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Strong correlations occur in magic-angle twisted bilayer graphene (MATBG) when the octet of flat moiré mini-
bands centered on charge neutrality (CN) is partially occupied. The octet consists of a single valence band and a
single conduction band for each of four degenerate spin-valley flavors. Motivated by the importance of Hartree
electrostatic interactions in determining the filling-factor-dependent band structure, we use a time-dependent
Hartree approximation to gain insight into electronic correlations. We find that the electronic compressibility is
dominated by Hartree interactions, that paramagnetic states are stable over a range of density near CN, and that
the dependence of energy on flavor polarization is strongly overestimated by mean-field theory.

DOI: 10.1103/PhysRevB.110.L121117

Introduction. The energy bands of twisted bilayer graphene
(TBG) have a four-fold spin-valley flavor degeneracy. As a
magic twist angle near θ = 1◦ is approached, the two sets
of four-fold degenerate bands closest to the neutral system
Fermi energy approach each other and narrow [1], converting
graphene from a weakly correlated Fermi liquid to a strongly
correlated system [2–5] with a rich variety of competing
states, including superconductors, insulating flavor ferromag-
nets, and metallic flavor ferromagnets. The ferromagnetism
is reminiscent of but distinct from that exhibited by Bernal-
stacked bilayer graphene in the quantum Hall regime [6–13]
and is now clearly established [3,5,14–32] as a prominent
part of the physics of magic-angle twisted bilayer graphene
(MATBG). In contrast to the quantum Hall case, in which
eight Landau bands are filled sequentially to minimize the
exchange energy, MATBG ground states appear [33] not to
have any broken symmetries for a range of filling factors near
CN, and in broken symmetry states to keep the filling factors
of partially occupied flavors ν f inside an interval (−ν∗

h , ν∗
e ),

where ν∗
h and ν∗

e are the maximum hole and electron filling
factors. [ν f ≡ (Nf − M )/M where Nf is the number of flat
band electrons with flavor f and M is the number of moiré
cells in the system; ν = ∑

f ν f .]
In this Letter, we address some unusual aspects of the

correlation physics of MATBG from the weak-coupling point
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of view (one-shot GW approximation). We find that the aver-
age compressibility is dominated by Hartree interactions, that
unbroken symmetry states are stable over a range of density
near CN, and that the dependence of energy on flavor polar-
ization is strongly overestimated by mean-field theory. Below
we first explain the technical details of our calculations and
then discuss the relationship of our findings to those obtained
using other approaches to MATBG interaction physics.

Moiré-Band Weak-Coupling Theory. The one-shot GW ap-
proximation, also known as the random phase approximation
(RPA), is a perturbative method that accounts for dynamic
screening of long-range Coulomb interactions. It is com-
monly used [34,35] in ab initio electronic structure theory
to understand collective electronic behaviors, especially as
probed by optical or photoemission spectroscopy. Although
rigorously justified [36] only in weakly interacting systems, it
has recently attracted interest [37] as a universal and accurate
method for total energy calculations in many real materials,
including [38] strongly correlated Mott insulators.

In this Letter we employ RPA theory to approximate the
dependence of energy on the total band filling factor and
on the partitioning of electrons between the four spin-valley
flavors of MATBG. Because the number of electrons for each
flavor is a good quantum number, we can approximate the
magnetic energy landscape by adding exchange-correlation
(xc) corrections Exc to the self-consistent Hartree (SCH) en-
ergies of flavor polarized states. The RPA theory is motivated
by the unusual property of MATBG, illustrated in Fig. 1 by
plotting SCH bands at a series of band filling factors and that
the band filling dependence of its total energy is dominated
[39–43] by a Hartree mean-field contribution. The SCH en-
ergy increases rapidly as the flat bands are filled as shown in
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FIG. 1. The SCH paramagnetic state bands (colored lines) and corresponding Fermi surfaces (shaded areas) at a series of ν values on
hole-doped (blue) and electron-doped (red) sides. The black dashed line in each spectrum is the single-particle band structure and the colored
dashed horizontal lines mark Fermi levels. At ν = −3, the flat valence band is 1/4 full and the occupied states are those whose charge density
is most peaked near minima of the external potential produced by remote band charges. At ν = −1, the flat valence band is at 3/4 filling. Holes
in the valence band remain near γ , which would be the valence band bottom if Hartree corrections were not included. Holes near γ are finally
filled only around ν = −0.3 (see Fig. S2) as ν approaches zero and Hartree energies finally become small compared to band energies. The
Fermi surfaces at filling factors +ν and −ν (for example ν = 2 and ν = −2) would be identical for any ν if the model had exact particle-hole
symmetry. At filling factors away from ν = 0, the SCH band width is dominated by the Hartree mean-field contribution.

Fig. 2(c), and dominates the experimentally measured com-
pressibility. The RPA accounts both for this energy and for
dynamic fluctuation corrections to it.

The xc correction to the SCH energy can be expressed [44]
in terms of a coupling-constant integral of the pair correlation
function. This quantity can, in turn, be related to the density
response function by

Exc = 1

2

′∑
q,g

Vq+g

[
− 1

π

∫ 1

0
dλ

∫ ∞

0
dω χgg(q, iω; λ) − 1

]
,

(1)

where Vq = 2πe2/qεBN is the two-dimensional (2D) Coulomb
interaction accounting for hexagonal boron nitride (hBN) di-
electric screening with the dielectric constant chosen to be
εBN = 5.1 throughout the Letter, q is a wave vector in the
moiré Brillouin zone (MBZ), g is a moiré reciprocal lat-
tice vector, and the prime on the sum excludes the q = g =
0 term which contributes only a gate-geometry-dependent
constant [44]. In Eq. (1) χgg is a diagonal matrix ele-
ment of the density response function, which is a matrix
in reciprocal lattice vectors because of the system’s discrete
translational symmetry and the frequency integration used

FIG. 2. Energies of paramagnetic states as a function of ν ∈ [−4, 4] for (a) a decoupled-bilayer and (b)–(d) 1.1◦-TBG. (a,b) Exchange
(Ex) and RPA correlation (Ec) energies as defined in Eqs. (4) and (5). The insets show the corresponding single-particle band structures. The
black dashed lines in the inset of (a) mark the Fermi level for ν = ±4. The blue dashed line in (a) is the exchange energy calculated using the
approximate analytical expression Eq. (6). (c) The SCH energy E0 [44] and the RPA total energy Etot. (d) The calculated chemical potential
μ = dEtot/dν with its zero shifted to the chemical potential at ν = 0. The grey dots (0.98◦) and the grey line (1.13◦) plot measured chemical
potentials from Ref. [19]. All energies are given relative to CN with the zero of energy at the neutral system Fermi level.
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to obtain equal time correlations has been rotated to the
imaginary axis.

Equation (1) is formally exact. In RPA (time-dependent
Hartree approximation) we replace χ in Eq. (1) by

χ (λ) = χ̃H (1 − λV χ̃H )−1

= χ̃H + λχ̃HV χ̃H (1 − λV χ̃H )−1, (2)

where χ̃H is the single-particle density response function cal-
culated from the SCH bands [45], summing over independent
contributions from all four flavors:

χ̃H =
4∑

f =1

χ̃ f
H
. (3)

Possible improvements to this approximation are discussed
later.

When inserted in Eq. (1), the second form for the right-
hand-side of Eq. (2) separates the exchange energy Ex, the
contribution that is first order in V , from the full fluctuation
correction Exc ≡ Ex + Ec, allowing us to carefully account for
its subtly convergent frequency integral. After integrating over
λ, the exchange energy can be rewritten in the standard Slater
determinant form [44]

Ex = − 1

2A

′∑
q,g

Vq+g

∑
f ,k,αβ,

g1,g2

δρ
f
α,g1+g;β,g2+g(k + q)

× [δρ̄ f (k) + 2ρ̄0 f (k)]α,g1;β,g2 , (4)

where δρ f (k) = ∑
n (ẑn(k)ẑ†

n(k)�nk − ẑ0
n(k)ẑ0†

n (k)�0
nk ) is

the density matrix projected to flavor f relative to that of a
charge neutral decoupled bilayer, δρ̄ is the complex conjugate
of the corresponding matrix element of δρ, ẑn(k) and ẑ0

n(k)
are plane-wave representation SCH and neutral-decoupled-
bilayer quasiparticle eigenvectors, and �nk and �0

nk are the
corresponding occupation numbers. In Eq. (4) g, g1, g2 are
moiré reciprocal lattice vectors, k and q are momenta in MBZ,
α and β are layer and sublattice indices and A is the area of the
2D system. Because of their negative energy seas, continuum
models of graphene multilayers are able to determine total
energies only up to a reference energy (per area) that is a
linear functions of electron density, εref = ε0 + μ0n; Eq. (4)
chooses the zero of energy ε0 to be the energy per area of
neutral decoupled bilayers and the zero of chemical potential
μ0 to be the energy of states at the top of the decoupled bilayer
valence band. The integration over the coupling constant λ in
Eq. (1) can be performed analytically to yield the correlation
energy [44]

Ec = 1

2π

′∑
q

∫ ∞

0
dωTr

[√
Vχ̃

H

√
V + ln(1 −

√
Vχ̃

H

√
V)

]
,

(5)

where V and χ̃
H

are matrices in reciprocal lattice vector with
implicit q and ω dependences. The correlation energy must
be regularized by subtracting its value in unbroken symmetry
states at CN; its contribution to the chemical potential at CN is
close to zero because the models we study have approximate
particle-hole symmetry.

Paramagnetic State Energy. We interpret our numerical
results for the band filling ν dependence of the MATBG
paramagnetic ground-state energy [Figs. 2(b) and 2(c)] by
comparing them with results for the decoupled bilayer [46]
[Fig. 2(a)] calculated in exactly the same way. In both cases
the exchange energy is positive at small |ν| because of [46]
rapid changes in Bloch state spinors near the Dirac point. The
blue dashed line in Fig. 2(a) is the exchange energy of an
eight-Dirac-cone model [46]

ED
x = αh̄c

24π

g

εBN

k3
F

ln
( kc

kF

)
+ regular terms, (6)

where g = 8 and kF = (4πn/g)1/2. The exchange energy of
MATBG is smaller than that of the decoupled bilayers be-
cause of the dominant role of the Hartree potential in shaping
teh occupied band states’ wave functions. In contrast to the
decoupled bilayer case, MATBG correlation energies are low
near CN because that is where the phase space for low-energy
particle-hole excitations within the flat band octet is the
largest. The correlation energy is highest near |ν| = 4 because
the gaps between flat and remote bands suppress fluctuations.
In our calculations there is a small particle-hole asymme-
try in all properties, including the exchange and correlation
energies, because we include nonlocal interlayer tunneling
corrections [47] to the Bistritzer-MacDonald (BM) MATBG
model [1,44].

Because of the partial cancellation between exchange and
correlation effects, discussed again below in connection with
flavor ferromagnetism, the difference between MATBG and
the decoupled bilayers is dominated by the SCH energy [44]
plotted in Fig. 2(c). The SCH energy is calculated relative to
its value at CN, and its slope at CN is finite because the bare
flat bands are centered around εfb ≈ 12 meV (see Fig. 1) in
the nonlocal BM model we employ. The chemical potential
μ, the energy to add a single-electron increases steadily as the
flat bands are filled mainly because of Hartree effects. We find
that the chemical potential difference between full and empty
flat bands is ∼50 meV. When the bands are nearly empty,
added electrons occupy regions in the moiré unit cell in which
the mean-field potential from remote band electrons is most
attractive. When the bands are nearly filled, however, it fol-
lows from approximate particle-hole symmetry that electrons
occupy the same region but the Hartree mean-field potential is
now repulsive.

In Fig. 2(d) we compare our results for the filling factor de-
pendence of the chemical potential across the full range of flat
band filling with experimental results published in Ref. [19].
The total shift in chemical potential is somewhat larger in
the experiment than in the theory. Since the states near the
full and empty flat band limit are not expected to be strongly
correlated, we attribute this small discrepancy to weak mixing
between flat and remote bands and small inaccuracies in the
continuum model we employ. The most striking feature of
these results is shared between the theory and experiment,
namely, that the chemical potential increases approximately
linearly with band filling factor [19,20,48,49]. In MATBG
experiments, structures do emerge at some filling factors that
are thought to be due to first-order flavor-symmetry break-
ing phase transitions at low temperatures, which we now
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FIG. 3. SCH energy E0 (yellow dotted lines), exchange energy Ex (blue dashed lines), exchange-correlation energy Exc (red dash-dotted
lines), and RPA total energy Etot (black solid lines) as a function of polarization p at (a) ν = −2, (b) ν = −1, (c) ν = 0, and (d) ν = 1. p
characterizes the degree of flavor polarization as explained in the main text. p = 0 corresponds to the paramagnetic state and p = 1 corresponds
to full flavor polarization.

address, and at higher temperatures to surviving local moment
fluctuations [50].

Flat Band Flavor Ferromagnetism. The RPA energy cal-
culation can be carried out for any set of flavor-dependent
filling factors. Typical numerical results [51] are summarized
in Fig. 3. The ν = 0 polarized states in Fig. 3(c) have filling
factor p for two flavors and filling factor −p for the other two
flavors. Increasing p shifts states from the valence bands of
two flavors to the conduction bands of the other two flavors.
Because of MATBG’s approximate particle-hole symmetry,
this polarization path does not strongly influence the charge
density, which remains approximately uniform at this filling
factor for all values of p, as illustrated in Figs. S10 and
S11. The main point to notice is that fully polarized states
are strongly favored by exchange energies, but this energy
gain is almost perfectly canceled by the correlation energy
which strongly favors states in which each flavor is half filled.
Similar results are obtained at other filling factors. The family
of polarized states at ν = −2 in Fig. 3(a) have filling factor
−(1 + p)/2 for two flavors and filling factor −(1 − p)/2 for
the other two flavors; increasing p shifts electrons between
valence bands with different flavors and the charge density is
nonuniform at all values of p. For ν = ±1, the flavor polariza-
tion path illustrated in Figs. 3(b) and 3(d) is ν = ±(1 + 3p)/4
for one flavor and ν = ±(1 − p)/4 for the remaining three
flavors. The exchange energy gain upon polarization is again
almost exactly canceled by correlation, underscoring the dom-
inance of the SCH energy. Once correlations are included the
dependence of the SCH energy on p, which was judged to
be insignificant in previous self-consistent Hartree-Fock [52]
calculations, retains a role in the energy competition among
different polarized states.

Within the RPA theory the cancellation between exchange
and correlation for the polarization p dependence of the en-
ergy can be understood in terms of Eqs. (1) and (2). The p
dependence of energy follows from that of χ̃H , and this lies
mainly in the range of low-frequency fluctuations within the
flat band where the important matrix elements of V χ̃H are
much larger than 1 so that χ (λ) → V −1 (perfect screening),
and the dependence of Exc on polarization is lost. Physically,
correlations are already strong even in the paramagnetic state
and there is little left to gain by flavor ordering. Generally
speaking, we find that the tendency toward flavor symmetry
breaking is stronger at larger |ν| and stronger at positive ν

than at negative ν, as summarized in Fig. S7, in agreement
with most experiments [16,19,48,53]. In addition we find that
the difference in energy between polarized and paramagnetic
states is drastically reduced by correlations from ∼40 meV
per moiré period to less than ∼3 meV [Fig. 3(c)].

In MATBG broken C2T symmetry opens up a gap be-
tween the conduction and valence bands. This type of broken
symmetry within flavors is therefore common in mean-field
calculations. In our RPA calculations we find, as summarized
in Table S2, that when C2T symmetry is broken by adding a
sublattice-dependent potential of the type produced by aligned
hBN substrates, flavor ferromagnetism is favored at almost
all filling factors including those proximate to CN. This find-
ing aligns well with experimental evidence suggesting that
hBN alignment tends to favor states with broken symmetries
[14,15,54], including quantum anomalous Hall states at frac-
tional flat band fillings [14].

Magic-Angle Correlation Problem. In this Letter we report
on the first RPA calculation for MATBG. The RPA weak-
coupling approach has the advantage that it accounts for
dynamic screening of long-range Coulomb interactions, but
is less reliable than some other methods in accounting for
short-distance correlations. Competing methods often require
tight-binding models, which in the case of MATBG have the
disadvantage that they require the introduction of additional
bands [55] to compensate for fragile topology inherited from
the isolated layer Dirac cones. Our theory establishes the cru-
cial influence of correlations in compressible metallic states in
expanding unbroken symmetry regions in the MATBG phase
diagram. The RPA weak-coupling approach is also relevant
for other moiré materials that exhibit strong correlations.

Our calculations include 146 remote valence and conduc-
tion bands per spin and flavor. Our calculations are consistent
with experimental indications that flavor ferromagnetism is
common in both insulating and metallic states when the
MATBG flat bands are partially filled, less likely close to
CN, and more likely at positive filling factors than at neg-
ative filling factors. The exchange energy gains that favor
broken symmetry insulating ground states at integer ν, are
comparable in size to correlation energy gains in closely
competing metallic states with fewer or no broken sym-
metries. The resulting weak dependence of energy on the
magnetic state is consistent with small collective excitation
energies of insulating states [56,57] and with strong coupling
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approaches [22,58] that can be applied close to integer band
fillings. Our calculations demonstrate that [44] fluctuations
in remote bands do not generally play a central role in
MATBG properties except in the cases of nearly empty and
nearly full bands. This finding justifies the flat-band projection
that is required to make nonperturbative finite-size numerical
calculations [59–62] feasible. Perturbative calculations are
approximate, but have the advantage that finite-size effects
can be eliminated by taking dense momentum space grids; our
calculations employ 432 k-points in the MBZ.

Our calculations can be compared directly to experimen-
tal results for the chemical potential μ, which increases by
∼50 meV as the flat bands are filled. This compares to a
dependence of energy on flavor polarization that is typically
∼3 meV per moiré cell. The positive compressibility we
find, in agreement with the experiment, for MATBG elec-
trons contrasts with the well-known negative compressibility
of strongly interacting two-dimensional electron gas systems
[63,64], and is associated with unusual properties of the pro-
jected flat-band Hilbert space. In MATBG models with exact
particle-hole symmetry, the flat conduction and valence bands
at the Fermi energy spatial structure within the moiré unit
cell that precisely complements the total density of remote
occupied bands, so that the total density is uniform. The
increase in chemical potential with filling factor is associated
with the property that the nonuniform density of the remote
bands is first eliminated and then restored with the opposite
sign as the flat bands are filled. We emphasize that, unlike
most calculations in the literature, which overstate dielectric
screening to suppress interaction scales, all our results are
obtained using a physically realistic hBN dielectric constant
εBN=5.1 [44].

The MATBG correlation problem is extraordinarily chal-
lenging and the RPA theory, like other approaches, has
limitations. Even though the flat band eigenstates have weak
dispersion, their wave functions vary in a complex way across
the MBZ. For this reason there is no simple Hubbard-like
lattice model representation of the correlation problem. Aside
from the fascinating low-temperature superconducting insta-
bility, two key higher-energy issues still do not have definitive
answers. (i) What is the ground state at CN? Is it the p = 0
state of Fig. 3, which has no broken symmetries and strong
correlations, or the p = 1 state, which is a single Slater deter-
minant with analytically calculable excitations when remote
band fluctuations are neglected? (ii) What is the Fermi sur-
face in the range of filling factors surrounding ν = 0? Is
it the γ centered Fermi surface of the p = 1 state or the

κ, κ ′ centered Fermi surface of the p = 0 state? In either
case how does the Fermi surface, at least as indicated by
weak-field Hall measurements [47], manage to avoid Lift-
shitz transitions over such a broad range of filling factors
−1.8 � ν � 0.9 surrounding ν = 0? For the first question
we do not consider the weak-coupling answer (that p = 0 is
favored) to be definitive, but it certainly demonstrates that
the two states are competitive. The second question is es-
pecially troublesome if one imagines that the ground state
near ν = 0 is a doped p = 1 state in which the band degen-
eracies have been reduced from four to two and the Fermi
surface areas must be correspondingly larger. The more likely
option, in our view, is that the ground state near CN is an
unpolarized state as predicted by RPA. Part of the motivation
for this view is the absence of finite-temperature anomalies
in the experiment, which would signal a phase transitions
to a paramagnetic state — expected to be at least weakly
first order in MATBG as in other itinerant electron magnets
[65]. If so, there is no hint experimentally of the emergence
between ν = 0 and |ν| = 1 of the self-consistent Hartree mul-
tipocket Fermi surface topology illustrated in Fig. 1. Future
work should explain why this pocket does not appear (or
alternately why its appearance does not influence transport),
perhaps due to a refinement of the single-particle model
which changes flat band wave functions [66–69], exchange
interactions within the doped flat bands that stabilize κ, κ ′
centered surfaces, broken C2T symmetry related to chiral
model physics [22,56,70,71], and intervalley exchange inter-
actions that we neglected [71–73]. Systematic studies of the
evolution of MATBG properties with gate-induced interlayer
displacement fields could play a role in sorting this confusing
landscape.
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