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Abstract 

In the present work, we propose a robust calibration of some bi-parametric multiaxial fatigue criteria applied 

in conjunction with the theory of critical distances (TCD). This is based on least-square fitting fatigue data 

generated using plain and sharp-notched specimens tested at two different load ratios and allows for the 

estimation of the critical distance according to the point and line method formulation of TCD. It is shown 

that this combination permits to incorporate the mean stress effect into the fatigue strength calculation, which 

is not accounted for in the classical formulation of TCD based on the range of the maximum principal stress. 

It is also shown that for those materials exhibiting a low fatigue-strength-to-yield-stress ratio, such as 7075-

T6, satisfactorily accurate predictions are obtained assuming a linear-elastic stress distribution, even at the 

tip of sharp notches and cracks. Conversely, for any materials characterized by higher values of this ratio, as 

quenched and tempered 42CrMo4, it is recommended to consider the stabilized elastic-plastic stress/strain 

distribution, also for plain and blunt-notched samples and even in the high cycle fatigue regime still with the 

application of the TCD. 

 

Keywords 

Multiaxial fatigue criterion; theory of critical distances; mean stress effect; notch fatigue; crack growth 

threshold 

 

Nomenclature 

a  amplitude 

b  fatigue strength exponent (Eq. (3a)) 

c  fatigue ductility exponent (Eq. (3b)) 

d diametral 
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E  Young’s modulus 

el  elastic 

H’  Ramberg–Osgood coefficient (Eq. (4)) 

HCF high cycle fatigue 

L, L’  critical distance lengths according to LM and PM 

Lth  threshold derived critical distance length 

LCF low cycle fatigue 

LM line method 

m  mean 

max  maximum 

n’  Ramberg–Osgood exponent (Eq. (4)) 

Nf  number of cycles to failure 

pl  plastic 

PM point method 

QT quenched and tempered 

R notch root radius 

R  load ratio 

TCD theory of critical distances 

α, β material parameters of a fatigue criterion 

ε normal strain 

ε’f  fatigue ductility coefficient (Eq. (3b)) 

γ  shear strain 

ΔKth  crack threshold SIF range 

Δσfl  plain fatigue limit range 

ν Poisson’s ratio 

σ normal stress 

σ’f  fatigue strength coefficient (Eq. (3a)) 

σn  normal stress acting on a generic material plane 

σVM  Von Mises equivalent stress 

σYS  yield stress 

σ’YS  cyclic yield stress 

τ   shear stress 

 

Introduction 

A robust notch fatigue assessment is of paramount importance for the structural integrity prognosis of most 

machine elements. It is in fact universally accepted by the scientific community that the fatigue response of 

metallic materials in the presence of stress gradients, such those produced by geometrical discontinuities 
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(holes, grooves, shoulders, weld beads, etc.), residual stresses (shot peening, welding, etc.), and contact 

between parts (e.g. turbine disc and blades), is not so much dictated by the peak (or hot spot) stress as by the 

average stress acting on a material’s characteristic structural volume. Peterson
1
 and Neuber

2
 were the first to 

understand the capability, quantified as notch fatigue sensitivity, of most metallic materials to accommodate 

local stress peaks under time-varying loading conditions. Their work paved the way for the main concept 

underpinning the Theory of Critical Distances (TCD): the critical condition in a notched or cracked member 

is achieved when a suitable stress component evaluated at a certain critical distance, or averaged over a 

domain of a certain critical size, equals a stress value representative of the fatigue failure in a smooth part. 

In the 90’s of the past century, Taylor
3
 and Susmel

4
 provided this theory with a sound theoretical framework. 

Initially, the TCD was formalized in the context of the following assumptions: (i) the notch stress field is 

linear-elastic; (ii) the fatigue damage phenomenon is controlled by the maximum principal stress range; (iii) 

the critical distance length L is a material characteristic, which is a function of the load ratio R only and is 

independent of the notch geometry; (iv) the fatigue calculation is conducted in the high-cycle fatigue (HCF) 

regime, usually assuming the existence of the material fatigue limit. Taking advantage of the notch-crack 

analogy necessary to render the TCD insensitive to the notch sharpness, the critical distance can be 

calculated from the threshold Stress Intensity Factor (SIF) range ΔKth and the full range of the plain 

specimen fatigue limit Δσfl, both obtained at the same load ratio: 

Lth =
1

π
ΔKth

Δσ fl

⎛

⎝⎜
⎞

⎠⎟

2

           (1) 

where the subscript “th” indicates that L is inferred from ΔKth. When the TCD is formulated in terms of the 

Point Method (PM), the component is regarded to be in the fatigue limit condition when the maximum 

principal stress range evaluated at a point located at a distance L/2 from the notch root equals the plain 

fatigue limit, as schematically illustrated by Fig. 1. Conversely, the Line Method (LM) averages the 

maximum principal stress range along the notch bisector over a length 2L. Other averaging domains of 

higher geometrical complexity
5,6

 have been proposed in the past, yet receiving much lesser attention than PM 

and LM, especially because of their complicated implementation. 

Despite providing satisfactory fatigue predictions in a wide variety of situations
7-9

, this conceptual 

framework of the TCD suffers from some limitations and drawbacks, which stimulated the scientific 

community to attempt further improvements: 

1) In general, only under uniaxial loading the fatigue damage is controlled by the maximum principal 

stress range. Under multiaxial conditions, more sophisticated fatigue criteria must be applied, based 

either on stress tensor invariants (J2), which can be easily converted into the von Mises stress, or 

Critical Plane (CP) approaches
10

. Susmel and Taylor
11

 observed that, in order to preserve the crack-

notch analogy, only CP based multiaxial fatigue criteria can be applied in conjunction with TCD, 

even though this is possible only under the undemonstrated condition that the same value of Lth 

expressed by Eq. (1) is obtained when the mode I is replaced by mode III crack growth threshold and 

the plain uniaxial is substituted by the plain torsional fatigue limit. After this pioneering work, the 
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TCD has been applied in combination with CP based fatigue criteria (Modified Wöhler Curve 

Method (MWCM)
12

, Carpinteri
13

, Fatemi-Socie
14

) to many multiaxial fatigue scenarios, including 

weld joints
15

, fretting fatigue
16

, variable amplitude loading
17

. In the vast majority of papers, the TCD 

is applied in terms of PM, as this, in contrast to the averaging operation done by LM, preserves the 

tensor notation of the stress field necessary for the CP definition. The main motivation in favour of 

combining TCD with CP criteria is the possibility of estimating the fatigue damage on material 

planes close to the ones on which initiation and initial growth are expected to occur
18

, even though 

the experimental investigations done in 
19

 attest some discrepancies between predicted and measured 

crack planes. Indeed, CP approaches postulates the crack initiation to occur on or near the plane of 

maximum shear stress amplitude, while some experiments indicate prevalent mode I crack 

propagation also in the early growth stages from the notch tip
19

. 

2) The application of TCD in concert with a multiaxial fatigue criterion helps to overcome another 

limitation of the original formulation of TCD, related to the assumption that any point of the notched 

geometry shall experience the same stress ratio R. This condition is however violated in many 

situations of practical interest, for instance in the presence of a residual stress field (superimposed to 

the mean external stresses), which is self-equilibrated and therefore non-uniformly distributed in the 

body, or due to any elastic-plastic redistribution of the notch stress field. The issue of a point-to-

point variation of the load ratio and hence of the material characteristic length is in general addressed 

by estimating the critical distance value under zero mean stress condition
4
 and using a multiaxial 

fatigue criterion to account for the mean stress effect
20

. This is incorporated into CP based criteria in 

the form of the maximum normal stress acting on the CP, while J2 methods consider the hydrostatic 

stress component
21

. 

3) An issue related to the threshold-based definition of the critical distance Lth according to Eq. (1) is 

that it precludes the TCD from being extended to the medium-cycle fatigue regime. In fact, defining 

a fracture mechanics parameter representative of the crack growth resistance in this fatigue regime is 

not straightforward. In a first attempt to overcome this limitation, Susmel and Taylor
22

 postulated a 

gradual transition (expressed as a function of the number of cycles to failure Nf in form of a power-

law equation) of L from Lth in the high cycle fatigue regime to L0 under monotonic static failure. 

Given the difficult application of TCD to predict the static failure of non-brittle structural metals
23

, 

other approaches
24

 proposed in the literature suggested determining L vs. Nf on the basis of the S-N 

curves generated by testing specimens with two different geometries, of which at least one contains a 

stress concentration feature. Anyway, till now, there is no general consensus if and how L varies 

with the component lifetime. For instance, Gates and Fatemi
14

 assumed L to be identically equal to 

Lth regardless to the fatigue life regime. 

4) The assumption of linear-elastic notch stress field is reasonable only in the HCF regime of structural 

metals with low fatigue-strength-to-yield-stress ratio. Ductile metals, especially in the low-to-

medium cycle fatigue regime, undergo in the notch tip neighbourhood plastic deformation leading to 
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a redistribution of the elastic stress field postulated by TCD. Nevertheless, Susmel and Taylor
7
 

suggested keeping valid this assumption under small-scale yielding. Other works
18,25

 instead 

proposed to replace the linear-elastic with the elastic-plastic stress distribution, usually estimated 

through nonlinear Finite Element (FE) analysis. Recently, Gates and Fatemi
26

 and Susmel et al.
27

 

devised elastic-plastic strain-based CP approaches in concert with PM to predict the low-cycle-

fatigue (LCF) strength of notched components, wherein the material fatigue strength is determined 

from multiaxial strain-controlled fatigue tests. Anyway, it is still debated if and to which extent the 

plastic deformation affects the critical distance L and its dependency upon Nf
22,25

. 

5) As shown by Gates and Fatemi
14

, the TCD predictions are highly sensitive to the value of Lth used in 

either LM or PM formulation. This length, in turn, is particularly affected by the input material 

parameters used for its definition. While the determination of the plain fatigue limit requires 

experimental equipment and expertise usually within the reach of any material testing laboratory, an 

accurate measurement of the threshold may be challenging, especially at negative load ratios. In 

addition, the threshold is particularly sensitive to the chemical composition, texture, microstructure 

and experimental procedures
28

. To overcome these drawbacks, the authors
29

 recently proposed the 

use of an optimal V-notched specimen to deduce the material critical distance through an inverse 

search procedure. In a subsequent paper
30

, the authors proved the robustness of the method by 

comparing the predictions of the TCD obtained using the threshold and the inverse search lengths. In 

particular, the inverse search length predictions were as accurate as the threshold-based ones when 

the notch radius is sharper than the component notch detail for which the fatigue strength needs to be 

predicted. 

The method proposed in 
29

 is based on the original formulation of TCD, viz. on the linear-elastic distribution 

of the maximum principal stress. The present paper is aimed at extending the use of the optimal notched 

sample devised in 
29

 to determine the critical length to be used in conjunction with a multiaxial fatigue 

criterion. This is useful to establish a critical distance value independent of the load ratio R and to pave the 

way for future applications of the method to multiaxial fatigue problems. Particular care will be paid in this 

work to clarify if the critical distance depends on (i) the choice of the multiaxial fatigue criterion (as inferred 

in their innovative work by Castro et al.
31

), (ii) the PM and LM formulation of TCD, (iii) the fatigue lifetime 

Nf, (iv) and the elastic-plastic stress/strain distribution ahead of the notch root. For this purpose, the results of 

fatigue tests carried out in [30] on two structural metallic alloys will be reinterpreted by the light of some 

well-established multiaxial fatigue criteria. The discussion is complemented by LCF tests carried out to 

investigate the cyclic strain-stress behaviour to be implemented in elastic-plastic FE analyses and by SEM 

fractographic observations to shed light on the orientation of the crack during its early propagation stages. 

 

Experimental material and procedures 

Details regarding the material and experimental procedures used to generate the fatigue data analysed in the 

subsequent sections can be found in 
30

. In brief, the experimentation was performed on 42CrMo4+QT 
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(Quenched and Tempered) steel and aeronautical aluminium grade 7075-T6. Their monotonic tensile 

properties are listed in Table 1. The fatigue characterization was carried out under alternating (load ratio 

R=−1) and pulsating (R=0.1) axial fatigue on axisymmetric plain and V-notched samples, whose geometry is 

shown in Fig. 2a and b, respectively. Specifically, notch depth A and V-aperture angle α (see Fig. 1) were 

devised in 
29

 to maximize the influence of the notch tip singular stress term and hence to minimize the 

sensitivity of the critical distance inverse search to the experimental uncertainties. In 
30

 notched samples of 

different severities were used and it was found that the sharp notch configuration (notch root radius R=0.2 

mm) yielded much more accurate critical distance estimation and hence fatigue calculations than the blunt 

one (notch root radius R=1 mm). The SN curves along with the fit curves are shown in Fig. 3. After failure, 

the fracture surfaces of some samples are examined using a Scanning Electron Microscope (SEM) FEI 

Quanta 450 ESEM FEG. The samples are fixed on the plate of the microscope initially perpendicular to the 

beam line, and then tilted by an angle of 55° to have a perspective view of the surface and estimate the initial 

crack plane angle with respect to the specimen axis orthogonal plane. 

The experimentation was complemented by fatigue crack growth tests in 
30

, conducted at R=−1 and R=0.1 

using C(T) and M(T) specimens, respectively. The outcomes in terms of crack threshold ΔKth and resulting 

estimation of Lth are listed in Table 2. 

The results of the cyclic stress-strain tests undertaken in 
32, 33

 on 7075-T651, an Al-alloy similar to the 

present one, suggest that the fatigue tests carried out in 
30

 in the fatigue life regime comprised between 10
5
 

and 3×10
7
 cycles are predominantly in linear-elastic conditions, even in the sharp notched samples, owing to 

the low fatigue-strength-to-yield-stress ratio displayed by the material. 

To investigate the cyclic and LCF behaviour of 42CrMo4+QT steel, a specific experimentation is here 

conducted on axisymmetric hourglass coupons (illustrated in Fig. 2c) with gage diameter of 6 mm extracted 

from the same material supply. Specifically, strain controlled fatigue tests are performed according to the 

standard ASTM E606 using a servo-hydraulic universal testing machine INSTRON 8516, equipped with 

hydraulic grips, a load cell of 100 kN (nonlinearity ±0.1% of R.O.) and a diametral (transversal) 

extensometer (nonlinearity ±0.15% of R.O.). Each sample is subjected to strain cycles with constant 

amplitude, triangular waveform, and constant strain rate of 1×10
−2

 s
−1

. Fully reversed strain amplitudes 

(strain ratio Rε = −1) are applied until final failure at 4 diametral strain amplitudes comprised in the range 

[0.0008, 0.005]. The diametral (εd) is converted into axial strain amplitude (εa) according to the following 

equation, assuming plastic incompressibility: 

ε
a
=
σ
max

E
1− 2ν( )− 2ε

d
          (2) 

where E is the Young’s modulus (reported in Table 1) and ν the Poisson’s ratio, taken equal to 0.3
34

. The 

LCF data are elaborated by dividing the total strain amplitude of the half-life stabilized hysteresis loops into 

its elastic (εa,el) and plastic (εa,pl) components, which are then separately fitted according to the Basquin and 

Coffin-Manson equations, respectively: 
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εa,el =
′σ f

E
2N f( )

b

           (3a) 

εa,pl = ′ε f 2N f( )
c

           (3b) 

The cyclic and monotonic stress-strain curves have been fitted using the Ramberg-Osgood equation: 

ε = σ
E
+

σ
′H

⎛
⎝⎜

⎞
⎠⎟
1/ ′n

           (4) 

and the material parameter H’ and n’ are reported in Table 3. 

 

Cyclic and low-cycle fatigue properties 

The evolution of the cyclic stress amplitude is shown in Fig. 4a as a function of the number of cycles for all 

the tested strain amplitudes. It can be noted that the material exhibits severe strain softening for all the 

explored strain amplitude values. This behaviour is typical of metallic materials with martensitic or bainitic 

microstructures
35-37

. Stabilized half-life stress-strain hysteresis loops are shown in Fig. 4b. It can be noted 

that the hysteresis cycles are approximately symmetric with respect to the horizontal (strain) axis only at the 

highest strain amplitudes, while at the lowest ones the compressive is slightly larger than the tensile stress 

peak. Apparently, due to the past thermo-mechanical history experienced by the material, the yield surface of 

the virgin material is not perfectly centred with respect to the principal stress axes and this effect is more 

pronounced when small plastic strains are applied. A similar behaviour was found in 
32

 for 7075-T651 Al-

alloy, which received a stretching treatment prior to aging. 

The results of the LCF tests are summarized in Fig. 4c. The best-fit coefficients of the Basquin and Coffin-

Manson equations (Eq. (3)) used to interpolate the experimental data are summarized in Table 3. The results 

of the load controlled fully reversed HCF tests are reported also in Fig. 4c for comparison. It can be noted 

that Eq. (3) tends to slightly overestimate the HCF strength of the material. Apparently, the aforementioned 

asymmetry observed in strain-controlled tests results in a (non-zero) negative mean stress, which is 

beneficial for the fatigue response of the material. 

The half-life hysteresis loops of the LCF tests have been used to determine the cyclic stress-strain curve of 

the material. The cyclic and monotonic stress-strain curves have been fitted using Eq. (4). The best-fit 

parameters are listed in Table 3. Figure 4d compares the cyclic stress-strain curve with the monotonic curve. 

It can be noted that the LCF cyclic curve lies below the monotonic curve; hence the material undergoes 

moderate cyclic softening, even though extrapolating the cyclic curve at strain levels above 0.015 results in a 

steeper rising behaviour than the monotonic curve. 

The results of the strain-controlled tests are used to calibrate the strain-hardening model of 42CrMo4+QT to 

be implemented in an elastic-plastic FE analysis of the notch and crack tip stress field. Specifically, the 

material behaviour is represented through a rate-independent, incremental theory of plasticity based on the 

Von Mises yield surface model with associated plastic flow rule. The hardening rule is given by the 

superposition of three Chaboche kinematic hardening sub-models
38

. An optimization procedure, described in 

detail in 
39

, has been devised to tune the coefficients of the kinematic sub-models so as to minimize a penalty 
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function defined as the cumulative absolute deviation of the numerical from the experimental values taken 

from the stabilized hysteresis loop measured at the largest strain amplitude (corresponding to a total axial 

strain amplitude εa=0.015, and a plastic axial strain amplitude εa,pl=0.012). This choice is motivated by the 

fact that this strain amplitude level is comparable with those experienced at the tip of the notched samples 

investigated in the present paper (see the following discussion) and that, at this strain amplitude, the near-

symmetric behavior of the material can be more easily captured by the hardening model than that at the 

lowest strain levels. The best-fit values of the Chaboche parameters are listed in Table 4. Figure 5 illustrates 

the comparison between the experimental and numerically predicted hysteresis loops represented as a 

function of the plastic strain component. As expected, the hardening model is in satisfactory agreement with 

the experimental values at the largest strain amplitudes. However, it is worth noticing that the experimental 

hysteresis loops do not exhibit, as expected, a vertical ramp just after the load inversion (because of the 

variation of the only elastic strain component). This discrepancy is due to the fact that the elastic strain 

component was calculated from the stress considering the Young’s modulus E estimated from the monotonic 

tensile tests. However, as attested by several investigations
35,40,41

, the cyclic (pseudo-) Young’s modulus 

estimated from the slope of the unloading ramp of cyclic tests differs from the monotonic one and it is a 

function of the accumulated strain amplitude. Incorporating this effect into a numerical model is considered 

rather difficult and beyond the scopes of the present paper. 

 

 

Elastic-plastic stress field 

The cyclic material properties of 42CrMo4+QT are used to numerically evaluate the elastic-plastic strain-

stress field in the notched and fracture mechanics specimens used in the experimentation undertaken in 
30

. 

The aim thereof is to investigate the effect of the elastic-plastic stress redistribution on the application of 

some multiaxial fatigue criteria in conjunction with the TCD. Specifically, the notched samples are analysed 

using an axisymmetric FE model employing four-node isoparametric elements. The mesh in the notch region 

is refined in a similar fashion to that used in 
29

 with the purpose of better reproducing stress and strain 

gradients at the notch tip. The crack tip stress-strain field is analysed using a plane-strain FE model 

employing eight-node isoparametric elements. The stress singularity at the crack tip is modelled by a radial 

arrangement of collapsed quarter-point singular elements, as described in detail in 
42

. The crack tip element 

size is chosen to be less than 1/20 of the crack tip plastic zone radius rp. The global dimension of the model 

is set so as to reproduce the condition of small scale yielding, wherein rp is sufficiently small with respect to 

the region of K-dominance. This occurs when the crack length a and the uncracked ligament W-a satisfy the 

following requirement [43]: 

a,(W − a) ≥ 2.5 K
I

σ
YS

⎛
⎝⎜

⎞
⎠⎟

2

          (5) 

The above-described FE models reproduce the loading history experienced by the samples during testing. 

Cyclic loading is applied until stabilization of the stress field, which occurs after 50-100 cycles. 
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Figure 6 illustrates the axial principal stress variation as a function of the distance (measured along the 

specimen axis of symmetry) from the notch/crack tip. The remote far field axial stress corresponds to the 

fatigue limit or crack threshold conditions for notched and cracked samples, respectively. Both maximum 

and minimum values are shown and normalized with respect to the cyclic yield stress ′σ
YS

 listed in Table 4. 

Figure 6a and b refer to the notched samples, while Figure 6c and d illustrate the crack tip stress field. Figure 

6a and c shows the alternating, 6b and d the pulsating loading conditions. It can be noted that the plastic 

deformation produces a redistribution of the notch and crack tip stress field (dashed lines) with respect to the 

pure elastic solution (solid lines). It is worth noticing that the extension of the plastic zone is larger in the 

blunt- than in the sharp-notched samples. The elastic-plastic stress cycles remains fully-reversed in the 

samples tested at R=-1, while the samples tested at R=0.1 undergo a redistribution of the mean stress as well, 

resulting in a deviation of the local load ratio R from the nominal one. A similar behaviour, not shown here 

for the sake of brevity, is displayed by the smooth specimens tested at R=0.1, which, also under fatigue limit 

loading conditions, display an elastic-plastic redistribution of the mean stress value. 

 

Multiaxial fatigue criteria 

One of the aims of the present work is to identify the most suitable multiaxial fatigue criterion for predicting, 

in combination with the TCD, the notch fatigue behavior, even in the presence of an elastic-plastic 

redistribution of the notch-tip stress field. For this purpose, six multiaxial bi-parametric fatigue criteria, 

which emerged as the most promising from the literature survey summarized in the Introduction, are 

considered: two J2 methods devised by Crossland
44

 and Sines
45

 for proportional loading only, four CP 

approaches according to Fatemi-Socie
46

, Findley
47

, Carpinteri
48

, and MWCM
49

 also suitable for non-

proportional (out-of-phase) loading. 

The Crossland criterion includes the Von Mises equivalent stress amplitude σVM,a, and the maximum 

hydrostatic pressure pmax in a linear equation of the form: 

σVM ,a +αC ⋅ pmax = βC            (6) 

The Sines criterion is very similar, wherein the mean pm instead of maximum hydrostatic pressure is 

considered: 

σVM ,a +α S ⋅ pm = βS            (7) 

The Fatemi-Socie criterion is based on the identification of the critical plane experiencing the maximum 

range of shear strain γa. In addition, it incorporates the mean stress by using the maximum value of normal 

stress σn,max, acting on the plane of maximum shear strain range: 

γ
a
1+α

FS

σ
n,max

σ
YS

⎛
⎝⎜

⎞
⎠⎟
= β

FS
          (8) 

where σYS is the material’s yield stress.  

Findley proposed to identify the critical plane experiencing the maximum value of a linear combination of 

both alternating shear stress τa and maximum normal stress σn,max: 
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τ
a
+α

F
⋅σ

n,max( )
max

= β
F

          (9) 

Carpinteri and Spagnoli
48

 observed that the critical plane orientation depends on the material ductility and 

assumed it to be a function of the material’s axial and torsional fatigue strength σAF, τAF. Accordingly, the 

normal of the critical plane normal is inclined by the angle δ with respect to the direction of maximum 

principal stress expressed as: 

δ =
3π
8
1− τ

AF

σ
AF

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

                      (10a) 

The fatigue criterion is a quadratic combination of the shear stress amplitude and the normal maximum stress 

acting on the critical plane: 

σ 2

n,max
+

σ
AF

τ
AF

⎛
⎝⎜

⎞
⎠⎟

2

τ
a

2
=σ

AF
                    (10b) 

The MWCM is a critical plane-based criterion, which may be written as: 

 τ
a
+α

MWCM

σ
n,max

τ
a

= β
MWCM

                     (11a) 

where the shear stress amplitude τa and maximum normal stress σn,max are computed on the critical plane 

experiencing the largest shear stress amplitude. This fatigue criterion must satisfy the condition: 

σ
n,max

τ
a

≤ β
MWCM

2α
MWCM

                     (11b) 

since, beyond this upper bound, the material failure is expected to be no longer influenced by the shear stress 

amplitude
49

. 

The reformulation of the aforementioned fatigue criteria according to LM and PM can be expressed 

according to Eq. (12a) and (12b): 

1

2L
H

L
x( )dx =

0

2L

∫ H
R

                      (12a) 

H
L

′L / 2( ) = H
R

                     (12b) 

where HL and HR indicates the left- and right-hand side of Eqs. (6-11), respectively. HL depends upon the 

stress/strain tensor and material’s fatigue characteristics and is a function of the Cartesian coordinate x (see 

Fig. 1), while HR is a material parameter only, and L and L’ are the critical distance lengths according to LM 

and PM, respectively. It is evident from Eq. (12), that the TCD is here applied considering the stress 

distribution along the notch bisector (coincident with the x-axis) and not along the path lying on the critical 

plane of largest shear stress amplitude, as discussed in
14

. The reasonability of this choice will be discussed in 

the following. 

The calibration of the tri-parametric fatigue calculation method expressed by Eq. (12) requires the 

knowledge of at least three fatigue data generated by testing, at two load ratios, specimens with two distinct 
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geometries, of which at least one contains a stress concentration feature. To make more robust the 

determination of the three parameters, we propose in the present work to least-square fit four fatigue data 

generated from fully-reversed (R=-1) and pulsating (R=0.1) fatigue tests carried out on smooth and sharp-

notched specimens, thus taking full advantage of the optimal notch geometry devised in
29

. Specifically, the 

best-fit parameters are obtained through minimization of the following weighted sum of square residuals: 

WSSE =
σ

a,i
− σ̂

a,i( )
2

s
i

2

i=1

n

∑           (13) 

where σ
a,i

is the i-th experimental fatigue strength (amplitude) for a given fatigue life, σ̂
a,i

 is its estimator, 

s
i
is its standard deviation, and n is the number of data (4 in the present case). 

 

Results and discussion 

Tables 5 and 6 list the best-fit parameters of the fatigue criteria illustrated in the previous section for 

42CrMo4+QT and 7075-T6, respectively. They refer to the materials’ fatigue strength data obtained at the 

fatigue life Nf = 10
7
 cycles. For the former material, the parameters have been determined considering both 

linear-elastic and elastic-plastic stress/strain field. It can be noted that the material parameters are quite 

insensitive to the TCD formulation (either LM or PM), while this latter along with the fatigue criterion 

greatly influences the critical lengths L and L’. Unexpectedly, they differ from each other by a factor of 

about 2, as already discussed in 
30

. In addition, L and L’ considerably deviate from the threshold-derived 

lengths Lth listed in Table 2..This leads to the important conclusions that the critical length requires a specific 

calibration in relation to the multiaxial criterion used in combination with TCD and that Lth may not be an 

adequate estimator of it. In particular, Lth is closer to L’ than to L in 42CrMo4+QT and the opposite occurs in 

7075-T6. It is also worth noticing that the critical lengths L and L’ are only weakly influenced by the elastic-

plastic stress redistribution occurring in 42CrMo4+QT, whereas this phenomenon significantly affects the 

material’s parameters of the multiaxial fatigue criterion. 

Tables A.1, A.2 and A.3 of the Appendix compare the accuracy of the fatigue criteria in predicting the HCF 

strength (Nf = 10
7
 cycles) and crack growth threshold of 42CrMo4+QT, assuming both elastic and elastic-

plastic stress/strain field, and 7075-T6, respectively. Predictions are made both (i) for plain and sharp-

notched samples used for the parameters calibration and (ii) for blunt-notched and fracture mechanics 

coupons taken as independent terms of comparison. In this latter case, the plane-strain asymptotic stress field 

predicted by LEFM
43

 or the elastic-plastic crack tip stress distribution shown in Fig. 6c and d are used. When 

the stress amplitude is not known a priori, as for the independent cases referred to in point (ii), the elastic-

plastic stress/strain field is computed via FEM through an iterative procedure, which is stopped when the 

absolute difference between the stress amplitude assumed for the FEM analysis and that obtained from the 

solution of Eq. (12) falls below a threshold set at 1%. 

It can be noted that in the vast majority of cases the multiaxial criteria yield considerably more accurate 

fatigue calculation in conjunction with LM rather than with PM, despite the prevailing opinion that the latter 

method is more suitable to be combined with fatigue criteria. Indeed, PM is less efficient in predicting the 



12 

crack growth threshold ΔKth, while it yields predictions of comparable accuracy for the blunt-notched 

samples. It can be inferred that PM is appropriate only for situations characterized by mild stress gradients. 

Interestingly, even though the fatigue calculation is here done in the HCF regime, using the elastic-plastic in 

place of the linear-elastic stress distribution allows for a better accuracy, especially at R=-1. The most 

accurate predictions are obtained by combining LM with Crossland, Fatemi-Socie or MWCM for 

42CrMo4+QT and Crossland, Carpinteri or Findley criterion for 7075-T6. For this latter material, MWCM 

yields very accurate predictions of plain and notched fatigue strength, but inconsistent estimates (even 

negative) of the crack growth thresholds due to the violation of the requirement set by Eq. (11b). 

The fracture surface SEM observations of the aluminum alloy 7075-T6 and the steel 42CrMo4+QT are 

shown in Fig. 7 for the load ratio R=0.1 tests, and very similar evidences have been obtained for R=-1, 

however not reported for brevity. The steel specimen surfaces, Fig. 7 b, d and f are found quite flat with 

limited roughness, due to the fine-grained metallurgical structure, and orientation merely perpendicular to 

the specimen axis. On the other hand, the aluminum specimen fracture surfaces, Fig 7 a, c and e showed 

much more rough fatigue fracture surface and, apart from the plain specimen, a certain initial angle (though 

quite limited) with respect to the axis perpendicular plane orientation. Despite the fatigue CP multiaxial 

criteria are all based on shear amplitude stress parameters, Eqs. 6-11, the initial crack orientation on a size on 

the order of a few tens of microns, i.e. the critical distance length, is not in agreement with the maximum 

shear stress amplitude orientations, especially for the steel. Indeed, the crack surface is along the V-notch 

bisector, and this is in agreement with Susmel and Taylor observations
19

 where the inclined initiated cracks 

were only detectable at the grain size. The observed propensity of the crack to extend on the notch symmetry 

plane supports the approach adopted in this paper to estimate the stress tensor along the x-axis and not along 

the plane of maximum shear stress amplitude. Besides being in agreement with empirical evidences, this 

approach is also of easier implementation, as it does not require the research of the plane of maximum τa. 

This is not a straightforward task, as τa must be either evaluated at L’/2 or averaged over 2L, thus making 

Eqs. (12) and (13) a function of the unknown inclination of such plane. 

From the above discussion, the J2-based Crossland criterion appears to be the most accurate for both 

materials, even though applicable only to proportional loading. Same conclusions were drawn in 
50

, where it 

was compared with other criteria in predicting the multiaxial fatigue strength of 7075-T6, even in the 

presence of shot-peening induced residual stresses. It is worth noticing that the Crossland criterion is also 

particularly suitable to assess the crack growth threshold ΔKth of both materials. Figure 8a and b plots the 

predictions of this criterion in concert with LM as a function of the load ratio R for 42CrMo4+QT and 7075-

T6, respectively, and compares them with experimental data, some of them taken from the literature
51

. It can 

be noticed that the Crossland criterion captures very well the R-dependency of ΔKth and that, in contrast to 

7075-T6, 42CrMo4+QT requires the use of the elastic-plastic in place of linear-elastic crack tip stress field, 

especially at negative R. The ability of this and some of the remaining criteria, even if to a lesser extent, to 

calculate ΔKth supports the basic idea of the present work that it is possible to combine LM with some 

multiaxial fatigue criteria, as the crack-notch analogy at the base of TCD is preserved. 
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The approach followed so far is then extended to the medium cycle fatigue regime. For this purpose, the 

parameters of Eq. (12) are calibrated from the plain and the sharp-notch fatigue data taken at different fatigue 

lives Nf. Figure 9a, b, and c illustrates the variation of L and L’ as a function of Nf for 42CrMo4+QT, taking 

linear-elastic and elastic-plastic stresses, and 7075-T6, respectively. As anticipated before, L and L’ differ 

from each other and strongly depend upon the fatigue criterion used in their combination. In addition, L and 

L’ are a function, in most cases monotonically decreasing, of Nf. This seems in contrast to an earlier report
25

, 

where the authors concluded that the dependency of L upon Nf is nearly eliminated if the linear-elastic notch 

tip stress field is replaced by the elastic-plastic one. 

In conclusion, Figure 10 illustrates the SN curves calculated for the blunt-notched samples. Both LM and 

PM are used in combination with the four criteria that yielded the most accurate predictions, namely 

Crossland, Fatemi-Socie, Carpinteri and MWCM. It can be noted that LM and PM yield similar predictions 

and all four fatigue criteria are in close agreement with the experimental data when dealing with 7075-T6; 

conversely, their estimates for 42CrMo4+QT differ each other to a greater extent and display higher 

discrepancy from the experimental data. Here again, (i) the Crossland criterion is the most accurate, (ii) the 

predictions of all fatigue criteria become more accurate when the elastic-plastic stress distribution is used, 

even though a general tendency of overestimating the pulsating fatigue strength is evident. This final remark 

suggests that a deeper comprehension of the material cyclic behaviour underpinning the elastic-plastic 

stress/strain evolution at the notch tip is necessary and this will be matter of future investigations. 

 

Conclusions 

This paper explored the application of several multiaxial fatigue criteria in conjunction with LM and PM 

formulation of the TCD. For this purpose, experimental data collected in [30] on two structural metallic 

alloys were used and complemented with LCF tests to characterize the material cyclic stress-strain 

behaviour. 

The followings are the key conclusions that can be drawn from this study: 

1) A robust calibration of the parameters of the multiaxial fatigue criterion as well as of the critical 

length is obtained from least-square fitting the fatigue data taken from the SN curves of plain and 

sharp-notched coupons tested at two load ratios R. This latter sample geometry was devised in [29] 

to minimize the sensitivity of the critical distance determination to the uncertainty in the material 

fatigue characteristics. 

2) The LM and PM critical lengths differ from each other and considerably deviate from the threshold-

derived length Lth. Their value strongly depends on the multiaxial fatigue criterion used in 

combination with TCD. 

3) LM is in general more accurate than PM, especially in the presence of steep stress gradients. 

Therefore, LM is more suitable than PM for predicting the fatigue strength of components carrying 

sharp notches or for assessing the crack threshold. 
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4) For materials exhibiting a low fatigue-strength-to-yield-stress ratio, such as 7075-T6, satisfactorily 

accurate predictions are obtained assuming a linear-elastic stress distribution, even at the tip of sharp 

notches and cracks. Conversely, for materials characterized by higher values of this ratio, as 

42CrMo4+QT, it is recommended to consider the stabilized elastic-plastic stress/strain distribution, 

also for plain and blunt-notched samples. 

5) The J2-based Crossland criterion yields the most accurate predictions for both material types. 

Among CP criteria, suitable also for non-proportional loading, Fatemi-Socie and Carpinteri criteria 

appear to be the most appropriate for 42CrMo4+QT and 7075-T6, respectively, even though 

satisfactory predictions were obtained with the remaining criteria after the proper calibration of their 

parameters. 
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Appendix 

Tables A.1, A.2 and A.3 list predictions and estimation errors of the HCF strength (Nf = 10
7
 cycles) and 

crack growth threshold of 42CrMo4+QT, assuming both elastic and elastic-plastic stress/strain field, and 

7075-T6, respectively. 
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Tables 

Table 1. Monotonic tensile properties based on three replicated tests. Standard error corresponds to 1σ 

uncertainty band. 

Material E (GPa) σYS (MPa) σU (MPa) T.E. (%) 

42CrMo4+QT 206±5.9 727±14 875±15 17.6±2.5 

Al 7075-T6 70.5±0.2 531±7 595±6 10.0±0.7 
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E: Young’s modulus, σYS: 0.2% yield stress, σU: ultimate tensile strength, T.E.: total elongation 

 

Table 2. Fatigue crack growth threshold from experiments conducted in 
30

. These permitted the estimation of 

the threshold derived critical length Lth. 

Material Sample geometry Load ratio R ΔKth (MPa m
0.5

) Lth (mm) 

42CrMo4+QT M(T) -1 9.1 0.0433 

C(T) 0.1 7.2 0.0363 

Al 7075-T6 M(T) -1 4.2 0.0555 

C(T) 0.1 2.5 0.0370 

 

Table 3. LCF parameters for 42CrMo4+QT. 

Coffin-Manson and Basquin parameters (Eq. (3)) 

E (MPa) ′σ f  (MPa) b  ′ε f  c  

206000 4460.3 -0.1633 0.5574 -0.5786 

Ramberg-Osgood parameters (Eq. (4)) 

Curve E (MPa) H’ (MPa) n ’ 

Cyclic 206000 1499.7 0.1438 

Monotonic 206000 920.4 0.0359 

 

Table 4. Parameters of the Chaboche kinematic hardening model of 42CrMo4+QT. 

C1 (MPa) γ1 C2 (MPa) γ2 C2 (MPa) γ2 ′σ
YS

 (MPa) 

17096 

 

45 

 

75280 

 

1607 

 

74532 

 

479 

 

361.5 

 

 

Table 5. Material parameters of the multiaxial fatigue criteria and critical distance lengths for 42CrMo4+QT. 

Criterion Method Stress field 
Parameter 1 Parameter 2 

L, L’ (mm) 
Symbol Value Symbol Value 

Crossland 

LM 
elastic 

αC 

0.197 

βC (MPa) 

388.4 0.0188 

el.-pl. 0.309 419.1 0.0147 

PM 
elastic 0.197 388.3 0.0356 

el.-pl. 0.317 420.7 0.0324 

Sines 

LM 
elastic 

αS 

0.181 

βS (MPa) 

363.9 0.0151 

el.-pl. 0.294 382.6 0.0063 

PM 
elastic 0.181 363.9 0.0291 

el.-pl. 0.295 382.7 0.0134 

Fatemi-

Socie 

LM 
elastic 

αFS 

0.453 

βFS 

2.635×10
-3

 0.0243 

el.-pl. 0.849 2.387×10
-3

 0.0210 

PM elastic 0.452 2.633×10
-3

 0.0448 
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el.-pl. 0.841 2.382×10
-3

 0.0424 

Findley 

LM 
elastic 

αF 

0.081 

βF (MPa) 

202.2 0.0241 

el.-pl. 0.116 218.5 0.0182 

PM 
elastic 0.080 202.1 0.0446 

el.-pl. 0.119 220.0 0.0389 

Carpinteri 

LM 
elastic 

σAF (MPa) 

487.2 

τAF (MPa) 

157.0 0.0280 

el.-pl. 447.0 185.9 0.0205 

PM 
elastic 489.4 156.3 0.0510 

el.-pl. 446.9 186.0 0.0436 

MWCM 

LM 
elastic 

αMWCM 

13.12 

βMWCM 

(MPa) 

198.4 0.0247 

el.-pl. 20.40 214.6 0.0186 

PM 
elastic 13.06 198.3 0.0455 

el.-pl. 20.91 215.6 0.0400 

 

Table 6. Material parameters of the multiaxial fatigue criteria and critical distance lengths for 7075-T6. 

Criterion Method 
Parameter 1 Parameter 2 

L, L’ (mm) 
Symbol Value Symbol Value 

Crossland 
LM 

αC 
1.392 

βC (MPa) 
235.0 0.0672 

PM 1.371 233.7 0.1126 

Sines 
LM 

αS 
0.859 

βS (MPa) 
159.9 0.0278 

PM 0.855 159.9 0.0506 

Fatemi-Socie 
LM 

αFS 
38.6 

βFS 
2.128×10

-2
 0.0477 

PM 34.8 1.962×10
-2

 0.0826 

Findley 
LM 

αF 
0.373 

βF (MPa) 
116.4 0.0448 

PM 0.372 116.2 0.0791 

Carpinteri 
LM 

σAF (MPa) 
160.7 

τAF (MPa) 
92.6 0.0503 

PM 160.9 92.4 0.0880 

MWCM 
LM 

αMWCM 
16.71 βMWCM 

(MPa) 

96.7 0.0497 

PM 16.44 96.3 0.0861 

 

Table A.1. High-cycle fatigue strength predictions (Nf=10
7
) for 42CrMo4+QT assuming linear-elastic stress 

distribution. 

Sample R Exp. Method 

Crossland Sines Fatemi-Socie Findley Carpinteri MWCM 

Pred. 
Err 

(%) 
Pred. 

Err 

(%) 
Pred. Err (%) Pred. 

Err 

(%) 
Pred. 

Err 

(%) 
Pred. 

Err 

(%) 

Plain 

-1 390 
LM 364.4 -6.55 363.9 -6.68 373.9 -4.13 373.0 -4.35 360.3 -7.61 370.6 -4.98 

PM 364.4 -6.57 363.9 -6.69 373.8 -4.15 372.9 -4.37 359.8 -7.74 370.4 -5.02 

0.1 337 
LM 338.9 0.56 338.9 0.57 338.2 0.36 338.3 0.38 339.4 0.72 338.5 0.44 

PM 338.9 0.56 338.9 0.57 338.2 0.36 338.3 0.39 339.5 0.73 338.5 0.45 

Sharp -1 87.5 
LM 88.9 1.55 88.8 1.52 88.8 1.46 88.8 1.45 88.9 1.62 88.7 1.42 

PM 88.9 1.54 88.8 1.52 88.8 1.46 88.8 1.46 88.9 1.60 88.7 1.41 
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0.1 80.5 
LM 79.2 -1.64 79.2 -1.62 79.3 -1.51 79.3 -1.53 78.8 -2.09 79.3 -1.53 

PM 79.2 -1.64 79.2 -1.62 79.3 -1.52 79.3 -1.53 78.8 -2.10 79.3 -1.54 

Blunt 

-1 162.7 

LM 146.4 
-

10.01 
149.0 -8.42 140.1 -13.88 139.9 

-

14.04 
136.5 

-

16.08 
139.2 

-

14.46 

PM 146.1 
-

10.20 
148.8 -8.54 139.5 -14.23 139.3 

-

14.39 
135.7 

-

16.63 
138.6 

-

14.84 

0.1 119.2 
LM 132.1 10.83 134.4 12.77 126.4 6.02 126.4 6.04 127.1 6.60 126.5 6.14 

PM 131.9 10.63 134.3 12.64 125.9 5.63 125.9 5.66 126.6 6.17 126.1 5.75 

MT -1 9.1 
LM 10.1 11.22 12.0 31.36 13.2 45.35 13.3 45.82 10.4 14.54 12.8 41.20 

PM 13.9 53.16 16.6 82.16 9.0 -1.20 18.0 98.30 14.1 55.05 17.5 91.90 

CT 0.1 7.2 
LM 7.5 3.99 8.2 14.21 10.8 50.12 10.2 41.01 5.6 

-

22.49 
7.2 0.00 

PM 10.3 43.28 11.4 58.44 7.3 2.06 13.8 91.85 7.6 5.12 9.8 36.49 

                

Method LM PM LM PM LM PM LM PM LM PM LM PM 

Max abs. error (%) 11.22 53.16 31.36 82.16 50.12 14.23 45.82 98.30 22.49 55.05 41.20 91.90 

RMS error (%) 7.14 24.91 13.55 36.14 24.54 5.72 22.47 47.91 11.65 20.73 15.71 35.46 

 

Table A.2. High-cycle fatigue strength predictions (Nf=10
7
) for 42CrMo4+QT incorporating elastic-plastic 

stress redistribution at crack and notch tip. 

Sample R Exp. Method 

Crossland Sines Fatemi-Socie Findley Carpinteri MWCM 

Pred. Err (%) Pred. 
Err 

(%) 
Pred. Err (%) Pred. 

Err 

(%) 
Pred. 

Err 

(%) 
Pred. 

Err 

(%) 

Plain 

-1 390 
LM 379.9 -2.59 382.6 -1.89 372.8 -4.42 389.3 -0.17 384.9 -1.30 388.4 -0.41 

PM 380.5 -2.42 382.7 -1.88 372.6 -4.46 390.6 0.15 385.0 -1.27 389.4 -0.15 

0.1 337 
LM 337.9 0.28 337.6 0.18 338.7 0.50 337.1 0.02 337.7 0.21 337.2 0.05 

PM 337.8 0.25 337.6 0.17 338.8 0.54 336.9 -0.02 337.7 0.21 337.1 0.02 

Sharp 

-1 87.5 
LM 88.2 0.82 88.2 0.84 89.2 1.92 87.6 0.10 88.1 0.71 87.7 0.22 

PM 88.2 0.75 88.2 0.82 89.1 1.79 87.4 -0.09 88.0 0.61 87.6 0.07 

0.1 80.5 
LM 79.6 -1.06 79.8 -0.88 78.5 -2.52 80.4 -0.13 79.6 -1.13 80.3 -0.29 

PM 79.8 -0.92 79.8 -0.81 78.4 -2.56 80.6 0.11 79.6 -1.06 80.4 -0.10 

Blunt 

-1 162.7 
LM 155.4 -4.49 162.0 -0.45 147.2 -9.52 148.9 -8.50 147.5 -9.32 148.6 -8.67 

PM 155.7 -4.30 162.0 -0.41 147.2 -9.56 149.5 -8.11 147.7 -9.20 149.1 -8.34 

0.1 119.2 
LM 134.6 12.92 137.9 15.68 130.9 9.80 131.8 10.59 132.2 10.88 132.0 10.71 

PM 134.7 13.04 137.9 15.73 130.9 9.81 132.2 10.86 132.4 11.08 132.3 10.98 

MT -1 9.1 

LM 
8.8 -2.87 

6.8 
-

25.18 
10.0 9.47 11.3 23.78 9.4 3.43 10.6 16.61 

PM 
9.1 11.00 

7.4 
-

18.66 
7.2 -20.40 14.3 57.11 10.9 20.30 13.4 47.46 

CT 0.1 7.2 

LM 
7.4 2.70 

5.3 
-

26.62 
8.1 12.80 9.3 29.10 5.5 

-

24.16 
7.3 1.80 

PM 
7.2 8.74 

5.7 
-

20.55 
6.1 -15.87 10.5 45.20 5.2 

-

27.49 
4.6 

-

35.43 

                

Method LM PM LM PM LM PM LM PM LM PM LM PM 

Max abs. error (%) 12.92 21.37 26.62 20.55 12.80 20.40 29.10 57.11 24.16 27.49 16.61 47.46 

RMS error (%) 5.14 11.66 14.11 11.31 7.66 10.52 14.13 26.19 10.03 13.13 7.66 21.50 
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Table A.3. High-cycle fatigue strength predictions (Nf=10
7
) for 7075-T6 assuming linear-elastic stress 

distribution.

Sample R Exp. Method 

Crossland Sines Fatemi-Socie Findley Carpinteri MWCM 

Pred. 
Err 

(%) 
Pred. 

Err 

(%) 
Pred. Err (%) Pred. 

Err 

(%) 
Pred. 

Err 

(%) 
Pred. 

Err 

(%) 

Plain 

-1 160.3 
LM 160.5 0.11 159.9 -0.23 163.0 1.68 161.6 0.84 160.6 0.22 159.9 -0.25 

PM 160.4 0.07 159.9 -0.24 163.5 1.99 161.6 0.82 160.6 0.17 159.8 -0.30 

0.1 116.6 
LM 115.7 -0.79 118.5 1.63 112.2 -3.78 109.4 -6.14 114.2 -2.02 119.0 2.12

PM 116.0 -0.53 118.6 1.72 112.8 -3.25 109.5 -6.06 114.6 -1.69 119.6 2.61

Sharp 

-1 44.9 
LM 44.7 -0.31 45.1 0.47 42.3 -5.70 43.5 -2.96 44.5 -0.89 45.0 0.22

PM 44.8 -0.20 45.1 0.48 42.3 -5.78 43.6 -2.90 44.6 -0.69 45.0 0.21

0.1 27.6 
LM 27.7 0.29 27.5 -0.46 29.0 5.12 28.3 2.36 27.9 0.91 27.5 -0.41 

PM 27.7 0.18 27.5 -0.48 29.0 5.23 28.2 2.32 27.8 0.76 27.5 -0.49 

Blunt 

-1 63.5 
LM 63.3 -0.30 68.4 7.70 63.1 -0.60 63.2 -0.43 63.6 0.17 63.5 -0.04 

PM 62.4 -1.70 68.0 7.10 62.7 -1.25 62.7 -1.34 62.9 -0.91 62.7 -1.24 

0.1 45.5 
LM 41.5 -8.77 44.6 -2.04 43.4 -4.63 42.4 -6.90 43.8 -3.85 45.4 -0.14 

PM 41.2 -9.56 44.4 -2.34 43.2 -5.01 42.0 -7.60 43.6 -4.26 45.3 -0.34 

MT -1 4.2 
LM 4.3 3.33 8.8 109.50 5.5 31.96 5.6 34.05 4.6 9.29 2.2 -47.25 

PM 5.7 34.52 11.9 182.28 7.3 74.89 7.5 78.10 6.1 44.76 3.1 -25.86 

CT 0.1 2.5 

LM 2.2 
-

11.60 
2.4 -5.83 3.8 50.45 3.0 21.60 2.2 

-

13.20 
-12.4 

-

597.47

PM 2.9 15.60 3.2 27.27 5.0 99.63 4.0 61.60 2.9 14.80 -15.9 
-

734.68

                

Method LM PM LM PM LM PM LM PM LM PM LM PM 

Max abs. error (%) 11.60 34.52 109.50 182.28 50.45 99.63 34.05 78.10 13.20 44.76 597.47 734.68

RMS error (%) 5.29 13.83 38.88 65.22 21.40 44.21 14.69 35.36 5.93 16.75 211.90 259.91

 

Figures 

 

Fig. 1. Schematic illustration of the axisymmetric V-notched sample geometry. The coordinate x lies on the 

sample symmetry plane and is centred at the notch tip. L and L’ are the critical distance lengths according to 

LM and PM. 
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Fig. 2. Geometry of the specimens used in the present work. (a) plain, (b) notched samples for HCF tests. 

The notch root radius R is 0.2 mm for sharp and 1 mm for blunt notches. (c) Hourglass specimens for strain-

controlled LCF tests. Dimensions are given in mm. 
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Fig. 3. Fatigue experimental data and fit curves for 42CrMo4+QT (a) load ratio R= −1, (b) R= 0.1, arrows 

indicate runouts at 10 × 10
6
 cycles, and 7075-T6 (c) R= −1, (d) R= 0.1, arrows indicate runouts at 30 × 10

6
 

cycles. Dashed lines correspond to the fatigue strengths for the various specimens at 10% and 90% failure 

probabilities. 

 

  

   

Fig. 4. Principal results of the LCF tests conducted on 42CrMo4+QT. (a) Evolution of the stress amplitude 

vs. number of strain cycles. (b) Stabilized hysteresis loops at half fatigue life. (c) Experimental data vs. 

Basquin and Coffin-Manson equations. (d) Comparison between monotonic and cyclic stress strain curve. 
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Fig. 5. Comparison between experimental and numerical plastic hysteresis loops. Solid lines are obtained by 

calibrating a three-submodel Chaboche kinematic hardening model to the loop of largest strain amplitude. 

 

  

  

Fig. 6. Axial principal stress variation as a function of the distance (measured along the specimen axis of 

symmetric) from the notch/crack tip. The remote far field axial stress corresponds to the fatigue limit or 

crack threshold conditions for notched and cracked samples, respectively. Both maximum and minimum 

values are shown and normalized with respect to the cyclic yield stress ′σ
YS

. (a) and (b) notched samples, (c) 

and (d) crack tip stress field. (a) and (c) R = -1, (b) and (d) R = 0.1. 
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Fig. 7. SEM micrographs of the fracture surfaces of samples tested at load ratio R = 0.1: (a)-(c)-(e) 

aluminium alloy 7075-T6, (b)-(d)-(f) steel 42CrMo4+QT; (a)-(b) Plain specimens, (c)-(d) Blunt specimens, 

(e)-(f) Sharp specimens. (a) σa = 120 MPa, Nf = 1.42 × 10
7
, (b) σa = 340 MPa, Nf = 3.44 × 10

6
, (c) σa = 50 

MPa, Nf = 1.54 × 10
6
, (d) σa = 125 MPa, Nf = 6.42 × 10

6
, (e) σa = 27.5 MPa, Nf = 2.85 × 10

6
, (f) σa = 85 

MPa, Nf = 3.28 × 10
6
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Fig. 8. Application of Crossland criterion in combination to LM for the prediction of the threshold conditions 

of long cracks as a function of the load ratio. (a) 42CrMo4+QT, (b) 7075-T6. 

 

  

 

Fig. 9. Variation of the critical distance lengths L and L’ with the number of cycles to failure. (a) and (b) 

42CrMo4+QT, (c) 7075-T6. In (a) and (c) linear-elastic stress distribution is considered, while in (b) elastic-

plastic stress redistribution at the notch tip is included. 
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Fig. 10. Prediction of the fatigue curves of blunt-notched specimens using four different multiaxial fatigue 

criteria in combination with (a), (c), (e) LM and (b), (d), (f) PM. (a-d) 42CrMo4+QT, (e-f) 7075-T6. (a) and 

(b) are obtained under linear-elastic stress distribution, while (c) and (d) include elastic-plastic notch tip 

stress redistribution. 
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