SHiP: a new facility to search for long lived neutral particles and investigate the ν_{τ} properties

28th Rencontres de Blois Particle Physics and Cosmology

June 1, 2016

Introduction

- → Standard Model success: observation of the Higgs boson!
- → Unexplained phenomena still require new physics. But where?
- → Neutrino masses and oscillations: Right-handed see-saw neutrino masses from 1 eV to 10¹⁵ GeV
 → Dark matter:
 - 10^{-22} eV (super-light scalars) to 10^{20} GeV (wimpzillas, Q-balls)

➔ Baryogenesis:

Mass of new particle from 10 MeV to 10^{15} GeV

Where is new physics? Experimental approach

- → Unsolved problems ⇒ there must be new particles
- → Why didn't we detect them? Too heavy or too weakly interacting

SHiP: Search for Hidden Particles

- → SHiP is a new proposed experiment at the CERN SPS, aiming to search for neutral hidden particles with mass up to $\mathcal{O}(10)$ GeV and extremely weak couplings, down to 10^{-10} .
- → production and decay of hidden particles:

- large decay volume followed by spectrometer, calorimeter, PID
- shielding from SM particles: hadron absorber + VETO detectors
- → High intensity 400 GeV beam dump ⇒ high flux of neutrinos (all species).
- → facility ideally suited for studying ν_{τ} and observing $\bar{\nu}_{\tau}$, produced in charm decays such as $D_s \rightarrow \tau^+ (\rightarrow \mu^+ \nu_{\mu} \bar{\nu}_{\tau}) \nu_{\tau}$

The Hidden Sector detector

- as close as possible to target
- in a μ -free area thanks to active shield

⁵/13

The Hidden Sector detector

- as close as possible to target
- in a µ-free area thanks to active shield

⁵/13

The ν_{τ} detector

Target made of interlaced layers of emulsion bricks and scintillating fibres, resolution of $1 \,\mu m \implies$ charge of τ daughters. Muon tracker: RPCs and drift tubes. Also tags BG for HS physics.

/13

The facility at the SPS

- CERN North Area facilities
- 190 m long, 20 m wide hall

/ 13

Background sources and strategy

- → cosmic + beam µ can scatter/DIS on the cavern/vessel walls → µ shield, liquid scintillator, topology + pointing
- → random combinations of tracks from different events/vertices → timing detector, vertex quality
- → *v* interactions in the material of the HS detector and upstream (closely mimick HP decay topology) → *v* detector, upstream veto, straw veto, topology + pointing

Sample	Multiplicity	Fiducial vol	Track q.	BG cuts/VETO
$HNL ightarrow \pi \mu$	97.5 %	76.1 %	87.0 %	94.2 %
$\gamma' o \mu \mu$	99.6 %	85.2 %	94.4 %	94.0 %
u background	79.1 %	21.0 %	6.5 %	0.0 %

Selection efficiency

Overall $\lesssim 0.1$ background events / 5 years is attainable!

The ν MSM Asaka, Blanchet, Shaposhnikov, Phys.Lett. B631 (2005) 151-156

Suitable values of m_N and U_f^2 allow to simultaneously explain:

- ν oscillations induced by massive states N_2 , N_3
- dark matter: N_1 with mass $\sim \text{keV}$
- BAU: leptogenesis due to Majorana mass term

SHiP sensitivity to N_2 , N_3

- production in charm and beauty meson decays
- decay into $h\ell$ and $\ell\ell
 u$

- → interpretation of limits is model dependent (above: IH and NH)
- → ν MSM parameter space almost totally explored for $m_N \leq 2$ GeV!
- sensitive to most theories with similarly long lived massive particles

Physics with ν_{τ}

Neutrino detector (mostly lead) allows to:

- identify flavour
- measure charge of emerging μ and au

- → PDF improvements with ν -nucleon DIS
- → tests of lepton universality
- → BONUS: dark matter scattering...

What's next

- → Technical
 and Physics
 proposals prepared in 2014-2015
 - feasibility studies, facility design, engineering, test beams, sensitivities
- → Green lights from the SPSC, recommendation to produce CDR (Comprehensive Design Report) for European HEP strategy 2019
- → 10 years from Technical Proposal to data taking
 - schedule optimized for minimal interference with SPS operation

Accelerator schedule	2015	2016	2017	2018	2019	2020	2	021	2022	2023	2024	2025	2	026	2027
LHC			Run 2		L	S2			Run 3			LS3			Run 4
SPS												SPS sto	p		
										_					
Detector		R&D, des	ign and CDF	2		Prod	uctior	n			Installat	ion	_		
Milestones	TP													CwB	Data taking
Facility			Ir	itegration									C	wВ	
Civil engineering				Pre-c	onstruction		Ta	arget - De	etector hal	I - Beamlin	e - Junctio	n (WP1)			
Infrastructure									Ins	tallation	Installat	ion	Inst.		
Beamline		R&D	, design and (DR		←	Produ	uction \rightarrow		Prod.	Install	ation			
Target complex			R&D, design	and CDR		← P	roduc	tion \rightarrow		l.	nstallation	CwB:	Commis	ssionin	g with Beam
Target			R&D	, design and	CDR + proto	typing			-	Productio	n In	stallation	Rev	ersed 1	TP schedule

Conclusions

- → General purpose experiment to look for weakly interacting long lived particles
 - probes unexplored regions of the Hidden Sector in several New Physics theories
 - covers cosmologically interesting regions
- → Unique opportunity for ν_{τ} physics allowing for
 - $\bar{
 u}_{ au}$ discovery
 - σ and form factors measurements
 - also dark matter search
- → Complements LEP/LHC and makes best use of the existing SPS complex

ship.web.cern.ch

Questions?

- spare slides

E. Graverini (Universität Zürich)

SHiP: Search for Hidden Particles

A wide physics case...

Search for Hidden P

- Theories including HNLs are not the only ones probed by SHiP!
- Below, just a small extract from the SHiP Physics Paper...

SHiP sensitivity: vector portal

Sensitivity studied considering $\Gamma_{tot} = \Gamma(\ell^+ \ell^-) + \Gamma(hadrons)$.

E. Graverini (Universität Zürich)

SHiP: Search for Hidden Particles

¹³/₁₃

HNLs at future colliders

http://arxiv.org/abs/1411.5230 http://arxiv.org/abs/1503.08624

Elena Graverini, on behalf of the SHiP collaboration

SHiP sensitivity to HNLs

¹³/₁₃

- scenarios I-III: benchmarks with U_e^2 , U_μ^2 , U_τ^2 dominating (JHEP 0710 (2007) 015)
- scenarios IV-V: baryogenesis numerically proven (JCAP 1009(2010)001)

SHiP: Search for Hidden Particles

Sensitivity with non-zero background

Figure: Variation of the sensitivity contours for scenarios II (left) and IV (right) as a function of the background estimates. The solid blue curve represents the 90% C.L. upper limit assuming 0.1 background events in 2×10^{20} proton-target collisions. The dashed blue curve assumes 10 background events. The dotted blue curve assumes a systematic uncertainty of 60% on the level of background, i.e. 10 ± 6 background events.

Estimating SHiP's physics reach $\Phi(p.o.t) \times \mathcal{BR}(pp \to NX) \times \mathcal{P}_{vtx} \times \mathcal{BR}(N \to visible) \times \mathcal{A}$

- HNL's momentum and angle are stored in a binned PDF
- HNL spectra are re-weighted by the probability $\mathcal{P}_{vtx}(p,\theta \,|\, m_N, U_f^2) \sim \int_V e^{-l/\gamma c \tau} dl$
- Integral of the weighted PDF gives the total probability $\mathcal{P}_{vtx}(m_N, U_f^2)$ that HNLs leave a vertex in SHiP's fiducial volume

Sensitivity in the Left-Right symmetric model

- SHiP limits on m_{W_R} can be extracted from the HNL limits by $|U_{\mu I}|^2 \rightarrow (m_{W_L}/m_{W_R})^4$
- LHC can perform direct searches on both W_R and N_R
- SHiP can only look for $N_{R},\,\mathrm{but}$ in a domain inaccessible to LHC
- based on CMS, *Eur. Phys. J. C* 74 (2014) 3149, and Helo, Hirsch, Kovalenko, *Phys.Rev. D89* (2014) 073005

Tests of perturbative QCD and lepton universality

- \bigotimes
- → PDF improvements with ν -nucleon DIS: strange sea quark content currently relies on $\mathcal{O}(5000)$ charm di- μ events:

LHC and SHiP will probe different ranges of x.

- ➔ Lepton universality tests:
 - hints from LHCb, \boldsymbol{B} factories, ...
 - DIS σ including BSM: Liu, Rashed, Datta PRD92(2015)7, 073016, to compare to σ_{SM}
 - results depend on our knowledge of the u_{τ} flux!

Tests of perturbative QCD and lepton universality

- \bigotimes
- → PDF improvements with ν -nucleon DIS: strange sea quark content currently relies on $\mathcal{O}(5000)$ charm di- μ events:

LHC and SHiP will probe different ranges of x.

- ➔ Lepton universality tests:
 - hints from LHCb, ${\cal B}$ factories, ...
 - DIS σ including BSM: Liu, Rashed, Datta PRD92(2015)7, 073016, to compare to σ_{SM}
 - results depend on our knowledge of the u_{τ} flux!

If neutrinos are Dirac particles they can get a magnetic moment:

$$\mu_{\nu} = \frac{3eG_F m_{\nu}}{8\pi^2 \sqrt{2}} \simeq \left(3.2 \times 10^{-19}\right) \frac{m_{\nu}}{1 \text{ eV}} \,\mu_B$$

BSM can enhance μ_{ν} . (E.g.: Shrock, Nucl.Phys. B206 (1982) 359)

$$e\nu \to e\nu \Longrightarrow \left. \frac{dN}{dE_e} \right|_{\mu_{\nu}} = \frac{\pi \alpha^2 \mu_{\nu}^2}{m_e^2} \left(\frac{1}{E_e} - \frac{1}{E_{\nu}} \right)$$

Remove BG from νN scattering: $\theta_{\nu e}^2 < 2m_e/E_e \Longrightarrow$ sensitivity: $N_{evt} \sim 4.3 \times 10^{15} \mu_{\nu}^2/\mu_B^2$. Prev. limits from 10^{-7} (ν_{τ}) to 10^{-11} (ν_e).

Dark matter search

 \bigotimes

Detect dark matter from dark photon decay through elastic scattering on electrons: $\chi e^- \rightarrow \chi e^-$. Signature in the emulsion target: a vertex with only e^- coming out. Simulation \implies background from neutrino scattering can be reduced with kinematical selections to 284 events / 5 y.

Dark photon parameter space for $\gamma' \rightarrow$ invisible decays excluded by SHiP at 90% C.L., with such expected background and for $m_{\chi} = 200$ MeV and $\chi \gamma'$ coupling $\alpha' = 0.1$:

LFV processes

- $ightarrow \nu$ oscillations provide evidence of LFV in the neutral sector
- → LFV in charged sector foreseen with $\mathcal{BR} \sim \mathcal{O}(10^{-40})!$
- → New physics models can enhance these $\mathcal{BR}s$
 - in seesaw models charged LFV can happen in tree or loop diagrams
 - $\ell\to 3\ell'$ generally favoured with respect to $\ell\to\ell'\gamma$ (type 2 and 3 seesaw)
- → ℓ → $3\ell'$ related by unitarity to $Z^0, h, V \rightarrow \ell^+ \ell'^-$ and $\ell \rightarrow \ell'$ conversion in nuclei (most stringent limits so far by SINDRUM II)
 - $\tau\to 3\mu$ and $\mu\to 3e$ can provide better limits than direct searches e.g. for $\phi\to e\mu$, $J/\Psi\to e\mu$
 - $\mathcal{BR}(\tau \to 3\mu) < 1.2 \times 10^{-8}$ (BaBar,Belle,LHCb) *HFAG, arXiv:1412.7515*
- \Rightarrow SHiP will collect $3\times 10^{15}~\tau$ in the forward region
 - requires changes to conceptual design (upgrade):
 - 1 mm W target: 100× less au, but decaying outside target
 - LHCb VELO + Si tracker + hadron absorber + μ spectrometer
 - sensitivity $\sim 10^{-10}/\sqrt{N_{\rm targets}}$

The Hidden Sector

$$L_{world} = L_{SM} + L_{mediation} + L_{HS}$$

- **Neutrino portal**: new Heavy Neutral Leptons coupling with Yukawa coupling, $L_{NP} = F_{\alpha I} (\bar{L}_{\alpha} \tilde{\Phi}) N_I$
- Vector portal: massive dark photon coupling through loops of particles charged both under U(1) and U'(1): $L_{VP} = \epsilon F'_{\mu\nu}F^{\mu\nu}$
- Scalar portal: light scalar mixing with the Higgs $L_{SP} = (\lambda_i S_i^2 + g_i S_i) \overline{\Phi} \Phi$
- Axion portal: axion-like particles, $L_{AP} = \frac{A}{4f_A} \epsilon^{\mu\nu\lambda\rho} F_{\mu\nu} F_{\lambda\rho}$
- SUSY: neutralino, sgoldstino, gaugino...

Models	Final states
Neutrino portal, SUSY neutralino	$\ell^{\pm}\pi^{\mp}, \ell^{\pm}K^{\mp}, \ell^{\pm}\rho^{\mp}, \rho^{\pm} \to \pi^{\pm}\pi^{0}$
Vector, scalar, axion portals, SUSY sgoldstino	$\ell^+\ell^-$
Vector, scalar, axion portals, SUSY sgoldstino	$\pi^{+}\pi^{-}, K^{+}K^{-}$
Neutrino portal ,SUSY neutralino, axino	$\ell^+\ell^- u$
Axion portal, SUSY sgoldstino	$\gamma\gamma$
SUSY sgoldstino	$\pi^0\pi^0$

Elena Graverini, on behalf of the SHiP collaboration

New Physics prospects in Hidden Sector

Standard Model portals:

D = 2: Vector portal

- Kinetic mixing with massive dark/secluded/paraphoton V: $\frac{1}{2} \varepsilon F_{\mu\nu}^{SM} F_{HS}^{\mu\nu}$
- → Motivated in part by idea of "mirror world" restoring left and right symmetry, constituting dark matter, g-2 anomaly, ...
- Production: proton bremsstrahlung, direct QCD production $q\bar{\bar{q}} \rightarrow V, qg \rightarrow Vq$, meson decays $(\pi^0, \eta, \omega, \eta', ...)$

D = 2: Scalar portal

- Mass mixing with dark singlet scalar χ : (gS + λS²)H⁺H
- → Mass to Higgs boson and right-handed neutrino, inflaton, dark phase transitions BAU, dark matter, "dark naturalness",.
- Production: Direct $p + target \rightarrow X + S$, meson decays e.g. $B \rightarrow KS$, $K \rightarrow \pi S$

<u>D = 5/2: Neutrino portal</u>

- Mixing with right-handed neutrino N (Heavy Neutral Lepton): $Y_{I\ell}H^{\dagger}\overline{N}_{I}L_{\ell}$
- → Neutrino oscillation, baryon asymmetry, dark matter
- Production: Leptonic, semi-leptonic decays of heavy hadrons

D = 4: Axion portal

- Mixing with Axion Like Particles, pseudo-scalars pNGB, axial vectors $a: \frac{a}{F}G_{\mu\nu}\tilde{G}^{\mu\nu}, \frac{\partial_{\mu}a}{F}\bar{\psi}\gamma_{\mu}\gamma_{5}\psi$, etc
- Generically light pseudo-scalars arise in spontaneous breaking of approximate symmetries at a high mass scale F
 Extended Higgs, SUSY breaking, dark matter, possibility of inflaton,...
- Production: Primakoff production, mixing with pions and heavy meson decays

And higher dimensional operator portals

· Chern-Simons portal (vector portal)

Seminar at TUM, Munich, Germany, February 5, 2016

New Physics prospects in Hidden Sector

<u>SUper-SYmmetric "portals"</u>

- Some of SUSY low-energy parameter space open to complementary searches
- Sgoldstino S(P) : $\frac{M_{\gamma\gamma}}{F}SF^{\mu\nu}F_{\mu\nu}$
- Neutralino in R-Parity Violating SUSY
- Hidden Photinos, axinos and saxions....

A very large variety of models based on these or mixtures thereof

• Two search methods:

- "Indirect detection" through portals in (missing mass)
- 2. <u>"Direct detection" through both portals in and out</u>

SHiP has significant sensitivity to all of these!

Assumption invisible decay width $\chi \bar{\chi}$ is absent or sub-dominant, $m_{\chi} > \frac{1}{2} m_{portal}$, where χ hidden sector particle

8

Sterile Neutrinos

Fermions get mass via the Yukawa couplings:

$$-\mathcal{L}_{ ext{Yukawa}} = Y_{ij}^d \overline{Q_{Li}} \phi D_{Rj} + Y_{ij}^u \overline{Q_{Li}} \tilde{\phi} U_{Rj} + Y_{ij}^\ell \overline{L_{Li}} \phi E_{Rj} + ext{h.c.}$$

If we want the same coupling for neutrinos, we need right-handed (sterile) neutrinos... the most generic Lagrangian is

$${\cal L}_N=i\overline{N}_i\partial_\mu\gamma^\mu N_i-rac{1}{2}M_{ij}\overline{N^c}_iN_j-Y^
u_{ij}\overline{L_{Li}} ilde{\phi}N_j$$
Kinetic term Majorana mass term Yukawa coupling

$$\begin{array}{c|c} U_{I\ell} \sim \frac{M_D^\ell}{M_N^I} = \frac{Y_{I\ell}v}{M_N^I} \\ <\Phi > & <\Phi > \\ \hline \nu_i & N & \nu_j \end{array}$$

$$\begin{split} \mathcal{V} &= (\nu_{Li}, N_j) & -\mathcal{L}_{M_{\mathcal{V}}} = \frac{1}{2} \overline{\mathcal{V}} M_{\mathcal{V}} \mathcal{V} + h.c. & \text{if } M_N \gg M_D: \\ M_{\mathcal{V}} &= \begin{pmatrix} 0 & M_D \\ M_D^T & M_N \end{pmatrix} & \lambda_{\pm} = \frac{M_N \pm \sqrt{M_N^2 + 4M_D^2}}{2} & \lambda_- \sim \frac{M_D^2}{M_N} \\ \lambda_+ \sim M_N \end{split}$$

Seesaw mechanism:

Sterile neutrino masses

Seesaw formula $m_D \sim Y_{I\alpha} < \phi >$ and $m_\nu = \frac{m_D^2}{M}$

- Assuming $m_{\nu} = 0.1 \text{eV}$
- if $Y \sim 1$ implies $M \sim 10^{14} \text{GeV}$
- if $M_N \sim 1 \text{GeV}$ implies $Y_{\nu} \sim 10^{-7}$

remember $Y_{top} \sim 1$. and $Y_e \sim 10^{-6}$

If we want to explain the smallness of neutrino masses (in a natural way) the mass of sterile neutrinos should be at least at the GeV scale

Constraints on N₁

Constraints on N₁

DM sterile neutrinos decay subdominantly as $N_1 \rightarrow \nu \gamma$ with a branching ration $\mathcal{B}(N_1 \rightarrow \gamma \nu) \sim \frac{1}{123}$

Backgrounds with TP detector

Background source	Decay modes
$\nu \text{ or } \mu + \text{nucleon} \rightarrow X + K_L$	$K_L \rightarrow \pi e \nu, \pi \mu \nu, \pi^+ \pi^-, \pi^+ \pi^- \pi^0$
$\nu \text{ or } \mu + \text{nucleon} \rightarrow X + K_S$	$K_S \rightarrow \pi^0 \pi^0, \pi^+ \pi^-$
$\nu \text{ or } \mu + \text{nucleon} \rightarrow X + \Lambda$	$\Lambda \rightarrow p\pi^{-}$
$n \text{ or } p + \text{nucleon} \rightarrow X + K_L, \text{ etc}$	as above

Background summary: no evidence for any irreducible background

No events selected in MC → Expected background UL @ 90% CL

D l l	0 1.	
Background source	Stat. weight	Expected background (UL 90% CL)
ν -induced		
2.0	1.4	1.6
4.0	2.5	0.9
p > 10 GeV/c	3.0	0.8
$\overline{\nu}$ -induced		
2.0	2.4	1.0
4.0	2.8	0.8
p > 10 GeV/c	6.8	0.3
Muon inelastic	0.5	4.6
Muon combinatorial	-	< 0.1
Cosmics		
p < 100 GeV/c	2.0	1.2
p > 100 GeV/c	1600	0.002

Design considerations with 4x10¹³ p / 7s

- → 355 kW average, 2.56 MW during 1s spill
- High temperature
- Compressive stresses
- Atomic displacement
- Erosion/corrosion
- Material properties as a function of irradiation
- Remote handling (Initial dose rate of 50 Sv/h...)
- → Hybrid solution: Mo allow TZM (4λ) + W (6λ)

	DONUT 1)	CHARM ²⁾	SHiP	
Target material	W-alloy	Cu (variable ρ)	TZM + pure W	
Momentum (GeV/c)	800	400	400	
Intensity	0.8*1013	1.3*10 ¹³	4*10 ¹³	
Pulse length (s)	20	23*10-6	1	
Rep. rate (s)	60	~10	7.2	
Beam energy (kJ)	1020	830	2560	
Avg. beam power (spill) (kW)	51	3.4*10 ⁷ (fast)	2560	
Avg. beam power (SC) (kW)	17	69	355	
РОТ	Few 10 ¹⁷	Few 10 ¹⁸	2*10 ²⁰	

Seminar at TUM, Munich, Germany, February 5, 2016

Active muon shield

- Muon flux limit driven by emulsion based v-detector and "hidden particle" background
- Passive and magnet sweeper/passive absorber options studied:
 - Conclusion: Shield based entirely on magnetic sweeping with $\int B_y dl \sim 86 \text{ Tm}$
 - → <7x10³ muons / spill (E_{μ} > 3 GeV) which can potentially produce V0 (K_L)

2800 tonnes

➔ Negligible occupancy

 Challenges: flux leakage, constant field profile, modelling magnet shape

Prompt dose rates in the experimental hall 4E13 p.o.t. / 7s

48m

Seminar at TUM, Munich, Germany, February 5, 2016

TP: Vessel and spectrometer magnet

Estimated need for vacuum: 10-3 mbar

Based on v-flux: 2x10⁴ v-interactions/2x10²⁰ p.o.t. at patm •

Vacuum vessel

- 10 m x 5 m x 60 m:
- Walls thickness: 8 mm (Al) / 30 mm (SS);
- Walls separation: 300 mm;
- Liquid scintillator volume: ~360 m3:
- 1500 WOMs (8 cm x Ø 8 cm WOM + PMTs):
- Metal weight (SS, no support): ~ 480 t.

Seminar at TUM, Munich, Germany, February 5, 2016

LAB (Linear alkyl benzene)

Low power magnet designed 0

- Field integral: 0.65Tm over 5m
- Current 2500 A (1.7 A/mm2
- Power consumption < 1 MW
- Weight ~800 tonnes

R. Jacobsson (CERN)

CÉRI

HS detector optimization

- \circ Optimization of geometrical acceptance for a given $\mathsf{E}_{\mathsf{beam}}$ and Φ_{beam}
 - Hidden particle lifetime (~flat for longlived)
 - Hidden particle production angles (~distance and transversal size)
 - Hidden particle decay opening angle (~length and transversal size)
 - Muon flux (~distance and acceptable occupancy)
 - Background (~detector time and spatial resolution)
 - Evacuation in decay volume / technically feasible size ~ W:5m x H:10m

→ Acceptance saturates ~40m – 50m

Seminar at TUM, Munich, Germany, February 5, 2016

HS tracking system

NA62-like straw detector

Parameter	Value
Straw	
Length of a straw	5 m
Outer straw diameter	9.83 mm
Straw wall (PET, Cu, Au)	
PET foil thickness	$36 \ \mu m$
Cu coating thickness	50 nm
Au coating thickness	20 nm
Wire (Au-plated Tungsten)	
diameter	$30 \ \mu m$
Straw arrangement	
Number of straws in one layer	568
Number of layers per plane	2
Straw pitch in one layer	17.6 mm
Y extent of one plane	$\sim 10 \text{ m}$
Y offset between straws of layer 1&2	8.8 mm
Z shift from layer 1 to 2	11 mm
Number of planes per view	2
Y offset between plane 1&2	4.4 mm
Z shift from plane 1 to 2	26 mm
Z shift from view to view	100 mm
Straw station	
Number of views per station	4 (Y-U-V-Y)
Stereo angle of layers in a view Y,U,V	0, 5, -5 degrees
Z envelope of one station	$\sim 34~{ m cm}$
Number of straws in one station	9088
Straw tracker	
Number of stations	4
Z shift from station 1 to 2 (3 to 4)	2 m
Z shift from station 2 to 3	5 m
Number of straws in total	36352

• Straws in test beam 2016

- Study sagging effects and compensation
- Read out of signal, attenuation / two-sided readout
- Upstream straw veto may be based on same technology

Seminar at TUM, Munich, Germany, February 5, 2016

Horizontal orientation of 5m straws

First production of 5m straws at JINR

JINR Dubna (NA62, SHiP): Straws St Petersburg (CMS, SHiP): Infra