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Abstract
In this paper, we propose two novel matheuristic algorithms, i.e., heuristics based
on mathematical formulations of the problem, in order to find a good feasible solu-
tion to the satellite constellation design problem for discontinuous coverage with a
constrained revisit time. This problem consists in searching for a constellation able
to periodically observe several targets at the Earth surface with the smallest number
of satellites achievable. A Feasibility Pump approach is described: we specifically
adapt the Feasibility Pump procedure to our design problem and we report results
highlighting the benefits of this approach compared to the base Mixed Integer Nonlin-
ear Programming (MINLP) algorithm it is derived from. Then, we propose a second
matheuristic based on the discretized Mixed Integer Linear Programming (MILP)
formulation of the problem, which outperforms the plain MILP formulation.
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1 Introduction

Satellites constellations are useful for a multitude of applications, but they are also
extremely costly to set up. As a consequence, minimizing the number of satellites
required for a constellation is of very high interest. In the case of applications requiring
a continuous coverage of the Earth, optimization techniques are already well figured
out, but not so much in the case of discontinuous coverage. One can refer to our
previous work (Mencarelli et al. 2022) for further details on the satellite constellation
design problem.

Mencarelli et al. (2022), we proposed new Mixed-Integer NonLinear Problem
(MINLP) and Mixed-Integer Linear Problem (MILP) approaches in order to provide
an exact solution to the satellite constellation design problem with constrained revisit
time and discontinuous coverage, where targets at the surface of the Earth have to be
observed periodically by at least one satellite. Both approaches aimed at increasing
the number of parameters taken into account when compared to existing techniques.
However, because of the high number of parameters, both approaches suffered from
a scalability issue: an average desktop computer would be limited to solving small
instances of the problem.

As a consequence, in this paper, we propose two new matheuristic algorithms in
order to solve larger instances of the problem than in our previous work: a Feasibility
Pump and a MILP-based procedure. To the best of our knowledge, we are the first
to propose or adapt heuristic methods based on the mathematical formulation of the
design problem for this emerging field of application.

The Feasibility Pump algorithm is built upon our previous MINLP formulation,
while the MILP-based matheuristic algorithm is derived from our previous MILP
algorithm. Both aim at outperforming the previous mathematical formulation from
which they are derived.

The remainder of this paper is organized as follows: in the next two sections we
summarize respectively the MINLP and discretized MILP mathematical models that
we proposed inMencarelli et al. (2022). In Sect. 4, we briefly describe the general Fea-
sibility Pump framework for (nonconvex) MINLP, and we explain how it was adapted
to our constellation design problem in Sect. 5. The MILP-based procedure approach
is described in Sect. 6. Section7 is dedicated to the presentation and discussion on
the obtained results in terms of solution quality and computational cost. Finally, the
conclusions of this work are presented in Sect. 8.

2 MINLPMathematical model

The MINLP model is fully described in Mencarelli et al. (2022): in this section,
we briefly resume the mathematical formulation, underlining the modifications we
introduce in this work to improve the realism of the physical model.

In this paper, as in our previous work, we consider the following (restrictive)
assumptions:

• the Earth is considered to be a perfect sphere;
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Matheuristics approaches for the satellite constellation design problem 1053

• the orbits of the satellites are circular and described by a Keplerian model with 4
free orbital parameters:

– the radius of the orbit a;
– the inclination I ;
– the right ascension of the ascending node (RAAN) Ω;
– the mean anomaly M ;

• the time is discretized.

As usual, we consider two kinds of variables:

– a set of binary variables ξi,t,m indicating if the satellite i ∈ [s] observes the target
m ∈ X at time t ∈ [T ];

– a set of continuous variables σi ∈ Σi (i ∈ [s]) representing the orbital parameters
of the i-th satellite.

Moreover, let:

– latm and longm be the latitude and the longitude, respectively, of the target m to
observe;

– lat(σi , t) and long(σi , t) be the latitude and the longitude, respectively, of the
projection on the Earth surface of the i-th satellite at the t-th time-step (these two
functions depend from the orbital parameters of the corresponding satellite);

– θmaxi be the maximum observation aperture angle for satellite i ∈ [s], measured
form the center of the Earth;

– Σi be the set of possible orbital parameters for the i-th satellite;
– Δt ∈ R

+∗ be the revisit time, defining the length of the time intervals duringwhich
each target must be observed at least once.

– dt ∈ R
+ be the time discretization step,

– T (tk,Δt) := {tk, tk+1, tk+2, . . . , tk+Δt/dt−1} be the set of time-steps in a time
interval �tk, tk+Δt/dt−1�;

– T be the duration of the simulation;
– [N ] := {1, . . . , N } be a notation to define a set (for instance, [T ] = {t0, t0 +
dt, t0 + 2dt, . . . , T − dt}).
We aim to find the minimum number s ∈ R

+ of satellites such that:

∑

t∈T (k,Δt)
i∈[s]

ξi,t,m ≥ 1 ∀k ∈ [�T /Δt�], ∀m ∈ X

ξi,t,m = 0 �⇒ max{|latm − lat(σi , t)|, |longm − long(σi , t)| cos(latm)}
≥ θmaxi ∀i ∈ [s],∀t ∈ [T ],∀m ∈ X

ξi,t,m ∈ {0, 1} ∀i ∈ [s],∀t ∈ [T ],∀m ∈ X
σi ∈ Σi ∀i ∈ [s].

The first constraint requires that at least one satellite observes the target m ∈ X ,
i.e., at least one binary variable ξi,t,m is equal to 1 in the period corresponding to the
revisit time.
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1054 L. Mencarelli et al.

Fig. 1 Illustration of the ground surface observed by a satellite (blue). (Color figure online)

The constraints on the indicators ξi,t,m are observability constraints: they reflect
that if the target m is observed at time t by the satellite i , then ξi,t,m = 1. The target
is observed if it belongs to the Earth region observed by the satellite (see Fig. 1). In
this paper, the formula for the ground surface observed by the satellite is slightly more
realist than the one previously introduced in Mencarelli et al. (2022).

In order to determine if a target belongs to the observation field of a satellite, one
can compare the latitudes and longitudes of the target and the projection of the satellite
on the surface of the Earth:

‖latm − lat(σi , t)‖ ≤ θmaxi (1)

‖longm − long(σi , t)‖ · cos(latm) ≤ θmaxi (2)

These inequalities allow to obtain an observation area with a size and shape inde-
pendent from the latitude, unlike in our previous work (Mencarelli et al. 2022). The
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Matheuristics approaches for the satellite constellation design problem 1055

covered area is a square defined by the maximum aperture angle θmax measured from
the Earth center.

The latitude and longitude used in theMINLP formulation are computed as follows
(see Mencarelli et al. 2022 for further details):

lat(σi , t) = arcsin(sinIi ai sin(Mi,t ) cos(Vi/ai t)a
−1
i

+ sinIi V j cos(Mi,t ) sin(Vi/ai t)V
−1
i ) (3)

long(σi , t) = (−(Φ + we(t − T0)) + arctan((sinΩ
n ai cos(Mi,t )

+ cosΩn cosIl ai sin(Mi,t )) cos(Vi/ai t)a
−1
i

+ (− sinΩ
n Vi sin(Mi,t ) + cosΩn cosIl Vi cos(Mi,t )) sin(Vi/ai t)V

−1
i ,

(cosΩn ai cos(Mi,t ) − sinΩ
n cosIl ai sin(Mi,t )) cos(Vi/ai t)a

−1
i

+ (− cosΩn Vi sin(Mi,t ) − sinΩ
n cosIl Vi cos(Mi,t )) sin(Vi/ai t)V

−1
i ))

(mod 2π). (4)

with (sinIi , cos
I
i ) the sinus and cosinus of the inclination of the i-th satellite and (sin

Ω
i ,

cosΩi ) the corresponding notations for the RAAN. ai is the radius of the orbit of the
i-th satellite and Vi is a coefficient depending on ai (see Mencarelli et al. 2022). we

is the Earth rotation velocity and Φ ∈] − π, π ] is the rotation angle at T0 between the
inertial frame in which the satellites positions are computed, and the Earth reference
frame in which the targets positions are fixed.

3 MILPMathematical model

In the MILP formulation, we discretize the solution space by considering C different
values for the satellites orbit configuration, i.e., σi,c for c ∈ [C]. We pre-compute all
the possible distances in terms of latitude and longitude between the targets and the
satellite projections on the Earth surface (see Eqs. (1)–(2)), as follows:

Δlati,c,t,m := |latm − lat(σi,c, t)| ∀m ∈ X ,∀i ∈ [s],∀c ∈ [C],∀t ∈ [T ]
Δlongi,c,t,m := |longm − long(σi,c, t)| · cos(latm) ∀m ∈ X , ∀i ∈ [s],∀c ∈ [C], ∀t ∈ [T ]

We introduce s C binary variables πi,c indicating if the orbit of satellite i is in
the c-th configuration (c ∈ [C]). The goal consists in finding the minimum number
s ∈ R

+ of satellites, as in the MINLP model, such that:

∑

t∈T (k,Δt)
i∈[s]

ξi,t,m ≥ 1 ∀k ∈ [�T /Δt�], ∀m ∈ X

ξi,t,m = 0 �⇒ max

⎧
⎨

⎩
∑

c∈[C]
πi,c Δlati,c,t,m ,

∑

c∈[C]
πi,c Δlongi,c,t,m

⎫
⎬

⎭

≥ θmax
i ∀i ∈ [s], ∀t ∈ [T ], ∀m ∈ X
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1056 L. Mencarelli et al.

∑

c∈[C]
πi,c = 1 ∀i ∈ [s]

ξi,t,m ∈ {0, 1} ∀i ∈ [s], ∀t ∈ [T ], ∀m ∈ X
πi,c ∈ {0, 1} ∀i ∈ [s], ∀c ∈ [C] .

Once the previous problem is solved, one can easily reconstruct the values of the
orbit parameters of each satellite with σ ∗

i := ∑
c∈[C] π∗

i,cσi,c ∀i ∈ [s].
For further details on the way the solution space is discretized in order to guarantee

that the optimal orbit configuration for each satellite is preserved, we refer the reader
to our previous paper (Mencarelli et al. 2022).

4 The feasibility pump heuristic

In this section, we briefly describe the basic aspects and characteristics of the
Feasibility Pump heuristic for a general Mixed-Integer Nonlinear Problem:

minx,y f (x, y)
s.t. g(x, y) ≤ 0

x ∈ X
y ∈ Y ∩ Z

p,

(MINLP)

The Feasibility Pump is a well-studied heuristic (see, for instance, Achterberg and
Berthold 2007; Bertacco et al. 2007; Boland et al. 2012; De Santis et al. 2010, 2013,
2014; Fischetti and Salvagnin 2009; Hanafi et al. 2010), first introduced by Fischetti
et al. (2005) for MILPs and extended to convex MINLPs by Bonami et al. (2009) and
to nonconvex MINLPs by D’Ambrosio et al. (2010a) (see Belotti and Berthold 2014;
D’Ambrosio et al. 2012). For an overview on the Feasibility Pump, we refer the reader
to a survey by Berthold et al. (2019).

The basic idea of the Feasibility Pump is to deal with the two sources of difficulties
of MINLP separately, namely the nonlinearity of the constraints and the integrality
requirement for (a subset of) the variables. The Feasibility Pump bounces between
two sub-problems: the Nonlinear Problem (NLP) obtained from MINLP by relaxing
the constraints involving integers, and a MILP with linear and linearized constraints
of the original MINLP. The Feasibility Pump produces two sequences of solutions:
the first one feasible with respect to the nonlinear constraints appearing in MINLP,
and the second one integer feasible. In the generic iteration, we solve first the NLP
sub-problem obtaining a solution (x̃, ỹ) which respects the nonlinear constraints, and
then we solve the MILP to determine the integer solutions closest to (x̃, ỹ).

D’Ambrosio et al. (2012) observe that the Feasibility Pump heuristic is a special
case of the well-known Successive Projection Method (Bauschke and Borwein 1996),
in which two sequences of points are generated by repetitively solving two different
problems of the form:
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z̄k ∈ argmin
z∈A

‖z − ẑi−1‖, ẑk ∈ argmin
z∈B

‖z − z̄i−1‖. (5)

Depending on the choices of the two setsA andB several variants of the Feasibility
Pump are possible. The work presented in D’Ambrosio et al. (2012) defines A :=
{(x, y) : g(x, y) ≤ 0, x ∈ X , y ∈ Y } and B := {(x, y) : gc(x, y) ≤ 0, x ∈ X , y ∈
Y∩Z

p}, where gc(x, y) represents the convex constraints inMINLP.Both the resulting
problems are NP-hard, therefore solving them using heuristic methods is suggested.

Following the idea introduced byAchterberg andBerthold (2007) forMILP, Sharma
et al. describe in (2016) a version of the Feasibility Pump in which a multi-objective
optimization approach is developed considering at the same time two conflicting goals:
quickly finding a feasible solution, and ensuring a good quality in terms of the original
objective function. Belotti and Berthold (2017) describe a different implementation of
the Feasibility Pump considering the Hessian of the Lagrangian function associated
to the MINLP in the distance function in the MILP sub-problem, linearization cuts
and a hierarchy of rounding procedures. Li and Liu (2017) consider inexact solving
procedures for the NLP sub-problem in the Feasibility Pump method.

A version of the Feasibility Pump that does not require solving any MILP is pre-
sented by Bonami and Gonçalves (2012): the simple rounding operation of the NLP
sub-problem solution to nearest integer is implemented. This version of the algorithm
could cycle: whenever a cycle is detected, a random flip of several entries of the NLP
sub-problem solution is implemented, similarly to the approach originally introduced
in Fischetti et al. (2005).

In the original version of Feasibility Pump, a tabu list, i.e., a list of the already
generated solutions, which are forbidden for the next iterations is applied in order to
avoid generating the same integer feasible point twice (or no-good cuts if this method
fails D’Ambrosio et al. 2010b).

5 Feasibility pump for the satellite constellation design

In order to implement the Feasibility Pump for the satellite constellation design prob-
lem described in Sect. 2, we have to specify the definition of the setsA and B and the
norms occurring in Eq. (5).

5.1 MILP sub-problem

The MILP sub-problem is obtained from the MINLP formulation by discarding the
nonlinear part. In particular, we introduce two new continuous variables lati,t ∈[−π

2 , π
2

]
and longi,t ∈ [0, 2π ] designating respectively the latitude and the longi-

tude of the satellite i at time-step t . One will notice that the introduced variables lati,t
and longi,t do not depend on the orbital parameters of the satellites: the physics con-
straints have been relaxed in this sub-problem. As a consequence, the feasibility of a
solution will be verified at the end of the NLP sub-problem instead of the MILP one.
The MILP sub-problem is expressed as follows:
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1058 L. Mencarelli et al.

min
∑

t∈[T ],i∈[s],m∈X
∣∣ξi,t,m − ξ̂i,t,m

∣∣
s.t.

∑
t∈T (k,Δt)

i∈[s]
ξi,t,m ≥ 1 ∀k ∈ [�T /Δt�],∀m ∈ X

ξi,t,m = 0 �⇒ max
{|latm − lati,t |, |longm − longi,t | cos(latm)

}

≥ θmax
i ∀i ∈ [s],∀t ∈ [T ],∀m ∈ X

ξi,t,m ∈ {0, 1} ∀i ∈ [s],∀t ∈ [T ],∀m ∈ X ,

where ξ̂i,t,m is the solution of the NLP sub-problem (see Sect. 5.2). To solve the MILP
sub-problem we reformulate the 
1-norm in the objective function by introducing a
new positive variable absi,t,m satisfying the following constraints:

absi,t,m ≥ ξi,t,m − ξ̂i,t,m ∀i ∈ [s],∀t ∈ [T ],∀m ∈ X (6)

absi,t,m ≥ ξ̂i,t,m − ξi,t,m ∀i ∈ [s],∀t ∈ [T ],∀m ∈ X , (7)

and we rewrite the objective function as follows:

min
∑

t∈[T ],i∈[s],m∈X
absi,t,m (8)

We do not explicitly rewrite the indicator constraints, since modern solvers, like
for instance CPLEX, can directly deal with them.

5.2 NLP sub-problem

In the NLP sub-problem we relax the requirements for the ξ variables to be integers
and we reformulate the indicator constraints with big-M terms. The NLP sub-problem
is expressed as follows:

min
√√√√

∑

t∈[T ],i∈[s],
m∈X

(
ξi,t,m − ξ̃i,t,m

)2 +
√ ∑

t∈[T ],i∈[s]

(
lat(σi , t) − l̃ati,t

)2

+
√√√√

∑

t∈[T ],i∈[s]

(
long(σi , t) − l̃ongi,t

)2

s.t.
∑

t∈T (k,Δt)
i∈[s]

ξi,t,m ≥ 1 ∀k ∈ [�T /Δt�],∀m ∈ X

max
{|latm − lat(σi , t)|, |longm − long(σi , t)| cos(latm)

}

≤ θmaxi + M (1 − ξi,t,m) ∀i ∈ [s],∀t ∈ [T ],∀m ∈ X
ξi,t,m ∈ [0, 1] ∀i ∈ [s],∀t ∈ [T ],∀m ∈ X
σi ∈ Σi ∀i ∈ [s],

where (̃ξi,t,m, l̃ati,t , l̃ongi,t ) is the solution of theMILP sub-problem. In the numerical
experiments, we set M := 2π , which is a valid upper bound for the left-hand side
of the reformulated constraints. The NLP obtained is non-convex, hence we solve it
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with a MultiStart approach, namely we locally solve the problem starting from n := 5
randomly generated starting points in our computational experiments (see Sect. 7).

5.3 Feasibility pump algorithm

We solve the couple of previous sub-problems starting from a number of satellites
s = 1 and progressively increasing s if an iteration limit is reached or the current
problem is infeasible. When a feasible solution to the NLP problem is reached, we
verify if the indicator constraints are satisfied: if so, we return the current solution (see
Algorithm 1). We start the algorithm by solving the MILP sub-problem from an initial
integer feasible solution.

In order to avoid generating twice the same integer solution we add the following
“no-good cut“ to the MILP sub-problem once a feasible solution is calculated:

∑

t∈[T ],i∈[s],m∈X

∣∣ξi,t,m − ξ̃i,t,m
∣∣ ≥ 1. (9)

The flow of the algorithm is summarized in the following pseudo-code:

Algorithm 1 Feasibility Pump for the satellite constellation design problem
1: Initialization: set s := 1 and iter := 0.
2: while s ≤ �T /Δt� · |X | do
3: solve MILP sub-problem and obtain solution (̃ξi,t,m , l̃ati,t , l̃ongi,t )
4: (̂ξi,t,m , σ̂i ) := +∞
5: for j ∈ {1, . . . , iterms } do
6: generate a random starting point (ξ ′

i,t,m , σ ′
i )

7: solve NLP sub-problem via local solver and obtain solution (ξ∗
i,t,m , σ∗

i )

8: if (ξ∗
i,t,m , σ∗

i ) is better than (̂ξi,t,m , σ̂i ) then

9: (̂ξi,t,m , σ̂i ) := (ξ∗
i,t,m , σ∗

i )

10: if solution σ̂i (i ∈ [s]) is feasible for the original MINLP then
11: return the current solution (̂ξi,t,m , σ̂i )

12: else
13: if iter = iter_max or (̂ξi,t,m , σ̂i ) = +∞ then
14: s := s + 1
15: iter := 0
16: else
17: iter := iter + 1

6 MILP-basedmatheuristic

In theMILP formulation of the constellation design problem that we aim to solve with
a MILP-based matheuristic, we consider two kinds of binary variables:

• the ξi,t,m variables already introduced to indicate if a target m ∈ |X | is observed
by a satellite i ∈ [s] at a given time-stamp t ∈ [T ];

• the ζk,m variables which are equal to 1 if the target m ∈ |X | is observed in a given
period k ∈ �T /Δt�.
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1060 L. Mencarelli et al.

One can notice that for a feasible solution of the satellite constellation design
problem, we have ζk,m ≡ 1 for all m ∈ |X | and k ∈ �T /Δt�. Thus, in the new MILP
formulation we seek to maximize the number of ζk,m variables equal to 1 by selecting
a satellite orbit configuration πi,c (i ∈ s, c ∈ [C]).

In order to obtain a more robust solution we also consider in the objective function
the ξi,t,m variables, trying to maximize the number of time-stamps in which a target
is observed. Finally, we opportunely re-weight the two terms in the objective function
in order to balance their numeric values.

max
ζ,ξ,π

sΔt
∑

k∈�T /Δt�,
m∈|X |

ζk,m +
∑

i∈[s],t∈[T ],
m∈|X |

ξi,t,m

s.t. ξi,t,m = 0 �⇒ max
⎧
⎨

⎩
∑

c∈[C]
πi,c Δlati,k,t,m,

∑

c∈[C]
πi,c Δlongi,k,t,m

⎫
⎬

⎭

≥ θmaxi ∀i ∈ [s],∀t ∈ [T ],∀m ∈ X
ζk,m = 1 �⇒

∑

t∈T (k,Δt)
i∈[s]

ξi,t,m ≥ 1 ∀k ∈ [�T /Δt�],∀m ∈ X

∑

c∈[C]
πic = 1 ∀i ∈ [s]

ξi,t,m ∈ {0, 1} ∀i ∈ [s],∀t ∈ [T ],∀m ∈ X
ζk,m ∈ {0, 1} ∀k ∈ [�T /Δt�],∀m ∈ X
πi,c ∈ {0, 1} ∀i ∈ [s′],∀c ∈ [C] .

The pseudo-code of the MILP-based matheuristic is given in Algorithm 2.

Algorithm 2MILP-based matheuristic for the satellite constellation design
1: Initialization: set s := 1, j := 1, J := 3, and flag_feas := 0.
2: find an initial (possibly feasible) solution σ ′
3: while flag_feas = 0 do
4: set iter := 1
5: fix the set of all orbital parameters but the j-th to σ ′
6: while flag_feas = 0 and iter ≤ iter_max do
7: solve MILP and obtain solution σ ′
8: if σ ′ is feasible for original problem then
9: flag_feas := 1
10: else
11: if a cycle is detected then
12: randomly re-initialize the set of the fixed orbital parameters

13: set j := ( j + 1) mod J
14: fix the set of all orbital parameters but the j-th to σ ′
15: iter := iter + 1
16: s := s + 1
17: return solution σ ′
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We first initialize the MILP-based procedure with an initial (possibly feasible),
probably sub-optimal, solution to the satellite constellation design problem. In this
work we chose the starting point randomly.

The MILP formulation is solved by starting from s = 1 satellite and by iteratively
fixing all the orbital parameters but one until a better feasible constellation configura-
tion is determined, or the maximum number of iterations is reached (Lines 6–16). If a
feasible solution is not found within the maximum number of iterations, the number of
satellites s of the constellation is incremented by 1, and the discretized MILP problem
is solved again.

Cycles may appear in this process: to avoid this drawback, when a cycle is detected,
i.e., the solution σ ′ has already been produced at a former iteration, the fixed satellites
orbital parameters are randomly re-initialized (Lines 11–12).

It is important to note that this algorithm is an heuristic method and as such it does
not guarantee the optimality of the final solution.

7 Computational results

All the developed codes have been written in Julia (version 1.8.5) and parts of the Julia
library Satellite Toolbox (Ronan et al. 2019) related to spatial mechanics have
been adapted to fit in our framework. The characteristics for the hardware we use in
computational experiments are the following: MacBook Pro mounting macOS Ven-
tura 13.4 with Apple M2 chip and 8 GB memory RAM. The solver CPLEX 22.1.1
was used to solve the MILP problems. Note that CPLEX can directly deal with indi-
cator constrants. The NLP problems, on the other hand, were solved with Ipopt
3.14.10, which is an exact solver for convex NLPs.

For the results presented in this work, the satellites are constrained on a Low Earth
orbit, with an altitude between 400 and 1400km. Constraining the problem to be
periodic over a 24h period, it follows that only three values for the altitude of the
satellites are allowed: 566.805, 893.700, and 1261.990km (Mencarelli et al. 2022).

The surface observed by a satellite is described by Eqs. (1) and (2), resulting in a
square area projected on the surface of the Earth. This is an upgrade compared to the
formulation used in our previous work in which the observed area was a trapezoidal
shape shrinking in size for greater values of the latitude (Mencarelli et al. 2022).

Because of the time discretization, an overlap of two consecutively observed areas
is required in order to minimize the size of unobserved areas between two consecutive
time steps, which would have otherwise been observed in a continuous time paradigm.
In this work the angle θmax and time steps tk+1 − tk are designed to ensure a 20%
overlap distance-wise.

The latitude of the targetswere constrained between θmax andπ/2−θmax : this is the
most difficult and hence interesting case from a computational viewpoint, otherwise
the result is trivial and consists of one satellite with a polar or equatorial orbit. In the
presented results, unless statedotherwise, the coordinates of the targets are summarized
in Table 1.
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Table 1 Latitude and longitude
(deg) of the test targets

Latitude Longitude

Target 1 32 42

Target 2 35 134

Table 2 CPU time in seconds depending on the number of targets and the revisit time for the Feasibility
Pump algorithm. The simulation time step is set to 3min. The number in brackets is the number of satellites
in the constellation

Number of targets Revisit time

12h 8h 6h

1 375 (1) 1296 (2) 8233 (3)

2 609 (2) 1422 (2) 5820 (3)

Table 3 CPU time in seconds depending on the number of targets and the revisit time for the MILP-based
matheuristic algorithm. The simulation time step is set to 3min. “T.L.” means that a feasible solution was
not foundwithin a time limit of 4h, but the algorithm can provide a feasible solution. The number in brackets
is the number of satellites in the constellation

Number of targets Revisit time

2h 1.5h 1h

1 435 (2) 1249 (2) 14,286 (3)

2 662 (2) 10,193 (2) T.L

The hyper parameters of the Feasibility Pump algorithm were set as itermax :=
50 and iterms := 5 (see Algorithm 1). The hyper parameter for the MILP-based
matheuristic was set as itermax := 100 (see Algorithm 2).

In order to test the performance of the developed algorithms, we solve the models
for various values of the revisit time, time step, and numbers of targets. The tests were
stopped when either the computer memory or a 4h time limit was reached.

The evolution of CPU time usage of the Feasibility Pump and MILP-based algo-
rithms, depending on the number of targets and the revisit time, are reported in Tables 2
and 3 respectively, with a time step set to 3min.

Tables 4 and 5 show the evolution of the CPU time of the Feasibility Pump algo-
rithm depending on the coordinates of the targets and the revisit time, for 1 and 2
targets respectively. Tables 6 and 7 are the corresponding results for the MILP-based
algorithm.

In Table 8, the CPU time usage of theMILP-based algorithm depending on the time
step and the revisit time are reported. In this test case, a single target is considered,
with latitude and longitude equal to 30.0 and 42.0 degrees respectively.

Table 9 shows the variability of the CPU time of theMILP-based algorithm depend-
ing on its randomized initialization. Finally in Table 10, we compare the CPU time of
the exact MILP formulation developed in our previous work (Mencarelli et al. 2022)
and the proposed MILP-based matheuristic, depending on the revisit time, with a time
step of 3min and the same target as for Table 8.
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Table 4 CPU time in seconds
for 1 target depending on the
target position and the revisit
time for the Feasibility Pump
algorithm. The simulation time
step is set to 3min. The number
in brackets is the number of
satellites in the constellation

Lat/Long (degree) Revisit time

12h 8h 6h

80/358 4 (1) 364 (2) 1676 (2)

61/116 5 (1) 363 (2) 738 (2)

33/139 1 (1) 467 (2) 1588 (2)

22/343 2 (1) 645 (2) 1106 (2)

16/340 4 (1) 673 (2) 1196 (2)

8/55 31 (1) 680 (2) 4479 (3)

1/220 2 (1) 649 (2) 1702 (2)

−13/24 458 (2) 695 (2) 12,598 (4)

−15/100 36 (1) 575 (2) 2125 (2)

−24/9 332 (2) 481 (2) 5586 (3)

Table 5 CPU time in seconds
for 2 targets depending on the
targets position and the revisit
time for the Feasibility Pump
algorithm. The simulation time
step is set to 3min. The number
in brackets is the number of
satellites in the constellation

Lat/Long (degree) Revisit time

12h 8h 6h

80/388, 61/116 31 (1) 695 (2) 3042 (2)

33/139, 22/343 519 (2) 788 (2) 9446 (3)

16/340, 8/55 1001 (2) 1248 (2) 10,976 (3)

1/220, −13/24 516 (2) 3128 (3) 5398 (3)

−15/100, −24/9 1508 (2) 3792 (3) 15,856 (4)

Table 6 CPU time in seconds
for 1 target depending on the
target position and the revisit
time for the MILP-based
matheuristic. The simulation
time step is set to 3min. The
number in brackets is the number
of satellites in the constellation

Lat/Long (degree) Revisit time

6h 4h 3h 2h

80/358 4 (1) 46 (1) 427 (2) 257 (2)

61/116 1 (1) 609 (2) 567 (2) 632 (2)

33/139 97 (1) 670 (2) 684 (2) 637 (2)

22/343 37 (1) 683 (2) 681 (2) 695 (2)

16/340 3 (1) 2 (1) 2 (1) 2 (1)

8/55 4 (1) 3 (1) 2 (1) 2 (1)

1/220 4 (1) 3 (1) 3 (1) 2 (1)

−13/24 1 (1) 2 (1) 3 (1) 3 (1)

−15/100 1 (1) 3 (1) 3 (1) 2 (1)

−24/9 309 (2) 684 (2) 690 (2) 562 (2)

As can be seen in Table 2, the Feasibility Pump algorithm shows major improve-
ments compared to the MINLP algorithm it is based upon, since in our previous work,
the MINLP did not yield results even for a single target and a 12h revisit time (Men-
carelli et al. 2022). However, scalability to larger problems is still a challenging issue.
Compared to the “MILP-routine” algorithm presented in our previous work (which
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Table 7 CPU time in seconds
for 2 targets depending on the
targets position and the revisit
time for the MILP-based
matheuristic. The simulation
time step is set to 3min. The
number in brackets is the number
of satellites in the constellation

Lat/Long (degree) Revisit time

6h 4h 3h 2h

80/358, 61/116 7 (1) 883 (2) 860 (2) 906 (2)

33/139, 22/343 214 (1) 880 (2) 962 (2) 1071 (2)

16/340, 8/55 6 (1) 7 (1) 6 (1) 6 (1)

1/220, −13/24 7 (1) 5 (1) 6 (1) 6 (1)

−15/100, −24/9 381 (1) 930 (2) 961 (2) 1014 (2)

Table 8 CPU time in seconds depending on the time step and the revisit time for theMILP-basedmatheuris-
tic algorithm. A single target is considered. “T.L.” means that a feasible solution was not found within a
time limit of 4h, but the algorithm can provide a feasible solution. The number in brackets is the number
of satellites in the constellation

Time step (sec) Revisit time

12h 8h 6h 4h 3h 2h

180 0.9 (1) 1 (1) 57 (1) 442 (2) 355 (2) 435 (2)

120 3 (1) 6 (1) 744 (2) 854 (2) 803 (2) 8672 (2)

60 68 (1) 1759 (1) 10,013 (2) T.L T.L T.L

Table 9 CPU time in seconds
for 2 target and 2h of revisit
time for the MILP matheuristic
starting from 10 different
random seeds. The simulation
time step is set to 3min. The
number in brackets is the number
of satellites in the constellation

Random seed CPU time

1 800 (2)

2 1324 (2)

3 1196 (2)

4 1686 (2)

5 989 (2)

7 764 (2)

8 977 (2)

9 972 (2)

10 1204 (2)

Mean 1072

St.dev. 286

Table 10 CPU time comparison between the exact MILP formulation and the MILP-based matheuristic,
depending on the revisit time, for a single target. The time step is set to 3min. The number in brackets is
the number of satellites in the constellation

Method Revisit time
12h 8h

Exact MILP 389 (1) 623 (1)

Matheuristic MILP 0.9 (1) 1 (1)
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consisted in iteratively solving the discrete MILP by gradually increasing the number
of satellites of the constellation) the Feasibility Pump seems to be somewhat faster and
able to yield a solution for shorter revisit time constraints. However, the Feasibility
Pump solution is not actually the optimum, since we were able to empirically find
solutions with fewer satellites. Moreover, the algorithm struggles when additional tar-
gets are requested. On these criteria, it is actually outperformed by the “MILP-routine”
algorithm. It is also important to note that the Feasibility Pump computation time can
fluctuate quite significantly, as is shown by Tables 2, 4 and 5. This fluctuation seems
independent from the targets coordinates since both large and small CPU times are
obtained for low latitude targets. In particular, one will also notice that the Feasibil-
ity Pump does not find a solution for equatorial targets particularly fast despite the
solution being trivial.

On the other hand, the results reported in Table 10 show that the MILP-based
matheuristic algorithm greatly outperforms the MILP formulation it is based upon,
which could not perform with a revisit time below 6h. Moreover, Table 3 shows that
theMILP-based matheuristic also yields much better results than the Feasibility Pump
algorithm, being able to find a solution with more targets and shorter revisit times.
One will also notice in Tables 6, 7 and 9 that the MILP-based algorithm CPU time is
much more stable than for the Feasibility Pump, and problems with equatorial targets
consistently yield very fast results. In addition, Table 8 exhibits that the MILP-based
matheuristic also allows, up to a certain extend, to improve the time discretization.
With a smaller time step, it is possible to consider a smaller and hence more realistic
satellite swath α. In this case we have:

• α ≈ 50.814 degrees for a time step equal to 180s;
• α ≈ 40.469 degrees for a time step equal to 120s;
• α ≈ 23.649 degrees for a time step equal to 60s.

In order to improve further the MILP-based matheuristic algorithm, we tried to
replace its random initialization step with a “shortened” Feasibility Pump or Genetic
algorithmwhich was interrupted before complete convergence. However, the obtained
results were at most equivalent, and usually worse than the ones produced by random
initialization because of the additional time required to run these algorithms.

8 Conclusion

In this paper, we proposed two novel matheuristic approaches for the satellite con-
stellation design problem with discontinuous coverage and revisit time, and we tested
them on a computer with limited power.

The Feasibility Pump approach allows to find a solution to the MINLP formulation
developed in a previous work. Preliminary results are presented, showing that the
new Feasibility Pump approach can handle more complex problems than the analytic
approach described in Mencarelli et al. (2022), but scalability is still problematic.

The second matheuristic based on the discretized MILP formulation greatly out-
performs both the previous MILP formulation introduced in Mencarelli et al. (2022),
and the Feasibility Pump developed in this work. Although further research will be
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required to be able to tackle large scale problems, significant progress has been made
in a promising direction.
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