

Introduction

 $2/13$

- **→ Standard Model** success: observation of the Higgs boson!
- **→ Unexplained** phenomena still require new physics. But where?
- **→** Neutrino masses and oscillations: Right-handed see-saw neutrino masses from **1 eV** to **10¹⁵ GeV**
- **→** Dark matter: **10***−***²² eV** (super-light scalars) to **10²⁰ GeV** (wimpzillas, Q-balls)
- → Baryogenesis: Mass of new particle from **10 MeV** to **10¹⁵ GeV**

E. Graverini (Universität Zürich) *SHiP: Search for Hidden Particles* 2/13

Where is new physics? Experimental approach

- ➜ Unsolved problems =*⇒* there must be new particles
- → Why didn't we detect them? Too heavy or too weakly interacting

SHiP: Search for Hidden Particles

⁴*/*13

- → SHiP is a new proposed experiment at the CERN SPS, aiming to search for neutral hidden particles with mass up to *O*(10) GeV and extremely weak couplings, down to 10*−*¹⁰ .
- → production and decay of hidden particles:

target beam hidden particle visible decay

- large decay volume followed by spectrometer, calorimeter, PID
- shielding from SM particles: hadron absorber + VETO detectors
- → High intensity 400 GeV beam dump \implies high flux of neutrinos (all species).
- \rightarrow facility ideally suited for studying ν_{τ} and observing $\bar{\nu}_{\tau}$, produced in charm decays such as $D_s \to \tau^+ \left(\to \mu^+ \nu_{\mu} \bar{\nu}_{\tau} \right) \nu_{\tau}$

Target made of interlaced layers of emulsion bricks and scintillating fibres, resolution of 1 µm =*⇒* charge of *τ* daughters. Muon tracker: RPCs and drift tubes. Also tags BG for HS physics.

 $6/13$

Background sources and strategy

E. Graverini (Universität Zürich) *SHiP: Search for Hidden Particles* 8/13

⁸*/*13

- \rightarrow cosmic + beam μ can scatter/DIS on the cavern/vessel walls $\rightarrow \mu$ shield, liquid scintillator, topology + pointing
- **→ random combinations** of tracks from different events/vertices → timing detector, vertex quality
- **→** ν **interactions** in the material of the HS detector and upstream (closely mimick HP decay topology) ➜ *ν* detector, upstream veto, straw veto, topology + pointing

Selection efficiency

Overall ≲ **0***.***1 background events / 5 years is attainable!**

Suitable values of m_N and U_f^2 allow to simultaneously explain:

- *ν* oscillations induced by massive states N_2 , N_3
- dark matter: *N*¹ with mass *∼*keV
- BAU: leptogenesis due to Majorana mass term

neutrino. This (now massive) neutrino can decay to a large amount of

SHiP sensitivity to N_2 , N_3

 $\frac{10}{13}$

- production in charm and beauty meson decays
- decay into *hℓ* and *ℓℓν*

- → interpretation of limits is model dependent (above: IH and NH)
- $\rightarrow \nu$ MSM parameter space almost totally explored for $m_N \leq 2$ GeV!
- → sensitive to most theories with similarly long lived massive particles

Physics with *ν^τ*

¹¹*/*13

What's next

- **→** Technical α and Physics α proposals prepared in 2014-2015 – feasibility studies, facility design, engineering, test beams, sensitivities
- **→ Green lights** from the SPSC, recommendation to produce CDR (Comprehensive Design Report) for European HEP strategy 2019
- **→ 10 years** from Technical Proposal to data taking
	- schedule optimized for minimal interference with SPS operation

Preparation of facility in four clear and separate work packages (junction cavern, E. Graverini (Universität Zürich) *SHiP: Search for Hidden Particles* 12/13

Conclusions

¹³*/*13

SHiP

- **→ General purpose** experiment to look for weakly interacting long lived particles
	- probes unexplored regions of the Hidden Sector in several New Physics theories
	- covers cosmologically interesting regions
- ➜ **Unique** opportunity for *ν^τ* **physics** allowing for
	- *ν*¯*^τ* discovery
	- σ and form factors measurements
	- also dark matter search
- **→ Complements** LEP/LHC and makes best use of the existing SPS complex

E. Graverini (Universität Zürich) *SHiP: Search for Hidden Particles* 13/13

ship.web.cern.ch

A wide physics case...

GERN SPR
SPSC PURP

Search for Hidden Particl

- Theories including HNLs are not the only ones probed by SHiP!
- Below, just a small extract from the SHiP Physics Paper...

HNLs at future colliders

http://arxiv.org/abs/1411.5230 http://arxiv.org/abs/1503.08624

24/07/2015 EPS-HEP **Elena Graverini**, on behalf of the **SHiP** collaboration 25

SHiP sensitivity to HNLs

- scenarios I-III: benchmarks with U_{e}^2 , U_{μ}^2 , U_{τ}^2 dominating (JHEP 0710 (2007) 015)
- scenarios IV-V: baryogenesis numerically proven (JCAP 1009(2010)001)

Figure: Variation of the sensitivity contours for scenarios II (left) and IV (right) as a function of the background estimates. The solid blue curve represents the 90% C.L. upper limit assuming 0.1 background events in 2×10^{20} proton-target collisions. The dashed blue curve assumes 10 background events. The dotted blue curve assumes a systematic uncertainty of 60% on the level of background, i.e. 10 ± 6 background events.

Estimating SHiP's physics reach $\Phi(p.o.t) \times \mathcal{BR}(pp \to N X) \times \mathcal{P}_{vtx} \times \mathcal{BR}(N \to visible) \times \mathcal{A}$

- *•* HNL's momentum and angle are stored in a binned PDF
- HNL spectra are re-weighted by the probability $\mathcal{P}_{vtx}(p, \theta | m_N, U_f^2) \sim \int_V e^{-l/\gamma c \tau} dl$
- *•* Integral of the weighted PDF gives the total probability $\mathcal{P}_{vtx}(m_N,U_f^2)$ that HNLs leave a vertex in SHiP's fiducial volume

Tests of perturbative QCD and lepton universality

➜ PDF improvements with *ν*-nucleon DIS: strange sea quark content currently relies on *O*(5000) charm di-*µ* events:

LHC and SHiP will probe different ranges of *x*.

- \rightarrow Lepton universality tests:
	- hints from LHCb, *B* factories, ...
	- DIS *σ* including BSM: *Liu, Rashed, Datta PRD92(2015)7, 073016*, to compare to *σSM*
	- results depend on our knowledge of the ν_{τ} flux!

Tests of perturbative QCD and lepton universality

➜ PDF improvements with *ν*-nucleon DIS: strange sea quark content currently relies on *O*(5000) charm di-*µ* events:

LHC and SHiP will probe different ranges of *x*.

- \rightarrow Lepton universality tests:
	- hints from LHCb, *B* factories, ...
	- DIS *σ* including BSM: *Liu, Rashed, Datta PRD92(2015)7, 073016*, to compare to *σSM*
	- results depend on our knowledge of the ν_{τ} flux!

Neutrino magnetic moment 800 $\mu_{\nu_e} = 3.9 \times 10^{-7} \, \mu_B$ W^+ 600 N events 400 200 $\mathbf{0}$ 10 15 20 25 30 Minimum scattered electron energy

If neutrinos are Dirac particles they can get a magnetic moment:

$$
\mu_{\nu} = \frac{3eG_F m_{\nu}}{8\pi^2 \sqrt{2}} \simeq (3.2 \times 10^{-19}) \frac{m_{\nu}}{1 \text{ eV}} \mu_B
$$

E. Graverini (Universität Zürich) **SHiP: Search for Hidden Particles** 13/13/13/13/13

BSM can enhance *µν*. (E.g.: *Shrock, Nucl.Phys. B206 (1982) 359*)

¹³*/*13

$$
e\nu \to e\nu \Longrightarrow \left. \frac{dN}{dE_e} \right|_{\mu_{\nu}} = \frac{\pi \alpha^2 \mu_{\nu}^2}{m_e^2} \left(\frac{1}{E_e} - \frac{1}{E_{\nu}} \right).
$$

 $\mathsf{Remove} \; \mathsf{B}\mathsf{G} \; \mathsf{from} \; \nu N \; \mathsf{scattering:} \; \theta_{\nu e}^2 < 2 m_e/E_e \Longrightarrow \mathsf{sensitivity:}$ $N_{evt} \sim 4.3 \times 10^{15} \mu_{\nu}^2/\mu_{B}^2$. Prev. limits from 10^{-7} (ν_{τ}) to 10^{-11} (ν_e) .

Dark matter search

Detect dark matter from dark photon decay through elastic scattering on electrons: *χe[−] → χe−*. Signature in the emulsion target: a vertex with only *e [−]* coming out. Simulation =*⇒* background from neutrino scattering can be reduced with kinematical selections to 284 events / 5 y.

Dark photon parameter space for $\gamma' \rightarrow$ invisible decays excluded by SHiP at 90% C.L., with such expected background and for $m_\chi = 200$ MeV and $\chi \gamma'$ coupling $\alpha' = 0.1$:

LFV processes

¹³*/*13

- **→** *ν* oscillations provide evidence of LFV in the neutral sector
- ➜ **LFV** in charged sector foreseen with *BR ∼ O*(10*−*40)!
- ➜ **New physics** models can enhance these *BR*s
	- in seesaw models charged LFV can happen in tree or loop diagrams
	- *ℓ →* 3*ℓ ′* generally favoured with respect to *ℓ → ℓ ′γ* (type 2 and 3 seesaw)
- \rightarrow $\ell \rightarrow 3\ell'$ related by unitarity to $Z^0, h, V \rightarrow \ell^+\ell'^-$ and $\ell \rightarrow \ell'$ conversion in nuclei (most stringent limits so far by SINDRUM II)
	- *τ →* 3*µ* and *µ →* 3*e* can provide better limits than direct searches e.g. for $\phi \rightarrow e\mu$, $J/\Psi \rightarrow e\mu$
	- *BR*(*^τ [→]* ³*µ*) *<* ¹*.*² *[×]* ¹⁰*−*⁸ (BaBar,Belle,LHCb) *HFAG, arXiv:1412.7515*
- \rightarrow **SHiP** will collect $3 \times 10^{15} \tau$ in the forward region
	- requires changes to conceptual design (upgrade):
	- 1 mm W target: 100*×* less *τ* , but decaying outside target
	- $-$ LHCb VELO + Si tracker + hadron absorber + μ spectrometer
	- sensitivity *[∼]* ¹⁰*−*¹⁰*/* √ *N*targets

E. Graverini (Universität Zürich) *SHiP: Search for Hidden Particles* 13/13

The Hidden Sector

$$
L_{world} = L_{SM} + L_{mediation} + L_{HS}
$$

- **Neutrino portal**: new Heavy Neutral Leptons coupling with Yukawa coupling, $L_{NP} = F_{\alpha I}(\bar{L}_{\alpha} \widetilde{\Phi}) N_I$
- **Vector portal**: massive dark photon coupling through loops of particles charged both under $U(1)$ and $U'(1)$: $L_{VP} = \epsilon F'_{\mu\nu} F^{\mu\nu}$
- **Scalar portal**: light scalar mixing with the Higgs $L_{SP} = (\lambda_i S_i^2 + g_i S_i) \overline{\Phi} \Phi$
- **Axion portal**: axion-like particles, $L_{AP} = \frac{A}{4f_A}$ $\frac{A}{4f_A} \epsilon^{\mu\nu\lambda\rho} F_{\mu\nu} F_{\lambda\rho}$
- **SUSY**: neutralino, sgoldstino, gaugino…

24/07/2015 EPS-HEP **Elena Graverini**, on behalf of the **SHiP** collaboration 19

New Physics prospects in Hidden Sector Standard Model portals:

• **D = 2: Vector portal**

- Kinetic mixing with massive dark/secluded/paraphoton $V: \frac{1}{2} \varepsilon F_{\mu\nu}^{SM} F_{HS}^{\mu\nu}$ 2
- → Motivated in part by idea of "mirror world" restoring left and right symmetry, constituting dark matter, q-2 anomaly, ...
- Production: proton bremsstrahlung, direct QCD production $q\bar q \to V, qg \to Vq$, meson decays $(\pi^0, \eta, \omega, \eta', ...)$

• **D = 2: Scalar portal**

- Mass mixing with dark singlet scalar $\chi : (gS + \lambda S^2)H^{\dagger}H$
- → Mass to Higgs boson and right-handed neutrino, inflaton, dark phase transitions BAU, dark matter, "dark naturalness",
- Production: Direct $p + target \rightarrow X + S$, meson decays e.g. $B \rightarrow KS$, $K \rightarrow \pi S$

• **D = 5/2: Neutrino portal**

- Mixing with right-handed neutrino N (Heavy Neutral Lepton): $Y_{I} \rho H^{\dagger} \overline{N}_{I} L_{\ell}$
- **→ Neutrino oscillation, baryon asymmetry, dark matter**
- Production: Leptonic, semi-leptonic decays of heavy hadrons

• **D = 4: Axion portal**

- Mixing with Axion Like Particles, pseudo-scalars pNGB, axial vectors a : $\frac{a}{F}G_{\mu\nu}\tilde{G}^{\mu\nu}, \frac{\sigma_\mu a}{F}\bar{\psi}\gamma_\mu\gamma_5\psi$, <code>etc</code>
- → Generically light pseudo-scalars arise in spontaneous breaking of approximate symmetries at a high mass scale F → Extended Higgs, SUSY breaking, dark matter, possibility of inflaton,...
- Production: Primakoff production, mixing with pions and heavy meson decays

• **And higher dimensional operator portals**

• Chern-Simons portal (vector portal)

New Physics prospects in Hidden Sector

• **SUper-SYmmetric "portals"**

- Some of SUSY low-energy parameter space open to complementary searches
- Sgoldstino S(P) : $\frac{m_{YY}}{F}$ S $F^{\mu\nu}F_{\mu\nu}$
- Neutralino in R-Parity Violating SUSY
- Hidden Photinos, axinos and saxions….

 $\overline{\mathbf{X}}$ - - - - HS - - - - $\overline{\mathbf{X}}$ - - M

SM

Production

A very large variety of models based on these or mixtures thereof

- 1. "Indirect detection" through portals in (missing mass)
- 2. "Direct detection" through both portals in and out

→ SHiP has significant sensitivity to all of these!

Assumption invisible decay width $\chi\bar{\chi}$ is absent or sub-dominant, $\; m_\chi > \frac{1}{2} m_{portal},$ where χ hidden sector particle

8

Sterile Neutrinos

Fermions get mass via the Yukawa couplings:

$$
-\mathcal{L}_{\rm Yukawa} = Y^d_{ij} \overline{Q_{Li}}\phi D_{Rj} + Y^u_{ij} \overline{Q_{Li}}\tilde{\phi} U_{Rj} + Y^\ell_{ij} \overline{L_{Li}}\phi E_{Rj} + \text{h.c.},
$$

If we want the same coupling for neutrinos, we need right-handed (sterile) neutrinos… the most generic Lagrangian is

$$
\mathcal{L}_N = i \overline{N}_i \partial_\mu \gamma^\mu N_i - \frac{1}{2} M_{ij} \overline{N^c}_i N_j - Y^\nu_{ij} \overline{L_{Li}} \tilde{\phi} N_j
$$
 Kinetic term
Majorana mass term "Yukawa coupling"

$$
U_{I\ell} \sim \frac{M_D^{\ell}}{M_N^{\ell}} = \frac{Y_{I\ell}v}{M_N^{\ell}}
$$

$$
\langle \Phi \rangle
$$

$$
\sim \sqrt{\frac{\Phi \rangle}{V_i}}
$$

$$
\mathcal{V} = (\nu_{Li}, N_j) \qquad -\mathcal{L}_{M_V} = \frac{1}{2} \overline{\mathcal{V}} M_V \mathcal{V} + h.c. \qquad \text{if } M_N \gg M_D:
$$

$$
M_{\nu} = \begin{pmatrix} 0 & M_D \\ M_D^T & M_N \end{pmatrix} \qquad \lambda_{\pm} = \frac{M_N \pm \sqrt{M_N^2 + 4M_D^2}}{2} \qquad \begin{array}{c} \lambda_{-} \sim \frac{M_D^2}{M_N} \\ \lambda_{+} \sim M_N \end{array}
$$

Seesaw mechanism:

Sterile neutrino masses

Seesaw formula $m_D \sim Y_{I\alpha} < \phi >$ and $m_{\nu} = \frac{m_D^2}{M}$

- Assuming $m_{\nu} = 0.1$ eV
- if $Y \sim 1$ implies $M \sim 10^{14}$ GeV
- if $M_N \sim 1$ GeV implies $Y_\nu \sim 10^{-7}$

remember $Y_{tan} \sim 1$ and $Y_e \sim 10^{-6}$

If we want to explain the smallness of neutrino masses (in a natural way) the mass of sterile neutrinos should be at least at the GeV scale

Majorana Mass (GeV)

Constraints on N¹

Constraints on N¹

DM sterile neutrinos decay subdominantly as $N_1\to\nu\gamma$ with a branching ration $\mathcal{B}(N_1\to\gamma\nu)\sim\frac{1}{123}$

Backgrounds with TP detector

Background summary: no evidence for any irreducible background

• No events selected in MC \rightarrow Expected background UL @ 90% CL

Design considerations with 4x10¹³ p / 7s

- → 355 kW average, 2.56 MW during 1s spill
- High temperature
- Compressive stresses
- Atomic displacement
- Erosion/corrosion
- Material properties as a function of irradiation
- Remote handling (Initial dose rate of 50 Sv/h…)
- \rightarrow Hybrid solution: Mo allow TZM (4 λ) + W(6 λ)

Seminar at TUM, Munich, Germany, February 5, 2016 R. Jacobsson (CERN)

Active muon shield

- Muon flux limit driven by emulsion based ν -detector and "hidden particle" background
- Passive and magnet sweeper/passive absorber options studied:
	- Conclusion: Shield based entirely on magnetic sweeping with $\int B_v dl \sim 86$ Tm
	- \rightarrow <7x10³ muons / spill (E_n > 3 GeV) which can potentially produce V0 (K_i)

2800 tonnes

 \rightarrow Negligible occupancy

→ Challenges: flux leakage, constant field profile, modelling magnet shape

Prompt dose rates in the experimental hall 4E13 p.o.t. / 7s

48m

Seminar at TUM, Munich, Germany, February 5, 2016 R. Jacobsson (CERN)

TP: Vessel and spectrometer magnet

Estimated need for vacuum: 10⁻³ mbar

• Based on v-flux: 2×10^4 v-interactions/ 2×10^{20} p.o.t. at p_{atm}

Vacuum vessel

- 10 m x 5 m x 60 m;
- Walls thickness: 8 mm (Al) / 30 mm (SS);
- Walls separation: 300 mm;
- Liquid scintillator volume: ~360 m3;
- 1500 WOMs (8 cm x Ø 8 cm WOM + PMTs);
- Metal weight (SS, no support): \sim 480 t.

 ith WO

LAB (Linear alkyl benzene)

Seminar at TUM, Munich, Germany, February 5, 2016 R. Jacobsson (CERN) 22

Low power magnet designed

- Field integral: 0.65Tm over 5m
- Current 2500 A (1.7 A/mm2
- Power consumption < 1 MW
- Weight ~800 tonnes

CÉRI

HS detector optimization

Optimization of geometrical acceptance for a given E_{beam} and Φ_{beam}

- Hidden particle lifetime (~flat for longlived)
- Hidden particle production angles (~distance and transversal size)
- Hidden particle decay opening angle (~length and transversal size)
- Muon flux (~distance and acceptable occupancy)
- Background (~detector time and spatial resolution)
- Evacuation in decay volume / technically feasible size ~ W:5m x H:10m

 \rightarrow Acceptance saturates ~40m – 50m

Seminar at TUM, Munich, Germany, February 5, 2016 R. Jacobsson (CERN)

HS tracking system

NA62-like straw detector

Straws in test beam 2016

- Study sagging effects and compensation
- Read out of signal, attenuation / two-sided readout
- Upstream straw veto may be based on same technology

Seminar at TUM, Munich, Germany, February 5, 2016

Horizontal orientation of 5m straws

First production of 5m straws at JINR

JINR Dubna (NA62, SHiP): Straws St Petersburg (CMS, SHiP): Infra