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1 Introduction

In the early days of quantum field theory, renormalizability was used as a criterion to

select physically viable models. It was later understood that effective field theories can

be useful and predictive in their domain of validity even if not renormalizable. Current

particle physics is largely based on this paradigm. It leaves an enormous freedom. One

would like to have a more restrictive framework to guide the search for physics beyond

the Standard Model (BSM). Non-perturbative renormalizability, also known as asymptotic

safety (AS), provides such a framework. A quantum field theory is AS if all its couplings,

running along the renormalization group (RG) flow, reach a fixed point in the ultraviolet

(UV) limit [1, 2]. The fixed point can be interacting or free (Gaussian). In the latter

case, AS reduces to asymptotic freedom (AF). In both cases, the theory is well behaved

and predictive at all energies. UV completeness is by itself a rather abstract notion, being

untestable in practice. The real bonus of AS is that when a suitable fixed point exists,

typically there are only a finite number of relevant directions that can be used to reach it

in the UV. This greatly restricts the infrared physics.

While AF theories have been studied in great detail and for a long time, work on

AS models for particle physics has only begun quite recently. For some early references

based on the use of the functional renormalization group see [3–8]. A breakthrough came

with the work of Litim and Sannino, who constructed gauge-Yukawa systems admitting

interacting fixed points that are under perturbative control [9]. In these models the fixed

point arises from a cancellation between one- and two-loop terms in the β-functions. The

crucial ingredient is the Veneziano limit, providing the small expansion parameter

ε =
Nf

Nc
− 11

2
, (1.1)

where Nc and Nf are the numbers of colors and flavors respectively. It is reasonable to

expect that there may also exist AS models for finite values of ε. General conditions for

the existence of such fixed points have been discussed in [9, 10]. Applications of these ideas

to BSM physics have appeared [11–19].

The Standard Model (SM) by itself is not AS because of the Landau pole in the U(1)

gauge coupling [20, 21] and the uncertain fate of the Higgs quartic interaction [22]. The

Landau pole can only be avoided by assuming that the gauge coupling is identically zero

at all energies. This is known as the triviality problem.

Can the SM be turned into an AS theory by extending its matter content? The sim-

plest (and most studied) extensions consist of multiple generations of vector-like fermions

carrying diverse representations of the SM gauge group. The choice of vector-like fermions

is motivated by their not giving rise to gauge anomalies and their masses being technically

natural. The authors of [15] have studied the β-functions to two-loop order in the simplified

case of SU(3)× SU(2) gauge interactions and a Yukawa-like interaction among the vector-

like fermions. They find several UV fixed points, which they match to the low-energy SM

in a number of benchmark cases. In a parallel development, the authors of [16, 17] studied

AS for the full SM gauge group, again extended by vector-like fermions, by means of a re-
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summation of the perturbative series of the β-functions. They find several UV fixed points,

which however cannot be matched to the low-energy SM in a consistent manner [17].

To move forward in this program, we report our results for a large class of models

based on the SM matter content and with SUc(3)×SUL(2)×UY (1) gauge interactions, but

retaining only the top Yukawa coupling and the Higgs quartic self-interaction; in addition,

the models contain fermions that are coupled to the SM gauge fields via vector currents

and have Yukawa interactions with a new set of scalar fields. The restriction to the top

Yukawa makes the form of the β-functions more manageable — and is in line with earlier

investigations. The models differ in the number of copies of the vector-like fermions and

in the representation of the gauge groups that they carry.

In contrast to [16, 17] we do not use resummed β-functions. Instead, we compare the

results of the two-loop (NLO) gauge β-functions considered so far in the literature with the

three loop results (NNLO). As explained in section 2, the β-functions for the Yukawa and

scalar couplings are retained always at one- and two-loops less than the gauge couplings,

respectively. By comparing the results at these two different approximation schemes, we

are able to assess the impact of radiative corrections quantitatively and therefore to decide

whether a given fixed point is within the perturbative domain or not. This selection is

supported by other tests of perturbativity that the fixed points must satisfy, as discussed

in sections 2.5 and 2.6.

The core of our work consists of a systematic search of reliable fixed points in a large

grid parameterized by the value of Nf (the number of vector-like fermions) and their

SU(3)c × SU(2)L × U(1)Y quantum numbers (this grid is defined precisely in section 4).

We first find all the simultaneous zeroes of all the β-functions for each model in the grid.

We then test each fixed point thus found against two conditions:

• The fixed point must occur in a region in which the perturbative expansion is reliable.

At the very least, this implies that it must be reasonably possible to trace its value at

the NNLO back to that of the NLO. We see a posteriori that this can be done only

when the values of the couplings and of the scaling exponents (the eigenvalues of the

linearized expansion around the fixed point) are sufficiently small and the fixed point

satisfies all the criteria introduced in section 2.

• The fixed point can be connected to the SM at low energy. In general this would

require a delicate numerical analysis of the trajectories emanating from it. However,

we find that a rough necessary condition is sufficient for our purposes: the fixed point

must not have any coupling that is zero and irrelevant, because such couplings must

be identically zero at all scales to avoid Landau poles.

As we shall see, these two requirements taken together, while quite reasonable, are

very restrictive. As a matter of fact, we are not able to identify any choice for the group

representations and number of generations of the vector-like fermions that would make the

extension of the SM reliably AS. This does not mean that such an extension does not exist:

it only means that if such an AS extension of the SM exists, it must either be different
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from those that we have considered, or else it must have a fixed point that lies outside the

reach of perturbation theory.

2 Methods

In this section we describe the general procedure that we follow in the rest of the paper.

This allows us to motivate better the requirements (introduced in section 1 and further

elaborated here) that we impose on the fixed points in order for them to be considered as

physical. We recommend [23] as a general reference on RG flows.

2.1 The fixed points of the β-functions

Consider a theory with generic (gauge, fermion or scalar) fields and (generally dimensionful)

couplings ḡi of the interactions among them. In the study of the RG it is customary to use

dimensionless couplings gi, related to the dimensionful couplings by gi = µ−di ḡi, di being

the mass dimension of ḡi. The renormalization of the theory is completely characterized

by its β-functions

βi(gj) ≡ µ
dgi
dµ

, (2.1)

where µ is the sliding scale of the quantum theory. A fixed point of this theory, denoted

g∗j , is defined by the vanishing of the β-functions of all couplings:

βi(g
∗
j ) = 0 . (2.2)

When the couplings gj assume the values g∗j , the renormalization of the quantum

theory stops. In general, a given fixed point can be reached either in the UV or in the IR

limit, depending on the direction of the approaching trajectory. Notice that the familiar

distinction between UV and IR fixed points is only meaningful when there is a single

coupling in the theory.

The β-function of a single coupling is independent of the gauge choice in dimensional

regularization. It is regularization scheme-independent up to NLO. If there are several cou-

plings running together, their β-functions depend on the scheme already at the NLO [24].

There is therefore a degree of ambiguity in the position of the fixed points we are going to

discuss because their position could be moved by changing the scheme. We assume that

these changes are small if the fixed point is found within the perturbative regime. One

should however bear in mind this problem of scheme dependence in all the discussions

to follow.

In general, there are no conditions on the values of the fixed point g∗i and they could

take any value. However, when we work in perturbation theory, we have to remain within

its range of validity. Therefore, we demand that all the couplings be sufficiently small at the

fixed point g∗i . In practice this means that going to the next order of the expansion should

not appreciably change the position of the fixed point as well as its other properties. We will

see that this implies that the numerical value of the fixed points must satisfy the condition

α∗i ≡
(
g∗i
4π

)2

< 1 , (2.3)
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in addition to being positive. Notice that in eq. (2.3), and in what follows, the definition

of the coupling α follows a convention widely adopted in the AS literature which however

differs from the usual one by an additional factor 4π in the denominator.

The condition in eq. (2.3) would suffice to keep the perturbative expansion within its

limits of validity if the coefficients in the perturbative expansions were of the same order

and not too large. If they are not, the condition in eq. (2.3) should be strengthened and

only smaller values allowed to prevent terms of higher order being more important than

those at the lower order.

As we shall see, this is the case for many of the fixed points we discuss. As a matter of

fact, many of the fixed points discussed in the literature are due to a cancellation between

the first two orders in the perturbative expansion of the β-functions. This is acceptable

only if the higher terms in the perturbative expansion are then more and more suppressed.

This is the main motivation for going to three-loop order in the gauge β-functions.

2.2 Linearized flow

Once we have a candidate fixed point, we can study the flow in its immediate neighborhood.

We move away from the fixed point and study what happens when we shift the couplings

by a small amount yi ≡ gi − g∗i . To this end, we linearize the β-functions as

dyi
dt

= Mijyj , (2.4)

where Mij ≡ ∂βi/∂gj is referred to as the stability matrix. Next, we diagonalize the linear

system by going to the variables zi = (S−1)ijyj , defined by the equation

(S−1)ijMjlSln = δinϑn , (2.5)

so that the β-functions and their solutions are in the simplified form

dzi
dt

= ϑizi and zi(t) = ci e
ϑit = ci

(
µ

µ0

)ϑi
. (2.6)

From the expression of zi as functions of µ, we see that there are different situations

depending on the sign of ϑi:

• For ϑi > 0, as we increase µ we move away from the fixed point and zi increases

without control; the direction zi is said to be irrelevant.

• If ϑi < 0, as we increase µ we approach the fixed point; the direction zi is called a

relevant direction.

• If ϑi = 0, we do not know the fate of zi and we have to go beyond the linear order as

explained below; the direction zi is called marginal in this case.

The notion of relevance/irrelevance is independent of the direction of the flow and

of the choice of basis. AS theories correspond to trajectories lying on the surface whose

tangent space at the fixed point is spanned by the relevant directions. This tangent space
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SM

A

g3

g2

g1

FP

z3
z2

z1

Figure 1. Theory space of couplings gi where only 3 axes are shown for simplicity. For a given

fixed point we show the UV safe surface (blue region), the approximated UV critical surface around

the fixed point (white plane), the new set of coordinates zi, a small region of possible initial points

for the flow (red circle) and two UV safe trajectories ending at a given matching scale M (green

and orange dashed lines, the former going to the SM, the latter going to a different IR physics A).

is shown in figure 1 as a white plane. In the same figure we depict the full UV critical

surface in blue.

The eigenvalues ϑi have the property of being universal quantities — meaning that

they are invariant under a general transformation in the space of couplings. In perturbation

theory, they cannot take any arbitrary value, there are restrictions on their size. We know

that in general the β-function for gi has the form

βi = −digi + βqi (gj), (2.7)

where βqi encodes the pure quantum contributions to the β-functions. Therefore, the

stability matrix is given by

Mij = −diδij +
∂βqi
∂gj

(2.8)

which is equal to the classical scaling exponent plus quantum corrections. Then, the

quantity −ϑi represents the full scaling dimension of the coupling ḡi. If we want to remain

in perturbation theory, we should demand that the scaling dimension be small. In the

cases we consider, where all the couplings have di = 0, this means that

|ϑi| < O(1) . (2.9)

There is a degree of arbitrariness about where exactly one should set this bound. In our

study, we look at the scaling dimensions for the models under examination and set the

bound in the first gap in the distribution of their O(1) values.

– 6 –



J
H
E
P
1
1
(
2
0
1
8
)
0
5
7

2.3 Marginal couplings

If one of the eigenvalues is equal to zero, the linear approximation does not give us infor-

mation about the RG behaviour in the direction associated with it. Then we have to go

further in the expansion [25]. At second order in the couplings yi, the β-functions take

the form
dyi
dt

= Mijyj + Pijkyjyk , where Pijk =
∂2βi
∂gj∂gk

. (2.10)

The structure of these quadratic flows is quite complicated to describe in full generality,

with the fate of a specific trajectory depending strongly on the position of the initial point

in the neighborhood of the fixed point.

However, marginal couplings do not generally occur for a fully interacting fixed point:

they can always be identified with some coupling that is itself zero at the fixed point.

We show in appendix A that the structure of the β-functions is such that the flow of the

marginal couplings near the fixed point is of the form

dyi
dt

= Piiiy
2
i , (2.11)

(no summation implied). Our flows will always be written in terms of the αi, which are

bound to be positive. Therefore, marginal directions yi = αi with Piii < 0 are UV attractive

and are called marginally relevant (a well-known example being the QCD gauge coupling)

while those with Piii > 0 are UV repulsive and are called marginally irrelevant. Altogether,

the UV critical surface is thus spanned by the relevant and marginally relevant directions.

2.4 Approximation schemes

The perturbative β-functions of the SM and its extensions have a natural hierarchy origi-

nating from the Weyl consistency conditions [26–30]:

∂βj

∂gi
=
∂βi

∂gj
. (2.12)

In these relations the indices on the β-functions have to be raised or lowered by means of

a metric, which itself depends on different orders of the couplings. Therefore, a consistent

solution of eq. (2.12) relates different orders in the perturbative expansion and indicates

that the gauge couplings must have the highest order in the loop expansion, while the

Yukawa coupling must be computed at one order less and the quartic interaction one

further order less. This leaves us in practice with two approximations for the running of

the couplings:

• the 210 approximation scheme, in which the gauge couplings are renormalized at the

two-loop order (NLO), the Yukawa coupling only at one-loop order (LO) and the

quartic interaction is not renormalized; and

• the 321 approximation scheme, in which the gauge couplings are renormalized at the

three-loop order (NNLO), the Yukawa coupling at two-loop order (NLO) and the

quartic interaction at one-loop order (LO).

– 7 –
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Note therefore that in the 210 approximation scheme a fixed point is defined by vanishing

gauge and Yukawa β-functions, whereas in the 321 approximation scheme also the scalar

quartic β-function must be zero.

By comparing the two approximations it is possible to test the stability of

the fixed point against radiative corrections and the overall reliability of the

perturbative computation.

Other approximation schemes are also possible, for example retaining all β-functions

at the same order or keeping only the gauge β-functions one order higher than the others.

These different choices do not satisfy eq. (2.12). They are analysed in [31] where their

respective merits (and shortcomings) are discussed.

2.4.1 Perturbative β-functions: a digest of the literature

The perturbative study of the β-functions of the SM, together with some of its possible

extensions, has been a collective endeavor covering many years. We collect here the main

stepping stones in this ongoing computation.

The one-loop (LO) β-function for a non-abelian gauge group was computed in the

classic papers [32] and [33] where AF was discovered. The LO β-function for the Yukawa

coupling was presented in [34] and that for the quartic Higgs interaction in [35]. The two-

loop (NLO) β-functions for the gauge groups have been calculated in [36–39], those for

the Yukawa couplings in [40–42] and that for the quartic Higgs interaction in [42–44]. The

case of the SM has been discussed in [45]. Mistakes in some of these results were corrected

in [46, 47] where they were also generalized to arbitrary representations of non-simple

groups. The three-loop (NNLO) β-functions of a gauge theory with simple groups were

given partially in [48], then in [49]. The full NNLO β-functions for the SM were presented

in [50] and those for generic representations of non-simple gauge groups in [51]. In this

last paper, some contributions from the Yukawa and quartic Higgs interactions were not

included. For these terms we have used currently unpublished results of L. Mihaila [52]. The

NNLO β-functions for the Yukawa and quartic Higgs couplings were partially computed

in [53] and fully in [54, 55]. We will not need them here.

2.5 Another test of perturbativity

Besides the smallness of the couplings themselves, there is another simple test that we use

to assess whether a fixed point is in the perturbative domain.

Let us write the β-functions of the gauge couplings αi in the schematic form

βi =
(
A(i) +B(i)

r αr + C(i)
rs αrαs

)
α2
i , (2.13)

where A, B and C are the one-, two- and three-loops coefficients. At a fixed point we can

split each beta function in the following way

0 = βi = A
(i)
∗ +B

(i)
∗ + C

(i)
∗ , (2.14)

where A
(i)
∗ = A(i)α2

i∗, B
(i)
∗ = B

(i)
r αr∗α

2
i∗ and C

(i)
∗ = B

(i)
rs αr∗αs∗α

2
i∗. When we insert the

values of the fixed point calculated in the 321 approximation scheme, we expect the three
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contributions to be ordered as |C(i)
∗ | < |B(i)

∗ | < |A(i)
∗ |, or equivalently

ρi < σi < 1 , where ρi = |C(i)
∗ /A

(i)
∗ | and σi = |B(i)

∗ /A
(i)
∗ | . (2.15)

Note that in this case ρ+σ = 1. In principle it might also happen that the sum of the one-

and three-loop terms cancel the two-loop term, i.e. σ−ρ = 1. We shall see that this does not

happen. Alternatively, if we insert in (2.13) the fixed point values of the 210 approximation

scheme, βi will not be zero. The first two terms in (2.14) will cancel, but we still expect

ρi < 1. In the following, when we report results in the 210 approximation scheme, we

give the values of ρi defined at the 210 fixed point and when we report results in the 321

approximation scheme, we give the values of ρi and σi defined at the 321 approximation

scheme fixed point.

2.6 Testing fixed points with central charges

At a fixed point the theory is a conformal field theory (CFT). As explained in appendix B,

one can estimate the size of the relative changes of the central charges of the CFT to

decide whether a fixed point is within the domain of perturbation theory. These relative

changes are obtained in terms of the function a = afree + aq (aq refers to the contribution

of quantum corrections) and of the c-function as

δa ≡ a− afree
afree

=
aq
afree

and δc ≡ c− cfree
cfree

=
cq
cfree

. (2.16)

If δa or δc become smaller than −1 the fixed point is unphysical because it cannot cor-

respond to a CFT (since c > 0 and a > 0 are guaranteed for CFT). A fixed point for

which δc or δa is of order 1 should be discarded as well since quantum corrections are then

comparable in size to the free-theory contribution.

The central charges in the 210 approximation scheme can be easily computed by em-

bedding the models in the general gauge-Yukawa Lagrangian of [56]. Computation in the

321 approximation scheme is significantly more complicated due to a major increase in

complexity of the Zamolodchikov metric. We do not pursue the 321 computation for that

reason and also because the results in the 210 approximation scheme are enough to confirm

that our other perturbativity criteria are compatible with the CFT tests.

2.7 Standard Model matching

Once we have an understanding of the fixed point structure — and the conditions on the

couplings αi and the scaling exponents ϑi are satisfied — there remains to be found the

trajectory connecting a given fixed point to the SM value of the coupling at some IR scale.

This is accomplished in the following manner.

We are going to introduce BSM particles with a value M of their mass that makes

them undetectable at present colliders. We run all the SM couplings to this common RG

scale M , using the SM β-functions. This defines the target for the flow to the IR from

the UV fixed point. Then, the BSM RG flow is started from a point belonging to the

UV critical surface, infinitesimally close to the fixed point (red circle in figure 1). This
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guarantees that, to high precision, the flow towards the UV ends at the fixed point. The

system is then allowed to flow by means of the full β-functions of the theory towards the

IR. The initial point of the flow is varied until, ideally, the trajectory hits exactly the

target SM values.

For most of the models that we consider, this laborious procedure is not necessary.

For all the fixed points that can be regarded as being in the perturbative domain, the

hypercharge is zero at the fixed point and is also a marginally irrelevant coupling. This

means that in order to reach the fixed point in the UV limit, the hypercharge must be zero

at all energies. All other trajectories have a Landau pole. These models are thus excluded

by a version of the triviality problem.

2.8 Procedure summary

Given a model, we first look for all the fixed points of the β-functions. Since the β-functions

are given in the form of a Taylor expansion, some of their zeroes will be mere artifacts of the

expansion. In practice, these we discard by requiring stability under radiative corrections.

Then, in order to select the fixed points that have a chance of being physical, we demand

that they can be matched to the SM at low energy.

We begin by analyzing the fixed points of the 210 approximation scheme. In the first

step, we retain only those fixed points that can be reasonably assumed to be within the

perturbative regime, that is, those for which the couplings and the scaling exponents satisfy

the bounds in eq. (2.3) and eq. (2.9). We use the criteria discussed in sections 2.5 and 2.6

to confirm that these bounds are indeed reasonable indicators of radiative stability.

We then compare with the results of the same analysis in the 321 approximation

scheme. We retain only those fixed points that can be reasonably identified in both ap-

proximations. Their number is quite small. We find that the identification is only possible

if the couplings and scaling exponents are sufficiently small.

Finally, for the fixed points that are radiatively stable in the sense just described, we

look for the possibility of matching to the SM at low energy. If all these conditions are

satisfied, we have an acceptable fixed point. Otherwise, the fixed point is rejected.

3 The fate of the Standard Model couplings

The running of the SM couplings, when extended to high energies, presents two important

features: partial gauge coupling unification and a Landau pole in the abelian gauge cou-

pling. Since this singularity appears beyond the Planck scale, where gravitational effects

are important, it might well happen that there will be no divergence and that all couplings

are well-behaved once we consider a full theory of gravity and matter. Nevertheless, it is

interesting to investigate whether such infinities could be avoided within the matter sector.

This study will nicely illustrate our procedure by means of the familiar case of the SM.

Throughout this paper, we shall consider a simplified version of the SM where only the

top-Yukawa coupling yt is retained. The remaining Yukawa couplings are set to zero. For

simplicity we will keep calling this the SM. However, we stress that the degrees of freedom

that enter the flow are not only those of the top quark but the full SM matter content

– 10 –
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α1 α2 α3 αt

0 20 40 60 80

5.×10
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0.001

0.005

0.010

t

Figure 2. Running of the gauge couplings αi and Yukawa αt for the SM in the 321 approximation

scheme. On the horizontal axis t = ln (µ/MZ). Just above t ' 40 the three gauge couplings come

close together. At larger values of t, α1 begins its ascent towards the Landau pole.

(i.e., the number of fermions that enters into the 1-loop coefficient of the gauge β-functions

counts all the quarks and leptons).

The first question is whether the β-functions of the SM have fixed points. This does

not happen with the LO beta functions. In figure 2 we show the running of the couplings

toward the (quasi)-unification point and the beginning of the ascent of the coupling α1

toward the Landau pole.

3.1 The 210 approximation scheme

We then consider the beta functions in the 210 approximation scheme (NLO in the gauge

couplings), which are given by

βNLO
1 = α2

1

(
41

3
+

199

9
α1 + 9α2 +

88

3
α3 −

17

3
αt

)
,

βNLO
2 = α2

2

(
−19

3
+ 3α1 +

35

3
α2 + 24α3 − 3αt

)
,

βNLO
3 = α2

3

(
−14 +

11

3
α1 + 9α2 − 52α3 − 4αt

)
,

βLO
t = αt

(
−17

6
α1 −

9

2
α2 − 16α3 + 9αt

)
, (3.1)

where, following the convention (2.3), we use the variables

αi =
g2i

(4π)2
for i = 1, 2, 3, and αt =

y2t
(4π)2

. (3.2)

The set of β-functions in eq. (3.1) admits several zeroes. They are given by the last column

of table 12 in appendix C. However, only two of them (solutions P16 and P17) have all αi
positive. Their properties are summarized in table 1.

Although less than 1, the values for the couplings constants α∗i are quite sizeable and we

may suspect that they lie outside the perturbative domain. This suspicion is substantiated
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α∗
1 α∗

2 α∗
3 α∗

t ϑ1 ϑ2 ϑ3 ϑ4

FP1 0 0.543 0 0 3.44 −2.44 0 0

FP2 0 0.623 0 0.311 5.21 2.21 0 0

Table 1. Fixed points and their scaling exponents for the SM in the 210 approximation scheme.

by looking at the linearized flow. Considering that these exponents are classically zero, we

see that the quantum corrections are quite large. The fate of the marginal directions (z3
and z4) is determined by looking at the quadratic approximation to the flow, as discussed

in section 2.3 and in appendix A. We find that the third direction is marginally irrelevant

while the last one is marginally relevant.

Even if we had decided to ignore the breaking of the perturbative regime and insisted on

looking for trajectories connecting one of the fixed points to the IR regime, the requirement

of lying on the UV critical surface would have implied that there is always a coupling that

vanishes at all scales. Namely, given that α∗1 = 0, and that the β-function for α1 is

proportional to a power of α1 itself, this coupling cannot run at all. In other words, the

coupling α1 is frozen at zero at all scales and the U(1) gauge interaction is trivial. Clearly

there are no physical fixed points within the SM in the 210 expansion: the problem of the

Landau pole is still present even when the gauge couplings are taken at NLO.

3.2 The 321 approximation scheme

To check the perturbative stability of the two fixed points of the previous section, we now

study the β-functions to the next order. In the 321 approximation scheme (NNLO in the

gauge couplings), the β-functions take the form [30]

βNNLO
1 = βNLO

1 + α2
1

[
−388613

2592
α2
1 +

205

48
α1α2 +

1315

32
α2
2 −

274

27
α1α3 − 2α2α3 + 198α2

3

−
(

2827

144
α1 +

785

16
α2 +

58

3
α3

)
αt +

315

8
α2
t +

3

2

(
α1 + α2 − αλ

)
αλ

]
,

βNNLO
2 = βNLO

2 + α2
2

[
−5597

288
α2
1 +

291

16
α1α2 +

324953

864
α2
2 −

2

3
α1α3 + 78α2α3 + 162α2

3

−
(

593

48
α1 +

729

16
α2 + 14α3

)
αt +

147

8
α2
t +

1

2

(
α1 + 3α2 − 3αλ

)
αλ

]
,

βNNLO
3 = βNLO

3 + α2
3

[
−2615

108
α2
1 +

1

4
α1α2 +

109

4
α2
2 +

154

9
α1α3 + 42α2α3 + 65α2

3

−
(

101

12
α1 +

93

4
α2 + 80α3

)
αt + 30α2

t

]
,

βNLO
t = βLO

t + αt

[
+

1187

108
α2
1 −

3

2
α1α2 −

23

2
α2
2 +

38

9
α1α3 + 18α2α3 − 216α2

3

+

(
131

8
α1 +

225

8
α2 + 72α3

)
αt − 24α2

t − 12αtαλ + 3α2
λ

]
, (3.3)

βLO
λ = 12α2

λ −
(

3α1 + 9α2

)
αλ +

9

4

(
1

3
α2
1 +

2

3
α1α2 + α2

2

)
+ 12αtαλ − 12α2

t ,
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α∗
1 α∗

2 α∗
3 α∗

t α∗
λ ϑ1 ϑ2 ϑ3 ϑ4 ϑ5

FP1 0 0 0 0.297 0.184 8.32 −2.57 0 0 0

FP2 0 0.120 0 0.0695 0.0575 1.46 1.18 0.495 0 0

FP3 0 0.124 0 0.333 0.230 8.82 −2.52 1.38 0 0

FP4 0.436 0.146 0 0.648 0.450 −27.0 17.3 −7.85 2.19 0

FP5 0.433 0 0 0.573 0.377 −25.6 15.7 −6.85 0 0

Table 2. Fixed points and their scaling exponents for the SM in the 321 approximation scheme.

where the quartic Higgs coupling

αλ =
λ

(4π)2
(3.4)

is no longer unrenormalized.

Due to the higher order of the equations, there are more fixed points than the two

found in the 210 approximation scheme. They are listed in table 2.

Consistently with the discussion in the case of the 210 approximation scheme, neither

the couplings nor the exponents are small. Moreover, it is not possible to recognize among

the new fixed points those of the 210 approximation scheme: the values change dramati-

cally, contrary to what would be expected in a well-behaved perturbative expansion.

That there is a problem is confirmed by looking at the criteria of perturbativity in-

troduced in section 2.5. In the 210 approximation scheme, for the two fixed points of

table 1, we have B
(2)
∗ = 1.87 and B

(2)
∗ = 2.46, respectively, while C

(2)
∗ = 32.7 and

C
(2)
∗ = 53.9, respectively. For both fixed points the ratio ρ2 is of order 10, grossly violating

the bound (2.15). It therefore appears that we are outside the domain where perturbation

theory can be trusted.

We conclude that the SM (at least in the simplified form considered here) does not have

a physical fixed point within perturbation theory. In the next section, we study a family

of models that represents the simplest extension to the SM content with the potential of

generating new fixed points.

4 Standard Model extensions

In this section, we consider (minimal) extensions of the SM by adding new matter fields

charged under the SM group SUc(3)× SUL(2)× UY (1). The gauge sector is not modified.

Following [9, 10, 15, 57], we take Nf families of vector-like fermions minimally coupled

to the SM. The idea is to consider a new type of Yukawa interactions among the vector-

like fermions such that their contribution generates new zeros in the gauge β-functions.

Accordingly, new scalar fields must be included as well. These scalars are taken to be

singlets of the SM group while the fermions carry the representations R3 under SUc(3),

R2 under SUL(2), and have hypercharge Y of the gauge group UY (1). Denoting Sij the

matrix formed with N2
f complex scalar fields, the Lagrangian characterizing this minimal

BSM extension is

L = LSM + Tr (ψ̄(i /D −M)ψ) + Tr (∂µS
†∂µS)− yTr (ψ̄LSψR + ψ̄RS

†ψL) . (4.1)
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In eq. (4.1), LSM stands for the SM lagrangian, y is the BSM Yukawa coupling, which

we assume to be the same for all fermions, the trace sums over the SM representation

indices as well as the flavour indices, and we have decomposed ψ as ψ = ψL + ψR with

ψR/L = 1
2(1 ± γ5)ψ. We neglect the role of quartic self interactions of the scalars Sij as

well as portal couplings of the latter to the Higgs sector.

This extension of the SM is simple enough to allow explicit computations while giv-

ing rise to new features in the RG flow. The vector-like fermions are a proxy for more

elaborated extensions; they do not introduce gauge anomalies and do not induce a large

renormalization of the Higgs mass: they are technically natural.

4.1 The β-functions

Within the model defined by the Lagrangian (4.1), we look for fixed points satisfying the

requirements discussed in section 2.8. We start the analysis in the 210 approximation

scheme and write the β-functions of the system (4.1) in terms of the quantities in eq. (3.2)

augmented by the new coupling αy = y2/(4π)2.

In the following, as in section 3, we keep only the top-Yukawa coupling. The β-functions

will depend on the dimensions of the fermion representations d, their Casimir invariants C

and Dynkin indices S, which are defined in general as

dR2 = 2`+ 1, dR3 =
1

2
(p+ 1)(q + 1)(p+ q + 2),

C
(2)
F = CR2 = `(`+ 1), C

(3)
F = CR3 = p+ q +

1

3
(p2 + q2 + pq),

S
(2)
F = SR2 =

dR2CR2

3
, S

(3)
F = SR3 =

dR3CR3

8
. (4.2)

Here, ` = 0, 1/2, 1, 3/2, . . . denotes the highest weight of R2, and (p, q) (with p, q =

0, 1, 2 . . .) the weights of R3.

In the 210 approximation scheme, the β-functions are given by [39, 41, 43, 46]

βNLO
1 =

(
B1 +M1α1 +H1α2 +G1α3 −D1αy −

17

3
αt

)
α2
1,

βNLO
2 =

(
−B2 +M2α2 +H2α1 +G2α3 −D2αy − 3αt

)
α2
2,

βNLO
3 =

(
−B3 +M3α3 +H3α1 +G3α2 −D3αy − 4αt

)
α2
3,

βLO
t =

(
9αt −

17

6
α1 −

9

2
α2 − 16α3

)
αt,

βLO
y =

(
Tαy − F1α1 − F2α2 − F3α3

)
αy, (4.3)

where we have included the gauge and matter contributions in the coefficients Bi, Mi, Hi,

Gi and Di, for i = 1, 2, 3. These coefficient are expressed in terms of dR2 , dR3 , CR2 , CR3 ,

SR2 , SR3 , Y and Nf as follows. For the diagonal and mixing gauge contributions to the
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gauge β-functions we have

B1 =
41

3
+

8

3
NfY

2dR2dR3 , M1 =
199

9
+ 8Y 4NfdR2dR3 ,

H1 = 9 + 8Y 2NfCR2dR2dR3 , G1 =
88

3
+ 8NfY

2CR3dR2dR3 ,

B2 =
19

3
− 8

3
NfSR2dR3 , M2 =

35

3
+ 4NfSR2dR3

(
2CR2 +

20

3

)
,

H2 = 3 + 8NfY
2SR2dR3 , G2 = 24 + 8NfSR2CR3dR3 ,

B3 = 14− 8

3
NfSR3dR2 , M3 = −52 + 4NfSR3dR2(2CR3 + 10),

G3 = 9 + 8NfSR3CR2dR2 , H3 =
11

3
+ 8NfY

2SR3dR2 . (4.4)

For the Yukawa contribution to the gauge β-functions we have

D1 = 4N2
fY

2dR2dR3 , D2 =
1

3
4N2

fCR2dR2dR3 , D3 =
1

8
4N2

fCR3dR2dR3 , (4.5)

whereas the running of the new coupling αy is characterized by the coefficients

T = 2(Nf + dR2CR3), F1 = 12Y 2, F2 = 12CR2 , F3 = 12CR3 . (4.6)

All the new contributions to the gauge couplings running are multiplied by Nf , meaning

that we can go back to the SM by taking the Nf → 0 limit.

Due to the simplicity of the β-functions to this order in perturbation theory, we can

find analytic solutions of the equations βNLO
i = βLO

t = βLO
y = 0 as functions of Y, `, p, q and

Nf . All these solutions are listed in table 12 and can be split in two categories according

to whether they depend on the hypercharge Y or not. All the latter have α∗1 = 0.

For the gauge couplings, using the variables in eq. (3.2), the β-functions in the 321

approximation scheme are given as follows

βNNLO
1 = βNLO

1 +

[
−M11α

2
1 +M12α1α2 −M13α1α3 −G23α2α3 +H11α

2
2 +G11α

2
3

+
315

8
α2
t +Ky1α

2
y −

2827

144
α1αt −

785

16
α2αt −

58

3
α3αt

− (K11α1 +K12α2 +K13α3)αy +
3

2
(α1 + α2 − αλ)αλ

]
α2
1,

βNNLO
2 = βNLO

2 +

[
−M22α

2
2 +M21α2α1 −M23α2α3 −G13α1α3 −H22α

2
1 +G22α

2
3

+
147

8
α2
t +Ky2α

2
y −

729

16
α2αt −

593

48
α1αt − 14α3αt

− (K22α2 +K21α1 +K23α3)αy +
1

2
(α1 + 3α2 − 3αλ)αλ

]
α2
2, (4.7)

βNNLO
3 = βNNLO

3 +

[
−M33α

2
3 +M31α3α1 −M32α3α2 −G12α1α2 −H33α

2
2 +G33α

2
2

+30α2
t +K3yα

2
y − 80α3αt −

101

12
α1αt −

93

4
α2αt

− (K33α3 +K31α1 +K32α2)αy

]
α2
3 .
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For the Yukawa and quartic Higgs couplings, the β-functions are given by

βNLO
t = βLO

t +

[
−24α2

t + 3α2
λ − 12αtαλ +

(
131

8
α1 +

225

8
α2 + 72α3

)
αt

+
1187

108
α2
1 +

3

2
α1α2 −

23

2
α2
2 +

38

9
α1α3 + 18α2α3 − 216α2

3

+
58

27
Bt1α

2
1 + 2Bt2α

2
2 +

160

9
Bt3α

2
3

]
αt (4.8)

βNLO
y = βLO

y +
[
(4− V )α2

y + (V1α1 + V2α2 + V3α3)αy

+W1α
2
1 +W2α

2
2 +W3α

2
3 −W12α1α2 −W13α1α2 −W23α2α3

]
αy,

βLO
λ = 12α2

λ − (3α1 + 9α2)αλ +
9

4

(
1

3
α2
1 +

2

3
α1α2 + α2

2

)
+ 12αtαλ − 12α2

t .

In eqs. (4.7)–(4.8), we have introduced several coefficients containing the gauge and Yukawa

contributions which depend on Nf and the group representations of the SM and new vector-

like fermions. These coefficients are given in appendix D.

It is not possible to find analytic solutions for the fixed points in the 321 approximation

scheme. The system βNNLO
i = βNLO

t = βNLO
y = βLO

λ = 0 must be solved numerically,

separately for each given choice of (Nf , Y, p, q, `). No separation between Y -independent

and dependent solutions can be established before solving the equations.

4.2 Results

In order to find fixed points satisfying the conditions (2.3) and (2.9), we generate a grid in

the space spanned by the quantum numbers (Nf , `, Y ) for three specific SUc(3) represen-

tations: colorless (p = q = 0), fundamental (p = 1, q = 0) and adjoint (p = q = 1). For

each of these representations, we consider the following values for the number of vector-like

fermions, their isospin and hypercharge: Nf ∈ [1, 300] in steps of size 1, ` ∈ [1/2, 10] and

Y ∈ [0, 10] both in steps of size 1/2. This amounts to 126,000 points for each representation

of SUc(3).

4.2.1 Colorless vector-like fermions

Colorless vector-like fermions are the least phenomenologically restricted and therefore the

most attractive candidates for a successful extension of the SM. In the 210 approximation

scheme we find that only the Y -independent set of solutions contains fixed points fulfilling

the required conditions (α < 1, |ϑ| < O(1)).

To set the precise bound on |ϑ|, we plot in figure 3 the largest eigenvalues of the

stability matrix. For the Y -independent solutions there is a gap between 2.21 and 62.6;

for the Y -dependent solutions there are no eigenvalues less than 9.63. Accordingly, we

decide to consider fixed points with |ϑ| < 3. In this way we probably include some fixed

points that are not within perturbation theory, but we prefer to err on this side than to

miss potentially interesting fixed points. In this way we discard all the Y -dependent fixed

points since there is always an eigenvalue which is at least of order 10.
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Figure 3. Distribution of the largest eigenvalues ϑmax of the stability matrix of the fixed points

of the colorless models. Blue dots: eigenvalues for the Y -independent solutions: there is a gap

between 2.21 and 62.6. Red dots: eigenvalues for the Y -dependent solutions: there is no gap, the

eigenvalues start around 10.
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Figure 4. Behaviour of a given eigenvalue |ϑ| as a function of Nf for several values of ` in the

colorless case. The scaling dimension increases very fast with Nf , and only small values of Nf , `

produce |ϑ| < O(1).

After having applied all the criteria discussed in section 2 we find that, for any value of

the hypercharge Y , the only representations producing satisfactory candidate fixed points

are those collected, together with the corresponding eigenvalues, in table 3. The eigenvalues

of the stability matrix turn out to be Y -independent as well. We also show in table 3 the

ratio ρ2. As discussed in section 2.5, this shows how large the three-loop contribution is

with respect to the two-loop contribution.

The bounds on Nf and ` come from the behavior of the eigenvalues as functions of

these parameters. If we plot one of the eigenvalues as a function of Nf for several values of

l, we observe that it increases very fast. From figure 4, we see that only models with small

Nf produce sufficiently small eigenvalues.

It is important to note that the large scaling dimensions of models with large Nf

frustrate the apparently promising strategy of increasing Nf in order to increase the NLO

term in the gauge β-functions to cancel the (Nf -independent) LO term with smaller (and

therefore more perturbative) values of the couplings αi.

The above selection of the viable fixed points is confirmed by the study of their CFT

central charges. There are 20 Y -independent fixed points with eigenvalues up to about
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(Nf , `) α∗
1 α∗

2 α∗
3 α∗

t α∗
y ϑ1 ϑ2 ϑ3 ϑ4 ϑ5 ρ2

(1, 1
2
) 0 0.200 0 0 0.300 2.04 −0.900 0.884 0 0 P16 3.97

0 0.213 0 0.106 0.319 2.21 1.19 0.743 0 0 P17 4.33

0 0.179 0 0 0 −1.61 0.893 −0.804 0 0 P18 3.28

0 0.189 0 0.0943 0 −1.70 1.15 0.697 0 0 P19 3.53

(1, 1) 0 0.0137 0 0 0.0411 0.333 −0.0616 0.0135 0 0 P16 0.194

0 0.0140 0 0.0070 0.0420 0.341 0.0633 0.0137 0 0 P17 0.198

0 0.0103 0 0 0 −0.247 −0.0464 0.0103 0 0 P18 0.0963

0 0.0105 0 0.0052 0 −0.251 0.0473 0.0104 0 0 P19 0.0973

(2, 1
2
) 0 0.104 0 0 0.117 1.0833 −0.467 0.328 0 0 P16 1.71

0 0.108 0 0.0542 0.122 1.14 0.525 0.315 0 0 P17 1.81

0 0.0827 0 0 0 −0.744 −0.372 0.303 0 0 P18 1.19

0 0.0856 0 0.0428 0 −0.770 0.427 0.283 0 0 P19 1.23

(3, 1
2
) 0 0.0525 0 0 0.0472 0.530 −0.236 0.109 0 0 P16 0.763

0 0.0543 0 0.0272 0.0489 0.552 0.251 0.109 0 0 P17 0.794

0 0.0385 0 0 0 −0.346 −0.173 0.0897 0 0 P18 0.471

0 0.0394 0 0.0197 0 −0.355 0.182 0.0896 0 0 P19 0.483

(4, 1
2
) 0 0.0189 0 0 0.0141 0.179 −0.0849 0.0179 0 0 P16 0.246

0 0.0194 0 0.0097 0.0146 0.185 0.0880 0.0182 0 0 P17 0.253

0 0.0130 0 0 0 −0.117 −0.0584 0.0130 0 0 P18 0.141

0 0.0132 0 0.0066 0 −0.119 0.0599 0.0132 0 0 P19 0.143

Table 3. Set of fixed points and eigenvalues for colorless vector-like fermions in the 210 approxi-

mation scheme. We highlight in green the fixed points that appear also in the 321 approximation.

The labels in the second to the last last column refer to the list in table 12. We show in the last

column the ratio ρ2 defined in eq. (2.14) knowing that in 210 A
(2)
∗ = B

(2)
∗ .

±2. The fixed point with least variation in the central charges is that with (Nf , `) =

(1, 1), having δa ' −0.0007 and δc ' 0.08. The one with the largest change is that

with (Nf , `) = (1, 1/2), having δa ' −0.2 and δc ' 0.8. All these fixed points (except

for the one corresponding to (Nf , `, Y ) = (1, 1/2, 0)) pass the collider bounds test (see

appendix B). There are 69 Y -dependent fixed points with eigenvalues up to ±10. None

of them have positive a or c with δa and δc being of O(1). They should all be discarded.

These results confirm our classification of the fixed points in table 3 according to the size

of their eigenvalues and the ratio ρ.

Now that we have isolated the candidates to study, we check whether these fixed points

can be connected to the SM via the RG flow. We find that β1 is proportional to α2
1 and

so, in order to avoid Landau poles, α1 has to vanishes at all energy scales. In conclusion,

although we have perturbative fixed points, these cannot be matched to the SM because

we know that g1 is different from zero at the TeV scale.

We then perform a similar search in the 321 approximation scheme. Since we see

in table 3 that the fixed point with |ϑ| > 1 produce a rather large ρ2 ratio, we stick to
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(Nf , l) α∗
1 α∗

2 α∗
3 α∗

t α∗
y α∗

λ ϑ1 ϑ2 ϑ3 ϑ4 ϑ5 ϑ6 σ2 ρ2

(1, 1) 0 0.0096 0 0.0048 0 0.0039 −0.244 0.0655 0.0430 0.0103 0 0 0.918 0.0821

0 0.0119 0 0.0060 0.0343 0.0048 0.301 0.0813 0.0531 0.0134 0 0 0.8601 0.140

(2, 1
2
) 0 0.0498 0 0.0259 0 0.0211 −0.592 0.382 0.282 0.200 0 0 0.581 0.418

0 0.0567 0 0.0296 0.0734 0.0242 0.696 0.442 0.314 0.224 0 0 0.5012 0.499

(3, 1
2
) 0 0.0291 0 0.0148 0 0.0120 −0.306 0.2080 0.132 0.0827 0 0 0.737 0.263

0 0.0362 0 0.0184 0.0353 0.0150 0.403 0.262 0.165 0.100 0 0 0.645 0.354

(4, 1
2
) 0 0.0117 0 0.0059 0 0.0048 −0.112 0.0804 0.052 0.0130 0 0 0.887 0.113

0 0.0162 0 0.0081 0.0125 0.0066 0.161 0.112 0.0723 0.0179 0 0 0.823 0.177

Table 4. Fixed points and eigenvalues for colorless vector-like fermions, in the 321 approximation

scheme. The last two columns give the values of the ratios σ2 and ρ2 (see 2.15).

solutions having |ϑ| < 1. We find that the same combinations of Nf and ` that provide

perturbative fixed points in the 210 case, also give viable solutions here. Moreover, the

solutions turn out to be Y -independent as well.

In table 4 we show the fixed point solutions satisfying the criteria in eq. (2.3) and

eq. (2.9). All the fixed points in table 4 can be traced back to fixed points that were

already present in the 210 approximation scheme and listed in table 3. Notice that for a

given pair (Nf , `), not all the fixed points in 210 persist. For those that do, the values of

α∗ and ϑ change by relatively small amount. We can then claim that the solutions given

in table 4 are radiatively stable fixed points.

Unfortunately, when we look at trajectories lying on the UV critical surface, we find

again that the coupling α1 must be zero at all scales in all the models. The abelian

interactions suffer from the triviality problem and no matching to the SM is possible if

asymptotic safety is assumed.

All these colorless models are therefore ruled out.

4.2.2 Vector-like fermions in the fundamental of SUc(3)

For the fundamental representation (p = 1 and q = 0 or vice-versa) we follow the same

procedure as before and generate 126,000 models by scanning the same grid in the (Nf , `, Y )

space. We split the solutions in two families depending on whether they depend on the

value of their hypercharge Y or not. The distribution of the largest eigenvalues given in

figure 5 shows that there are no fixed points with |ϑ| < 52.1 for the Y -dependent solutions,

whereas for the Y -independent solutions there is a gap between 10.8 and 372. Accordingly,

we eliminate all Y -dependent solutions and impose the bound |ϑ| < 11 for those that are Y -

independent. In this way, even more than in the preceding section, we include models that

are probably unreliable, but these can be eliminated at a later stage. For the Y -independent

solutions, we find the combinations of Nf and ` in tables 5 and 6 that generate satisfactory

candidate fixed points.

This selection is confirmed by the study of the central charges for these models. Among

the 49 distinct Y -independent fixed points with eigenvalues up to ±10, all have positive

c-function, but 6 of them have a negative a-function (with one more being borderline

acceptable). The CFT test seems to work well here: all fixed points with reasonable
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Figure 5. Distribution of the largest eigenvalues ϑmax of the stability matrix of the fixed points

of the SU(3) fundamental representation. Blue dots: eigenvalues for the Y -independent solutions:

there is a gap between 10.8 and 372. Red dots: eigenvalues for the Y -dependent solutions: there is

no gap, the eigenvalues start at 52.1.

critical exponents pass it, whereas the ones with relatively large exponents do not. An

unexpected fact is that the separation between large and small exponents seems to be

around a maximum value of |ϑ| around 3. For these perturbative and “semi-perturbative”

fixed points, we also notice that the a-function is generically pushed toward 0 (aq < 0)

whereas the c function is generically shifted to larger values (cq > 0). This is why the fixed

points with negative a-function still seem to pass the c-function test. If one considers δc

instead, then for most of these fixed points δc > 1, but apparently not for all. Finally,

if one also studies the collider bounds one finds that ten more fixed points are excluded,

usually those which just barely satisfied one or both of the a and c tests. The collider

bounds tests seem to be the most stringent.

When one tries to match these fixed points to the SM at low energies, it turns out that

the abelian gauge coupling α1 must again be zero at all scales. None of these fixed points

is physically viable.

In the 321 approximation scheme, there exist fixed points that can be reasonably

traced back to those in the 210 approximation scheme. These solutions are shown in

table 7, where we have included only fixed points with |ϑ| < 1 in order to get small ratios

ρi and σi. However, they all have at least one coupling that has to be zero at all scales,

thus preventing a proper matching to the SM.

We conclude that also all the models with the vector-like fermions in the fundamental

representation of SUc(3) cannot provide an AS extension to the SM.

4.2.3 Vector-like fermions in higher representations of SUc(3)

For the adjoint representation (with p = q = 1), the search over the same grid of values for

(Nf , `, Y ) (and thus 126,000 further models) does not produce any fixed point within the

perturbative domain. This is true both in the 210 and in the 321 approximation scheme.

In figure 6, we show the distribution the largest eigenvalues of the stability matrix

for representative couplings of the fixed points for the 210 approximation scheme. We

clearly see that the eigenvalues are rather large. In fact, the minimum eigenvalue in the

Y -independent set of solutions is 1342, while in the Y -dependent set is 426.

This problem is confirmed by the study of the central charges. For the Y -independent

fixed points we find for all fixed points δa of O(1000). Similarly, for the Y -dependent the
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(Nf , l) α∗
1 α∗

2 α∗
3 α∗

t α∗
y ϑ1 ϑ2 ϑ3 ϑ4 ϑ5 ρ

(1, 1
2
) 0 0.0411 0 0 0.0264 0.378 −0.185 0.0936 0 0 P16 0.522

0 0.0422 0 0.0211 0.0271 0.389 0.195 0.0936 0 0 P17 0.537

0 0.0385 0 0 0 −0.346 −0.173 0.0897 0 0 P18 0.471

0 0.0394 0 0.0197 0 −0.355 0.182 0.0896 0 0 P19 0.483

(1, 1) 0 0 0.417 0 0 −6.67 −6.67 4.17 0 0 P11 20.9

0 0 0.521 0 0.417 10.8 −8.33 4.00 0 0 P9 31.8

(1, 3
2
) 0 0 0.176 0 0 −2.81 −2.81 1.52 0 0 P11 5.45

0 0 0.205 0.365 0 3.84 −3.28 1.52 0 0 P10 7.21

0 0 0.195 0 0.120 3.49 −3.12 1.51 0 0 P9 6.60

0 0 0.232 0.413 0.143 4.83 3.72 1.55 0 0 P8 9.06

(1, 2) 0 0 0.0982 0 0 −1.57 −1.57 0.720 0 0 P11 2.42

0 0 0.108 0.193 0 1.88 −1.74 0.735 0 0 P10 2.88

0 0 0.105 0 0.0526 1.78 −1.68 0.730 0 0 P9 2.73

0 0 0.117 0.208 0.0586 2.15 1.88 0.749 0 0 P8 3.30

(1, 5
2
) 0 0 0.0600 0 0 −0.960 −0.960 0.360 0 0 P11 1.27

0 0 0.0646 0.115 0 1.08 −1.03 0.371 0 0 P10 1.44

0 0 0.0632 0 0.0266 1.04 −1.01 0.368 0 0 P9 1.39

0 0 0.0683 0.121 0.0288 1.18 1.09 0.380 0 0 P8 1.59

(1, 3) 0 0 0.0412 0.0733 0.0150 0.689 0.660 0.184 0 0 P8 0.839

0 0 0.0388 0 0.0141 0.632 −0.621 0.178 0 0 P9 0.758

0 0 0.0395 0.0702 0 0.647 −0.632 0.180 0 0 P10 0.778

0 0 0.0372 0 0 −0.596 −0.596 0.174 0 0 P11 0.707

(1, 7
2
) 0 0 0.0221 0 0 −0.354 −0.354 0.0737 0 0 P11 0.384

0 0 0.0232 0.0413 0 0.376 −0.371 0.0764 0 0 P10 0.415

0 0 0.0229 0 0.0073 0.370 −0.366 0.0756 0 0 P9 0.406

0 0 0.0241 0.0428 0.0077 0.394 0.385 0.0784 0 0 P8 0.441

(1, 4) 0 0 0.0114 0 0 −0.182 −0.182 0.0235 0 0 P11 0.182

0 0 0.0118 0.0210 0 0.191 −0.189 0.0235 0 0 P10 0.195

0 0 0.0117 0 0.0033 0.188 −0.187 0.0233 0 0 P9 0.191

0 0 0.0122 0.0217 0.0035 0.197 0.195 0.0242 0 0 P8 0.205

(1, 9
2
) 0 0 0.0033 0 0 −0.0530 −0.0530 0.0022 0 0 P11 0.0495

0 0 0.0034 0.0061 0 0.0550 −0.0549 0.0023 0 0 P10 0.0523

0 0 0.0034 0 0.0009 0.0544 −0.0544 0.0023 0 0 P9 0.0516

0 0 0.0035 0.0063 0.0009 0.0566 0.0564 0.0023 0 0 P8 0.0547

Table 5. Fixed points and eigenvalues for vector-like fermions in the fundamental representation

of SUc(3), in the 210 approximation scheme, with Nf = 1. We highlight in green the fixed points

that appear also in the 321 approximation scheme. The labels in the second to the last last column

refer to the list in table 12. The last column gives the values of the ratio ρ for α2 or α3 depending

on the case (see 2.15).

Figure 6. Distribution of the largest eigenvalue ϑmax of the stability matrix of the fixed points

of the SU(3) adjoint representation. Blue: eigenvalues for the Y -independent solutions. Red:

eigenvalues for the Y -dependent solutions. In both cases, there is no gap and the eigenvalues start

at very large values.
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(Nf , l) α∗
1 α∗

2 α∗
3 α∗

t α∗
y ϑ1 ϑ2 ϑ3 ϑ4 ϑ5 ρ

(2, 1
2
) 0 0 0.176 0 0 −2.81 −2.81 1.52 0 0 P11 5.45

0 0 0.205 0.365 0 3.84 −3.28 1.52 0 0 P10 7.21

0 0 0.260 0 0.260 5.91 −4.16 1.59 0 0 P9 11.1

0 0 0.330 0.588 0.330 8.99 5.29 1.68 0 0 P8 17.4

(2, 1) 0 0 0.0600 0 0 −0.960 −0.960 0.360 0 0 P11 1.27

0 0 0.0646 0.115 0 1.08 −1.03 0.371 0 0 P10 1.44

0 0 0.0727 0 0.0529 1.30 −1.16 0.390 0 0 P9 1.77

0 0 0.0795 0.141 0.0578 1.50 1.27 0.405 0 0 P8 2.07

(2, 3
2
) 0 0 0.0221 0 0 −0.354 −0.354 0.0737 0 0 P11 0.384

0 0 0.0232 0.0413 0 0.376 −0.371 0.0764 0 0 P10 0.415

0 0 0.0252 0 0.0144 0.417 −0.403 0.0810 0 0 P9 0.475

0 0 0.0266 0.0473 0.0152 0.448 0.426 0.0842 0 0 P8 0.520

(2, 2) 0 0 0.0033 0 0 −0.0530 −0.0530 0.0022 0 0 P11 0.0495

0 0 0.0034 0.0061 0 0.0550 −0.0549 0.0023 0 0 P10 0.0523

0 0 0.0036 0 0.0017 0.0587 −0.0584 0.0024 0 0 P9 0.0579

0 0 0.0038 0.0068 0.0018 0.0612 0.0608 0.0025 0 0 P8 0.0616

(3, 1
2
) 0 0 0.0600 0 0 −0.960 −0.960 0.360 0 0 P11 1.27

0 0 0.0646 0.115 0 1.08 −1.03 0.371 0 0 P10 1.44

0 0 0.0882 0 0.0784 1.77 −1.41 0.423 0 0 P9 2.47

0 0 0.0985 0.175 0.0876 2.10 1.58 0.443 0 0 P8 3.01

(3, 1) 0 0 0.0114 0 0 −0.182 −0.182 0.0227 0 0 P11 0.182

0 0 0.0118 0.0210 0 0.191 −0.189 0.0235 0 0 P10 0.195

0 0 0.0143 0 0.0095 0.237 −0.229 0.0276 0 0 P9 0.264

0 0 0.0150 0.0267 0.0100 0.252 0.241 0.0288 0 0 P8 0.288

(4, 1
2
) 0 0 0.0221 0 0 −0.354 −0.354 0.0737 0 0 P11 0.384

0 0 0.0232 0.0413 0 0.376 −0.371 0.0764 0 0 P10 0.415

0 0 0.0335 0 0.0268 0.607 −0536 0.0987 0 0 P9 0.763

0 0 0.0361 0.0642 0.0289 0.670 0.577 0.104 0 0 P8 0.866

(5, 1
2
) 0 0 0.0033 0 0 −0.0530 −0.530 0.0022 0 0 P11 0.0495

0 0 0.0343 0.0061 0 0.0550 −0.0549 0.0023 0 0 P10 0.0523

0 0 0.0052 0 0.0038 0.0850 −0.0829 0.0034 0 0 P9 0.1010

0 0 0.0055 0.0097 0.0040 0.0903 0.0878 0.035 0 0 P8 0.111

Table 6. Same as table 5 but with Nf > 1.

fixed points have δa of O(100). Tests of the c-function confirm these results, even though

the a-function seems to be more sensitive, in the sense that it suffers greater relative change.

Again, we come up empty handed. The models with the vector-like fermions in the

adjoint representation of SUc(3) do not provide a viable AS extension to the SM.

Higher SUc(3) representations are disfavored by experimental constraints because of

the early onset of the modifications in the α3 running.

4.2.4 A model that almost works

Having ruled out all possible candidates, one may wonder if the criteria in (2.3) and (2.9)

might be too stringent and make us miss some potentially interesting models. In the case

at hand, we can indeed find additional fixed points that naively seem to be good candidates

for an asymptotically safe extension of the SM. This is achieved if we allow for larger values

of ϑ and relinquish the condition (2.9).

As an example, consider the case with the vector-like fermions in the representations

with Nf = 3, ` = 1/2 and Y = 3/2. Its fixed points and eigenvalues are given in table 8.

This example provides a very interesting (and non-trivial) extension of the SM which

includes non-trivial fixed point value for the gauge coupling α1 as well as the Yukawa
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(Nf , l) α∗
1 α∗

2 α∗
3 α∗

t α∗
y α∗

λ ϑ1 ϑ2 ϑ3 ϑ4 ϑ5 ϑ6 σ ρ

(1, 1
2
) 0 0.0291 0 0.0148 0 0.0120 −0.306 0.208 0.132 0.0827 0 0 0.737 0.263

0 0.0305 0 0.0155 0.0209 0.0126 0.322 0.219 0.139 0.0863 0 0 0.719 0.281

(1, 5
2
) 0 0 0.0346 0 0 0 −0.748 −0.748 0.295 0 0 0 0.577 0.423

0 0 0.0355 0 0.0167 0 −0.774 0.768 0.304 0 0 0 0.559 0.441

(1, 3) 0 0 0.0252 0 0 0 −0.501 −0.501 0.156 0 0 0 0.676 0.323

0 0 0.0258 0 0.0101 0 −0.516 0.514 0.160 0 0 0 0.664 0.336

(1, 7
2
) 0 0 0.0171 0 0 0 −0.315 −0.315 0.0670 0 0 0 0.771 0.228

0 0 0.0177 0.0358 0 0.0221 0.969 −0.329 0.290 0.0723 0 0 0.758 0.242

0 0 0.0175 0 0.0058 0 −0.324 0.324 0.0717 0 0 0 0.763 0.237

0 0 0.0182 0.0368 0.0061 0.0227 0.998 0.334 0.298 0.0742 0 0 0.748 0.252

(1, 4) 0 0 0.098 0 0 0 −0.170 −0.170 0.0223 0 0 0 0.864 0.136

0 0 0.0102 0.0193 0 0.0119 0.521 −0.177 0.165 0.0231 0 0 0.856 0.144

0 0 0.0101 0 0.0029 0 −0.175 0.175 0.0229 0 0 0 0.859 0.141

0 0 0.0104 0.0198 0.0030 0.0123 0.536 0.182 0.170 0.0237 0 0 0.8505 0.149

(1, 9
2
) 0 0 0.0032 0 0 0 −0.0519 −0.0519 0.0022 0 0 0 0.955 0.0451

0 0 0.0033 0.0059 0 0.0037 0.159 −0.0537 0.0526 0.0023 0 0 0.952 0.0476

0 0 0.0032 0 0.0008 0 −0.0532 0.0532 0.0023 0 0 0 0.953 0.0469

0 0 0.0033 0.0061 0.0009 0.00038 0.1635 0.0551 0.0540 0.0023 0 0 0.9505 0.0495

(2, 1) 0 0 0.346 0 0 0 −0.748 −0.748 0.295 0 0 0 0.577 0.423

0 0 0.0381 0 0.0319 0 −0.846 0.824 0.326 0 0 0 0.5077 0.492

(2, 3
2
) 0 0 0.0171 0 0 0 −0.315 −0.315 0.0699 0 0 0 0.771 0.228

0 0 0.0177 0.0358 0 0.0221 0.969 −0.329 0.295 0.0723 0 0 0.758 0.242

0 0 0.0187 0 0.0113 0 −0.350 0.349 0.0767 0 0 0 0.737 0.263

(2, 2) 0 0 0.0032 0 0 0 −0.0519 −0.0519 0.0022 0 0 0 0.955 0.0451

0 0 0.0033 0.0059 0 0.0037 0.159 −0.0537 0.0526 0.0023 0 0 0.952 0.0476

0 0 0.0035 0 0.0016 0 −0.0570 0.0570 0.0024 0 0 0 0.948 0.0521

0 0 0.0036 0.0065 0.0017 0.0040 0.1756 0.0592 0.0579 0.0025 0 0 0.945 0.552

(3, 1
2
) 0 0 0.0346 0 0 0 −0.748 −0.748 0.295 0 0 0 0.577 0.423

0 0 0.0417 0 0.0440 0 −0.950 0.913 0.359 0 0 0 0.431 0.569

(3, 1) 0 0 0.0098 0 0 0 −0.170 −0.170 0.0223 0 0 0 0.864 0.136

0 0 0.0102 0.0193 0 0.119 0.521 −0.177 0.165 0.0231 0 0 0.856 0.144

0 0 0.0118 0 0.0081 0 0.208 −0.208 0.0270 0 0 0 0.819 0.181

0 0 0.0123 0.0237 0.0085 0.0147 0.641 0.218 0.200 0.0281 0 0 0.8062 0.194

(4, 1
2
) 0 0 0.0171 0 0 0 −0.315 −0.315 0.0699 0 0 0 0.771 0.228

0 0 0.0177 0.0358 0 0.0221 0.969 −0.329 0.290 0.0723 0 0 0.758 0.242

0 0 0.0226 0 0.0196 0 0.439 −0.437 0.0931 0 0 0 0.647 0.353

(5, 1
2
) 0 0 0.0033 0 0 0 −0.0519 −0.0519 0.0022 0 0 0 0.955 0.0451

0 0 0.0033 0.0059 0 0.0037 0.159 −0.0537 0.0526 0.0023 0 0 0.952 0.0476

0 0 0.0048 0 0.0035 0 0.0798 −0.0793 0.0034 0 0 0 0.914 0.0859

0 0 0.0050 0.0092 0.0037 0.0057 0.248 0.0843 0.0809 0.0035 0 0 0.9066 0.0934

Table 7. Fixed points and eigenvalues for vector-like fermions in the fundamental representation

of SUc(3), in the 321 approximation scheme. The last two columns give the values of the ratio σ

and ρ for α2 or α3 depending on the case (see 2.15).

(Nf , `, Y ) α∗
1 α∗

2 α∗
3 α∗

t α∗
y ϑ1 ϑ2 ϑ3 ϑ4 ϑ5 ρ1

(3, 1/2, 3/2) 0.188 0 0 0 0.778 33.2 −3.36 −0.817 0 0 2.69

Table 8. Values of the couplings at the fixed point, eigenvalues and ρ1 ratio for the model that

almost works (210 approximation scheme).
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Figure 7. Evolution of the couplings with t in a logarithmic scale for the fixed point in table 8).

This running provides a trajectory in the theory space connecting the fixed point and the physics

at a matching scale around 2 TeV.

coupling αy (remember that the quartic scalar interaction in the 210 scheme does not

renormalize).

We see that some of the scaling exponents ϑi are large and the criterion (2.9) is

accordingly violated. Nonetheless, let us momentarily suspend disbelief and apply the

formula in (2.3). We do not find any coupling frozen to zero and therefore a SM matching

seems plausible.

In fact, taking M = mZ exp(3) ' 1.83 TeV — where the SM couplings have the values

α1 = 0.000795, α2 = 0.00257, α3 = 0.00673, αt = 0.00478 — we find a good matching,

with an error of the order of per mille (see figure 7).

But for the large scaling exponents, this model seems to provide a very promising

candidate for an AS extension of the SM. Yet it is not radiatively stable — a fact that

vindicates the role of criteria in (2.9) as a filter for the physical fixed points. The 321

approximation scheme β-functions generate very different fixed points that cannot be easily

traced back to those in the 210 approximation scheme. Moreover, all these fixed points

have a trivial coupling and cannot provide a viable extension to the SM.

4.2.5 Five benchmark models studied in the literature

The authors of [15] find that it is possible to generate asymptotically safe extensions to the

SM in the subsystem (α2, α3, αy) of the couplings. The five benchmark models discussed

in [15] (labelled as A, B, C, D and E) are not among those in our scan because they do not

include hypercharge, top Yukawa and quartic interaction. We analysed them separately.

The hypercharge Y can easily be added to these models. The charge Y must be larger

than a minimal value in order for the corresponding direction in the UV critical surface to

be marginally relevant. This does not change the behavior of the models.

Similar to what happens to the model in section 4.2.4, all these models have at least

one of their scaling exponents rather large (See table 9). The large values of ϑ imply that

the fixed points are not in the perturbative domain even though they can be connected to
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(R3, R2, Nf ) α∗
2 α∗

3 α∗
y ϑ1 ϑ2 ϑ3 ρ

A (1, 4, 12) 0.241 0 0.338 210 −1.90 0 45.3

B (10, 1, 30) 0 0.129 0.116 338 −2.06 0 107

0.277 0.129 0.116 341 −2.08 0.897 107

C (10, 4, 80) 0 0.332 0.0995 23258 −2.18 0 9138

0.0753 0.0503 0.0292 1499 328 −2.77 630

0.800 0 0.150 145193 −2.12 0 57378

D (3, 4, 290) 0.0615 0.0416 0.0057 943 45.3 −2.29 371

0.0896 0 0.0067 1984 −2.11 0 781

E (3, 3, 72) 0.218 0.150 0.0471 896 112 −1.78 326

Table 9. Couplings, eigenvalues and the ratios ρi, with i = 2, 3 depending on the case, for the

benchmark models in [15] for the 210 approximation scheme.

(R3, R2, Nf ) α∗
2 α∗

3 α∗
y ϑ1 ϑ2 ϑ3 ρ3

A (1, 4, 12) 0 0 0.1509 −4.83 0 0 −

B (10, 1, 30) 0 0.0138 0 −20.02 2.24 0 3.14

0 0 0.0594 −4.75 0 0 −

C (10, 4, 80) 0 0 0.0187 −4.501 0 0 −

0 0.0036 0 −49.4 2.28 0 9.29

D (3, 4, 290) 0 0 0.0115 −6.95 0 0 −

0 0.0108 0 −36.7 1.015 0 5.81

E (3, 3, 72) 0 0 0.0357 −5.79 0 0 −

0 0.0305 0 −21.8 1.098 0 2.66

Table 10. Couplings, eigenvalues and the ratio ρ3 for the benchmark models in [15] for the 321

approximation scheme.

the SM in the IR regime. The fixed points in the 210 approximation scheme cannot be

connected to those in the 321 approximation scheme because of their instability against ra-

diative corrections. We can see how the structure of the fixed points changes by comparing

table 9 to table 10. The eigenvalues are always large in both tables.

If we take the fixed points in the 321 approximation scheme at their face value and

try to match them to the SM, we always encounter a coupling, α2 in almost all the cases

(see table 10), that is frozen to its vanishing value: the theory is trivial in the coupling α2

and it cannot be matched to the SM. In other words, the benchmark models in [15] suffer

from the same pathology as the models in our scan. Unlike those models, in this case it

is a non-abelian coupling that is trivial. This is worrisome and should be born in mind if

one were to entertain the idea of embedding UY (1) in a non-abelian group in order to find

an AS extension of the SM.
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α∗
1 α∗

2 α∗
3 α∗

t α∗
y α∗

z ϑ1 ϑ2 ϑ3 ϑ4 ϑ5 ϑ6 ρ2 ρ1

0.226 0.193 0 0 0.778 0.534 241 24.2 −2.85 −2.28 −1.51 0 0 0

Table 11. Values of the couplings at the fixed point of interest, eigenvalues and ρ ratios for the

model combining 3 fields in the representation (1, 2, 3/2) and 8 fields in the representation (1, 5, 0)

(210 approximation scheme).

4.2.6 Two more benchmark models studied in the literature

The authors of [16] study three models where the fermions are in the representations

(Nf , `, Y ) = (3, 2, 1/6), (3, 1, 0)⊕ (1, 2, 1/2) and (3, 1, 0)⊕ (1, 3, 0)⊕ (1, 1, 1), respectively.

Further models (with Majorana fermions charged under only one gauge group at the time)

are introduced in [17]. In both papers, they consider the large Nf limit and the zeros of

the β-functions are found after resumming the blob diagrams of the perturbative theory.

Resummed β-functions could help in discussing the AS of a theory, yet there is no

available procedure that is free of the ambiguities deriving from summing over a particular

class of diagrams. Moreover, a large number of new states must be included to be within

the regime of validity of the resummation scheme which — from the phenomenological

point of view — is unappealing.

It is difficult to compare these results to ours because of the non-perturbative nature

of the resummation procedure. In our approach these models are all ruled out because of

the larger scaling dimensions we expect for the given large values of Nf (see figure 4 and

the discussion in section 4). The fixed points obtained in the approach of [16] and [17]

are probably linked to essential singularities in the complete resummation [58] and no

perturbative treatment — like expanding around the fixed point values to search for the

trajectory back to the SM — is possible.

While these models provide interesting examples of AS theories, it is difficult to see

them as viable candidate for extensions of the SM because the low-energy matching is

problematic: to wit, even assuming that the fixed point thus found are physical, the authors

of [17] conclude (in the published version of their paper) that there is no matching because

of the persistence of the Landau pole in the U(1) coupling (which can only be avoided at

the price of making the vacuum of the model unstable because of the running of the quartic

Higgs interaction).

4.2.7 Combining more than one representation

Combining vector-like fermions in different representations (as done, for instance, in [16,

17]) provides other examples of models that almost work. In the simplest scenario, we can

try to construct a model with two types of vector-like fermions. In that case, we duplicate

the last three terms in eq. (4.1) for fermions ψ̃ and scalars S̃. We call the extra Yukawa

coupling z with, as usual,

αz =
z2

(4π)2
(4.9)

and assume no mixing between the two families.
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Figure 8. Evolution of the couplings with t for the fixed point in table 11 within the 210 approxi-

mation with 3 fields in (1, 2, 3/2) and 8 fields in (1, 5, 0). This running provides a trajectory in the

theory space connecting the fixed point to a matching scale around 2 TeV passing through another

matching (for the quintuplets) at about 1013 TeV.

Since many of the BSM extensions attempt to describe dark matter, we take one of

the possible minimal models discussed in [59] and identify some of the vector-like fermions

with dark matter. This exercise makes clear the potential relevance of AS in selecting

physics BSM.

We take Nf2 vector-like fermions with quantum numbers p = q = 0, ` = 2 and Y = 0.

That is, we take colorless quintuplets with no hypercharge. Within the 210 approximation

scheme, for the combination (1, 2, 3/2) ⊕ (1, 5, 0), we realize that fixed points split in two

categories: fixed points that depend on the number of quintuplets Nf2 and fixed points

that do not. Clearly, the latter have αy = 0 so that the vector-like fermions enter only via

loops in the gauge β-functions. Consequently, the conditions to lie on the critical surface

of those fixed points imply that α2 = 0. This feature makes the corresponding fixed points

uninteresting.

For the remaining fixed points, we find that in order to have αi < 1 for all couplings,

the minimum number of quintuplets should be equal to eight. Taking the minimal case of

Nf2 = 8, we find 6 fixed points, all of them having one large eigenvalue around 250. Thus,

according to our requirement about perturbation theory, these fixed points are not reliable

since there is always one ϑ which is much larger than 1. This is similar to what happens

in section 4.2.4.

Nevertheless, we can find a matching with the SM. The only difference with respect

to the model in section 4.2.4 is that, in the present case, two matching scales are needed

— the reason being that the large number of quintuplets makes α2 decrease fast so that

these fields must be decoupled at very high energies. In figure 8 we show the logarithmic

running of the couplings and the two different matching scales. The quintuplets decouple

at an energy scale O(1013) TeV (and must be considered wimpzilla dark matter [60]), the

doublets at the energy scale of 1.83 TeV. All the couplings flow to the fixed point in table 11
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Even though figure 8 shows a nice flow of the coupling constants toward the SM, the

size of the eigenvalues spells doom and the likely breakdown of perturbation theory. Indeed,

the fixed point analysed does not survive in the 321 approximation scheme and the model

does not work.

5 Conclusions

A systematic scan (covering 378,000 models) of possible extensions of the SM based on

vector-like fermions charged under the SM groups and carrying various representations

and coming in several copies (generations) shows that there are no fixed points in the β-

function of the models that satisfy the minimal criteria to make them physically acceptable.

Most of those that appear in the 210 approximation scheme are difficult to identify when

probed in the 321 approximation scheme, and therefore are almost certainly artifacts of

the approximation. Those that seem to be present in both schemes (or appear only at

the higher order) always contain a trivial solution in which at least one of the couplings is

frozen to zero thus suggesting that the Landau problem of the LO theory persists at higher

orders in the perturbative expansion.

We conclude that it is not possible, at least with the 378,000 models we have examined,

to extend the SM up to arbitrarily high energies in perturbation theory. The same happens

with the models discussed in section 4.2.4 and 4.2.7, and the five models proposed as

benchmarks in [15]: the 321 approximation scheme β-functions generate very different

fixed points that cannot be easily traced back to those in the 210 approximation scheme,

and all the fixed points in 321 approximation scheme have at least one trivial coupling.

Our search for AS extensions of the SM has returned a negative answer and no viable

candidate. Whenever perturbation theory may reasonably be assumed to give reliable an-

swers, the issue is triviality of some gauge coupling: usually the abelian one, but sometimes

also a non-abelian one.

There are various possible ways out of this situation. The most straightforward would

be to keep the same gauge group but to consider models with BSM fields more complicated

than vector-like fermions. Insofar as the vector-like fermions can be viewed as a proxy for

more general matter fields, this does not seem too promising a line of enquiry. Another

possibility is to embed the SM gauge group in a larger grand unification group before

AS becomes manifest. This is actually the standard answer to the U(1) triviality issue.

Promising work along these lines is already under way [61]. We just remark here that

having a non-abelian group does not by itself guarantee the absence of the triviality issue,

as some of our examples show.

All in all, the most plausible scenario seems that in which the fixed point making the

SM AS, if it exists at all, lies outside the perturbative regime and accordingly is inherently

invisible to our approach. An example is provided by non-perturbative computations based

on a large-Nf approximation [17].

A completely different possibility is that the Landau pole is cured by gravity. Gravity

gives contributions to the β-functions that are linear in Newton’s coupling and in the matter

couplings, and hence generate non-trivial fixed points for the latter. Some of these fixed
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points, possessing few relevant directions, greatly constrain the allowed RG trajectories

and lead to predictions for low energy couplings. For the abelian gauge coupling this has

been discussed in [62, 63]. For related results see also [64, 65].
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A Analysis of marginal couplings

Here we prove the statement, made in section 2.3, that when the marginal couplings are

associated to vanishing gauge couplings, the behavior of the flow at quadratic order is

determined by the coefficients Piii.

The general form of the gauge β-functions is

βi = (Ai +Bi
rαr + Cirsαrαs)α

2
i , (A.1)

where Ai, Bi
r and Cirs represent the one, two and three-loops coefficients. Their contribution

to the stability matrix is given by

Mij =
∂βi
∂αj

∣∣∣∣
α∗
i

= (Bi
j + 2Cijrα

∗
r)α

∗2
i + 2 (Ai +Bi

rα
∗
r + Cirsα

∗
rα
∗
s)α

∗
i δij . (A.2)

We see that if α∗i = 0, the row i will have zeros in all the entries. This does not happen for

the Yukawa interactions, whose NLO β-functions have the form βYi = (Di
rαr+F irsαrαs)αi.

Then, the contribution to the stability matrix reads

Mij =
∂βYi
∂αj

∣∣∣∣
α∗
i

= (Di
j + 2F ijrα

∗
r)α
∗
i + (Di

rα
∗
r + F irsα

∗
rα
∗
s)δij , (A.3)

where we see that if α∗i = 0, the last piece will be in general different from zero. Con-

sequently, we do not have a row of zeros. The fact of having rows of zeros implies that

detM = 0. Thus, the matrix M is singular and there exist vectors x such that Ax = 0x.

As a result, M has the eigenvalue λ = 0 with multiplicity given by the number of zero rows.

Suppose we have a fixed point with two gauge couplings equal to zero. Then the stabil-

ity matrix will have two zero rows, that we can assume to be the last two. This implies that

the n− 2 eigenvectors corresponding to λi 6= 0 have the form Vi = [V i
1 , V

i
2 , . . . , V

i
n−2, 0, 0].

The eigenvectors for λ = 0 lie in a 2-dimensional plane. There is a freedom in choosing these

vectors, and we can take them to have the form Vn−1 = [V n−1
1 , V n−1

2 , . . . , V n−1
n−2 , V

n−1
n−1 , 0],

Vn = [V n
1 , V

n
2 , . . . , V

n
n−2, 0, V

n
n ]. Moreover, the entries V n−1

n−1 , V n
n can be taken to be pos-

itive without loss of generality. Thus, the transformation matrix constructed with the
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eigenvectors of M takes the form

S =



V 1
1 V 2

1 . . . V n−2
1 V n−1

1 V n
1

V 1
2 V 2

2 . . . V n−2
2 V n−1

2 V n
2

...
...

. . .
...

...
...

V 1
n−2 V

2
n−2 . . . V

n−2
n−2 V n−1

n−2 V n
n−2

0 0 . . . 0 V n−1
n−1 0

0 0 . . . 0 0 V n
n


(A.4)

This implies that

S−1 =



a1,1 a1,2 . . . a1,n−2 a1,n−1 a1,n
a2,1 a2,2 . . . a2,n−2 a2,n−1 a2,n

...
...

. . .
...

...
...

an−2,1 an−2,2 . . . an−2,n−2 an−2,n−1 an−2,n
0 0 . . . 0 b 0

0 0 . . . 0 0 c


(A.5)

where we have labelled ai,j the non-zero entries and we have called b = 1/V n−1
n−1 , c = 1/V n

n .

Now, when we compute the form of the new variables zi = S−1ij yj = S−1ij (αj − α∗j ), we

observe that two of the new coordinates are just proportional to the asymptotically free

variables, namely zn−1 = b · yn−1 = b · αn−1, zn = c · yn = c · αn. This result has an

important effect in the analysis. For the gauge β-functions,

Pijk =
∂2βi
∂αjαk

∣∣∣∣
α∗
i

= 2Cijkα
∗2
i + 2 (Bi

j + 2Cijrα
∗
r)α

∗
i δik + 2 (Bi

k + 2Cikrα
∗
r)α

∗
i δij (A.6)

+ 2 (Ai +Bi
rα
∗
r + Cirsα

∗
rα
∗
s) δijδik

which in the case of the AF couplings reduces to

Pijk = 2 (Ai +Bi
rα
∗
r + Cirsα

∗
rα
∗
s) δijδik . (A.7)

We conclude that in order to know if a marginal coupling is relevant or irrelevant we

need only check the sign of Piii. If Piii < 0, the coupling is marginally relevant. If Piii > 0,

the coupling is marginally irrelevant.

B Conformal field theory and central charges

The CFT at a given fixed point is characterized by two local functions: c and a. We refer to

them collectively as central charges or CFT functions. They appear in the matrix element

of the trace of the energy-momentum tensor of the theory as 〈Tµµ 〉 = cW 2−aE4+· · · , where

W is the Weyl tensor, E4 is the Euler density, and ellipses denote operators constructed

from the fields in the theory. A function related to the CFT function a, often denoted ã,

was proven to be monotonically decreasing following the RG flow from a UV fixed point
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to an IR one [26, 28]. In fact, the RG flow of the ã-function is related to the dynamics by

means of the β-functions of the theory; it is given by

µ
∂ã

∂µ
= −χijβiβj , (B.1)

where χij is known as the Zamolodchikov metric. Evaluated at a fixed point, ã reduces to

the a-function.

In all of the models studied in this paper there is only a UV fixed point present, whereas

dynamics in the IR is not known. Nevertheless, central charges of the UV fixed points can

still be used to test whether the fixed points are reliable.

In any CFT, both a and c have to be positive, and their ratio has to satisfy the so-called

collider bounds [66], namely
1

3
≤ a

c

∣∣∣
FP
≤ 31

18
. (B.2)

In perturbation theory, central charges are expanded in series

ã = ãfree +
ã(1)

(4π)2
+

ã(2)

(4π)4
+ . . . (B.3)

c = cfree +
c(1)

(4π)4
+ . . . , (B.4)

and since free-field theory contributions are positive [67],

ãfree =
1

(4π)2
ns + 11/2nw + 62nv

360
(B.5)

cfree =
1

(4π)2
1/6ns + nw + 2nv

20
(B.6)

(ns, nw, and nv referring to scalar, Weyl and vector degrees of freedom, respectively), the

positivity of the CFT functions is ensured in perturbation theory.

There is a correlation between critical exponents and the change in central charges,

which for the a-function can be explained as follows. At the fixed point we have,

ã∗ = a∗ = afree +
1

4

∑
i

biχgigiα
∗
i (1 +Aiα

∗
i ) (B.7)

where i runs over simple gauge groups, b1 = B1, b2 = −B2, b3 = −B3 are the one-loop

coefficients of the gauge beta functions, and χgigi and Ai are components of the Zamolod-

chikov metric, see [56]. One-loop critical exponent follows from βi = ±Biα2
i (+ for the

group U(1), − otherwise), and reads θ1L = 2biα
∗
i . Then,

δa =
a∗ − afree
afree

=
1

8afree

∑
i

θ1Li χgigi(1 +Aiα
∗
i ) , (B.8)

which explains the correlation.
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C All the fixed points in the 210 approximation scheme

In table 12 we list all the distinct zeroes of the β-functions in the 210 approximation scheme

for all the models discussed in the text and for the SM. There are altogether 32 zeroes, with

the Gaussian fixed point appearing with multiplicity four (this is the reason for missing

fixed point P20, P27, P32, which are copies of P1).

The column labelled by Nf = 0 contains the values of α∗1, α
∗
2, α

∗
3, α

∗
t for the matter

content of the SM (the coupling α∗y does not appear in the SM). In this case the fixed

points all come in pairs. When Nf 6= 0 this degeneracy is lifted and all the fixed points

are different.

Note that the fixed points can be roughly divided in two classes. The fixed points with

α∗1 = 0 have coordinates α∗i independent of Y . The remaining fixed points have coordinates

that in general depend on all the quantum numbers.

D Coefficients of the NLO and NNLO β-functions

The β-function in eqs. (4.7)–(4.9) contain a number of coefficients that we collect in this

appendix. The BSM fermions enter in the running of αt via the coefficients

Bt1 = Y 2NfdR2dR3 , Bt2 = SR2NfdR3 , Bt3 = SR3NfdR2 . (D.1)

For the BSM Yukawa coupling, besides the terms in eq. (4.6), we have the coefficients

V =
1

2
N2
f + 3NfdR2dR3 , V1 = 2 (8Nf + 5 dR2dR3)Y 2,

V2 = 2 (8Nf + 5 dR2dR3)CR2 , V3 = 2 (8Nf + 5 dR2dR3)CR3 ,

W1 =

(
211

3
− 6Y 2 +

40

3
Y 2NfdR2dR3

)
Y 2, W12 = 12Y 2CR2 ,

W2 =

(
−257

3
− 6CR2 +

40

3
NfSR2dR3

)
CR2 , W23 = 12CR2CR3 ,

W3 =

(
−154− 6CR3 +

40

3
NfSR3dR2

)
CR3 W13 = 12Y 2CR3 . (D.2)

The gauge β-functions get more contributions. These are split in two classes: the Yukawa

contributions:

Ky1 = 6Y 2N3
f dR2dR3 + 7Y 2N2

f d
2
R2
d2R3

, K11 = 6Y 4N2
f dR2dR3 ,

K12 = 6Y 2CR2N
2
f dR2dR3 , K13 = 6Y 2CR3N

2
f dR2dR3 ,

Ky2 = 2CR2N
3
f dR2dR3 +

7

3
CR2N

2
f d

2
R2
d2R3

, K21 = 2Y 2CR2N
2
f dR2dR3 ,

K22 = 16CR2N
2
f dR2dR3 + 2C2

R2
N2
f dR2dR3 , K23 = 2CR2CR3N

2
f dR2dR3 ,

Ky3 =
3

4
CR3N

3
f dR2dR3 +

7

8
CR3N

2
f d

2
R2
d2R3

, K31 =
3

4
Y 2CR3N

2
f dR2dR3 ,

K33 = 9CR3N
2
f dR2dR3 +

3

4
C2
R3
N2
f dR2dR3 K32 =

3

4
CR2CR3N

2
f dR2dR3 , (D.3)
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α∗
1 α∗

2 α∗
3 α∗

t α∗
y Nf = 0

P1 0 0 0 0 0 (0, 0, 0, 0)

P2 0 α∗
2(p, q, `) α∗

3(p, q, `) 0 α∗
y(p, q, `)

(
0, 499

617
,− 319

2468
, 0

)
P3 0 α∗

2(p, q, `) α∗
3(p, q, `) α∗

t (p, q, `) α∗
y(p, q, `)

(
0, 1226

1411
,− 189

1411
, 277
1411

)
P4 0 α∗

2(p, q, `) α∗
3(p, q, `) 0 0

(
0, 499

617
,− 319

2468
, 0

)
P5 0 α∗

2(p, q, `) α∗
3(p, q, `) α∗

t (p, q, `) 0
(
0, 1226

1411
,− 189

1411
, 277
1411

)
P6 α∗

1(p, q, `, Y ) α∗
2(p, q, `, Y ) α∗

3(p, q, `, Y ) 0 α∗
y(p, q, `, Y )

(
− 7938

9257
, 9841
9257

,− 5395
37028

, 0
)

P7 α∗
1(p, q, `, Y ) α∗

2(p, q, `, Y ) α∗
3(p, q, `, Y ) α∗

t (p, q, `, Y ) α∗
y(p, q, `, Y )

(
− 121821

142153
, 151229
142153

,− 41441
284306

, 427
142153

)
P8 0 0 α∗

3(p, q, `) α∗
t (p, q, `) α∗

y(p, q, `)
(
0, 0,− 9

38
,− 8

19

)
P9 0 0 α∗

3(p, q, `) 0 α∗
y(p, q, `)

(
0, 0,− 7

26
, 0

)
P10 0 0 α∗

3(p, q, `) α∗
t (p, q, `) 0

(
0, 0,− 9

38
,− 8

19

)
P11 0 0 α∗

3(p, q, `) 0 0
(
0, 0,− 7

26
, 0

)
P12 α∗

1(p, q, `, Y ) 0 α∗
3(p, q, `, Y ) 0 α∗

y(p, q, `, Y )
(
− 225

943
, 0,− 1079

3772

)
P13 α∗

1(p, q, `, Y ) 0 α∗
3(p, q, `, Y ) α∗

t (p, q, `, Y ) α∗
y(p, q, `, Y )

(
− 7266

16847
, 0,− 4286

16847
,− 9907

16847

)
P14 α∗

1(p, q, `, Y ) 0 α∗
3(p, q, `, Y ) 0 0

(
− 225

943
, 0,− 1079

3772

)
P15 α∗

1(p, q, `, Y ) 0 α∗
3(p, q, `, Y ) α∗

t (p, q, `, Y ) 0
(
− 7266

16847
, 0,− 4286

16847
,− 9907

16847

)
P16 0 α∗

2(p, q, `) 0 0 α∗
y(p, q, `)

(
0, 19

35
, 0, 0

)
P17 0 α∗

2(p, q, `) 0 α∗
t (p, q, `) α∗

y(p, q, `)
(
0, 38

61
, 0, 19

61

)
P18 0 α∗

2(p, q, `) 0 0 0
(
0, 19

35
, 0, 0

)
P19 0 α∗

2(p, q, `) 0 α∗
t (p, q, `) 0

(
0, 38

61
, 0, 19

61

)
P21 α∗

1(p, q, `, Y ) 0 0 0 0
(
− 123

199
, 0, 0, 0

)
P22 α∗

1(p, q, `, Y ) 0 0 α∗
t (p, q, `, Y ) 0

(
− 2214

3293
, 0, 0,− 697

3293

)
P23 α∗

1(p, q, `, Y ) 0 0 α∗
t (p, q, `, Y ) α∗

y(p, q, `, Y )
(
− 2214

3293
, 0, 0,− 697

3293

)
P24 α∗

1(p, q, `, Y ) 0 0 0 α∗
y(p, q, `, Y )

(
− 123

199
, 0, 0, 0

)
P25 α∗

1(p, q, `, Y ) α∗
2(p, q, `, Y ) 0 0 α∗

y(p, q, `, Y )
(
− 1461

1559
, 1222
1559

, 0, 0
)

P26 α∗
1(p, q, `, Y ) α∗

2(p, q, `, Y ) 0 α∗
t (p, q, `, Y ) α∗

y(p, q, `, Y )
(
− 21627

23569
, 515
637

, 0, 2719
23569

)
P28 α∗

1(p, q, `, Y ) α∗
2(p, q, `, Y ) 0 0 0

(
− 1461

1559
, 1222
1559

, 0, 0
)

P29 α∗
1(p, q, `, Y ) α∗

2(p, q, `, Y ) 0 α∗
t (p, q, `, Y ) 0

(
− 21627

23569
, 515
637

, 0, 2719
23569

)
P30 α∗

1(p, q, `, Y ) α∗
2(p, q, `, Y ) α∗

3(p, q, `, Y ) 0 0
(
− 7938

9257
, 9841
9257

,− 5395
37028

, 0
)

P31 α∗
1(p, q, `, Y ) α∗

2(p, q, `, Y ) α∗
3(p, q, `, Y ) α∗

t (p, q, `, Y ) 0
(
− 121821

142153
, 151229
142153

,− 41441
284306

, 427
142153

)
Table 12. List of all the fixed points in the 210 approximation scheme. When non-zero, the

dependence on the quantum numbers is indicated. Only the highlighted fixed points appear in the

tables in the main text. The column Nf = 0 contains the values for the SM.

– 33 –



J
H
E
P
1
1
(
2
0
1
8
)
0
5
7

and the gauge contributions, which contain the diagonal terms

M11 =
388613

2592
+

4405

162
NfY

2dR2dR3 +
463

9
NfY

4dR2dR3

+4NfY
6dR2dR3 +

88

9
N2
fY

6d2R2
d2R3

,

M22 =
324953

864
+

13411

54
NfSR2dR3 +

533

9
NfCR2SR2dR3 − 4NfC

2
R2
SR2dR3

−632

27
N2
fS

2
R2
d2R3
− 88

9
CR2N

2
fS

2
R2
d2R3

,

M33 = 65 +
6242

9
NfSR3dR2 +

322

3
NfCR3SR3dR2 − 4NfC

2
R3
SR3dR2

−316

9
N2
fS

2
R3
d2R2
− 88

9
CR3N

2
fS

2
R3
d2R2

, (D.4)

as well as mixed coefficients

M12 =
205

48
− 8CR2NfY

4dR2dR3 ,

M13 =
274

27
+ 8CR3NfY

4dR2dR3 ,

M21 =
291

16
+ 32Y 2NfSR2dR3 − 8Y 2CR2NfSR2dR3 ,

M23 = 78 + 32CR3NfSR2dR3 − 8CR2CR3NfSR2dR3 ,

M31 =
154

9
+ 48Y 2NfSR3dR2 − 8Y 2CR3NfSR3dR2 ,

M32 = 42 + 48CR2NfSR3dR2 − 8CR2CR3NfSR3dR2 ,

G23 = 2 + 8CR2CR3NfY
2dR2dR3 ,

G13 =
2

3
+ 8Y 2CR3NfSR2dR3 ,

G12 =
1

4
+ 8Y 2CR2NfSR3dR2 , (D.5)

H11 =
1315

32
+

245

9
CR2NfY

2dR2dR3 − 4C2
R2
NfY

2dR2dR3 +
23

2
NfSR2dR3

−88

9
CR2N

2
fY

2SR2dR2d
2
R3
,

G11 = 198 +
178

3
CR3NfY

2dR2dR3 − 4C2
R3
NfY

2dR2dR3 −
968

27
NfSR3dR2

−88

9
CR3N

2
fY

2SR3d
2
R2
dR3 ,

H22 =
5597

288
+

23

6
NfY

2dR2dR3 +
463

9
Y 2NfSR2dR3 + 4NfY

4SR2dR3

+
88

9
N2
fY

4SR2dR2d
2
R3
,

G22 = 162 +
178

3
CR3NfSR2dR3 − 4C2

R3
NfSR2dR3 −

88

3
NfSR3dR2

−88

9
CR3N

2
fSR2SR3dR2dR3 ,
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H33 =
2615

108
+

121

27
NfY

2dR2dR3 +
463

9
Y 2NfSR3dR2 + 4NfY

4SR3dR2

+
88

9
N2
fY

4SR3dR3d
2
R2
,

G33 =
109

4
− 11NfSR2dR3 +

245

9
CR2NfSR3dR2 − 4C2

R2
NfSR3dR2

−88

9
CR2N

2
fSR2SR3dR2dR3 , (D.6)
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