as r(Gm), r(H∗m + (V ∗mB)(V ∗mC )∗) are well
defined.

Proof. By the partial fraction expansion, a rational function r ∈ Πm/qm can
be decomposed as the sum of a constant and scalar multiples of terms of the form
(z − ξs)−j , j ≤ ms, where ms denotes the multiplicity of ξs. By linearity, it suffices
to show exactness for each of the terms individually. Exactness trivially holds for a
constant function.

It remains to show exactness for rξs,j(z) = (z − ξs)−j for j = 1, . . . ,ms. The
matrix Xm(rξs,j) entering the rational Krylov approximation UmXm(rξs,j)V

∗
m is given

by the (1, 2) block of the matrix

(8)

[
Gm − ξsIm U∗mBC ∗Vm

0 H∗m − ξsIm + V ∗mBC ∗Vm

]−j
.

For j = 1, we directly obtain

(9) Xm(rξs,1) = −(Gm − ξsIm)−1(U∗mBC ∗Vm)(H∗m − ξsIm + V ∗mBC ∗Vm)−1.

For j > 1, (8) yields the recursive relation

Xm(rξs,j) = (Gm− ξsIm)−(j−1)Xm(rξs,1)+Xm(rξs,j−1)(H∗m− ξsIm+V ∗mBC ∗Vm)−1.

Resolving this recursion and inserting (9) gives

Xm(rξs,j) =

j−1∑
k=0

(Gm − ξsIm)−(j−1−k)Xm(rξs,1)(H∗m − ξsIm + V ∗mBC ∗Vm)−k

= −
j−1∑
k=0

(Gm − ξsIm)−(j−k)(U∗mBC ∗Vm)(H∗m − ξsIm + V ∗mBC ∗Vm)−(k+1).(10)

Since rξs,s ∈ Πm−1/qm, we know from Lemma 3.2, that

Um(Gm − ξsIm)−dU∗mB = (A− ξsI)−dB for all d = 1, . . . ,ms
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and

C ∗Vm(H∗m−ξsIm+V ∗mBC ∗Vm)−dV ∗m = C ∗(A−ξsI+BC ∗)−d for all d = 1, . . . ,ms.

Combined with (10), these relations yield

(11) UmXm(rξs,j)V
∗
m = −

j−1∑
k=0

(A− ξsI)−(j−k)BC ∗(A− ξsI + BC ∗)−(k+1).

We now use the matrix identity

M j −N j =

j−1∑
k=0

N j−1−k(M −N)Mk,

see [5, Proposition 3.1], with M = (A − ξsI + BC ∗)−1 and N = (A − ξsI)−1. This
yields

(A− ξsI + BC ∗)−j − (A− ξsI)−j

=

j−1∑
k=0

(A− ξsI)−(j−1−k)((A− ξsI + BC ∗)−1 − (A− ξsI)−1)(A− ξsI + BC ∗)−k

= −
j−1∑
k=0

(A− ξsI)−(j−k)BC ∗(A− ξsI + BC ∗)−(k+1),(12)

where the latter equality utilizes the second resolvent identity. Comparing (12)
with (11) establishes the desired exactness property for rξs,j for j ≤ ms.

Remark 3.4. Although the statement of Theorem 3.3 assumes the poles to be
finite, the result also holds in the presence of infinite poles. To see this, let m̃ ≤ m be
the multiplicity of∞ as a pole of the rational Krylov subspace, that is, deg qm = m−m̃.
We can then decompose a rational function r ∈ Πm/qm as r = p+ r̃ with p ∈ Πm̃ and
r̃ ∈ Πm−m̃−1/qm. By linearity, it suffices to show exactness for p and r̃ individually.
Because of Km̃(A,B) ⊂ qm(A)−1Km(A,B), exactness for p can be shown along the
lines of the proof of Theorem 3.2 in [5]. Exactness for r̃ follows directly from the proof
of Theorem 3.3.

3.3. Connection to the Sherman–Morrison formula and its generaliza-
tion to rational functions. It is instructive to rederive the Sherman–Morrison
formula for rank-one updates from Algorithm 3. Let A, b 6= 0, c 6= 0 be such that
A and A + bc∗ are invertible. By Theorem 3.3, one step of Algorithm 3 with pole 0
should produce the exact update (A+bc∗)−1−A−1. In this situation, U1 = A−1b/β,
V1 = A−∗c/γ with β = ‖A−1b‖ and γ = ‖A−∗c‖. Therefore,[

G1 (U∗1 b)(V ∗1 c)∗

0 H∗1 + (V ∗1 b)(V ∗1 c)∗

]
=

[ 1
β2 b

∗A−∗b 1
βγ (b∗A−∗b)(c∗A−∗c)

0 1
γ2 (c∗A−∗c)(1 + c∗A−1b).

]
Provided that b∗A−∗b 6= 0, c∗A−∗c 6= 0, and 1+c∗A−1b 6= 0, this matrix is invertible
and the (1, 2) entry of its inverse is given by −βγ/(1 + c∗A−1b). Hence, Algorithm 3
returns the exact update

− βγ

1 + c∗A−1b
U1V

∗
1 = −A

−1bc∗A−1

1 + c∗A−1b
.
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Two observations can be made. On the one hand, the Sherman–Morrison formula is
nicely reproduced by Algorithm 3. On the other hand, two assumptions (b∗A−∗b 6= 0,
c∗A−∗c 6= 0) need to be made that are not necessary, neither for the existence of
(A+ bc∗)−1 −A−1 nor for the validity of the Sherman–Morrison formula. Note that
the violation of the conditions, (b∗A−∗b)(c∗A−∗c) = 0, implies that the numerical
range W (A) := {x ∗Ax : ‖x‖ = 1} of A contains 0, a singularity of the matrix function.
In general, it is not advisable to use Algorithm 3 in such situations and we will discuss
in Section 5, for a different scenario, how this can sometimes be circumvented.

In [12], Bernstein and Van Loan provide a generalization of the Sherman–Morrison
formula for rational functions. The following theorem recalls their main result.

Theorem 3.5 (Theorem 3 in [12]). Let r(z) = p(z)/q(z) with polynomials p(z) =∑mp

i=0 αiz
i and q(z) =

∑mq

i=0 βiz
i and set m = max{mp,mq}. Let H(α) be the m×m

Hankel matrix containing the coefficients αi, i.e.,

H(α) =



α1 α2 · · · αmp
0 · · · 0

α2
...

...
...

...
...

...
...

αmp

...
...

0
...

...
...

0 0


∈ Cm×m

and define H(β) ∈ Cm×m analogously. Suppose that A ∈ Cn×n, b ∈ Cn, c ∈ Cn are
such that r(A) and r(A+ bc∗) are well defined. Set

Km = [b, Ab, . . . , Am−1b],

Lm = [c, (A∗ + cb∗)c, . . . , (A∗ + cb∗)m−1c],

Yα = LmH(α)∗, Yβ = LmH(β)∗.

Then

(13) r(A+ bc∗)− r(A) = XY ∗,

where the n × m matrices X,Y are defined by X = q(A)−1Km and Y ∗ = Y ∗α −
M−1Y ∗β (r(A) +XY ∗α ) with M = I + Y ∗βX.

Note that it is also stated in [12] that the result of Theorem 3.5 can be extended
to general rank-` updates, but the technical details are omitted.

Consider a rational function r of the form stated in Theorem 3.5 with βmq 6= 0.
Then Theorem 3.3 and Remark 3.4 state that Algorithm 3 is exact when choosing
mq poles equal to the zeros of q and, additionally, max{mp−mq, 0} infinite poles. In
turn, the low-rank updates produced by Algorithm 3 and Theorem 3.5 have the same
rank and yield mathematically the same result, up to normalization of the low-rank
factors. Also, the cost of an algorithm based on Theorem 3.5 is comparable to the
cost of Algorithm 3. However, there are a number of important differences between
these two approaches:

• Obviously, Algorithm 3 is more general as it applies to general functions
while Theorem 3.5 is restricted to rational functions. As discussed in the
introduction, Theorem 3.5 could still be used to address a general function
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f by constructing a priori a rational approximation r ≈ f . While Algo-
rithm 3 also requires to choose the poles a priori, the numerator polynomial
pm is determined automatically by the method. In turn, significantly less
knowledge about the spectra of A and A + bc∗ is needed in order to obtain
effective approximations. Another advantage of Algorithm 3 is that it easily
combines with existing adaptive pole selection strategies for rational Krylov
methods [28].

• In contrast to Algorithm 3, Theorem 3.5 makes explicit use of the non-
orthogonal Krylov bases Km, Lm. These bases are prone to ill-conditioning as
m increases, see [3] for the case of a Hermitian matrix A leading to numerical
instabilities. Thus, when the degree of the rational function/approximation
is rather high, we expect Algorithm 3 to be more accurate in the presence of
round-off error.

• Reiterating what we already observed for the classic Sherman–Morrison for-
mula, Algorithm 3 requires two additional conditions not needed in The-
orem 3.5: f(Gm), f(H∗m + (V ∗mb)(V ∗mc)∗) need to be well defined. Note,
however, that these conditions are always met when the numerical ranges of
A and A+ bc∗ do not contain a singularity of f .

Thus, we conclude that although our approach is related to the work in [12], it
differs significantly in key aspects and it seems to be the preferred approach in many
situations of practical interest.

4. Convergence analysis. This section is concerned with the convergence anal-
ysis and its purpose is two-fold. We first show how the polynomial case can be treated
in an elegant and, compared to our previous work [5], much simpler fashion by using
a result from [16]. Unfortunately, it is not clear how this technique extends to the
rational case, which will therefore be treated separately in the second part.

In the following, we let

(14) Em(f) := f(A+ BC ∗)− f(A)− UmXm(f)V ∗m

denote the error of the approximation returned by Algorithm 1.

4.1. Simpler convergence analysis for polynomial Krylov subspaces. In
this section, we consider the case in which Um and Vm are block polynomial Krylov
subspaces and we obtain a convergence result for Algorithm 1 based on polynomial
approximation of the derivative of f ; see Remark 4.4 below for a comparison with the
convergence analysis in [5].

The following lemma is key to our analysis; its proof uses a recent bound on the
Fréchet derivative from [16]. We recall that W (A) denotes the numerical range of A.

Lemma 4.1. Let B =

[
B11 B12

0 B22

]
, let E be a compact convex set containing

W (B11) and W (B22), and let f be analytic in E. Then

‖[f(B)]1,2‖F ≤ (1 +
√

2)2‖f ′‖E‖B12‖F ,

where [f(B)]1,2 denotes the (1, 2) block of f(B) and ‖ · ‖E denotes the supremum norm
on E.

Proof. For n × n matrices A and B, let Lf (A,B) denote the Fréchet derivative
of f at A applied to the matrix B and let Lf (A, ·) denote the corresponding linear
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operator represented as an n2 × n2 matrix. By [30, Theorem 4.12],

f(B) = f(D) + Lf (D,N ), where D :=

[
B11 0
0 B22

]
and N :=

[
0 B12

0 0

]
.

Because f(D) is block diagonal, we have that

‖[f(B)]1,2‖F = ‖Lf (D,N )‖F ≤ ‖Lf (D, ·)‖ · ‖B12‖F .

Corollary 5.1 in [16] states that ‖Lf (D, ·)‖ ≤ (1+
√

2)2‖f ′‖W (D), which concludes the
proof because W (D), as the convex hull of W (B11) and W (B22), is contained in E.

Lemma 4.1 applied to the matrix

[
A D
0 A+D

]
from (3) gives the following result,

which might be of independent interest.

Corollary 4.2. Let A,D ∈ Cn×n, let E be a compact convex set containing the
union of W (A) and W (A+D), and let f be analytic in E. Then

(15) ‖f(A+D)− f(A)‖F ≤ (1 +
√

2)2‖f ′‖E‖D‖F .

When A and D are Hermitian, it is well known that the inequality (15) holds
without the constant (1 +

√
2)2; see, e.g., [44, Proposition 3.1.5]. For general diago-

nalizable matrices A and A+D, Corollary 2.4 in [23] states that

‖f(A+D)− f(A)‖F ≤ κAκA+D max |f ′| · ‖D‖F ,

where κA, κA+D are the condition numbers of the eigenvector matrices of A and
A+D, respectively. The maximum of |f ′| is taken over the convex hull of the spectra
of A+D and A. Corollary 4.2 instead holds for any matrix and does not feature the
potentially large constant κAκA+D, at the cost of bounding f ′ on a larger domain E.

We are now prepared to state a convergence result for Algorithm 1 when using
block polynomial Krylov subspaces.

Theorem 4.3. Let A ∈ Cn×n and let f be analytic in a compact convex set E
containing W (A) and W (A + BC ∗). Let Um, Vm be orthonormal bases of Um =
Km(A,B), Vm = Km(A∗,C ). Then the error of Algorithm 1 satisfies

‖Em(f)‖F ≤ 2(1 +
√

2)2‖BC ∗‖F inf
p∈Πm−1

‖f ′ − p‖E.

Proof. The first part of the proof is the same as in Theorem 4.2 in [5]: The
exactness property [5, Theorem 3.2] – which also holds in the block case – implies
that for all q ∈ Πm we have Em(f) = Em(f − q), therefore

‖Em(f)‖F = ‖(f − q)(A+ BC ∗)− (f − q)(A)− UmXm(f − q)V ∗m‖F
≤ ‖(f − q)(A+ BC ∗)− (f − q)(A)‖F + ‖UmXm(f − q)V ∗m‖F
≤ ‖(f − q)(A+ BC ∗)− (f − q)(A)‖F + ‖Xm(f − q)‖F .(16)

Moreover, by definition (line 4 in Algorithm 1), we have Xm(f−p) = [f(Ã)]1,2, where

Ã :=

[
U∗mAUm U∗mBC ∗Vm

0 V ∗m(A+ BC ∗)Vm

]
. We can now use Corollary 4.2 to get

(17) ‖(f − q)(A+ BC ∗)− (f − q)(A)‖F ≤ (1 +
√

2)2‖(f − q)′‖E‖BC ∗‖F .
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and Lemma 4.1 to get

‖Xm(f−q)‖F ≤ (1+
√

2)2‖(f−q)′‖E‖U∗mBC ∗Vm‖F ≤ (1+
√

2)2‖(f−q)′‖E‖BC ∗‖F ,

because of the inclusions W (U∗mAUm) ⊆ W (A) and W (V ∗m(A+ BC ∗)Vm) ⊆ W (A+
BC ∗). Combining these with (16) gives the result of the theorem, because q′ ∈ Πm−1

can be chosen arbitrarily.

Remark 4.4. Let us compare the result of Theorem 4.3 with Theorem 4.2 in [5],
which establishes the upper bound 2(1 +

√
2) infp∈Πm

‖f − p‖Ẽ for the error in the
non-Hermitian case. While this bound features a somewhat smaller constant and the
approximation of f instead of f ′, it comes with the major disadantvage that Ẽ needs

to contain the numerical range of A =

[
A BC ∗

0 A+ BC ∗

]
, which can be critically larger

than the convex hull of W (A) and W (A+BC ∗). Indeed, there are situations [5, Figure
6.2] in which W (A) contains a singularity of f (and hence the bound becomes void)
but the assumptions of Theorem 4.3 are still satisfied. In order to deal with these
situations, specialized techniques had to be developed to address the issue (see [5,
Section 5]), which can now be bypassed by Theorem 4.3.

4.2. Convergence analysis for rational Krylov subspaces. In this section,
we analyze the convergence of the proposed rational Krylov subspace method for
updating matrix functions, both in the Hermitian and non-Hermitian case for certain
classes of functions.

4.2.1. Convergence analysis in the Hermitian case. We first discuss the
Hermitian case, that is, A = A∗ and D = D∗. The following theorem links this
error to a rational approximation problem. We omit its proof because it follows from
Theorem 3.3 in a manner entirely analogous to the proof of Theorem 4.1 in [5].

Theorem 4.5. Let A and D = BJB∗ be Hermitian, let the set of poles be
closed under complex conjugation, and let Um = Vm be an orthonormal basis of
qm(A)−1Km(A,B). Furthermore, let f be analytic in a domain E containing the
union of W (A) and W (A+D). Then the error (14) returned by Algorithm 3 satisfies

(18) ‖Em(f)‖ ≤ 4 min
r∈Πm/qm

‖f − r‖E,

where ‖ · ‖E denotes the supremum norm on E.

Theorem 4.5 allows us to derive convergence bounds for Algorithm 3 by consider-
ing rational uniform approximation problems on intervals E containing [λ̃min, λ̃max],
where

λ̃min := min{λmin(A), λmin(A+D)}, λ̃max := max{λmax(A), λmax(A+D)}.

This problem has been addressed numerous times in the literature, e.g., in the context
of analyzing rational Krylov subspace methods for approximating f(A)b; see, e.g., [6,
26, 27] and the references therein. In the following, we give several examples for the
bounds obtained this way.

The exponential function. Under the assumptions of Theorem 4.5, consider the
exponential function f(z) = exp(x). We will suppose in the following that the spectra
of A and A + D (and the corresponding poles) have already been shifted∗ such that

∗Such a shift would lead to an additional factor exp(λ̃max) in (18).
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A and A + D are negative semi-definite and thus one can choose E = (−∞, 0] in
Theorem 4.5.

From the seminal work of Gonchar and Rakhmanov [25] and its improvements
established by Aptekarev [2] it is known that for every integer m there exists an
optimal denominator qm ∈ Πm such that

min
r∈Πm/qm

‖ exp−r‖(−∞,0] ≤ C κ−m, κ ≈ 9.28903....

for some constant C independent of m. The numerical values of the optimal poles
(that is, the roots of qm) are known.

We now consider the case of a single, repeated pole, which bears the advantage
that only one sparse factorization needs to be computed when using a direct solver in
Algorithm 3. Andersson [1] showed that, for qm(z) = (z −m/

√
2)m,

lim sup
m→∞

(
min

r∈Πm/qm
‖ exp−r‖L∞((−∞,0])

)1/m

=
1

1 +
√

2
.

This agrees with observations from [34, 46] that a well-chosen single pole ξ repeated
m times already yields good convergence.

Strategies for choosing poles (adaptively) for finite intervals are surveyed in [27,
Sec. 4.2].

Markov functions. Under the assumptions of Theorem 4.5, let us now consider a
Markov function

(19) f(x) =

∫ β

α

dµ(z)

x− z
,

where µ is a positive measure with support in the interval [α, β] with −∞ ≤ α < β <
∞. Important examples of Markov functions are inverse fractional powers

(20) f(z) = z−γ =
sin(γπ)

π

∫ 0

−∞

(−x)−γ dx

z − x

for γ ∈ (0, 1), or

(21) f(z) =
1

z
log(1 + z) =

∫ −1

−∞

(−1/x) dx

z − x
.

For more details on Markov functions and further examples we refer the reader to [10,
29]. A detailed discussion of rational approximation of Markov functions can be found
in [6, Section 6]. From [6, Theorem 6.1(b)] we quote the following estimate.

Theorem 4.6. Let E be a compact convex set, symmetric with respect to the real
axis, and let f be a Markov function (19) such that

(22) β < ω := minE ∩ R.

Let ψ denote the conformal map from C \D onto C \E normalized such that ψ(∞) =
∞, ψ′(∞) > 0, where C = C∪{∞} denotes the extended complex plane and D denotes
the closed unit disk, and let φ denote its inverse map from C \ E onto C \ D. Then

min
r∈Πm/qm

‖f − r‖L∞(E) ≤
2‖f‖L∞(E)

|φ(β)|
· ηm, ηm := max

x∈[φ(α),φ(β)]

1

|Bm(x)|
,
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Fig. 1. Convergence of ‖Em(f)‖ for Algorithm 3 with a single, repeated, asymptotically optimal
pole, and estimated convergence rate (23) for approximating (A+ bb∗)−1/2−A−1/2 with A, b as in
Example 4.7.

with the Blaschke product

Bm(x) :=

m∏
j=1

1− xφ(ξj)

x− φ(ξj)
.

For estimating ‖Em(f)‖ for Markov functions f , we may therefore combine The-

orem 4.5 with Theorem 4.6 for E = [λ̃min, λ̃max], as long as β < ω = λ̃min. In this
case, explicit formulas for the conformal maps φ, ψ are available. Noting that only
the convergence factor ηm depends on the poles ξ1, ..., ξm, it remains to derive upper
bounds on ηm for particular choices of poles.

According to [6, Corollary 6.4], we may minimize ηm among all single, repeated
poles ξ = ξ1 = ... = ξm by setting

σ =
φ(β)− φ(α)

φ(β)φ(α)− 1
, yopt = − 1

σ
−
√

1

σ2
− 1, w =

1 + φ(α)yopt

φ(α) + yopt
,

resulting in the optimal pole ξ = ψ(w) and ηm = |yopt|−m.
In the important special case α = −∞, β = 0, which occurs, e.g., for inverse

fractional powers (20), the above formulas simplify and we obtain the pole ξ =

−
√
λ̃max · λ̃min and the corresponding convergence rate

(23) ηm =

 4

√
λ̃max/λ̃min − 1

4

√
λ̃max/λ̃min + 1

m

.

Let us note that, asymptotically, the convergence rate (23) is also attained when
alternatingly choosing the poles 0 and ∞, i.e., when using extended Krylov sub-
spaces [6, 33].
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Fig. 2. Convergence of ‖Em(f)‖ for Algorithm 3 with 10 quasi-optimal, cyclically repeated
poles, and estimated convergence rate (25) for approximating (A + bb∗)−1/2 − A−1/2 with A, b as
in Example 4.7.

Example 4.7. We illustrate the above results by a simple numerical experiment,
using a diagonal matrix A ∈ C200×200 with logarithmically spaced eigenvalues in
the interval [10−3, 103] and D = bb∗ where b is a random vector with ‖b‖ = 100.

This leads to λ̃max ≈ 1.0078 · 104, and thus λ̃max/λ̃min) ≈ 1.0078 · 107. Figure 1

displays the convergence of Algorithm 3 with all poles equal to −
√
λ̃max · λ̃min for

approximating (A+ bb∗)−1/2−A−1/2. In the initial phase, the error reduces linearly
and the convergence rate of the method is predicted quite accurately by (23). The
superlinear convergence phase starting around iteration 120 can of course not be
captured by (23). �

We now turn to rational approximations using several different poles. In [6,
Section 6.2], quasi-optimal poles are constructed that admit closed formulas in terms
of Jacobi elliptic functions. Using these poles,

(24) ηm ≤ 2 exp

(
−m π2

log(16λ̃max/λ̃min)

)
.

Thus, the rate of convergence now depends on the logarithm of the ratio λ̃max/λ̃min

instead of the fourth root. The corresponding poles are mutually distinct and, in turn,
the rational Arnoldi method requires to compute a new Cholesky decomposition in
each of the m iterations. As already mentioned in Section 3, it is preferable in practice
to use a smaller number of poles and repeat them (typically cyclically) in order to
limit the number of matrix factorizations that need to be computed. When using m̃
quasi-optimal poles and repeating each of them k times, the error bound (24) changes
to

(25) ηm ≤ 2k exp

(
−km̃ π2

log(16λ̃max/λ̃min)

)
, m = km̃.
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Thus, compared to using m (mutually distinct) quasi-optimal poles, the error bound
worsens by a factor 2k−1.

We repeat the experiment from Example 4.7, now using ten cyclically repeated,
quasi-optimal poles in Leja ordering [37]. Figure 2 displays the resulting convergence.
The overall convergence rate is again predicted quite accurately, although the actual
convergence curve shows a staircase-like behavior (which is typical for rational Krylov
methods with poles in Leja ordering).

Other, practically relevant functions like the matrix square root are obtained as
slight modifications of Markov functions.

Example 4.8. Let us consider functions of the form

(26) f(z) = zf̂(z),

where f̂ is a Markov function (19). This includes the square root z1/2 = zz−1/2 as well

as the logarithm log(1 + z) = z log(1+z)
z . The following simple trick allows us to apply

Theorem 4.6 to this setting. Fixing the pole ξm =∞, which gives qm = qm−1 ∈ Πm−1,
and setting p1(z) = z we obtain

min
r∈Πm/qm

‖f − r‖L∞(E) ≤ min
r∈Πm−1/qm

‖f̂ − r‖L∞(E) ‖p1‖L∞(E)

= min
r∈Πm−1/qm−1

‖f̂ − r‖L∞(E) ‖p1‖L∞(E).

That is, besides the additional factor ‖p1‖L∞(E), we obtain an upper bound for Em(f)

by combining Theorem 4.5 for m, f with Theorem 4.6 for m−1, f̂ . A similar technique
has been used in [22] in the context of convergence theory for restarted (polynomial)
Krylov methods for f(A)b when A is Hermitian positive definite. In that situation,
‖p1‖L∞(E) = λmax. �

4.2.2. Convergence analysis for Markov functions in the non-Hermitian
case. We now turn to the more difficult task of analyzing the convergence for general
A, D = BC ?, in terms of a convex and compact set E containing both numerical
ranges W (A) and W (A+BC ∗), and f being analytic in E. In principle, Theorem 4.3
also holds for rational Krylov subspaces, by replacing p with the derivative of a func-
tion in Πm/qm. However, due to the special form of such a derivative, the resulting
optimization problem appears to be too exotic to be of assistance in getting practical
convergence bounds. Therefore, inspired by [5, §5.1], we consider the shifted (block)
linear systems

(27) (zI −A)X (z) = B and (zI −A−BC ∗)∗Y (z) = C ,

together with the rational block FOM approximations for (27), given by

Xm(z) := Um(zI −Gm)−1U∗mB ,

Ym(z) := Vm(z̄I −Hm − V ∗mCB∗Vm)−1V ∗mC .

The following result links these quantities to the approximation error of low-rank
updates.

Lemma 4.9. With Γ a contour surrounding E once and sufficiently close to E,
the error defined in (14) satisfies

Em(f) =
1

2πi

∫
Γ

f(z)
(
X (z)Y (z)∗ −Xm(z)Ym(z)∗

)
dz.
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Proof. This result has been derived in [5, §5.1] in the context of polynomial Krylov
subspaces, but it is straightforward to verify that the derivations are valid for general
choices of subspaces.

Lemma 4.9 shows that ‖Em(f)‖ is small if the rational FOM approximation errors
X (z) − Xm(z) and Y (z) − Ym(z) are small, uniformly for z ∈ Γ. The analysis is
complicated by this dependence on Γ. Therefore, in what follows we will only consider
the particular case (19) of a Markov function f , which allows us to switch from Γ to
the interval [α, β].

Theorem 4.10. Let E be a convex and compact set, symmetric with respect to
the real axis, and containing both numerical ranges W (A) and W (A + BC ∗). Let ω
and ηm be defined as in Theorem 4.6. Then for a Markov function f satisfying (22),
the error (14) returned by Algorithm 3 satisfies

‖Em(f)‖ ≤ 8 |f ′(ω)| ηm
1− ηm

‖B‖ ‖C‖.

Proof. In the same way as in the proof of [5, Theorem 5.7], we obtain from
Lemma 4.9 and the Fubini theorem the bound

(28) ‖Em(f)‖ ≤
∫ β

α

(‖X (t)‖‖Y (t)−Ym(t)‖+ ‖Ym(t)‖‖X (t)−Xm(t))‖) dµ(t).

We have

(29) ‖(tI −A)−1‖ ≤ 1

dist(t,W (A))
≤ 1

dist(t,E)
≤ 1

ω − t
,

where the last inequality follows for all t ∈ [α, β] from condition (22). Analogously,

‖(tI −Hm − V ∗mCB∗Vm)−1‖ ≤ 1

dist(t,W (A+ BC ∗))
≤ 1

ω − t
.

In particular, these bounds imply

‖X (t)‖
‖B‖

≤ 1

dist(t,E)
=

1

ω − t
,
‖Ym(t)‖
‖C‖

≤ 1

ω − t

for all t ∈ [α, β]. We claim that, for t ∈ [α, β],

(30)
‖X (t)−Xm(t)‖

‖B‖
≤ 4

ω − t
· ηm

1− ηm
,
‖Y (t)−Ym(t)‖

‖C‖
≤ 4

ω − t
· ηm

1− ηm
.

Inserting these bounds into (28) leads to

‖Em(f)‖ ≤ 8‖B‖‖C‖ ηm
1− ηm

∫
dµ(t)

(ω − t)2
,

with the integral being equal to |f ′(ω)| = ‖f ′‖L∞(E). Hence, we arrive at the assertion
of the theorem.

It remains to show the first inequality of (30), the proof of the second is entirely
analogous. Theorem 3.4 in [4] establishes the existence of a rational function R ∈
Πm/qm depending only on qm and E such that

(31)
‖R(Ã)‖ ≤ 2 for all square matrices Ã with W (Ã) ⊂ E,
|R(z)| ≤ 2 for all z ∈ E,
|R(t)| ≥ |Bm(φ(t))| − 1 for all t 6∈ E.
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Let t ∈ [α, β] be fixed, and consider the rational function

z 7→ rt(z) =
1

z − t
− 1

z − t
· R(z)

R(t)
.

Since rt ∈ Πm−1/qm, the exactness property of Lemma 3.2 allows to conclude that
rt(A)B = Umrt(Gm)U∗mB , and thus

(32) X (t)−Xm(t) = (tI −A)−1R(A)

R(t)
B − Um(tI −Gm)−1R(Gm)

R(t)
U∗mB .

Using the properties of R from (31) and the bound (29), we have∥∥∥∥(tI −A)−1R(A)

R(t)
B

∥∥∥∥ ≤ ‖B‖ω − t
‖R(A)‖
|R(t)|

≤ 2‖B‖
ω − t

ηm
1− ηm

and the same upper bound if one replaces B and A by U∗mB and Gm, respectively.
Inserting these bounds into (32) shows the claim (30) and completes the proof.

Remark 4.11. For polynomial Krylov subspaces, ξ1 = · · · = ξm = ∞. In turn,
Bm(φ(x)) = φ(x)m and ηm = 1/|φ(β)|m. Thus, up to the factor 1/(1 − ηm), our
Theorem 4.10 reduces to [5, Theorem 5.7]. We mention in passing that this factor
can be removed, using the techniques of [5, Lemma 5.1], if at least two of the poles
ξ1, ..., ξm are infinite. We should also mention that, once a suitable set E with more
explicit conformal map φ (as for instance an ellipse or a teardrop set) is found, we
may use some of the estimates for ηm in terms of φ, α, β as stated in §4.2.1.

5. The matrix sign function. When the numerical range of A or A + BC ∗

contains a singularity of f , none of the convergence results from Section 4 applies. For
the matrix sign function, a notorious example for this situation, we discuss a potential
remedy.

Letting

sign : C \ iR→ C, sign(z) =

{
−1 Re(z) < 0,

1 Re(z) > 0,

where Re(z) denotes the real part of z, the matrix sign function sign(A) is defined
whenever A has no purely imaginary eigenvalue. This function plays an important
role in, e.g., linear-quadratic optimal control [38], quantum chromodynamics [14,20],
and eigenvalue solvers [13,35].

5.1. Low-rank updates. Except for trivial situations (sign(A) = ±I), the sign
function is usually not defined on the numerical range of W (A), which poses a severe
problem for Krylov subspace techniques, not only in theory but also in practice. In the
context of approximating sign(A)b, Krylov subspace methods have been observed to
exhibit slow, irregular or erratic convergence [20]. As a remedy, it has been proposed
to exploit the relation

(33) sign(A) = (A2)−1/2A

and approximate sign(A)b in the Krylov space Km(A2, Ab); see, e.g., [15,20]. For an
invertible Hermitian matrix A the advantage of (33) is obviously that the numerical
range of A2 does not contain a singularity of the inverse square root.

In the following, we will discuss an approach based on (33) for approximating low-
rank updates (1) of the matrix sign function. Because (33) offers a clear advantage
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only for the Hermitian case, we now assume that A = A∗ and D = BJB∗ with
J = J∗. Let us, however, mention that the construction readily extends to the non-
Hermitian case.

Using (33), it follows that

sign(A+D)− sign(A) = (A+D)((A+D)2)−1/2 −A(A2)−1/2

=(A+D)
(
(A2 + D̃)−1/2 − (A2)−1/2

)
+ BJB∗(A2)−1/2(34)

with D̃ := ABJB∗+BJB∗(A+BJB∗). A rank-` update of the sign function is thus
performed by computing a rank-2` update of (A2)−1/2 and the action of (A2)−1/2 on

B . Because the range and co-range of D̃ are contained in the span of [B , AB ], it is
natural to choose the rational Krylov subspace

(35) Um := qm(A2)−1Km(A2, [B , AB ])

with suitably chosen poles ξ1, . . . , ξm for approximating the rank-2` update. To ap-
proximate the second term in (34), we utilize the usual block Krylov approximation

(A2)−1/2B ≈ UmG−1/2
m U∗mB

for an orthonormal basis Um of Um. Algorithm 4 summarizes the described approach
for approximating (34).

Algorithm 4 Rational block Krylov subspace approximation of sign matrix function
update (34) for Hermitian A,D

1: Choose poles ξ1, . . . , ξm ∈ C ∪ {∞} closed under complex conjugation.
2: Perform m steps of Algorithm 2 to compute an orthonormal basis Um of Um =
qm(A2)−1Km(A2, [B , AB ]) and set Gm = U∗mA

2Um.

3: Compute Fm=

([
Gm U∗m

(
ABJB∗ + BJB(A+ BJB∗)

)
Um

0 Gm + U∗m
(
ABJB∗ + BJB(A+ BJB∗)

)
Um

])−1/2

.

4: Set Xm(z−1/2) = Fm(1 :2m, 2m+ 1:4m).

5: Compute fm = UmG
−1/2
m U∗mB .

6: Return (A+ BJB∗)(UmXm(z−1/2)U∗m) + BJf ∗m.

Remark 5.1. The rational Krylov space (35) used in Algorithm 4 has a very
specific structure, and its polynomial part is actually identical to an ordinary block
Krylov space of order 2m for A. Precisely

(36) Um = qm(A2)−1Km(A2, [B , AB ]) = qm(A2)−1K2m(A,B).

This is different from the situation arising when approximating sign(A)b, where the
polynomial part of the subspace corresponds only to odd powers of A. When B is a
vector, this observation could in principle be used to implement Algorithm 4 such that
it avoids block arithmetic.

The convergence of Algorithm 4 can be analyzed by combining the results from
Section 4 with known convergence results for Krylov subspace methods.

Theorem 5.2. Let A and D = BJB∗ be Hermitian such that A and A+D are
invertible. Then the error of the approximation returned by Algorithm 4 satisfies

‖ sign(A+D)− sign(A)− (A+D)(UmXm(z−1/2)U∗m) + BJf ∗m‖(37)

≤(4‖A+D‖+ 2‖BJ‖ ‖B‖) min
r∈Πm/qm

‖f − r‖E,
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Fig. 3. Convergence curves of Algorithm 3 and Algorithm 4 using the poles of a Zolotarev
approximation of degree 2 or 10 for approximating sign(A + bb∗) − sign(A), where Λ(A) ⊆
[−1,−10−2] ∪ [10−2, 1], ‖b‖ = 1.

where E =
[

min{λmin(A2), λmin((A + D)2)},max{λmax(A2), λmax((A + D)2)}
]

and

f(z) = z−1/2.

Proof. Using (34) and setting M = (A2 + D̃)−1/2− (A2)−1/2, it follows that (37)
is bounded by

‖(A+D)
(
M − UmXm(f)U∗m

)
+ BJ

(
B∗(A2)−1/2 − f ∗m

)
‖

≤‖A+D‖ ‖M − UmXm(f)U∗m‖+ ‖BJ‖ ‖B∗(A2)−1/2 − f ∗m‖

Using Theorem 4.5, the first term is bounded via

(38) ‖M − UmXm(f)U∗m‖ ≤ 4 min
r∈Πm/qm

‖f − r‖E.

For the second term, we can estimate

(39) ‖(A2)−1/2B − f ∗m‖ ≤ 2‖B‖ min
r∈Πm/qm

‖f − r‖Ẽ ≤ 2‖B‖ min
r∈Πm/qm

‖f − r‖E

with Ẽ = [λmin(A2), λmax(A2)] ⊆ E. For the case that B is a vector, (39) is shown
in [26, Theorem 4.10], see also the proof of [6, Theorem 5.2], and the proof of this
result carries over to the block case (and the non-standard rational Krylov space that
we are using) completely analogously, using the exactness property from Lemma 3.2 as
a basis. Further note that the estimate (39) is actually valid for the smaller subspace
qm(A2)−1Km(A2,B) ⊆ qm(A2)−1Km(A2, [B , AB ]). Combining (38) and (39) gives
the desired result.

As f(z) = z−1/2 is a Markov function, we can, e.g., apply Theorem 4.6 to obtain
bounds for ‖f − r‖E in Theorem 5.2.

Example 5.3. Consider the diagonal, indefinite matrix A ∈ C200×200 with 100
linearly spaced eigenvalues in each of the intervals [−1,−10−2] and [10−2, 1]. Let
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b ∈ C200 be a random vector of unit norm. We compare Algorithm 4 to the straight-
forward application of Algorithm 3 to perform the update sign(A + bb∗) − sign(A).
We use the poles of the Zolotarev approximation of degree 2 and 10 for the inverse
square root in Algorithm 4 and the poles of the corresponding Zolotarev approxima-
tion of the sign function in Algorithm 3; see [36, 47]. Again, the poles are in Leja
ordering and cyclically repeated. The resulting convergence curves are depicted in
Figure 3. As expected, the convergence curve of Algorithm 4 is much smoother than
that of Algorithm 3. In addition, the subspace dimension required to reach the target
accuracy 10−6 by Algorithm 4 is smaller: When using 10 different poles, it needs 24
vs 34 iterations, i.e., a reduction of about 30%. For only 2 different poles, the differ-
ence becomes a lot more pronounced, and Algorithm 4 requires 44 iterations, while
Algorithm 3 fails to converge in a reasonable number of iterations.

Concerning the computation cost of the algorithms, several things have to be
taken into account: On the one hand, the number of nonzeros in A2 is typically larger
than in A, which leads to higher expenses when factoring A2 + ξiI. On the other
hand, the poles of the Zolotarev approximation for the sign function are complex, so
that Algorithm 3 requires complex arithmetic even though A and b are real (note
however, that only half the number of Cholesky factorizations needs to be computed,
as the Zolotarev shifts come in complex conjugate pairs). �

5.2. Connection to Krylov subspace methods for linear matrix equa-
tions. We conclude this work by pointing out a curious connection to Krylov subspace
methods for the matrix Sylvester equation

(40) A1Z − ZA2 + B1C
∗
2 = 0,

with coefficients A1 ∈ Cn1×n1 , A2 ∈ Cn2×n2 and B1 ∈ Cn1×`, C2 ∈ Cn2×` such
that `� min{n1, n2}. We refer to [43] for an overview of applications and numerical
algorithms for this and similar equations.

We assume thatW (A1),W (−A2) are contained in the open right-half plane, which
implies that (40) has a unique solution Z. Moreover, it is well known that

sign

([
A1 B1C

∗
2

0 A2

])
=

[
In1

2Z
0 −In2

]
.

In turn,

(41) sign

([
A1 B1C

∗
2

0 A2

])
− sign

([
A1 0
0 A2

])
=

[
0 2Z
0 0

]
,

showing that the solution Z of (40) can be obtained from a rank-` update of the
matrix sign function. After setting

A =

[
A1 0
0 A2

]
, B =

[
B1

0

]
, C =

[
0
C2

]
,

the left-hand side of (41) takes the familiar form sign(A+ BC ∗)− sign(A).
As we will see below, the particular structure of the update implies that the squar-

ing trick from the previous subsection is not needed for (41). Applying Algorithm 3
directly to (41) involves the rational Krylov subspaces

qm(A)−1Km(A,B) =

{[
u
0

]
: u ∈ qm(A1)−1Km(A1,B1)

}
,

q̄m(A)−∗Km(A∗,C ) =

{[
0
v

]
: v ∈ qm(A2)−∗Km(A∗2,C2)

}
.
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Thus, we obtain orthonormal bases Um =

[
U1,m

0

]
, Vm =

[
0

V2,m

]
by letting U1,m and

V2,m contain orthonormal bases of qm(A1)−1Km(A1,B1) and qm(A2)−∗Km(A∗2,C2),
respectively. The compressions of A and A∗ to these bases take the form

Gm := U∗mAUm = U∗1,mA1U1,m, Hm := V ∗mA
∗Vm = V ∗2,mA

∗
2V2,m.

We recall that the matrix Xm(sign) in Algorithm 3 is extracted from the (1,2) block
of the matrix (2). In the described setting, this matrix takes the form

sign

([
Gm U∗1,mB1C

∗
2 V2,m

0 H∗m

])
=

[
I 2Z̃m
0 −I

]
,

where Z̃m satisfies the Sylvester equation GmZ̃m − Z̃mH
∗
m + U∗1,mB1C

∗
2U2,m = 0,

which has a unique solution because of W (Gm) ⊂W (A1), W (H∗m) ⊂W (A∗2).
In summary, Algorithm 3 applied to (41) reduces to the following procedure:
1. Apply Algorithm 2 to compute orth. basis U1,m of qm(A1)−1Km(A1,B1) and
Gm = U∗1,mA1U1,m.

2. Apply Algorithm 2 to compute orth. basis V2,m of q̄m(A2)−∗Km(A2,C2) and
Hm = V ∗2,mA

∗
2V2,m.

3. Solve Sylvester equation GmZ̃m − Z̃mH∗m + U∗1,mB1C
∗
2 V2,m = 0.

4. Return approximate solution Zm = U1,mZ̃mV
∗
2,m

This procedure turns out to be identical to existing rational Krylov subspace methods
for Sylvester equations; see [8, 18] as well as [43] for additional references. In turn,
the theory developed in this work can be used to bound the convergence of these
methods via the best rational approximation of the sign function on W (A1)∪W (−A2).
However, the bounds resulting from such an approach do not seem to offer advantages
compared to existing bounds [4, 7, 18] and we will therefore skip the details.

6. Conclusions. The rational Krylov methods developed in this work constitute
a fast way to approximate low-rank updates of the form f(A+BC ∗)−f(A), provided
that shifted inverses with A can be applied efficiently. Their computational cost is
comparable to the application of existing rational Krylov methods for approximating
f(A)B and f(A∗)C . This work has focussed on theoretical and algorithmic founda-
tions. Future work will explore the application and the adaptation of our methods to
specific problems in scientific computing and data science.
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