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Abstract: A single-server queueing system with n classes of customers, stationary superposed input
processes, and general class-dependent service times is considered. An exponential splitting is
proposed to construct classical regeneration in this (originally non-regenerative) system, provided
that the component processes have heavy-tailed interarrival times. In particular, we focus on input
processes with Pareto interarrival times. Moreover, an approximating GI/G/1-type system is con-
sidered, in which the independent identically distributed interarrival times follow the stationary
Palm distribution corresponding to the stationary superposed input process. Finally, Monte Carlo
and regenerative simulation techniques are applied to estimate and compare the stationary waiting
time of a customer in the original and in the approximating systems, as well as to derive additional
information on the regeneration cycles’ structure.
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1. Introduction

In this research, we consider a single-server FIFO (First In First Out) queueing system
∑n

i=1 GIi/G/1, with a superposition of n independent renewal stationary inputs (compo-
nents) corresponding to customers of different classes. The superposition may include
component processes with general (component-dependent) interarrival times. The service
time distributions are also assumed to be general and class-dependent. (In what follows,
we use the terms ‘distribution’ and ‘distribution function’ as synonymous terms.)

The superposed input process system has been intensively studied since the 1970s
(see, for example, [1–7], among others). It is well known that, unless the components
are Poissonian, the superposed input process system is not (classically) regenerative. On
the other hand, the regeneration property is quite important for both the stability and
performance analysis of the queueing system. Indeed, it admits accurate estimation of
stationary performance metrics on the basis of regenerative simulation [8–11], which allows
one to use the independence of regeneration cycles (of a basic process) in the framework
of the regenerative variant of the Central Limit Theorem (CLT) in order to estimate the
required metrics with a given precision. (In Section 5, we discuss this topic in more detail.)
What is especially important is that the values of a queueing process, within a regeneration
cycle, are typically highly correlated, and a direct application of the classical variant of the
CLT is not justified.
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In general, the superposed process generated by independent renewal processes can
be transformed, under mild assumptions, into a regenerative process with the so-called one-
dependent regeneration cycles (see [6,12]). This construction, which is based on splitting and
coupling procedures, is rather complicated and hardly applied in practice to evaluate the
required performance measures by simulation. (We will discuss it in Section 3.) Moreover,
to apply this approach for accurate estimation, we must overcome an even bigger problem;
we need to construct regeneration events of the queueing process (not only of the input
process), which, in turn, requires the synchronization of a regeneration point of the input
process with an empty state of the system. For this reason, we instead will base our
analysis on the construction of the artificial regeneration obtained by exponential splitting.
(For a deeper understanding of the splitting method, we refer readers to the fundamental
monograph [13].) A key property opening the possibility of this construction in the initially
non-regenerative process is that the interarrival distributions of the component processes
are assumed to be heavy-tailed. Thus, in this research, we focused on the case where the
superposition consists of n1 Poisson inputs and n2 inputs with Pareto interarrival times.
The splitting approach, in keeping the distributional properties of the original process,
allows one to use regenerative simulation for accurate estimations of the required stationary
performance metrics. To the best of our knowledge, this approach is realized for the first
time in systems with a superposed input process, and this finding is the main contribution
of this research.

Our second main purpose is to study the basic system by means of another classically
regenerative system with a single renewal input process. It is not a new approach as, for
instance, it has been realized in a series of papers, such as [3,5,7]. In these works, the so-
called stationary-interval method (based on the Palm approach) was used to approximate
the distribution of the interarrival times in the superposition process by a stationary
distribution with independent identically distributed (iid) intervals. We emphasize that
such a replacement is indeed an approximation because the successive intervals in the
superposed process are dependent in general. The latter issue has been analyzed in [1], in
which the correlation structure of the successive interevent times was considered in detail.
Another motivation of the approximation, as we mentioned, is that the target processes in
the basic system (for example, workload or queue size) are not regenerative; however, a
regenerative structure is highly desirable both to establish the stability of the system and to
accurately estimate its stationary performance metrics. An issue in the study of queueing
systems with superposed input (with independent renewal components) concerns the
approximation of such a process by a Poisson process. It is a well-known problem going
back to A. Khintchine [14]. More exactly, when the number of summands (components)
increases, while the (properly defined) traffic intensity ρ remains bounded (and not close
to 1), then the superposed process approaches a Poisson process, with the rate being the
sum of the rates of the summands. On the other hand, it has been shown in [2] that, as the
number n of the summands increases, this approximation works well only if the product
n(1 − ρ)2 ≫ 1. The latter result indicates that the Poissonian approximation is not suitable
when the number of components is small and/or the traffic intensity ρ is close to 1, that
is, the system is close to ‘saturation’. The saturated system (in the so-called heavy-traffic
regime) with the superposed input process is studied in the paper [15]. Notice also that
the basic results for ordinary renewal process, obtained originally by W. Smith [16] and D.
Cox [17], have been extended to the superposition of independent renewal processes in [4].

Thus, our second important contribution is the detailed analysis of the approximating
GI/G/1-type system when the interarrival time distribution is a mixture containing Pareto
distributions, and when the service time distribution is also a mixture of distributions
that describe the service times of the customers in the component processes. Indeed, we
show that, in the approximating system, the stationary workload distribution is analytically
available when the service times of the different classes of customers have a common
exponential distribution (Section 4.2); this is also a new contribution of this research.
Moreover, we compare the accuracy of the approximation in terms of the Kolmogorov
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distance between the (empirical) distributions of the stationary waiting times in the original
and approximated systems (Section 6.1). In particular, in spite of the presence of heavy-
tailed components in interarrival distribution, the simulation results show quite acceptable
distance values (less than 5%) for most of the considered cases (when the traffic intensity
ρ < 0.6), and it is consistent with the results of the abovementioned works [3,5,7]. Hence,
the proposed approximation may be acceptable if the splitting construction turns out to
be too complicated, e.g., if the number of component processes is very large. Another
possible application of the approximating system is as a base for appropriate lower/upper
bounds for the stationary workload process, exploiting the known monotonicity properties
of the classical queueing system under some mild assumptions. (In this regard, see [18]
and recent papers of one of the authors [19,20] on the monotonicity of systems with mixed
service times.)

As mentioned above, the approximation of the superposed input process by a renewal
process is indeed a mixed distribution, consisting of an appropriately weighted sum of the
stationary distributions of the remaining renewal times (integrated-tail distributions) in the
component stationary renewal processes. This distribution, based on the Palm probability
concept, is well known (see, for instance, [7,17]) and is the exact one-dimensional distri-
bution of the interarrival times, which, however, does not capture possible dependencies
between the neighboring intervals. For this reason, reducing the superposed input process
to an ordinary renewal process is indeed an approximation. We note that, in general, a
dependence between the adjacent intervals cannot be ignored in the careful study of the
superposed input, as shown in [5].

The rest of the paper is organized as follows. In Section 2, we give some important
preliminary results from the theory of renewal and point processes with elements of the
Palm theory. In Section 3, we outline the construction of one-dependent regeneration using the
approach from [12] and highlight the difficulties arising in its practical realization in simu-
lation. Nevertheless, we use some basic ideas of this approach to construct regeneration
events by the exponential splitting of heavy-tailed interarrival times.

In Section 4, we examine an approximating GI/G/1 system with iid interarrival times,
generated by the Palm distribution of the stationary intervals in the original superposed
input process. We then focus on special cases where we find explicit expressions for the
Laplace–Stieltjes transform (LST) of the stationary workload. In Section 5, we introduce
exponential splitting and explain how it is used to obtain classical regenerations in the
superposed process generated by Pareto components. Next, in Section 6, we analyze our
theoretical findings through discrete-event simulations. Specifically, we first evaluate the
accuracy of the input process approximation in terms of Kolmogorov distance for different
system parameter settings. Then, we apply exponential splitting to construct a confidence
estimate of the empirical mean of the stationary waiting time in the original system. Finally,
Section 7 concludes the paper by providing an overview of its main contributions.

2. Preliminary Results from the Theory of Renewal and Point Processes

In this section, we present theoretical results from the theory of renewal and point
processes [21,22]. These results are then utilized in the analysis of queueing systems with
the superposed input process generated by independent renewal processes. Among the
most important sources on renewal theory, besides the pioneering work [23], we also
mention the recognized monographs [24,25].

To start, let us construct a stationary renewal process. To do this, consider iid non-
negative random variables (r.v.s) {Xk, k ≥ 2} and an independent r.v. X1 ≥ 0. We denote
by F the distribution function of an r.v. X, which is a stochastic copy of any Xk, k ≥ 2. It is
assumed that the renewal rate λ = 1/EX < ∞. Let

G(x) = λ
∫ x

0
(1 − F(u))du, x ≥ 0, (1)
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be the distribution of the first r.v. X1. Also, denote by Tk = ∑1≤i≤k Xi the renewal instants,
where k ≥ 1. Hence, Ns(t) := max{k > 0 : Tk ≤ t} represents the number of renewal
events that occur in the time interval [0, t], with Ns(0) = 0. The process {Ns(t), t ≥ 0}
is a time-stationary renewal process [22,26]. Specifically, the stationary renewal process
satisfies ENs(t) = λt, t ≥ 0, and the distribution of the increments Ns(t + u)− Ns(u) does
not depend on u ≥ 0 for each fixed t. There are other equivalent statements to identify a
stationary renewal process (see, for example, Chapter 2 in [25]). It is also known that (1)
represents the distribution of the stationary remaining (and attained) renewal time, and it
is referred to as the integrated-tail distribution [12].

In the following analysis, we will consider n independent stationary renewal pro-
cesses that model the arrivals of different classes of customers. Then, the renewal points
{T(i)

k , k ≥ 1} correspond to the arrival instants of class-i customers from process i, and let
X(i) denote the generic interarrival time (with a rate of λi = 1/EX(i)) in process i, where
i = 1, . . . , n. These processes will compose a merged superposed input process. To provide
a more detailed description, let T = {T(i)

k , k ≥ 1; i = 1, . . . , n} be the overall set of renewal
points for all n processes, and let {Tk} be the ordered sequence of these renewal instants.
In other words, T1 is the first smallest element of T , T2 is the second smallest element, and
so on.

Assuming, for simplicity, that there are no batch arrivals, it follows that the sequence
{Tk} satisfies

0 < T1 < T2 < · · · (2)

It is clear that, unlike a renewal process, the distances between events (arrivals) in the
superposed process are, in general, dependent.

Since the component renewal processes are assumed to be time-stationary, then the
superposed process, defined (in evident notation) as

Ns(t) := N(1)
s (t) + · · ·+ N(n)

s (t), t ≥ 0, (3)

is also time-stationary (counting), but not renewal in general. (A detailed proof can be
found, for example, in [21], Chapter 1.)

To explain this process in more detail, we recall some findings from the theory of
stationary point processes, while maintaining the previously established notation. Follow-
ing [21,25], we consider a set of points (occurrence times) {Tk} on the positive real line that
satisfy (2), with the condition that T0 = 0 is an occurrence time. This process is assumed to
be interval-stationary and is referred to as the stationary Palm process. We also consider a
counting process {N(t), t ≥ 0}, which records the number of points in the interval [0, t],
formally defined as

N(t) = max{k ≥ 0 : Tk ≤ t}, t ≥ 0, (4)

with the assumption that N(0) = 1. Let Xk := Tk − Tk−1 denote the interval between
the kth and (k − 1)st points, where k ≥ 1. These intervals are identically distributed
with distribution function F. This new process is also referred to as the stationary Palm
process [7,21,22].

In the following discussion, we will distinguish between the Palm process (4) and
the related time-stationary (also counting) process {Ns(t), t ≥ 0}. Note that an interval
sequence {Xi} (forming the Palm process) is stationary if the joint distribution of the
k-tuple (Xi1+h, . . . , Xik+h) is independent of the positive integer h for all integers k > 0
and all non-negative (i1, . . . , ik). It is worth pointing out that the Palm process {N(t)}
and the associated sequence {Xk} are usually not both stationary at the same time [7].
However, there is a one-to-one correspondence between the stationary counting process
{N(t)} and the stationary sequence {Xk} based on the Palm theory [21]. To establish this
correspondence, let us introduce the Palm function φk(t) = P(N(t) = k), which represents
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the probability of having k points (k ≥ 0) in a time interval of length t provided that
the beginning of the interval is an occurrence point. Hence, Palm functions describe the
dynamics of the Palm process (4). The distribution of the process {Ns(t)} associated with
the Palm process (4) can be expressed via Palm functions by the following relations [7,14]:

P(Ns(t) = k) = λ

t∫
0

(φk−1(u)− φk(u))du, k ≥ 1,

P(Ns(t) = 0) = 1 − λ

t∫
0

φ0(u)du =: 1 − G(t), (5)

G(t) = λ

t∫
0

(1 − F(x))dx, t ≥ 0, (6)

implying, in particular, the following key connection:

φ0(t) = 1 − F(t) =: F(t), t ≥ 0, (7)

where, as already stated, F is the distribution function of the intervals in the stationary
Palm process. (In what follows, for any distribution function F, we denote by F its tail.)
Note that, by construction, the stationary process {Ns(t)} satisfies both required conditions
(see [7]):

ENs(t) < ∞, lim
t→∞

Ns(t)/t =: λ < ∞.

Recall that {N(i)
s (t)} represents the ith component (stationary renewal process) and

we will supply with index i the corresponding quantities in process i. Note that, by (1), the
first interval in the process i has distribution

Gi(t) = λi

∫ t

0
(1 − Fi(u))du, (8)

and rate λi = 1/EX(i), i = 1, . . . , n. Let λ = λ1 + · · ·+ λn. It is known [7,14,21] that the
Palm functions φk(t) of the superposed stationary Palm process {N(t)} are expressed
via the original time-stationary processes {N(i)

s (t)} and their stationary Palm versions
{N(i)(t)} as follows:

φk(t) =
n

∑
i=1

λi
λ

P

(
i−1

∑
j=1

N(j)
s (t) + N(i)(t) +

n

∑
j=i+1

N(j)
s (t) = k

)

=
n

∑
i=1

λi
λ

P(N(i)(t) = ki)
n

∏
j,j ̸=i

P(N(j)
s (t) = k j), (9)

where the summation is taken over all different partitions of k ≥ 0 such that k = k1 + · · ·+ kn.
In particular, by (8), the tail of the distribution F satisfies [7]:

F(t) = φ0(t) = P(N(t) = 0) =
n

∑
i=1

λi
λ
(1 − Fi(t)) ∏

j,j ̸=i
Gj(t)

=
n

∑
i=1

λi
λ
(1 − Fi(t)) ∏

j,j ̸=i
λj

∞∫
t

(1 − Fj(u))du, t ≥ 0. (10)

It is easy to verify that F(0) = φ(0) = 1, as required. We emphasize that the Palm
process {N(t)} is interval-stationary, while the process {Ns(t)} is time-stationary. Fur-
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thermore, since, for a single component process with interevent distribution F and rate λ,
we have

λ
∫ ∞

0
F(t)dt = 1,

Equation (5) implies that P(Ns(t) = 0) = G(t), satisfying (6). Additionally, expression (10)
has a straightforward intuitive interpretation.

Since a renewal process is a particular case of the point process, it is worth mentioning
that F represents the exact marginal (one-dimensional) distribution of the interarrival time
in the superposed Palm process {N(t)}. However, this distribution does not capture the
dependence between adjacent intervals. As a result, expression (10) only provides an
approximation of the original superimposed process, embedded at the instances of the
points’ occurrences.

Therefore, it is crucial to examine the accuracy of this approximation using vari-
ous metrics. Specifically, as detailed in Section 6, the approximation (10) of the original
∑n

i=1 Gi/Gi/1 system yields an acceptable Kolmogorov distance between the empirical
distributions of the stationary waiting times when ρ < 0.6.

Remark 1. Representations (10), (9) hold for any superposition in which the components {N(i)
s (t),

t ≥ 0} are time-stationary processes, not necessary renewal. In this general case, the intensities are
defined as λi := EN(i)

s (1), i = 1, . . . , n [7].

3. Splitting of a Superposed Process

In general, for superposed processes, it is only possible to construct the so-called
one-dependent regenerations. In this section, we will briefly describe this construction
following [12]. Roughly speaking, in a one-dependent regenerative process, two consecu-
tive regeneration cycles are dependent, but the cycles separated by at least one cycle are
independent. However, as we will discuss below, this approach is challenging to apply in
simulations. Therefore, in Section 5, we will introduce exponential splitting, which can be
effectively applied when the renewal intervals follow heavy-tailed distributions [22].

Let us describe the construction of one-dependent regenerations for the superposi-
tion of two renewal processes, with inter-renewal time distributions Fi, i = 1, 2. Firstly,
we assume that both these processes are positive recurrent, i.e., the mean inter-renewal
time is finite for both processes. Furthermore, let us assume that F1 satisfies the follow-
ing condition:

F1(dx) ≥ cdx for x ∈ (a, a + 2b) (11)

for some positive constants a, b, and c. This means that F1 is a particular case of a spread-out
distribution F. (In the general case, some convolution of F with itself must satisfy (11);
see [22].)

Denote by Ri(t) the (right-continuous) remaining renewal time at instant t in the ith
renewal process, i = 1, 2; t ≥ 0. Then, under assumption (11), the distribution of R1(t) has
the following smoothness property:

P(R1(t) ∈ B) ≥ δν(B), t ≥ C, (12)

for each Borel set B on (0, b), where ν is the uniform measure on (0, b), δ > 0, and C is
some constant. (Condition (12) is sometimes called minorization.) That is, for large enough
t, the distribution of R1(t) has a uniform component. Let Rt = (R1(t), R2(t)) and denote
by (t(i)n , n ≥ 1) the renewal points of the process i = 1, 2. Let

t0 = 0, L0 = R1(t0), t1 = min(t(2)n : t(2)n ≥ t0 + L0 + C), (13)
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where C satisfies (12). Also, denote by {Ui, i ≥ 1} the iid r.v.s with uniform distribution ν
(in what follows, we will denote it as U ∼ ν.) Also, let {Vi, i ≥ 1} be iid 0 − 1 Bernoulli
r.v.s such that P(V = 1) = δ. Take

R1(t1) = U1V1 + (1 − V1)Z1,

where the r.v. Z1 has the rest distribution (see (12))

P(R1(t) ∈ ·)− δν(·)
1 − δ

. (14)

Continuing as in (13), define recursively

tk = min(t(2)i : t(2)i ≥ tk−1 + Lk−1 + C),

Lk = R1(tk) = UkVk + (1 − Vk)Rk, k ≥ 1, (15)

where Uk, Vk, Rk are independent of all Ul , Vl , Rl , l < k. Eventually, let

T̂1 = min(ti : Vi = 1), T̂k+1 = min(ti > T̂k : Vi = 1), k ≥ 1. (16)

Then, the sequence {T̂k} ⊂ {t(2)k } and moreover, at each instant T̂k, the remaining
times vector has distribution

RT̂k
= (R1(T̂k), R2(T̂k)) ∼ ν ⊗ F2, k ≥ 1, (17)

which is independent of the pre-history prior to instant T̂k−1. (Here, ν ⊗ F2 denotes the dis-
tribution generated by the marginal distributions ν and F2.) Thus, {T̂k} are one-dependent
regeneration points for the superposed remaining time process {Rt}, and, according
to (14)–(16), they constitute a subsequence of the renewal points of input 2. The extension
of this construction to arbitrary n renewal processes is straightforward [12].

Remark 2. It is worth pointing out that, under classical regeneration, the distribution of RT̂k

in (17) would be independent of the pre-history prior to instant T̂k.

The primary challenge in practically implementing regenerations in the superposed
process is that the constants in Equation (12) are not explicitly defined. An even more
difficult problem is the need to synchronize these regeneration points with empty states
of the queueing system to obtain regenerations of the entire system. However, in some
cases, particularly when the inter-renewal intervals follow heavy-tailed distributions, this
difficulty can be overcome. In this case, as we will show in Section 5, by utilizing the
aforementioned construction of one-dependent regenerations, the splitting procedure can
be effectively applied to construct the classical regenerations of the superposed process.

4. GI/G/1 Approximation

In this section, we assume that in the basic system ∑n
i=1 Gi/Gi/1 (further denoted by

Σ) with n independent renewal processes, the ith component has iid interarrival times
{τ

(i)
k , k ≥ 2} with distribution Ai, and the distribution of the first interarrival time (up to

the first arrival) satisfies (cf. (1), (8))

P(τ(i)
1 ≤ x) =

1

Eτ
(i)
2

∫ x

0
(1 − Ai(u))du, i = 1, . . . , n.

Customers from input i (called class-i customers) have iid (class-dependent) service
times {S(i)

k , k ≥ 1} with a general distribution Bi, i = 1, . . . , n. In the following analysis,
we will focus on exponential and Pareto distributions for Ai. Then, for specific cases, we
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will construct the Palm distribution (10) to use it as the distribution of the iid interarrival
times in an approximating GI/G/1 queueing system (denoted by Σ̂).

4.1. Exponential–Pareto Input Process

Assume that out of the total n inputs, the first n1 components have exponential
interarrival times, τ

(i)
k ∼ Exp(λi), k ≥ 1; i = 1, . . . , n1,

Ai(x) = 1 − e−λix, x ≥ 0, λi > 0, i = 1, . . . , n1, (18)

while the remaining inputs have interarrival times following a type II Pareto distribution,
Pareto(x0, αj), j = 1, . . . , n2, i.e.,

P(τ(j)
k ≤ x) =: Aj(x) = 1−

(
x0

x0 + x

)αj

, x ≥ 0, k ≥ 1, x0 > 0, αj > 1, j = 1, . . . , n2. (19)

Let µi := 1/ES(i)
k denote the mean service rate of the i-th class customers, where

i = 1, . . . , n. In the following, we use index i to represent the quantities associated with the
Poisson inputs and index j to represent the quantities related to Pareto input processes. By
substituting the distributions (18) and (19) into Formula (10), we can obtain the distribution
of the stationary renewal input process in the following form:

A(x) = 1 − pe−λx
(

x0

x0 + x

)α−n2

− (1 − p)e−λx
(

x0

x0 + x

)α−n2+1
, (20)

where
λ = λ1 + · · ·+ λn1 , α = α1 + · · ·+ αn2 ,

and
p =

λx0

λx0 + α − n2
. (21)

Note that the tail distribution of (20) is the following mixture:

A(x) = pF1(x) + (1 − p)F2(x), (22)

of the two-tail distributions

F1(x) = e−λx
(

x0

x0 + x

)α−n2

,

F2(x) = e−λx
(

x0

x0 + x

)α−n2+1
, (23)

with the mixing proportion p defined by (21). Denote by τ the (generic) interarrival
time following distribution (20) in the renewal process defined by distribution (22). Let
distribution F1 define an r.v. Y, and distribution F2 define an r.v. Z. Then, the r.v. τ can be
expressed as a two-component mixture:

τ = IY + (1 − I)Z, (24)

where I is the indicator function with P(I = 1) = p and

Y = min(Y1, Y2) with Y1 ∼ Exp(λ), Y2 ∼ Pareto(x0, α − n2),

Z = min(Y1, Z1) with Z1 ∼ Pareto(x0, α − n2 + 1).
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Moreover, the tail distribution of the service time is also determined by the following
mixture of the predefined class-dependent distributions {Bk}, namely:

B(x) =
n1

∑
i=1

piBi(x) +
n2

∑
j=1

pjBj(x), (25)

where

pi =
λix0

λx0 + α − n2
, i = 1, . . . , n1; pj =

αj − 1
λx0 + α − n2

, j = 1, . . . , n2.

Thus, instead of the original system Σ, we consider a classical system Σ̂, in which the
renewal input process has interarrival time distribution (20) and the service times have a
tail distribution defined by the mixture (25). Now, we give the stability condition of the
new system Σ̂. This system is regenerative, and regenerations (of all processes describing
its dynamics) occur when the arrivals meet the system idle. Denote by T the generic
regeneration period, i.e., the distance between two neighbor regeneration points. It is
well known that the stability of a regenerative system is equivalent to positive recurrence,
in which case ET < ∞ [22]. Denote by S the service time with tail distribution (25);
recalling (24), the stability criterion of the system Σ̂ is (see Section 2.2, Chapter 2 in [26]):

ρ :=
ES
Eτ

< 1, (26)

where

ES =
n1

∑
i=1

piES(i) +
n2

∑
j=1

pjES(j) =
n1

∑
i=1

pi
µi

+
n2

∑
j=1

pj

µj
. (27)

The first step in calculating Eτ is to determine EY:

EY = E min(Y1, Y2) =

∞∫
0

x fY1(x)

 ∞∫
x

fY2(y)dy

dx +

∞∫
0

y fY2(y)

 ∞∫
y

fY1(y)dx

dy

=

∞∫
0

xλe−λxxα−n2
0 (x0 + x)−α+n2 dx +

∞∫
0

xe−λx(α − n2)xα−n2
0 (x0 + x)−α+n2−1dx

=
1
λ

(
1 − (α − n2)eλx0(λx0)

α−n2 Γ(−α + n2, λx0)
)

.

Similarly, we find

EZ = x0eλx0(λx0)
α−n2 Γ(−α + n2, λx0),

resulting in

Eτ = pEY + (1 − p)EZ =
p
λ
=

x0

λx0 + α − n2
. (28)

Let

ρi :=
ES(i)

Eτ(i)
=

λi
µi

, i = 1, . . . , n1, ρj :=
ES(j)

Eτ(j)
=

αj − 1
x0µj

, j = 1, . . . , n2;

then, it is easy to check, using (27) and (28), that

ρ =
n1

∑
i=1

ρi +
n2

∑
j=1

ρj.
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Remark 3. Condition (26) is also the stability criterion of the original system with the stationary
input process, not necessary renewal. In this case, the proof is based on the so-called Loynes’
construction; see, e.g., Chapter 2 in [21].

4.2. Case 1: Common Exponential Service Time

An important special case of the system is the model ∑n
i=1 Gi/M/1 in which all arrivals

have the same (iid) exponential service times, i.e., µ1 = · · · = µn = µ. Such a setting has
been motivated in the paper [5] where it is compared with an M/M/1 queue for n > 10. In
this case, the approximating system is a stable classical GI/M/1 queue (ρ < 1), for which
the analytical form of the stationary workload distribution is known [27]. Additionally, the
LST obtained for the input stream of the form (20) allows us to compare simulation results
for the waiting time distribution of the queueing system fed by the actual superposed input
and its renewal approximation with the corresponding analytical solution (see Section 6.1).

Denote by ψX(z) the LST of an r.v. X with distribution F:

ψF(z) = Ee−zX =

∞∫
0

e−zxdF(x), z ≥ 0.

Then, the distribution of the stationary waiting time W can be expressed as

FW(x) = 1 − σe−µ(1−σ)x, x > 0, (29)

where σ is the root inside the unit circle of the equation

z − ψA(µ(1 − z)) = 0. (30)

After some simple algebra, we can obtain the LST ψA(z) of the distribution (20)
as follows:

ψA(z) = −
∞∫

0

e−zxdA(x) = 1 − z
∞∫

0

e−zx A(x)dx

= 1 − pz
∞∫

0

e−zxe−λx
(

x0

x0 + x

)α−n2

dx − (1 − p)z
∞∫

0

e−zxe−λx
(

x0

x0 + x

)α−n2+1
dx

= 1 − pzex0(z+λ)xα−n2
0 (z + λ)α−n2−1Γ(−α + n2 + 1, x0(z + λ))−

− (1 − p)zex0(z+λ)xα−n2+1
0 (z + λ)α−n2 Γ(−α + n2, x0(z + λ)),

where

Γ(ξ, x) =
∞∫

x

e−ttξ−1dt,

is the upper incomplete Gamma function. Finally, applying the known property of the
Gamma function

Γ(ξ + 1, x) = ξΓ(ξ, x) + xξ e−x,

we obtain

ψA(z) = 1 − pz
z + λ

+
z

z + λ
ex0(z+λ)xα−n2

0 (z + λ)α−n2

× Γ(−α + n2, x0(z + λ))(p(α − n2)− (1 − p)x0(z + λ)). (31)
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The explicit expression (31) of the LST allows us to find the moments of the r.v. τ. For
example, the mean is given by

Eτ = −ψ′
A(0) = p/λ =

x0

λx0 + α − n2
,

and this matches the expression in (28). Then, by utilizing the LST (31), we can numerically
solve (30) and use the solution σ to obtain the target distribution function in (29).

4.3. Case 2: Class-Independent Inputs

Assume that

λ1 = · · · = λn1 =: λ and α1 = · · · = αn2 =: α.

Then, the tail distribution of the interarrival time becomes (cf. (23)):

A(x) = pe−λn1x
(

x0

x0 + x

)n2(α−1)
+ (1 − p)e−λn1x

(
x0

x0 + x

)n2(α−1)+1
, (32)

where
p =

n1x0λ

n1x0λ + n2(α − 1)
.

Since there are only two customer classes, the service time distribution becomes a
two-component mixture:

B(x) = pB1(x) + (1 − p)B2(x), x ≥ 0.

4.4. Case 3: Two Pareto Inputs

Consider the superposition of two (stationary) renewal processes with interarrival
times τ(i) ∼ Pareto(x0, αi), αi > 1, i = 1, 2. By using (10), it is easy to show that the station-
ary sequence of interarrival times in the new system Σ̂ follows a Pareto distribution, i.e.,

A(x) =
(

x0

x0 + x

)α1+α2−1
, x ≥ 0. (33)

In this two-class scenario, the service time distribution can be expressed as a two-
component mixture with the mixing proportion

p =
α1 − 1

α1 + α2 − 2
,

and the stability condition (26) becomes

ρ =
α1 − 1
x0µ1

+
α2 − 1
x0µ2

< 1.

4.5. Case 4: n1 = 1, n2 = 1

Finally, we consider the superposition of two inputs with exponential and Pareto
interarrival times, i.e.,

A1(x) = 1 − e−λx and A2(x) = 1 −
(

x0

x0 + x

)α

.

The interarrival time Palm distribution (10) becomes

A(x) = pe−λx
(

x0

x0 + x

)α−1
+ (1 − p)e−λx

(
x0

x0 + x

)α

, (34)
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where

p =
λx0

α − 1 + λx0
. (35)

We define F1(x) and F2(x) as:

F1(x) = e−λx
(

x0

x0 + x

)α−1
and F2(x) = e−λx

(
x0

x0 + x

)α

.

Then, the r.v. τ with distribution satisfying (34) can be expressed as a two-component
mixture (24) of an r.v. Y with distribution F1 and an r.v. Z with distribution F2 (with the
mixing proportion p satisfying (35)), where

Y = min(Y1, Y2) with Y1 ∼ Exp(λ), Y2 ∼ Pareto(x0, α − 1)

and
Z = min(Y1, Z1) with Z1 ∼ Pareto(x0, α).

In this case, the stability condition (26) becomes

ρ =
λ

µ1
+

α − 1
x0µ2

< 1.

5. Exponential Splitting and Regenerative Estimation

In this section, we first present the construction of artificial regeneration points based
on the exponential splitting of the interarrival time density. Then, we outline the regenera-
tive approach to estimate stationary performance indicators of the queueing system with
the superposed input process. (For details on regenerative estimation, see, for instance,
Chapter IV in [11]).

5.1. Exponential Splitting

The splitting method, in its general form, is described in [13], while the specific variant
used in this paper relies on an idea presented in [28]. The method involves replacing
the original process with a stochastically equivalent process (defined on an enlarged
probability space) with some desired property. In our case, it is the memoryless property
that leads to a regenerative structure. This allows us to apply regenerative simulation for
constructing confidence estimates and accurately analyzing the stationary performance
metrics of the original process. Next, we will explain the splitting procedure, which is the
core of the method.

Assume that the density g of an absolutely continuous r.v. T satisfies the inequality

g ≥ δg0, (36)

where δ ∈ (0, 1) is a constant and g0 is some density. Now, let us define a new Bernoulli r.v.
IT (referred to as the splitting indicator) such that P(IT = 1) = δ. We can construct a new
r.v. T′ as follows:

T′ = ITT0 + (1 − IT)T1, (37)

where the r.v. T0 has density g0, and the r.v. T1 has density (c.f. (14))

g1 =
f − δg0

1 − δ
. (38)

As we mentioned earlier, the purpose of such a transformation is to let the r.v. T′ have
a desired property of the distribution g0 with a probability of at least δ. In our case, it is the
memoryless property that allows us to construct regeneration points. To achieve this, we



Mathematics 2024, 12, 2202 13 of 22

focus on exponential splitting; a positive r.v. T is exponentially split if there exist constants
η > 0 and δ ∈ (0, 1) such that

g(x) ≥ δηe−ηx, x ≥ 0. (39)

That is, the splitting representation T′ of the r.v. T consists of an exponential r.v. T0
with rate η (and density g0(x) = ηe−ηx, x ≥ 0), and an r.v. T1 which, according to (38),
has density

g1(x) =
g(x)− δηe−ηx

1 − δ
, x ≥ 0. (40)

The applicability of exponential splitting to the superposition of two Pareto inputs
(see Section 6.2) is based on the following lemma.

Lemma 1. Assume that an r.v. T follows a Pareto(x0, α) distribution, with the density function
given by

g(x) = αxα
0(x0 + x)−(α+1), α > 0, x0 > 0, x ≥ 0. (41)

Then, under the condition
α + 1 ≤ ηx0 ≤ α/δ, (42)

where η and δ are defined in (39), the r.v. T′ has distribution (37), where T0 is an exponential r.v.
with parameter η and inequality (39) holds. Additionally, T1 has the following distribution:

G1(x) = 1 − 1
1 − δ

(
x0

x0 + x

)α

+
δ

1 − δ
e−ηx, x ≥ 0, (43)

with density g1 satisfying (40).

Proof. Recall that the failure rate of an r.v. X ≥ 0 with distribution F and density f is
defined as:

rX(x) =
f (x)
F(x)

, x ≥ 0.

Consider now two r.v.s X ∼ Exp(η) and Y ∼ Pareto(x0, α + 1). For any x ≥ 0,
the failure rate order, denoted by X ≤r Y, implies the following inequality between the
failure rates:

rX(x) = η ≥ α + 1
x0

≥ α + 1
x0 + x

= rY(x), x ≥ 0.

This implies the stochastic order, X ≤ Y [18]. In turn, it means that the corresponding
tail distributions satisfy the following inequality:

e−ηx ≤
(

x0

x0 + x

)α+1
, x ≥ 0.

If x0δη ≤ α, then the inequality

x0δη

α
e−ηx ≤

(
x0

x0 + x

)α+1

holds as well. Therefore,

δηe−ηx ≤ α

x0

(
x0

x0 + x

)α+1
= g(x),

and inequality (39) is satisfied.
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Figure 1 illustrates the role of conditions (42) showing the graphs of the Pareto
density (41) (with x0 = 1 and α = 3) and exponential functions δηe−ηx for different
values of η and δ.

Figure 1. Graphical interpretation of inequalities (39).

The plots highlight that the exponential function is upper-bounded by the given Pareto
distribution only when both inequalities (42) are met (blue curve with δ = 0.75, η = 4).
Instead, the green and orange curves, violating the l.h.s. and r.h.s of (42), respectively, do
not satisfy the splitting condition (39).

5.2. Regenerative Simulation and Estimation

From the simulation viewpoint, splitting means that, instead of generating an r.v. T
with density g, a triple (T0, T1, I) is generated and then the r.v. T′ is constructed as in (37).
The property (36), together with the specially constructed measure (38), ensures that the
simulated value T′ is stochastically equivalent to T.

Denote by {tk} the arrival instances in the superposed input process. To construct
regeneration points of the input process, denoted by {γk}, we first select and fix an arbitrary
non-Poisson component process i0 (with the arrival instances {t(i0)k ≡ t(0)k , k ≥ 1}). Now
consider the sequence of events:

E (0)
k = {the jth component process has exponential phase at instant t(0)k , ∀j ̸= i0}, k ≥ 1. (44)

This event means that at the kth arrival instant of input i0, the interarrival times in all
other components have an exponential ‘phase’, obtained by splitting (i.e., the corresponding
splitting indicators are equal to 1 simultaneously).

For any integer k ≥ 1, we introduce the index n0(k) as tk = t(0)n0(k)
. Now, we define the

regeneration instances {γk} of the superposed input as follows: γ0 = 0,

γk+1 = min{i : 1(t(0)n0(i)
> γk) · 1(E (0)

n0(i)
) = 1}, k ≥ 0. (45)

It is easy to verify that the difference ∆k := γk+1 − γk is the number of arrivals in the
superposed process between the kth and the (k + 1)st occurrence of the events E (0). These
events are generated by the arrivals of class-i0 customers, which meet the interarrival times
of all other components in the exponential phase. It is easy to understand that {γk} are
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indeed the regeneration points of the superposed input process, ∆k is the (discrete) length
of the kth regeneration cycle of the input process, and the increments {∆k} are iid.

If there are n2 ≥ 2 Pareto input components, then, according to the described construc-
tion, the density of each component j ̸= i0 must satisfy the inequalities

ηjx0 ≥ αj + 1, δjηjx0 ≤ αj, (46)

for some constants δj ∈ (0, 1), ηj > 0, j = 1, . . . , n2.

For each j ̸= i0, the interarrival times τ
(j)
k are drawn with probability δj from the

distribution Exp(ηj), and with probability 1− δj from the distribution (43) with parameters
αj, x0, δj, ηj. Then, we construct the instances {γk} following (45).

Now, we return to the system Σ described in Section 4. In this system, the classical
regeneration points are arrival points satisfying the following two conditions: (i) they are
regeneration instants of the input process (i.e., {γk}); (ii) at these arrival instants, the server
is idle, i.e.,

β0 = 0, βk+1 = min{γi > βk : Wγi = 0}, k ≥ 0, (47)

where Wi is the waiting time of the ith customer in the queue. Let ∆̂k := βk+1 − βk be the
length of the kth regeneration cycle of type (47); then, {∆̂k} are iid.

To estimate the workload process by the regenerative method [11], we define the iid
sequence {Yj} of the accumulated workload within regeneration cycles,

Yj =

β j+1−1

∑
i=β j

Wi, (48)

where Wi is the waiting time of the ith customer within the regeneration cycle j, j ≥ 1. It
is worth mentioning that we use a regenerative version of the CLT (called RCLT) because
correlations between the values of Wi belonging to the same regeneration cycle are not
captured by the classical CLT. To obtain a regenerative estimate of the mean stationary
waiting time, the iid observations (Yj, ∆̂j), j ≥ 1 are used to estimate the ratio [11]

r =
EY1

E∆̂1
.

Then, applying the RCLT to the iid zero mean variables {Yi − r∆̂i, i ≥ 1} and assuming
that E(Y1 − r∆̂1)

2 < ∞, we obtain the (1 − 2ϑ)% confidence interval (CI) for the parameter
r in the following form [11]: r̃N ±

hϑ

√
S̃2

N

∆̃N
√

N

, (49)

where r̃N := ỸN/∆̃N , ∆̃N and ỸN are the sample means of {∆̂i} and {Yi}, respectively, N is
the number of regeneration cycles, S̃2

N is the estimate of the second moment

E(Y1 − r∆̂1)
2 = Var(Y1)− 2rcov(Y1, ∆̂1) + r2Var(∆̂1), (50)

and
hϑ = Φ−1((1 − ϑ)/2),

where Φ(x) is the Laplace function.
The finiteness of E(Y1 − r∆̂1)

2, containing the ‘cycle’ variables Y1 and ∆̂1, can be easily
expressed in terms of the moments of the queueing parameters (service and interarrival
times). Indeed, it follows from [29] that (50) is finite if both the service time and the
interarrival time have finite second moments. In the simulation settings reported in
Section 6.2, this condition holds since we consider exponential service times and the
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superposition of two Pareto inputs, which is characterized by a Pareto distribution of the
interarrival time with shape parameter αeq = α1 + α2 − 1 ≥ 3 in all our experiments.

Finally, the finiteness of the term cov(Y1, ∆̂1) follows by the finiteness of E(Y2
1 ), E(∆̂2

1)
and Hölder’s inequality.

Remark 4. It is useful to note that the width of the constructed CI, and hence the accuracy of
the estimation, depends critically on the number of observed regeneration cycles N rather than on
the number of observations, as in classical iid estimation based on the CLT. In general, this makes
estimation through regenerative simulation more time-consuming, which is expected when dealing
with correlated data. However, in all our experiments, a large number of regeneration cycles was
obtained in a very limited time.

Remark 5. In general, the ratio estimate r, while strongly consistent, is biased. This bias arises
from estimating a nonlinear function (the ratio r) based on the ‘scale’ of regeneration cycles. The
detailed proof of the interval estimate (49) can be found in [11] (Propositions 4.1 and 4.2).

6. Simulation Results

The aim of this section is two-fold: to highlight the accuracy of the approximations
presented in Section 4, focusing on the waiting time distribution for various types of arrival
processes, and to verify the applicability of exponential splitting to superposed processes,
as described in Section 5.

6.1. Waiting Time Analysis in Presence of Superposed Processes

Initially, we consider queueing systems fed by two independent input processes with
Pareto interarrival times. In all the simulations, 1010 arrivals are generated and exponential
service times are assumed.

Using the notation from Section 4.4, we compare the actual arrival process with a renewal
process having the same interarrival time distribution, specifically Pareto(x0, α1 + α2 − 1).
The first set of simulations, carried out with α1 = 2 and x0 = 1, evaluates the accuracy of
the approximation by comparing the Kolmogorov distance between the corresponding
waiting time distributions for different values of ρ and α2. As highlighted in Figure 2, the
approximation works better for low utilization values and high α2 values, i.e., when more
moments of the underlying Pareto distribution are finite.
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0.010000

0.100000
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ρ=0.4
ρ=0.5
ρ=0.6
ρ=0.7
ρ=0.8
ρ=0.9

Figure 2. Kolmogorov distance between the waiting time distributions of the superposed process
and its approximation as a function of ρ and α2.
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The assumption of common exponential service times allows us to compare the sim-
ulation estimates with the exact expression for the distribution function of the stationary
waiting time, given by Formula (29). The results are summarized in Table 1, where W,
WA, and WT denote the waiting time distributions when the queue is fed by the actual
superposed process, its renewal approximation, and the corresponding theoretical approxi-
mation (using distribution (29) with the appropriate value of the parameter σ), respectively.
For completeness, the values of µ and σ are also reported. The results in the table confirm
the validity of the simulation approach (implemented using ad hoc software written in C)
and the trends (in terms of α2 and ρ) highlighted in Figure 2.

Table 1. Kolmogorov distance for different simulation settings (in all cases, α1 = 2 and x0 = 1).

α2 ρ µ σ d(W , WA) d(W , WT) d(WT , WA)

8 0.8 10 0.8196 0.02369 0.02368 1.307 × 10−5

3 0.75 4 0.8078 0.07127 0.07126 1.306 × 10−5

2 0.67 3 0.7641 0.08289 0.08288 1.030 × 10−5

3 0.5 6 0.5766 0.02633 0.02632 6.125 × 10−6

4 0.5 8 0.5587 0.01757 0.01756 5.919 × 10−6

5 0.5 10 0.5475 0.01253 0.01252 6.097 × 10−6

10 0.5 20 0.5244 0.00401 0.00400 5.044 × 10−6

3 0.3 10 0.3655 0.00949 0.00949 2.680 × 10−6

The distribution functions for the worst and best cases are shown in Figures 3 and 4, re-
spectively. In both cases, WT completely overlaps with WA (refer to the values of d(WT , WA)
in Table 1). The figures highlight the effect of correlation in the input process on the proba-
bility of an empty system, π0 = 1 − σ = FW(0), and, more generally, on the shape of the
distribution of W.
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Figure 3. Waiting time distributions of the superposed process W and its approximation WA for
α1 = 2, α2 = 2, x0 = 1, and µ = 3.

Apart from the superposition of two Pareto distributions, it is also worth consid-
ering the superposition of two processes with Pareto and exponential interarrival time
distributions. In these cases, the situation is even better than for the superposition of two
Pareto inputs, as highlighted by Table 2, which reports the simulation parameters and the
Kolmogorov distance values (as before, 1010 arrivals have been generated). For the sake of
brevity, the waiting time distribution is shown only for the worst case, corresponding to
α = 2, x0 = 1, λ = 1, and µ = 3 (see Figure 5).
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Figure 4. Waiting time distributions of the superposed process W and its approximation WA for
α1 = 2, α2 = 10, x0 = 1, and µ = 20.

Table 2. Kolmogorov distance for different simulation settings.

α x0 λ µ σ d(W , WA) d(W , WT) d(WT , WA)

2 1 1 3 0.7067 0.064 0.064 9.84 × 10−6

2 1 1 4 0.5480 0.032 0.032 5.97 × 10−6

3 1 0.5 4 0.6879 0.023 0.023 7.56 × 10−6

2 4 1 3 0.4252 0.001 0.006 2.73 × 10−6
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Figure 5. Waiting time distributions of the superposed process W and its approximation WA for
α = 2, x0 = 1, λ = 1, and µ = 3.

To complete the overview of the approximations described in Section 4.4, we also
consider the case of class-dependent service times. Table 3 reports the Kolmogorov distance
d(W, WA) for different values of the service rates µ1 and µ2 (and hence of the utilization ρ).
Since the focus is on the impact of the service rate (which is stochastically equivalent to
a hyperexponential distribution with parameters µ1, µ2, and p), we consider two Pareto
distributions with the same parameters α1 = 2, α2 = 3, and x0 = 1 in all cases. As expected,
the values of d(W, WA) are in good agreement with those in Figure 2 for α2 = 3 and the
corresponding values of ρ.



Mathematics 2024, 12, 2202 19 of 22

Table 3. Kolmogorov distance for different simulation settings with class-dependent service time.

µ1 µ2 ρ d(W , WA)

3 4 0.833 0.1178
4 5 0.650 0.0540
4 6 0.583 0.0454
4 7 0.536 0.0403
4 8 0.500 0.0370
4 9 0.472 0.0350
6 7 0.452 0.0226
6 8 0.417 0.0201
6 9 0.389 0.0184

Going back to the example at the beginning of this section (see Table 1 for the simu-
lation settings), Table 4 compares the mean values of the actual waiting time W and the
waiting time WA of the approximating system. While the Kolmogorov distance, reported in
the first column of the table for clarity, was generally less than 5% in most cases, the relative
error (RE) can still be significant, consistent with findings in the literature [3,5,7]. This
highlights the importance of using such an approximation carefully, as a rough/preliminary
estimate when accurate estimation is challenging.

Table 4. Comparison of the mean waiting times for the simulation settings in Table 1.

d(W , WA) mean(W) mean(WA) RE (%)

0.02369 0.49660 0.45420 8.54
0.07127 1.35830 1.05069 22.65
0.08289 1.48457 1.07954 27.28
0.02633 0.25972 0.22693 12.63
0.01757 0.17373 0.15822 8.93
0.01253 0.12958 0.12101 6.62
0.00401 0.05642 0.05512 2.29
0.00949 0.06193 0.05759 6.99

6.2. Exponential Splitting

We consider the original system Σ fed by two Pareto input processes (with α1 = 2,
α2 = 3, and x0 = 1) and a common exponential service rate µ.

We carry out several sets of simulation to evaluate the effect of both the splitting
parameters (namely, the choice of the i0 process, δ and η) and the traffic intensity ρ.

First, we select the first component of the superposed input (with α1 = 2) as i0-process,
so the exponential splitting is applied to the other flow (with α2 = 3). In the following tables,
we denote by RegIn the number of regenerations in the superposed input (i.e., the number
of events (45)), and by RegW the number of regenerations (47) of the queueing system.

Tables 5 and 6 refer to µ = 4 (i.e., ρ = 0.75) and µ = 6 (i.e., ρ = 0.5), respectively. In
both tables, the estimations of the mean waiting time are the same for all the choices of the
splitting parameters and coincide with the results obtained through traditional simulation
(1.358 and 0.2597 for µ = 4 and µ = 6, respectively), so they are not explicitly reported.
To evaluate the goodness of the estimates, the last column reports the half-widths of the
99% CI for the mean waiting time, estimated over RegW intervals (corresponding to a fixed
number of arrivals, namely 1010 as already stated).
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Table 5. Regenerative simulation for i0 = 1 and µ = 4 (ρ = 0.75).

δ η RegIn RegW 99%CI

0.10 4 166.65 × 106 13.5 × 106 4.59 × 10−4

0.33 4 555.61 × 106 45.1 × 106 4.55 × 10−4

0.50 4 833.40 × 106 67.5 × 106 4.58 × 10−4

0.75 4 1250.05 × 106 101.3 × 106 4.58 × 10−4

0.10 5 133.29 × 106 9.1 × 106 4.34 × 10−4

0.33 5 444.41 × 106 30.4 × 106 4.56 × 10−4

0.50 5 666.67 × 106 45.6 × 106 4.55 × 10−4

0.10 6 111.11 × 106 6.5 × 106 4.46 × 10−4

Table 6. Regenerative simulation for i0 = 1 and µ = 6 (ρ = 0.5).

δ η RegIn RegW 99%CI

0.10 4 166.67 × 106 42.7 × 106 4.29 × 10−5

0.33 4 555.61 × 106 142. 4 × 106 4.59 × 10−5

0.50 4 833.32 × 106 213. 6 × 106 4.20 × 10−5

0.75 4 1250.06 × 106 320.5 × 106 4.57 × 10−5

0.10 5 133.34 × 106 29.8 × 106 4.47 × 10−5

0.33 5 444.41 × 106 99.5 × 106 4.27 × 10−5

0.50 5 666.60 × 106 149.3 × 106 4.55 × 10−5

0.10 6 111.10 × 106 22.1 × 106 4.58 × 10−5

By comparing Tables 5 and 6, we see that for fixed values of δ and η, the number of
input regeneration points RegIn is approximately the same. This fact is not surprising since
the input process does not depend on the service rate µ. On the other hand, RegW increases
with µ since a lower traffic intensity implies a higher probability of an idle server. This
increment, together with the decrease in the mean waiting time, leads to a difference in the
width of the CIs of around one order of magnitude.

Finally, the simulation results in the case of splitting of the first component (with
α1 = 2) are reported in Tables 7 and 8, which confirm the previous observations about
RegIn, RegW, and the width of the CIs.

Table 7. Regenerative simulation for i0 = 2 and µ = 4 (ρ = 0.75).

δ η RegIn RegW 99%CI

0.50 3 1111.11 × 106 88.7 × 106 4.56 × 10−4

0.10 4 166.65 × 106 11.1 × 106 4.51 × 10−4

0.33 4 555.57 × 106 37.1 × 106 4.61 × 10−4

0.50 4 833.35 × 106 55.6 × 106 4.55 × 10−4

0.10 6 111.11 × 106 5.6 × 106 4.54 × 10−4

0.20 6 222.18 × 106 11.3 × 106 4.60 × 10−4

0.33 6 370.41 × 106 18.8 × 106 4.56 × 10−4

Table 8. Regenerative simulation for i0 = 2 and µ = 6 (ρ = 0.5).

δ η RegIn RegW 99%CI

0.50 3 1111.14 × 106 282.5 × 106 4.52 × 10−5

0.10 4 166.65 × 106 36.7 × 106 4.41 × 10−5

0.33 4 555.53 × 106 122.4 × 106 4.23 × 10−5

0.50 4 833.36 × 106 183.6 × 106 4.18 × 10−5

0.10 6 111.09 × 106 19.5 × 106 3.84 × 10−5

0.20 6 222.21 × 106 39.0 × 106 4.41 × 10−5

0.33 6 370.35 × 106 65.0 × 106 4.43 × 10−5
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Focusing on the choice of the splitting parameters, the following remarks can be drawn
from the simulation results. On the one hand, the larger the δ parameter (for a fixed value of
η), the more frequent the exponential phase. As a result, RegIn also increases. On the other
hand, the higher the η parameter (for a fixed δ), the lower the number of regenerations
RegIn. Moreover, simulation results show that the highest number of regenerations RegW
of the queueing system is achieved when equality is met in both inequalities (42) for all
inputs i ̸= i0. It is mentioned in [11] that more frequent regenerations normally reduce
the required simulation time, but not always. These considerations are intuitive and may
be valuable when, for various reasons, the simulation time is limited and the number of
regenerations becomes critical for constructing the CI.

7. Conclusions

This paper deals with queueing systems fed by superposed input processes generated
by independent stationary renewal sources. It is well known that, in general, such systems
are not classically regenerative; however, several analysis methods have been proposed in
the literature and we discuss the two most promising ones. First, we describe a general ap-
proach that allows for the construction of the so-called one-dependent regeneration. Then,
we focus on the superposed process containing heavy-tailed Pareto components and apply
exponential splitting to construct classical regenerations of the system. These regenerations
are used for confidence estimation of the mean waiting time by the regenerative version of
the CLT. This is the main theoretical contribution of the research. Moreover, we identify the
conditions under which exponential splitting results in the most frequent regenerations.

We also study an approximating GI/G/1 system with a single renewal process. This
construction is based on Palm theory, and the corresponding stationary interarrival distri-
bution takes the form of a mixture of the interarrival time distributions of the component
processes. As a side contribution, in the special case of exponential, class-independent
service times, the stationary waiting time distribution in the approximating system is
explicitly derived.

Finally, an important element of this research is that the theoretical findings are
supported by comprehensive numerical experiments, including both traditional Monte
Carlo and regenerative simulation techniques.
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