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Abstract: Cyclin-dependent kinase 5 (Cdk5) is an atypical proline-directed serine/threonine protein
kinase well-characterized for its role in the central nervous system rather than in the cell cycle.
Indeed, its dysregulation has been strongly implicated in the progression of synaptic dysfunction and
neurodegenerative diseases, such as Alzheimer’s disease (AD) and Parkinson’s disease (PD), and
also in the development and progression of a variety of cancers. For this reason, Cdk5 is considered
as a promising target for drug design, and the discovery of novel small-molecule Cdk5 inhibitors is of
great interest in the medicinal chemistry field. In this context, we employed a machine learning-based
virtual screening protocol with subsequent molecular docking, molecular dynamics simulations and
binding free energy evaluations. Our virtual screening studies resulted in the identification of two
novel Cdk5 inhibitors, highlighting an experimental hit rate of 50% and thus validating the reliability
of the in silico workflow. Both identified ligands, compounds CPD1 and CPD4, showed a promising
enzyme inhibitory activity and CPD1 also demonstrated a remarkable antiproliferative activity in
ovarian and colon cancer cells. These ligands represent a valuable starting point for structure-based
hit-optimization studies aimed at identifying new potent Cdk5 inhibitors.

Keywords: virtual screening; machine learning; kinase; CDK5

1. Introduction

Cyclin-dependent kinases (Cdks) are serine/threonine protein kinases that are primar-
ily involved in the regulation of cell cycle, cell differentiation and gene transcription [1].
The Cdk family consists of 20 serine/threonine protein kinases, including Cdk5 that of-
ten have tissue-dependent functions. Cdk5 is considered as an atypical member of the
mammalian Cdk family. Although other Cdks are primarily found in proliferating cells,
Cdk5 is predominantly located in postmitotic neurons [2], where it plays a vital role in
brain development, neuronal survival, synaptic plasticity, microtubule regulation and pain
signaling [3]. Unlike other Cdks, Cdk5 is activated by the non-cyclin proteins, p35 and p39,
and their truncated products, p25 and p29, which are abundantly expressed in the brain.
The dysregulation of Cdk5 can mainly be attributed to its activation by p25, which results in
the hyperactivation of this Cdk and its aberrant subcellular localization, with dysfunctional
consequences at the neuronal level [4,5]. In fact, Cdk5 is implicated in neurodegenerative
diseases such as Alzheimer’s disease (AD) and Parkinson disease (PD) by contributing to
the formation of the aberrantly phosphorylated tau protein [5] and to the degeneration of
dopaminergic neurons in the substantia nigra [6]. Furthermore, marked Cdk5 immunoreac-
tivity was observed in degenerating neurons in the spinal cord of patients with sporadic
Amyotrophic lateral sclerosis (ALS) [7] as well as in brain samples from patients with
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HIV encephalitis, which exhibit more profound cognitive alterations and neurodegen-
eration [8,9]. Recent reports also highlight the link between Cdk5 hyperactivation and
diabetes-associated neurodegeneration; the high-glucose exposure leads to p25 generation
and protein tau hyperphosphorylation, determining neuronal death and cognitive impair-
ment [10]. Although its altered regulation mainly leads to neurodegeneration, Cdk5 is
ubiquitous, and its aberrant expression has been observed in multiple types of solid and
hematological malignancies [11]. In fact, an increased expression of Cdk5 have been re-
ported in pancreatic [12], colorectal [13], prostate [14], breast [15] and ovarian [16] cancers,
glioblastoma multiforme [17] and multiple myeloma [18]. Indeed, the impacts of Cdk5 on
the hallmarks of cancer are different, such as the uncontrolled proliferative signaling and
its aftermath: growth suppression [19], tumour promoting inflammation [20], invasion and
metastasis [21], induction of angiogenesis [22], genomic instability and mutation [23]. This
multifaceted role in causing diseases makes Cdk5 a promising drug target [24]. Roscovitine
(seliciclib) and dinaciclib are currently the prototype inhibitors in clinical trials that target
multiple kinases, including Cdk5 [25–27]. Several phase I and phase II clinical trials in
cancer patients have been completed for these inhibitors and a recent Phase III clinical
trial demonstrated the potential antiproliferative activity of dinaciclib [28]. Nevertheless,
the search for Cdk5 inhibitors as drug candidates endowed with an optimal potency and
selectivity continues, given the current unavailability of specific Cdk5 inhibitors at any
stage of drug development.

Herein, we report machine learning-based Virtual Screening (VS), followed by dock-
ing evaluations and molecular dynamics (MD) simulations, carried out with the aim of
discovering novel potential Cdk5 inhibitors. Indeed, machine learning (ML) proved to
be a promising strategy for the identification of drug leads through VS, since it allowed
the discovery of two novel compounds endowed with micromolar inhibitory activity
against Cdk5, thus validating the reliability of our predictive ML models. Furthermore, the
availability of X-ray structures of Cdk5 in complex with reference inhibitors allowed the
employment of docking protocols for predicting the ligand-binding dispositions, which
were further studied through MD simulations and binding free energy evaluations, thus
providing a starting point for future structure-based hit optimization studies aimed at
designing new and more potent Cdk5 inhibitors.

2. Results and Discussion
2.1. Machine Learning Model Generation, Optimization and Evaluation

In order to develop ML models for identifying novel ligands potentially active against
Cdk5, we searched for compounds with bioactivity data related to Cdk5 inhibition available
on ChEMBL 25. Compounds with biological activity measured as Ki were retrieved and
subjected to a data curation process, eventually obtaining the training set used to generate
our ML models. The test set was assembled by employing compounds with biological
activity measured as IC50 available on ChEMBL 25. The final test set was also enriched
with compounds removed from the training set (see Materials and Methods for details).
Training set and test set instances were labeled as active if their potency was ≤1 µM and
inactive when their potency was ≥5 µM. Compounds with potency between the two
thresholds were removed. The final training set consisted of 196 active and 462 inactive
compounds, whereas the test set included 98 compounds labeled as active and 216 as
inactive. The generated models were obtained by representing the training set compounds
through molecular fingerprints (FPs). Six different types of FPs were used: Morgan,
RDKit, Layered, Pattern, MACCS and Pharm2D. Each FP method was combined with four
different classification algorithms, i.e., Random Forest (RF), Support Vector Machine (SVM),
k-Nearest Neighbor (KNN) and Multi-Layer Perceptron (MLP), for the development of
a total of 24 different classification models. Each model combination was subjected to
an optimization process in order to identify the best hyperparameter configuration for
maximizing its performance. A 10-folds cross-validation (CV) analysis was then performed
for each optimized model to obtain an overview of its predictive capacity. The performance
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of all models was evaluated and ranked according to the values of Matthew’s Correction
Coefficient (MCC) obtained through CV analysis (see Materials and Methods for details).
The results obtained from the CV provided insights into the impact of the different FPs
on the quality of predictions. In particular, we observed that for each algorithm, Morgan
FPs allowed to obtain the highest predictive performance. Indeed, Morgan FPs showed
a minimum MCC value of 0.60, as in the case of KNN-based models, and a maximum of
0.69, as seen in SVM-based models. On the contrary, the FPs that proved to be the worst in
terms of global performance were MACCS FPs, with MCC values ranging from 0.47 to 0.55
(Tables S1–S4 in Supporting Information). These results highlight that Morgan FPs were
able to provide the best molecular description to generate patterns for the discrimination
of Cdk5 inhibitors from inactive molecules. According to these findings, models based
on each ML algorithm and Morgan FPs were then subjected to a final external evaluation
consisting of predicting the activity of the test set compounds. For each selected model,
the performance of the test set prediction was evaluated considering Precision and Recall,
besides MCC (as reported in Materials and Methods). Indeed, the success of a VS protocol
is defined by its ability to maximize true positive predictions over false positive ones
(Precision), rather than maximizing the identification of true positives over the total number
of positives in the dataset (Recall). The importance of improving Precision is related to
the extremely small number of compounds typically selected for biological evaluation, in
contrast to the larger number of compounds present in the screened library, and thus to the
need of maximizing the VS hit rate. On the other hand, improving the ability of the model
to retain true positives, while reducing the number of false positives, is often associated
with an inevitable increase of active compounds misclassified as false negatives. This
well-known issue is crucial for the selection of the appropriate metric to evaluate the VS
protocol performance. In this case, a metric such as F1, which corresponds to the harmonic
mean of Precision and Recall, is not appropriate since a high F1 value can often be biased
by a high Recall, thereby masking a low Precision [29]. Based on these considerations, in
this study, we focused on Precision score for the selection of the best model to be applied
for VS, among those showing the highest MCC values. The results obtained from the
external evaluation (Table 1) show that all selected models except KNN performed equally
well in terms of MCC; in fact, KNN showed an MCC value (0.33) significantly lower than
those obtained for the other models (0.41–0.43). In terms of precision, RF achieved a score
of 0.87 with a margin of 0.22 over the second best model (SVM). An opposite trend can
be observed when considering Recall, since RF obtained the lowest score, whereas MLP
appeared to be the best one, with a score of 0.61. With the aim to improve the predictive
performance achievable through the use of our models, we employed a consensus strategy
that allowed us to combine the different predictions of the four top-scored models selected.
In fact, we already successfully applied consensus strategies for improving the reliability of
docking studies [30], developing efficient VS protocols [31], and also boosting the predictive
performance of our ML-based platform for small-molecule toxicity predictions [32]. In this
context, a compound was classified as active only if predicted as active by all four models,
i.e., if the Probability Score (PS) provided by each model was at least 0.5 (see Materials and
Methods for details). The consensus approach was evaluated through to the prediction
of the test set by measuring MCC, Precision and Recall in comparison with the values
obtained for each individual model. Table 1 shows that the consensus approach performed
slightly better than the single best model (RF) in terms of MCC and Precision, achieving
only a small improvement of 0.01; this was also observed for Recall, which thus maintained
a value (0.31) far below that observed for MLP (0.61), the best algorithm in terms of this
specific evaluation metric.



Int. J. Mol. Sci. 2022, 23, 10653 4 of 16

Table 1. Performance evaluation results, based on test set prediction, obtained with the 4 top-scored
models and consensus strategy.

Model MCC Precision Recall

Consensus 0.43 0.88 0.31
RF 0.42 0.87 0.30

SVM 0.42 0.65 0.52
MLP 0.41 0.59 0.61
KNN 0.33 0.58 0.46

Given the great importance of Precision for VS studies, we decided to focus on the
RF model and the consensus approach. However, although the consensus showed to be
the best approach, the only slight improvement over RF in terms of MCC and Precision,
compared to the greater amount of time required for generating multiple predictions versus
a single one, led us to choose RF as the final model for the VS step. In order to minimize the
possibility of predicting false positives in the VS, the performance evaluation of the model
based on the test set was repeated by changing the prediction criteria. Specifically, under
normal conditions, a compound is predicted to be active if the PS provided by the model is
at least 0.5; our goal was to study how the performance of the model could be affected by
increasing the PS threshold by steps of 0.1, up to the maximum value of 0.9. This analysis
allowed us to evaluate the impact of the confidence of the predictions on the predictive
performance of the model, trying to find an optimal classification threshold for maximizing
Precision (Figure 1).
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set prediction. The test set consists of 314 instances of which 98 active.

According to our expectation, the observed trend showed an increase in Precision at
the expense of Recall. In other words, increasing the PS threshold for prediction resulted
in fewer false positives but, on the other hand, in an increased number of false negatives.
This phenomenon is due to the fact that most active compounds present a PS that is not
particularly high; therefore, they tend to be classified as inactive when using threshold
values greater than 0.5.

Looking at Figure 1, it can be observed that after the first threshold increase, the
Precision score achieves the maximum possible value, which is maintained with the other
thresholds. However, according to what discussed above, by increasing the PS threshold
the number of true positive predictions is reduced. Indeed, the RF model was still able
to predict 23 true positives (out of a total of 91 active instances) with the threshold of 0.6,
whereas only 9 true positives were identified when 0.9 was considered as the classification
threshold. These findings show that using a classification threshold of at least 0.6 maximizes
the Precision of the model, thus providing an important indication for identifying new
active compounds through VS studies.
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2.2. Virtual Screening

In light of the results of the previous analyses, a practical application of the developed
model was performed through a VS study. Two focused libraries of commercial compounds,
belonging from Enamine and Vitas-M (see Material and Methods for details), were subjected
the same data curation protocol used for training and test set compounds, in order to have
consistent molecular representations, and independently screened using the optimized
RF model. A total of 548 compounds within the Enamine library were associated to a PS
of at least 0.5, whereas the highest PS corresponding to 0.8 was obtained for only four
compounds. Conversely, only four compounds within Vitas-M library were predicted
as active, with a maximum probability score of 0.5. Based on the results obtained in the
performance analysis of the model, we decided to retain only the compounds with the
highest PS for each library, in order to select a reasonable number of compounds to be
purchased and subjected to biological evaluations with the highest chance of being actually
active. Therefore, the VS study led to the selection of eight total compounds, four from
each commercial library considered. The eight selected compounds were subjected to
clustering and visual inspection, and only four structurally different compounds were
finally purchased and tested for Cdk5 inhibitory activity. Enzymatic inhibition assays
revealed that only two out of the four compounds, namely CPD1 and CPD4, were endowed
with promising Cdk5 inhibitory activity, with IC50 values of 3.43 and 1.27 µM, respectively,
corresponding to a hit ratio of 50% (Table 2 and Figure S1).

Table 2. Structure and Cdk5 inhibition activity of the tested compounds.

Compound ID Structure IC50 (µM)

CPD1
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2.3. Antiproliferative Assays

Compounds CPD1 and CPD4 were also selected for further in vitro experiments
to evaluate their antiproliferative potency against cancer cells. Cisplatin was used as
the reference compound. Due to the key role that Cdk5 plays in the tumor progression
of breast, colorectal and ovarian cancers [13,16,33], four tumor cell lines were chosen:
the human breast MDA-MB-231, the colorectal HCT116 and the ovarian OVCAR3 and
A2780 cancer cells (Table 3). Compounds CPD1 and CPD4 produced an appreciable
inhibition of cell viability in all the tested cell lines, with IC50 values ranging from 12 to
2127 nM. In particular, compound CPD1 showed a more potent cytotoxic activity on
OVCAR3 and A2780, with IC50 values of 12.0 and 93.7 nM (IC50 = 681 and 275 nM,
respectively, for cisplatin). The proliferation of the HCT116 tumor cells was similarly
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affected by CPD4 and cisplatin, whereas CPD1 was more potent (about 10-fold). Finally,
compounds CPD1 and CPD4 exerted a lower antiproliferative potency on MDA-MB-231,
always maintaining better activities than those of the reference inhibitor (IC50 ranging from
1474 to 2127 nM for the two compounds versus > 10,000 nM of cisplatin).

Table 3. Cell growth inhibitory activities (IC50 values) of compounds CPD1 and CPD4.

IC50 (Mean ± SD, nM)
Compound HCT116 MDA-MB-231 OVCAR3 A2780

CPD1 183 ± 27 1474 ± 44 12.0 ± 1.1 93.7 ± 21.6
CPD4 1766 ± 230 2127 ± 349 2118 ± 63 678 ± 123

Cisplatin 2218 ± 6 >10,000 681 ± 50 275 ± 39

2.4. Molecular Modeling Studies

With the aim of providing a hypothetical binding orientation of CPD1 and CPD4 inside
Cdk5 binding site, molecular docking, MD simulations and binding free energy evaluations
were performed by using the X-ray structure of Cdk5 in complex with a naphtyridine
inhibitor (PDB code 7VDR) [34]. CPD1 and CPD4 were subjected to a robust docking
procedure with GOLD software by using the PLP scoring function. The docking results
were clustered within a threshold of 2.0 Å and the representative binding modes were
filtered based on cluster population and presence of H-bonds with the protein hinge region
(see the Material and Methods for details). A total of four potentially reliable binding
conformations were thus identified for both CPD1 and CPD4. Each binding mode was then
analyzed through a 100 ns MD simulations protocol aimed at evaluating the stability of
the predicted binding disposition of the ligands and their key interactions with the protein.
The root-mean square deviation (RMSD) of the ligand’s position during the MD, with
respect to the original docking pose, was thus analyzed for each studied ligand–protein
complex. The analysis showed high stability of all binding modes predicted for CPD1,
with an average RMSD around or below 2 Å (Figure 2A). Similar results were obtained for
CPD4, whose RMSD values did not exceed an average of 3 Å, although cluster 9 presented
larger fluctuations (Figure 2B).
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Given the stability of all selected poses for both CPD1 and CPD4, we decided to
consider all of them for further analyses. To better assess the reliability of the different
Cdk5-ligand complexes, the corresponding ligand–protein binding free energies were
evaluated from the MD coordinates extracted from the last 50 ns of simulation. The Molec-
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ular Mechanics-Poisson Boltzmann surface area (MM-PBSA) method was used for the
calculation (see Material and Methods for details). This approach analyzes the MD sim-
ulation snapshots and calculates the contributions of both gas-phase and solvation free
energies for the unbound ligand, unbound protein and bound complex [35]. As shown
in Table 4, the analysis identified cluster 1 as the most reliable binding mode for CPD1,
since it showed the best binding energy (∆PBSA = −35.9 kcal/mol) and exceeded by
2.8 kcal/mol the interaction energies associated with the second best pose. However,
given the small energy window between clusters 2 and 1, we decided to consider both of
them in subsequent binding mode analyses. In support of our decision, the energy gap
between cluster 2 and the third ranked pose was 7.1 kcal/mol, highlighting the lower
stability of the other poses. For CPD4, the results shown in Table 4 highlighted cluster 7
(∆PBSA = −34.4 kcal/mol) as the most energetically favored binding mode, with a differ-
ence of 5.0 kcal/mol from the second ranked pose.

Table 4. MM-PBSA results for the analyzed Cdk5-CPD1/4 complexes. ∆PBSA is the sum of the van
der Waals (VDW), electrostatic (ELE), as well as polar (EPB) and non-polar (ENPOLAR) solvation
free energy. Data are expressed as kcal·mol−1.

CPD1 VDW ELE EPB ENPOLAR ∆PBSA

CL1 −47.2 −32.4 48.0 −4.3 −35.9
CL2 −47.0 −40.2 58.3 −4.2 −33.1
CL6 −46.8 −23.6 48.6 −4.3 −26.0
CL4 −44.6 −23.6 49.2 −4.2 −23.2

CPD4 VDW ELE EPB ENPOLAR ∆PBSA

CL7 −45.6 −24.8 40.2 −4.2 −34.4
CL1 −44.7 −24.1 43.8 −4.4 −29.4
CL2 −44.9 −23.2 48.2 −4.3 −24.3
CL9 −37.2 −22.6 44.4 −4.1 −19.5

Based on the results obtained from the MM-PBSA analysis, two binding dispositions
for CPD1 (clusters 1 and 2) and one for CPD4 (cluster 7) were selected for a visual analysis.
Figure 3 shows the binding modes refined through the MD simulations predicted for CPD1.
Based on the most energetically favorable binding disposition of CPD1, represented by
cluster 1, the ligand places its azaindole core within the hinge region of the protein, forming
two different H-bonds with the backbone nitrogen of C83 and the backbone oxygen of
E81 through its pyridine nitrogen and pyrrole NH, respectively. Moreover, the bicyclic core
forms hydrophobic interactions with V18, A31, V46, F80 and, in particular, with L133, over
which it perfectly lays. The carbonyl group of CPD1 establishes an additional H-bond with
K33, which further stabilizes the binding mode of the ligand. Finally, the piperidine moiety
of CPD1 shows lipophilic interactions mainly with V18 and F80, whereas the pyridine ring
forms an NH-π interaction with the side chain of Q130 and takes hydrophobic contacts
with I10 and V18; all these interactions appear to stabilize the bent conformation of the
terminal part of the ligand. In the binding orientation represented by cluster 2 (Figure 3B),
CPD1 forms only an H-bond with the amide backbone of C83, within the hinge region of
Cdk5, through its central carbonyl group. In fact, the azaindole core of the ligand is located
outside the hinge region of the protein and participates in a double H-bond interaction
with K33 and E51. Specifically, the pyridine nitrogen acts as an H-bond acceptor with
K33, whereas the pyrrole NH group acts as an H-bond donor with E51. Moreover, the
bicyclic core of the ligand forms hydrophobic interactions mainly with F80, whereas the
piperidine ring shows lipophilic interactions with V18, A31, V64 and L133. Finally, the
terminal pyridine moiety of CPD1 is located in the solvent-exposed region of the binding
site, forming van der Waals interactions only with I10 and D86. Although both binding
modes predicted for CPD1 appear as reliable, since most kinase inhibitors present an
H-bond donor/acceptor moiety that interact with the hinge region residues, the binding
mode of CPD1 represented by cluster 1 is believed to be more reliable than the binding
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disposition represented by cluster 2. This is also in agreement with the binding free energy
values obtained for the two binding dispositions of CPD1, suggesting cluster 1 as the most
energetically favored one.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 8 of 17 
 

 

with E51. Moreover, the bicyclic core of the ligand forms hydrophobic interactions mainly 
with F80, whereas the piperidine ring shows lipophilic interactions with V18, A31, V64 
and L133. Finally, the terminal pyridine moiety of CPD1 is located in the solvent-exposed 
region of the binding site, forming van der Waals interactions only with I10 and D86. Alt-
hough both binding modes predicted for CPD1 appear as reliable, since most kinase in-
hibitors present an H-bond donor/acceptor moiety that interact with the hinge region res-
idues, the binding mode of CPD1 represented by cluster 1 is believed to be more reliable 
than the binding disposition represented by cluster 2. This is also in agreement with the 
binding free energy values obtained for the two binding dispositions of CPD1, suggesting 
cluster 1 as the most energetically favored one. 

 
Figure 3. Minimized average structures of CPD1 (orange) in complex with Cdk5. The two different 
binding modes represented by (A) cluster 1 and (B) cluster 2 are shown. The protein residues sur-
rounding the ligand, constituting the binding site, are shown as grey sticks, whereas hydrogen 
bonds are shown as black dashed lines. 

Figure 4 shows the predicted binding mode for CPD4 derived from cluster 7. A key 
interaction network between the purine core of the ligand and the hinge region of Cdk5 
can be observed. In particular, the binding mode of the ligand is characterized by the pres-
ence of two H-bonds with both the backbone oxygen and nitrogen of C83 and a further 
H-bond with the backbone oxygen of E81. 

 

Figure 3. Minimized average structures of CPD1 (orange) in complex with Cdk5. The two different
binding modes represented by (A) cluster 1 and (B) cluster 2 are shown. The protein residues
surrounding the ligand, constituting the binding site, are shown as grey sticks, whereas hydrogen
bonds are shown as black dashed lines.

Figure 4 shows the predicted binding mode for CPD4 derived from cluster 7. A key
interaction network between the purine core of the ligand and the hinge region of Cdk5 can
be observed. In particular, the binding mode of the ligand is characterized by the presence
of two H-bonds with both the backbone oxygen and nitrogen of C83 and a further H-bond
with the backbone oxygen of E81.
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Moreover, the bicyclic core of the ligand forms hydrophobic interactions mainly with
A31 and L133, as well as with V46 and F80. The dimethoxybenzene ring is oriented toward
the solvent-exposed region of the binding site, sandwiched between Q85 and D86 from
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one side, and I10 from the other, thus forming interactions with these residues. Finally, the
methoxyethyl tail of CPD4 mainly forms hydrophobic interactions with the side chain of V18.

3. Materials and Methods
3.1. Machine Learning Data Sets

Our primary data source for creating the models was ChEMBL 25 [36]. We collected all
compounds with inhibitory potencies against Cdk5 (corresponding to UniProt ID “Q00535”)
measured as Ki. A structure refinement protocol was performed using OpenEye chemistry
toolkit [37], including charge neutralization, salts removal and control of structural integrity.
In order to obtain a unique dataset of compounds, if three or more Ki values were available
for a compound, values deviating by more than 25% from the respective calculated mean
were discarded, and the mean Ki value was recalculated and assigned as the final potency
annotation. In the case of two Ki values, the mean value was used. These steps allowed
for obtaining 1019 unique compounds with an unambiguously defined activity. From this
dataset, only the molecules tested by Metz and co-workers [38], which almost constituted
the entire dataset, were retrieved, whereas only 10 compounds belonging to diverse works
were removed, obtaining a dataset with 1009 compounds. This additional step was car-
ried out to ensure the homogeneousness of the dataset in terms of activities, considering
potency values measured using the same assay conditions. Based on the distribution of
Ki values associated to the dataset molecules, two thresholds for classifying compounds
were defined. Specifically, compounds with Ki ≤ 1 µM (pKi ≥ 6) were labelled as active,
whereas compounds with Ki ≥ 5 µM (pKi ≤ 5.3) were categorized as inactive. Compounds
with potency between the two thresholds were removed. The resulting refined dataset
consisted of 225 compounds labeled as active and 533 inactive compounds. In order to
enrich the external test set (see below), 100 random compounds were removed. There-
fore, this workflow resulted in a final training set of 658 compounds with 196 active and
462 inactive instances. For the validation of our ML models, we assembled an external test
set by recovering from ChEMBL 25 all records of Cdk5 inhibitors with potencies measured
as IC50 values, for a total of 204 molecules, and then removing compounds already present
in the training set. Furthermore, the 10 compounds with Ki potency values not determined
by Metz and co-workers [38], and the 100 random compounds previously excluded from
the training set, were included in this external dataset. The classification of the external
test set was performed using the same thresholds defined for the training set. The test set
resulted in 314 compounds, of which 98 labeled as active and 216 as inactive.

3.2. Molecular Representations

The SMILES (Simplified Molecular-Input Line-Entry System) strings of training and
test set compounds downloaded from CHEMBL 25 were used to compute different types
of molecular fingerprints (FPs), in order to provide the input data for ML algorithms. In
this context, we represented both molecular structures and properties using different FPs
calculated with the RDKit package [39].

Morgan FPs [40], better known as circular fingerprints, are based on Morgan’s algo-
rithm. These FPs represent the structure of the compounds by computing for each atom
its surroundings environment, including atomic bonds within a certain distance or radius.
Each atom identifier is then folded into a vector with fixed length through hashing functions
provided by RDKit. For this work, the atomic radius was set to two, whereas the vector
length was fixed to 2048.

RDKit FPs are RDKit-specific FPs [39]. The algorithm identifies all subgraphs in the
molecules within a particular range of atom sizes. For each identified subgraph, a raw bit
ID is computed and then the hashing function is fit in the assigned FP size by setting the
corresponding bit. Atom types are set by atomic numbers and aromaticity, whereas bond
types are set by atom types and bond types. In this work, the length of the FP vector was
2048 bits for consistency with Morgan FPs.
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Layered FPs represent other “RDKit original” FPs and were developed with the
intention of using them as substructure FPs [39]. Layered FPs employ the same subgraph
enumeration algorithm used in RDKit FPs; however, after subgraphs are generated, they
are used to set multiple bits based on different atom and bond type definitions.

Pattern FPs were designed to be used in substructure screenings [39]. The algorithm
identifies features in the molecule by doing substructure searches using a small number of
very generic Smiles Arbitrary Target Specification (SMARTS, a language used for describing
molecular patterns and properties) and then hashing each occurrence of a pattern based on
the atom and bond types involved.

MACCS FPs (Molecular ACCess System) [41] can be considered the prototype of key-
based fingerprints, where the bits are set according to the presence or absence of predefined
substructures (structural keys). MACCS keys were developed by MDL (Molecular Design
Limited, now a subsidiary of BIOVIA) and there are two sets of keys: a public set, which
contains 166 keys and is almost universally implemented in chemioinformatics applications,
and a wider set that contains 960 keys and is available only in BIOVIA’s Discovery Studio.
For this work, we used MACCS fingerprints computed with the 166 public keys.

Pharm2D FPs are 2D pharmacophore fingerprints created combining a set of chemical
features with the 2D (topological) distances between them [39]. When the distances are
binned, unique integer IDs can be assigned to each of these pharmacophores, and they
can be stored in a fingerprint. For this work, pharmacophore fingerprints were computed
considering all possible combinations of default features included within the RDKit library.
Specifically, the following feature types were considered: H-bond acceptor, H-bond donor,
positive ionizable, negative ionizable and aromatic features. Each feature combination
included a minimum of two and a maximum of three features.

3.3. Machine Learning Methods

Binary classification models were generated using four different ML algorithms: Ran-
dom Forest, Support Vector Machine, k-Nearest Neighbors and Multi-layer Perceptron. All
ML methods were implemented and tuned using the Scikit-learn python library [42].

Random Forest (RF) is one of the most widely used ensemble ML algorithms that
can be used for either classification or regression [43,44]. Each individual tree is trained
on a bootstrap sample (sampling with replacement) and the predictions are made by the
majority vote of the trees. The main hyperparameters optimized during model building
were max_features, which indicates the maximum number of features that can be considered
in a single tree, and n_estimators, expressing the number of trees built before making the
averages of predictions. The number of estimators that were taken into account corresponds
to 100 and 500, whereas the options of max_features investigated were: (a) log2, which
corresponds to the binary logarithm of the total features for a single node; (b) sqrt, which
is the square root of the total features in a single node; (c) None, for which max_features
correspond to the total number of features.

Support Vector Machine (SVM) maps the data according to their common patterns
and aims towards their optimal division between two classes, with each of them entirely
lying on opposite sides of a separating hyperplane [45]. In the case of binary classification,
the algorithm attempts to construct a hyperplane H by maximizing the distance between
the training instances belonging to different classes. To control the magnitude of allowable
training errors, the regularization hyperparameter C is used to balance the size of the
hyperplane margins and classification errors, whereas the hyperparameter kernel is used to
map the data into a higher dimensional feature space in order to make them separable. For
hyperparameter C, the values 0.01, 0.1, 1, 10 and 100 were considered, whereas two kernels
were tested during the tuning process: linear and tanimoto [46].

k-Nearest Neighbors (KNN) algorithm is a type of instance-based learning, which
computes the distance between the query point and the training instances to determine the k
closest points [47]. The final prediction is therefore obtained by the most frequent outcome
among the features of the nearest neighbors to the input data. The hyperparameters
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optimized during model building were n_neighbors and weight since they both reduce the
error due to the voting of the surrounding neighbors. n_neighbors represent the number
of neighbors taken into consideration for the classification, whereas weight indicates how
much the different surrounding elements influence the prediction. In this work, two options
were tested for weight: (a) uniform, indicating that all points in each neighborhood are
weighted equally, and (b) distance, imposing that closer neighbors of a query point have a
greater influence than neighbors that are further away from it. The values investigated for
n_neighbors were in a range between 1 and 30.

Multi-layer Perceptron (MLP) is a type of feedforward artificial neural network, that
consists of at least three layers: an input layer, a hidden layer and an output layer, each
consisting of a set of neurons [48]. Specifically, in the input layer, the number of neurons is
set to the number of features for a record in the training data. The neurons contained in
each hidden layer process the weighted inputs received from the neurons of the previous
layer, and send an output to the neurons of the following layer. Eventually, the output
neurons process the inputs received from the neurons of the last hidden layer and thus
provide the ultimate prediction. The main hyperparameters tuned in order to minimize
the error in the path from the input to the output predictions were: (a) hidden_layer_size,
which indicates the number of neurons and the number of hidden layers; (b) solver, which
is important to optimize the predictions at every decision step through the different lay-
ers; (c) activation, which refers to the activation function and defines how the weighted
sum of the input is transformed into output by one or more nodes in a network layer;
(d) learning_rate_init, which controls the step-size in updating the weights. In this work,
three different architectures of hidden layers were tested, two of which presented three
hidden layers formed by sets of [50, 50, 50] and [50, 100, 50] neurons, respectively, whereas
the other tested architecture was formed by a single hidden layer of 100 neurons. As the
type of solver, we tested lbfgs, which uses a limited amount of computer memory, only
storing a certain amount of vectors, as well as the stochastic gradients adam and sgd. Among
the activation functions, we considered “identity”, “logistic”, “tanh” and “relu” functions.
The options investigated for learning_rate_init were 0.01, 0.001, 0.0001 and 0.00001.

3.4. Model Building and Evaluation

The 6 different molecular FPs and 4 different ML algorithms were combined for
generating our models, resulting in a total of 24 possible combinations. An optimization
process based on the Grid Search cross-validation implemented in Scikit-learn was applied
to all generated models for determining the best hyperparameters setting. Grid Search
is a generic approach provided in Scikit-learn for searching hyperparameters in order to
maximize the performance of models. It employs a 5-fold stratified cross-validation (CV) to
explore all possible combinations of hyperparameters, assigning a score to each of them. In
this work, the scoring metric used was Matthew’s Correction Coefficient (see next section).
After tuning the hyperparameters, a further 10-fold CV was performed for each model.
A random training-test set splitting strategy was used, thus, for each fold, 30% of the
starting dataset was considered as a test set. Finally, for each algorithm, the model with the
fingerprint that obtained the highest average MCC was selected, resulting in 4 top-scored
models considered for further analysis.

3.5. Model Evaluation

To check the performance of the 4 top-scored models selected, three statistical parame-
ters were taken into account: Precision, Recall (or Sensitivity) and Matthew’s Correction
Coefficient (MCC), which are defined as follows:

Precision =
TP

(TP + FP)

Recall =
TP

(TP + FN)
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MCC =
(TP × TN – FP × FN)√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

TP (true positives) and TN (true negatives) correspond to the number of active and
inactive compounds, respectively, correctly predicted as such; FP (false positives) represents
the number of inactive compounds predicted as active, whereas FN (false negatives)
represents the number of active compounds predicted as inactive. Precision is an index
that assesses how much the model is able to provide correct positive predictions. In other
words, it reports the ratio of the number of the correct positive predictions on the total
positive predictions, therefore also including false positives. Recall indicates the number
of active compounds correctly classified over the total number of actives. Both Precision
and Recall return values in the range of 0–1, where 1 corresponds to the maximum model
performance. MCC takes into account all values of the confusion matrix derived from
the binary classification. It is a global index with values ranging from −1 to 1, where
1 corresponds to a perfect classification, 0 is a totally random classification and −1 indicates
a complete inverse classification.

3.6. Consensus Approach

The consensus approach is based on the probability score (PS) provided by each
model. These scores are calculated independently by each model and they are associated
with the final predictions. Specifically, 0 ≤ PS < 0.5 corresponds to an inactive prediction,
whereas 0.5 ≤ PS ≤ 1 corresponds to an active prediction. Moreover, the closer the score
is to the extremes 0 and 1, the more confident is the prediction of inactivity and activity,
respectively. The consensus strategy consists of combining the PSs generated for each
molecule in the test set by the best models, as previously performed [32]. Specifically, based
on the consensus approach, a compound was classified as active only if the calculated
average of the PS provided by the best models resulted in at least 0.5. The evaluation of the
consensus strategy was measured with the same statistical parameters used to evaluate the
performance of the individual models (Precision, Recall and MCC). Therefore, performance
indices were calculated based on the consensus predictions to evaluate the performance of
such a strategy.

3.7. Database Generation and Machine Learning Screening

Approximately 70,000 total compounds from the commercial Enamine and Vitas-M
databases were used as the screening database. In particular, specific sections of those
databases, which are designed for the discovery of novel protein kinase inhibitors, were
considered and subjected to the same data curation workflow preformed for training and
test sets. The best developed model was used to screen the database in order to identify
potential new active compounds. Only compounds that achieved the maximum probability
score for each database were retrieved in this search.

3.8. In Vitro Cdk5 Inhibition Activity

Compounds identified by virtual screening were purchased from Enamine and Vitas-M
and tested for Cdk5 inhibitory activity using the in vitro fluorescent bases assay e Z’-LYTE
(Thermo Fisher Scientific, Madison, WI, USA). IC50 values were determined from logistical
dose-response curves with 10 points, each obtained as the mean of two independent experi-
ments. The development reaction interference and the compound fluorescence interference
evaluation were carried out for each concentration of test compound assayed. The develop-
ment reaction interference was established by comparing the test compound control wells
that did not contain ATP versus the 0% phosphorylation control (which did not contain the
test compound). The test compound fluorescence interference was determined by compar-
ing the test compound control wells that did not contain the Kinase/Peptide Mixture (zero
peptide control) versus the 0% inhibition control. Both compounds CPD1 and CPD4 were
classified as non-interfering compounds. The structural identity of the purchased com-
pounds was verified by 1H-NMR studies (Bruker Avance III 400 MHz spectrometer).
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3.9. Molecular Docking Calculations

All docking calculations were carried out using the X-ray structure of Cdk5 in complex
with a naphtyridine inhibitor (PDB code 7VDR) [34]. GOLD 5.1 with PLP fitness function
was employed for molecular docking. The binding cavity used for the docking calculations
was defined in order to include all residues, which stayed within 10 Å from the center of the
co-crystallized ligand in the reference X-ray complex. In all docking studies performed, the
possibility for the ligand to flip ring corners was enabled while the “allow early termination”
option was deactivated. The ligands were subjected to 100 genetic algorithm runs and
GOLD default values were used for all other settings [49]. The different docking poses
relative to CPD1 and CPD4 were clustered with an RMSD cut-off of 2.0 Å. The representative
poses of the obtained clusters with a population of at least 5% of the total solutions, which
showed at least one H-bond with the hinge region of the protein, were selected as the most
reliable poses for further analysis.

3.10. Molecular Dynamics (MD) Simulations

All simulations were performed using AMBER [50] version 20 and were carried out
using the ff14SB force field at 300 K. General Amber force field (GAFF) parameters were
assigned to the ligands, whereas partial charges were calculated using the AM1-BCC
method with the Antechamber suite of AMBER 20. All ligand–protein complexes were
placed in a rectangular parallelepiped water-box, by using a TIP3P explicit solvent model
and solvated with a 15.0 Å water cap. Either Na+ or Cl− ions were added as counteri-
ons for the neutralization of the systems. Before MD simulations, two stages of energy
minimization were carried out; in the first step, a position restraint of 100 kcal/(mol·Å2)
was applied to the complex, thus minimizing only the position of the water molecules
through 5000 steps of steepest descent, followed by conjugate gradient until a convergence
of 0.05 kcal/(mol·Å2) was achieved. Successively, the whole system was energy minimized
imposing a harmonic force constant of 10 kcal/(mol·Å2) only on the protein α carbons.
The minimized complexes were used as starting conformations for the MD simulations.
Periodic boundary conditions and particle mesh Ewald (PME) electrostatics were employed
in the simulations. An initial MD step of 0.5 ns with constant-volume periodic boundary
conditions was performed and the temperature of the system was raised from 0 to 300 K.
The system was then equilibrated through 3 ns of constant pressure periodic boundary
MD, employing the Langevin thermostat in order to keep the temperature of the system
constant. Then, an additional 96.5 ns of constant pressure MD production was performed.
Thus, a total of 100 ns of MD simulation was carried out for each protein–ligand complex
analyzed in this study. All the α carbons of the protein were restrained with a harmonic
force constant of 10 kcal/(mol·Å2) during the whole MD simulation. All the obtained MD
trajectories were analyzed using the cpptraj program implemented in AMBER 20.

3.11. Binding Energy Evaluation

The evaluation of the binding energy associated with different ligand–protein com-
plexes analyzed through MD simulations was carried out using AMBER 20, as already
reported [51,52]. The trajectories relative to the last 50 ns of each simulation were extracted
and used for the calculation for a total of 100 snapshots (at time intervals of 100 ps). Van
der Waals, electrostatic and internal interactions were calculated with the SANDER mod-
ule of AMBER 20, whereas polar energies were calculated using the Poisson−Boltzman
methods with the MM-PBSA module of AMBER 20. Dielectric constants of 1 and 80 were
used to represent the gas and water phases, respectively, whereas MOLSURF program
was employed to estimate the nonpolar energies. The entropic term was considered as
approximately constant in the comparison of the ligand−protein energetic interactions.

3.12. Cell Viability Assay

Human breast MDA-MB-231, colorectal HCT116 and ovarian OVCAR3 and A2780 can-
cer cells (from ATCC) were maintained at 37 ◦C in a humidified atmosphere containing
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5% CO2 according to the supplier. Cells (5 × 102) were plated in 96-well culture plates.
The day after seeding, vehicles or compounds were added at different concentrations to
the medium. Compounds were added to the cell culture at a concentration ranging from
200 to 0.02 µM. Cell viability was measured after 96 h according to the supplier (Promega,
G7571) with a Tecan M1000 instrument. IC50 values were calculated from logistical dose re-
sponse curves. Averages were obtained from triplicates, and error bars are standard deviations.

4. Conclusions

Cyclin-dependent kinase 5 (Cdk5) is considered as a promising target in the drug
design field for its role in the progression of neurodegenerative diseases such as AD and
PD, as well as in the development and progression of a variety of tumors. In this work,
we employed a machine learning-based virtual screening protocol with the aim to identify
novel potential Cdk5 inhibitors. Among 24 different machine learning models herein devel-
oped for this purpose, the best one in terms of MCC and Precision, was used to filter two
focused libraries of commercial compounds. Experimental assays demonstrated a good
Cdk5 inhibitory activity for two compounds, CPD1 and CPD4, out of the four ligands se-
lected through the virtual screening, for a hit rate of 50%. Furthermore, CPD1 demonstrated
a remarkable antiproliferative activity in ovarian and colon cancer cells. These findings
validated the reliability of the in silico workflow and highlighted the identification of two
promising hit compounds for the development of potent Cdk5 inhibitors. Moreover, the
binding dispositions of these compounds into the Cdk5 active site were predicted through
molecular docking, followed by MD simulations with binding free energy evaluations, thus
providing a valuable starting point for structure-based hit-optimization studies.
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