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Simple Summary: This study extends previous work that examined the consequences of using
different approaches to locating densely matched points (semilandmarks) over surfaces on subsequent
estimates of their average shape and shape variation with size (allometric scaling). In that study, it
was shown that different approaches yield different semilandmarks and, thus, different estimates of
means, scaling, and distributions of surface shapes, although there is a high degree of consistency
among some approaches. In this study, we compare the surfaces obtained by warping surfaces to
the different estimates of landmark and semilandmark configurations that arose from the previous
study. Such surfaces have utility in practical contexts, for example, in visualising analytic results
as reference surfaces to use in the clinic to assess anomalies and the effects of treatment, or as the
basis for building models for subsequent functional analyses. We show that these surfaces share
many similarities but differ in detail. Thus, visualisations of shapes derived using semilandmarks
from non-rigid semilandmarking approaches especially are likely to fairly represent surfaces and
differences between them but are not identical. The extent to which these differences are important
depends on the particular study context and aims.

Abstract: In landmark-based analyses of size and shape variation and covariation among biological
structures, regions lacking clearly identifiable homologous landmarks are commonly described by
semilandmarks. Different algorithms may be used to apply semilandmarks, but little is known about
the consequences of analytical results. Here, we assess how different approaches and semiland-
marking densities affect the estimates and visualisations of mean and allometrically scaled surfaces.
The performance of three landmark-driven semilandmarking approaches is assessed using two
different surface mesh datasets with different degrees of variation and complexity: adult human
head and ape cranial surfaces. Surfaces fitted to estimates of the mean and allometrically scaled
landmark and semilandmark configurations arising from geometric morphometric analyses of these
datasets are compared between semilandmarking approaches and different densities, as well as
with those from warping to landmarks alone. We find that estimates of surface mesh shape (i.e.,
after re-semilandmarking and then re-warping) made with varying numbers of semilandmarks are
generally consistent, while the warping of surfaces using landmarks alone yields surfaces that can be
quite different to those based on semilandmarks, depending on landmark coverage and choice of
template surface for warping. The extent to which these differences are important depends on the
particular study context and aims.

Keywords: virtual anthropology; sliding semilandmarks; iterative closest points; non-rigid iterative
closest points; predicted surface; mesh geometry; visualization

1. Introduction

Over the last three decades, landmark-based geometric morphometric (GM) methods
have been increasingly applied to quantify and compare size and shape variation and co-
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variation [1-5]. Before performing GM analyses, the definition of a suitable configuration of
landmarks in relation to the research aim is required [6,7]. A simple landmark configuration
might be perfectly adequate to quantify shape differences appropriate to the question at
hand. In studies of biological transformations such as growth or evolution, the landmarks
define equivalent points that are ‘the same’ in terms of development or evolution (‘this
point turns into that point” is homologous), but the locations of homologous landmarks
and their density are limited by the extent to which they can be identified and usually the
presence of identifiable anatomical features, as well as the preservation of material and
available time for digitization.

In many biological applications, landmarks cannot readily be identified, e.g., over
smooth regions such as the human cranial vault or tooth crowns. In an attempt to provide
detailed information on such regions, different approaches have been proposed to mark
up semilandmarks (or dense point correspondences) among curves or surfaces between
landmarks [8,9]. The method of sliding semilandmarks, which locates semilandmarks by
minimising the bending energy of thin-plate splines (TPS) or Procrustes distance [10-12],
is most commonly used in biology. Alternative semilandmarking methods include rigid
registration approaches, e.g., the auto3dgm package [13] based on the iterative closest
points (ICP) algorithm [14], and non-rigid registration approaches, e.g., non-rigid ICP
(NICP) [15,16] and the optical flow algorithm [17], among others. The fundamental task
of these semilandmarking approaches is to transfer the semilandmarks from a template
surface (e.g., a mean surface) to the target specimen. It is worth noting that semilandmarks
rely primarily on mathematical mappings and/or the similarity of topographic features,
rather than developmental or evolutionary equivalences based on prior knowledge.

Recent studies have assessed the performance of different semilandmarking ap-
proaches based on principal components (PCs) [10,13,18-20], distance matrices [13,21,22],
and the geometric deviation between template and transformed meshes [18,23]. These
have found that different approaches yield different semilandmark locations and, thus,
result in analytical results that differ to some degree. This was further investigated in a
prior study [24] that provided the starting point for the present one. The performance
of three of the semilandmarking approaches described above was systematically exam-
ined. These included the sliding TPS approach outlined above. The second approach
employed hybrid rigid registration combining least-squares (LS) [25] and ICP algorithms
(LS&ICP). After using the LS algorithm to fit the template landmarks to those of each
specimen, the ICP algorithm rigidly refitted the template to the target, minimising the
sum of squared distances between landmarks and estimated semilandmarks, found by
searching for the nearest points on the target from the registered template semilandmarks.
The third approach (TPS&NICP) [26] used TPS to perform an initial non-rigid registration
of the template landmarks and surface to specimens, and then the NICP algorithm [15]
was applied to further warp the deformed template surface to each specimen as rigidly as
possible, optimizing the cost function by assigning an affine transformation to each vertex,
rather than an interpolation function as used in TPS, before transferring the semilandmarks
from the template to the nearest point of the specimen surfaces. We compared semiland-
marking approaches, differences in the locations of semilandmarks, Procrustes distances
between landmark and semilandmark configurations, estimates of mean landmark and
semilandmark configurations, PCs of configuration shape, and estimates of allometry.

Because homology is unknown for regions that were semilandmarked, it is not pos-
sible to assess how well semilandmarks represent homology; rather, the focus was on
comparing the results of analyses based on semilandmarks between and within methods,
with increasing semilandmark density. The analyses showed that each semilandmarking
approach yields different semilandmarks locations, which result in differences in each
of the comparisons [24]. The sliding TPS algorithm and TPS&NICP approach yielded
results that are more similar to each other than those based on LS&ICP. Further, we as-
sessed consistency within methods among results obtained using different densities of
semilandmarks, finding that sliding TPS and TPS&NICP approaches are most consistent,
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especially where true landmarks are dense. The extent to which these differences are
important depends on the context, the question being addressed, and the purpose of the
study, but all semilandmarking approaches estimate homology with error, the extent of
which is unknowable. Therefore, all subsequent statistical analyses that aim to describe
developmental or evolutionary transformation are subject to that error and should be
treated with an appropriate degree of caution [7,24].

Geometric morphometric analyses enable the visualisation of statistical findings,
generating landmark and semilandmark configurations that represent shapes or forms
(sizes and shapes) of interest such as the mean or allometrically scaled configurations.
Surfaces or regular grids are often warped to these configurations to aid the visualisation
of shape differences and, where applicable, changes. This is most commonly performed
using TPS [27,28]. However, the authors of [6] noted that ‘With sliding semilandmarks,
their relative positions on equivalent curves, surfaces, etc. are not singly interpretable, but
rather should be read as a whole, respecting the fact that the underlying assumption in
their construction is one of equivalence of the curve or surface patch as a whole’. This
was recently reiterated [3,29]: ‘the coordinates of semilandmarks along the surface are
meaningless, and one cannot interpret the position of single semilandmarks, only the
surface geometry that all semilandmarks describe together’. Thus, although semilandmarks
are treated as landmarks in statistical analyses, ‘errors’ in their locations (or differences
using different methods to locate them) influence statistical outcomes, as was demonstrated
in the previous study [24]; visualisations and interpretations of differences should ignore
their locations and focus on the shape of the curve or surface they describe.

It is, therefore, of interest to know the extent to which the shapes of surfaces warped
to fit semilandmark and landmark configurations varying in semilandmark density and
locations (e.g., arising from different approaches to placing them) are consistent. If different
densities and approaches yield identical or very similar visualisations, this may be reassur-
ing in certain practical applications. For instance, a mean surface might be used in clinical
work to compare measurements taken on a patient with an estimate of the population
mean [30] and facial approximation from the skull alone in the realm of forensic science [31].
Additionally, surfaces from GM analyses are used to virtually repair and reconstruct fossil
material [32] and build 3D models for functional analyses such as finite element analysis
(FEA) [33]. The extent to which such estimated surfaces differ when derived using different
semilandmark densities and semilandmarking approaches is unknown, yet it is important
in that it may affect subsequent morphometric or functional analyses. This question is
addressed in the present study.

The main purpose of this study is to empirically test two hypotheses using surface
scans of human heads and ape crania: that there are no differences in surface mesh shape
(the shape of the configuration of surface vertices and the nodes of the surface mesh, rather
than the landmark and semilandmark configuration) between estimates derived using
different semilandmarking densities and approaches applied to surfaces representing (a)
the mean of a sample and (b) allometrically scaled shapes.

To these ends, a template surface mesh is warped to fit the estimated mean and allo-
metrically scaled mean landmark and semilandmark configurations derived from different
semilandmarking densities and approaches, and the resulting surfaces are compared. Ad-
ditionally, these surfaces are compared with surfaces warped using landmarks alone. Of
interest is the extent to which these surfaces differ and how they differ. The focus is on the
comparison of the shape of the surface rather than the geometry of the underlying mesh.

2. Materials and Methods
2.1. Materials
2.1.1. Datasets, Landmarks and Semilandmarks

We used two datasets comprising surface meshes that exhibit varying degrees of
complexity: 100 adult human male heads comprising 16 anatomical landmarks from the
Liverpool-York Headspace dataset [34,35] and 20 ape crania consisting of 41 anatomical
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landmarks (5 Gorilla, 5 Hylobates lar, 5 Pan troglodytes, and 5 Pongo abelii [36]. We extracted
the external surfaces of heads and ape crania to avoid the internal surfaces interfering
with the projection of semilandmarks. The 3D meshes were post-processed by smoothing
surfaces, removing the irrelative discrete vertices, and repairing self-intersecting triangle
meshes. Compared with human heads, the sample of ape crania of different species shows
greater size and shape variation and presents more complex surfaces.

Similar to the previous study [24], the mean surfaces of heads and ape crania were
estimated and used as templates (after landmarking and semilandmarking them) for each
dataset to yield semilandmarks among every specimen. For the human head, we selected
an arbitrary head as the initial template and then used NICP [15] to align all of the human
heads based on landmarks and establish dense point correspondences (identify points on
the target surface that match each vertex of the template surface). Next, the mean head
was estimated by averaging correspondences among heads. For the ape crania, which
vary far more in form, an alternative approach was required. The k-means clustering
algorithm was employed to sample 800 points over a Gorilla cranium; then, the sliding TPS
approach [10] was used to yield semilandmarks among specimens. Following this, the
mean form of the landmark and semilandmark configurations was calculated, and the mean
ape cranial surface was estimated by warping the surface mesh of an arbitrary specimen
to fit this configuration. This process of making an initial estimate of the mean follows
one commonly used to compute semilandmarks, where an arbitrary specimen is used as
an initial template to estimate semilandmark coordinates, and the mean of the resulting
landmarks and semilandmarks is used to estimate a new mean template by re-warping the
original template to them before re-semilandmarking the sample.

Figure 1 shows the human template head with 16 landmarks, and Figure 1b shows
the ape template cranium with 41 landmarks. Notably, the scalp surface in the headspace
data lacks identifiable landmarks, while the ape crania present landmarks over the whole
surface. These differences are expected to affect how well semilandmarking is controlled,
particularly for sliding TPS, because landmarks are required to control sliding, which is not
the case for the other approaches. Sliding TPS was applied over the scalp for the consistency
of analyses and comparability of results.

Figure 1. Two datasets. (a) The human template head with 16 landmarks. (b) The ape template
cranium with 41 landmarks.

2.1.2. Semilandmarks

The k-means algorithm was used to sample, as evenly as possible, 10 different den-
sities of semilandmarks per square centimetre from the template head: 20 (0.017/cm?),
40 (0.034/cm?), 60 (0.052/cm?), 80 (0.069/cm?), 100 (0.086/cm?), 200 (0.172/cm?), 400
(0.343/cm?), 600 (0.515/cm?), 800 (0.688/cm?), and 1000 (0.858/cm?) semilandmarks. In
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addition, the above procedure was repeated to generate five different semilandmark densi-
ties among ape crania: 50 (0.129/cm?), 100 (0.258/cm?), 200 (0.517/cm?), 400 (1.033/cm?),
and 800 (2.067/cm?). Following the creation of the templates, three different semiland-
marking approaches were employed to project semilandmarks from the template to every
specimen to yield semilandmarks, as follows [24].

(a) Sliding TPS

The sliding TPS approach is the most commonly used approach in biological studies
to yield semilandmarks by sliding semilandmarks projected from the template along the
tangent direction of a curve or the tangent plane of a surface, minimising the bending
energy of TPS [11,37]. In this study, we used the patching (placePatch) and sliding (slider3d)
procedures in the Morpho R package (version 2.10) to yield sliding semilandmarks at varying
densities based on the template [38]. The sliding step minimises bending energy and, thus,
depends on landmarks to control the sliding. For the headspace data, no landmarks are
present over the scalp, so we expect sliding to be poorly controlled. This situation does not
arise with the ape cranial data.

(b) Rigid registration

We used the rigid LS&ICP method to register the template to every specimen based
on the fixed landmarks and then projected semilandmarks from the template to each
specimen. First, the initial rigid alignment calculated by LS, constrained by landmarks, was
performed to fit the template to each specimen. Second, the ICP algorithm rigidly refitted
the template to the target, minimising the sum of squared Euclidean distances between
landmarks and semilandmarks on the template and specimen. The alignment generated by
LS speeds up the convergence of the ICP algorithm. Finally, we projected different densities
of semilandmarks from the registered template to each specimen. This was carried out
using purpose-built code in the C++ programming language using Microsoft Visual Studio
2015.

(c) Non-rigid registration

We used the non-rigid TPS&NICP method [26] to yield semilandmarks on every
specimen. This comprised two steps: First, a triplet of TPS was used to warp the template
to every specimen based on the fixed landmarks. Second, the NICP algorithm [15] was
applied to warp the deformed template surface to each specimen and establish dense
point correspondences based on locally affine regularizations and adjustable stiffness
parameters. In this process, preliminary correspondences are established by searching
for the nearest points between two surfaces, and then the cost function is optimized. It
comprises a landmark term, a local affine regularization term, and a stiffness term and
assigns an affine transformation to each vertex. New correspondences are obtained by
searching the deformed template surfaces. Registration loops are carried out in which
stiffness weights are iteratively decreased and the template is incrementally deformed. This
non-rigid method, in contrast to the rigid registration used in LS&ICP, matches the warped
template surface closely to each specimen. This was carried out using purpose-built code
in the Matlab programming language.

Figure 2a shows 100 semilandmarks generated by sliding TPS (black points), LS&ICP
(red points), and TPS&NICP (green points) on the mean form of the head surface generated
by sliding TPS. While semilandmark locations differ between all methods of semilandmark-
ing, the differences are small between sliding TPS and TPS&NICP approaches and a little
larger between these and the LS&ICP approach. In contrast, differences are much greater
among methods in the ape cranial dataset. Thus, Figure 2b shows 100 semilandmarks on
the mean ape cranium generated by sliding. Semilandmarks generated by sliding TPS
appear to be in similar locations to those generated by TPS&NICP, but the locations of
semilandmarks generated by LS&ICP are quite different.
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(b)

Figure 2. One hundred semilandmarks generated by the sliding TPS (black points), LS&ICP (red
points), and TPS&NIPC (green points) approaches. (a) Mean adult human head. (b) Mean ape
cranium.

2.2. Methods
2.2.1. Comparisons of Mean Surface Meshes between Different Approaches

For each dataset, we applied GPA to the landmark and semilandmark configurations
from each semilandmarking approach and density and then computed the Procrustes mean
configurations (centroid size = 1.0). Subsequently, the surface of the template specimen
was warped using TPS to fit each mean configuration, thereby generating a ‘mean surface’
consisting of the coordinates of the full set of vertices with identical topology but different
relative vertex locations for each estimate of the mean (from each semilandmarking method
and density). A vertex is a node of the mesh, and the connections between nodes describe
the mesh topology. It should be noted that the template surface was already warped to
an estimate of the mean during the semilandmarking process and, as such, under little
further deformation in this step. Next, the differences between these estimates of the
mean surface shape were quantified and visualized. A hybrid approach was used to
quantify global and regional differences in mean surface estimates generated by different
semilandmarking approaches. The global comparison used Procrustes superimposition
to register mean shape surface mesh vertices generated by different semilandmarking
approaches, following which the Procrustes distance between the mean surfaces was
calculated, and a principal components analysis (PCA) of mean surfaces was carried
out. Additionally, regional differences between estimated mean surfaces were visualized
based on (registration independent) colour maps (see example in Figure 3) of surface area
differences between each equivalent triangle of the two surface meshes [39]. While these
are registration-free depictions of differences in surface area, they incompletely describe
the differences between surfaces and should be interpreted in conjunction with the surface
renderings of the reference and target shapes.
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Figure 3. Visualization of the differences in mesh triangle surface areas between mean surface
shapes generated using different semilandmarking approaches. (a) Differences between sliding
TPS (reference) and LS&ICP (target) approaches. (b) Differences between sliding TPS (reference)
and TPS&NICP (target) approaches. (c) Differences between TPS&NICP (reference) and LS&ICP
(target) approaches. Scale bar indicates difference in local area between reference and target surfaces
expressed as a proportion of the reference area.

However, differences in semilandmark locations and densities between approaches
resulted in different mesh vertices locations, even if the shapes of surfaces being compared
were identical. This affected visualisations and computations of distances and PCs based
on the vertices.

This is related to the point made by Oxnard and O'Higgins [6], Mitteroecker and
Schaefer [3], and Bastir et al. [29] that semilandmark locations on surfaces should not be
interpreted singly. In warping the mesh to each semilandmark, the locations of semiland-
marks directly control where mesh vertices are located, thus affecting the local geometry
of the mesh. Warping transfers differences in individual semilandmark locations to mesh
vertices. This is evident from Figure 3, which presents colour maps of differences in mesh
triangle areas among mean surface shapes generated using different semilandmarking
approaches.

In the comparisons in Figure 3, numerous punctate regions of localised differences in
areas of triangle meshes are evident, particularly between the sliding TPS and TPS&NICP
approaches, where semilandmarks located over the vault are in slightly different places.
These lead to the punctate appearance of the colour map. The resulting Procrustes dis-
tances between mesh vertices are illustrated in Figure 4. These distances increase between
the lowest and highest semilandmarking densities, but this is not directly related to the
number of semilandmarks used to warp the meshes. Rather, the figure shows a generally
increasing trend but with increases or decreases in Procrustes distance between successive
increments of semilandmark density. While some part of these Procrustes distances relates
to differences in surface shape, the distances are inflated to an unknown degree by the
differences in semilandmark locations over the surface.
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Figure 4. Procrustes distances computed between vertices of the mean surfaces of human heads
generated by warping the template mesh to the semilandmarks obtained by different approaches.

To avoid this problem, a second semilandmarking step followed by a re-warping of the
template surface to these new semilandmarks and the landmarks is required on all surfaces
to be compared. First, the semilandmarks of the template surface were projected onto
the estimated surfaces (e.g., mean or allometrically scaled shapes) generated by different
approaches and densities to generate new semilandmarks based on the fixed landmarks
(re-semilandmarking). Second, the template surface is warped to fit the original landmarks
and new semilandmarks generated by different approaches and densities to produce the
surface (re-warping). This eliminates the localised effects on mesh geometry (e.g., more or
less deformed triangles within the meshes, while topology remains constant) of differences
in semilandmark locations due to the choice of a semilandmarking approach. It focuses the
comparison on the shapes of the re-warped surfaces rather than mesh geometry. The sliding
TPS and TPS&NICP semilandmarking approaches result in very similar semilandmark
locations and consistent statistical results (Figure 2 and [24]). Either could be chosen as the
basis for the re-semilandmarking and re-warping of meshes, with little or no effect on the
outcome of comparisons. In this study, the sliding TPS approach was chosen because it is
most commonly applied in such work.

The resulting visualisations of differences and Procrustes distances between estimates of
the mean surface mesh indicate smaller differences after re-sliding (or re-semilandmarking)
and re-warping, as expected. Thus, differences between the mean surface mesh derived by
LS&ICP and the other two approaches are relatively large in the face, especially around
irregular features such as the nose and mouth, while between sliding TPS and TPS&NICP,
the mesh differences are small and diffuse. Procrustes distances generally increase with
increasing density, as in Figure 4, but are smaller than those from the original fitting of
the template mesh to the semilandmarks from each approach (see Results, Section 3.1.1
for details).

This re-semilandmarking and re-warping allows mesh surface shapes to be compared
between semilandmarking methods. It ignores the local differences in surface mesh triangle
areas that will affect the colour maps of differences in the mesh triangle surface areas and
refocuses the analysis on the shape of the surface (in the sense of its topography). It was
applied to all subsequent comparisons of mean surfaces and allometrically scaled surfaces
arising from different semilandmarking approaches in this study. It was also applied to
the comparison of surfaces derived with each semilandmarking approach using different
densities of semilandmarks.
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2.2.2. Comparisons of Allometrically Scaled Surface Meshes

In the previous study [24], the predicted landmark and semilandmark configurations
representing the extreme limits (smallest and largest) of the allometric vector, derived
using the multivariate regression of shape (the scores of specimens on the full set of PCs)
on the natural logarithm of centroid size, were computed using each semilandmarking
method and density. This was performed for both datasets. To investigate how differences
in semilandmark locations between approaches affect predictions of allometrically scaled
surfaces, the template surface was warped to these configurations. Next, as for the com-
parisons of mean surfaces, these surfaces were re-semilandmarked and re-warped to yield
surface meshes before calculating Procrustes distances between mesh vertices, PCs, and
visualisations of differences in mesh triangle areas.

2.2.3. Comparisons of Surface Meshes Resulting from Different Semilandmarking Densities

Previous analyses focused on differences in surface mesh predictions arising from
the use of different semilandmarking approaches. Further analyses were directed towards
assessing the extent to which predicted surfaces differ when produced by each semiland-
marking approach using different densities of semilandmarks. This was applied to both
datasets. As for the comparisons of mean and allometrically scaled surfaces, the surfaces
produced by each semilandmarking density using each semilandmarking approach were
re-semilandmarked and re-warped, and then GPA and PCA were carried based on the ver-
tices of the surfaces generated by different densities of semilandmarks from each approach.
Procrustes distances and PCAs were used to assess overall shape differences. Colour map
visualisations of differences in mesh areas were also produced, but these first required the
scaling of the meshes. Because the number of semilandmarks varies, the centroid sizes
of the full set of vertices of the surfaces fitted to each mean semilandmark and landmark
configuration are inversely related to the density of semilandmarks; i.e., surfaces generated
using low densities of semilandmarks are larger than those using high densities. Therefore,
to visualise differences in predicted surface mesh triangle areas, the surfaces (configuration
of the full set of vertices) were scaled to the same centroid size.

2.2.4. Comparisons of Mean and Allometrically Scaled Surface Meshes Resulting from
Landmarks Alone

In order to assess what, if anything, is gained by using landmarks and semilandmarks
to compute mean and allometrically scaled surfaces, the surfaces from the analyses de-
scribed above were compared with warped surfaces derived using only the landmarks by
computing Procrustes distances between the vertices of the template surface mesh warped
to fit the mean landmarks or allometrically scaled landmarks from each dataset. The differ-
ences between these surfaces and those derived using landmarks and semilandmarks were
visualized using colour maps, as described above.

The template mesh for each dataset is an initial estimate of the average surface, so it is
expected that fitting it to the mean landmarks will yield a surface not very dissimilar to the
mean surfaces estimated using landmarks and semilandmarks. In practice, it is common
to use the surface of an individual close to the mean for visualisation as the template, yet
the effects of the choice of template surface are unclear. Therefore, surfaces derived using
landmarks and semilandmarks were compared with those derived using landmarks alone,
this time using the head surface with the smallest Procrustes distance to the mean (based on
landmarks and the maximum number of semilandmarks) and the ape cranial surface used
to generate the template cranium. The resulting predictions of mean and allometrically
scaled surfaces were compared with those based on the template surfaces.

3. Results

The effects of different semilandmarking approaches and densities on estimates of the
mean and allometrically scaled surfaces of human heads were assessed after the surfaces
were re-semilandmarked and re-warped, and then, key analyses were repeated using the



Animals 2023, 13, 385

10 of 36

40 semi-landmarks

9

@ .

ape cranial surfaces to compare the performance of approaches on surfaces that exhibit a
greater degree of variation and complexity in surface size and shape. Additionally, these
surfaces were compared with those warped to fit the landmark configurations (without
semilandmarks).

3.1. Comparison of Estimates of Mean Surfaces

The differences in shape of the estimated mean surfaces generated by (1) different
semilandmarking approaches and (2) densities are quantified. All of these comparisons and
those of allometrically scaled surfaces are based on surfaces derived by re-semilandmarking
and re-warping, as described in the methods section.

3.1.1. Different Semilandmarking Approaches

The mean head surfaces from each semilandmarking approach derived using vary-
ing numbers of semilandmarks, after re-semilandmarking and re-warping, are shown in
Figure 5. The surface mesh renderings before re-semilandmarking and re-warping are not
noticeably different in shape and so are not shown.

100 semi-landmarks 400 semi-landmarks 800 semi-landmarks 1000 semi-landmarks

0
ALY,
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Figure 5. Visualization of the head mesh surfaces generated using different semilandmarking

approaches after re-semilandmarking and re-warping. (a) Sliding TPS. (b) TPS&NICP approach.
(c) LS&ICP approach. Increasing semilandmark density from left to right.

In Figure 5, all head surfaces after re-semilandmarking and re-warping appear very
similar. The main differences are in the detail of the complex regions of the surfaces, where
those from LS&ICP appear less sharp, especially around the eyes and mouth. In order
to compare these in detail, Procrustes distances were computed between the coordinates
of all vertices of the surface meshes of the mean human head surfaces estimated using
different semilandmarking approaches and densities (Figure 6a). For comparison, for the
same surfaces, the Procrustes distances were also computed between the mean landmarks
and semilandmarks (Figure 6b). These distances are very similar, indicating that the re-
warping of meshes preserves differences between the landmark and semilandmark sets. In
contrast, the re-warping has a marked effect on the Procrustes distances between meshes
compared with those warped to the original landmark and semilandmark configurations
(see Methods; Figure 4 vs. Figure 6a).
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Figure 6. Procrustes distances computed between the mean surfaces of human heads obtained by
different approaches after re-semilandmarking and re-warping the template mesh. (a) Procrustes
distances computed between all the vertices (b) Procrustes distances between mean landmarks and
semilandmarks.

Comparing these distances between different semilandmarking approaches (Figure 6a)
indicates that the full set of vertices of the mean surface generated from sliding TPS are,
in general, most similar (smallest Procrustes distances) to those from TPS&NICP at all
semilandmarking densities, and these distances increase with increasing semilandmark
density. The Procrustes distances between mean surfaces based on semilandmarks from
LS&ICP and both sliding TPS and TPS&NICP are, in general, larger and also tend to
increase with increasing semilandmark density.

Differences between the mean surfaces of human heads derived from different semi-
landmarking approaches and densities of semilandmarks are illustrated in Figure 7. This
visualises differences in areas of equivalent triangles in the template surface mesh de-
rived from each semilandmarking approach and density after re-semilandmarking and
re-warping (see Figure 3). Figure 7a visualises the differences in shape among mean surface
meshes from sliding TPS (reference) and LS&ICP.

Differences in local surface areas between sliding TPS and TPS&NICP (Figure 7b)
are very small at all semilandmark densities. The scalp region smoothly presents slightly
smaller local surface areas (~ratio of difference in area ~0.01 = 1%; light green) from
TPS&NICP relative to sliding TPS. In comparisons between LS&ICP and the other semi-
landmarking approaches (Figure 7a,c), differences increase markedly with an increasing
semilandmark number and are mostly found in the face in regions of complex topography,
e.g., the eyes, nose, mouth, and chin, and in which semilandmarks are closer to fixed
landmarks. They are much less marked over the scalp. These visualisations reflect the
Procrustes distances between surfaces presented in Figure 6a.

The analyses described above were repeated with the ape cranial surfaces generated
using mean landmarks and semilandmarks. Figure 8 presents the mean surfaces estimated
by each semilandmarking approach at varying densities of semilandmarking. As with
the headspace data, they appear very similar to the naked eye, with those from LS&ICP
appearing slightly different (e.g., zygomatic region) from those derived by sliding TPS and
TPS&NICP, especially at higher semilandmarking densities.
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Figure 7. Visualization of the differences in mesh triangle surface areas among mean surface shapes
generated using different semilandmarking approaches after re-semilandmarking and re-warping.
Differences between (a) sliding TPS (reference) and LS&ICP (target) approaches. (b) Sliding TPS
(reference) and TPS&NICP (target) approaches. (c) TPS&NICP (reference) and LS&ICP (target) ap-
proaches. Scale bar indicates difference in local area between reference and target surfaces expressed
as a proportion of the reference area.

50 semi-landmarks 100 semi-landmarks 200 semi-landmarks 400 semi-landmarks 800 semi-landmarks

Figure 8. Surface meshes of the estimated mean ape cranium generated using different semiland-
marking approaches after re-semilandmarking and re-warping. (a) Sliding TPS. (b) TPS&NICP.
(c) LS&ICP.
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50 semi-landmarks

Because LS&ICP yields unreasonable semilandmarks among ape crania (red points
in Figure 2b) and results in distinctive estimates of mean ape cranial shape, especially at
higher densities of semilandmarking (Figure 8c), we focus on comparing the mean surfaces
based on semilandmarks of varying density from sliding TPS and TPS&NICP. Procrustes
distances between the coordinates of all vertices of the surface mesh of ape crania warped
to the mean landmark and semilandmark configurations are presented in Table 1. These
indicate that differences between the full sets of vertices of the mean surfaces generated
from sliding TPS and TPS&NICP become greater with increasing density. As with the
headspace data (Figure 6a,b), Procrustes distances based on the mean landmarks and
semilandmarks of ape crania (Table 1) are similar to those based on the vertices of the
surface meshes warped to fit them (Table 2), and the Pearson correlation between these
vectors of distances is 0.9940.

Table 1. Procrustes distances computed between the mean surfaces of ape crania generated by sliding
TPS and TPS&NICP after re-semilandmarking and re-warping the template mesh.

50 100 200 400 800
dist 0.0018 0.0025 0.0024 0.0027 0.0030

Table 2. Procrustes distances computed between the mean landmarks and semilandmarks of ape
crania generated by sliding TPS and TPS&NICP after re-semilandmarking the warped mesh.

50 100 200 400 800
dist 0.0023 0.0029 0.0029 0.0032 0.0034

The regional differences between the mean surfaces of ape crania derived from the
sliding TPS (reference surface) and TPS&NICP approaches are illustrated in Figure 9.
This figure reflects the Procrustes distances of Table 1 in indicating that differences in
mean surfaces become greater with increasing semilandmarking density. The differences
are concentrated in the vicinity of more complex surface regions, e.g., sagittal crests,
supraorbital ridges, the zygomatic arch, the temporal fossa, and the nuchal crest.

100 semi-landmarks 200 semi-landmarks 400 semi-landmarks 800 semi-landmarks

I— 0.05

¥ other

Figure 9. Visualization of the regional differences in local surface areas of mean ape cranial shapes
from sliding TPS (reference) and TPS&NICP (target) approaches. Scale bar indicates difference in
local area between reference and target surfaces expressed as a proportion of the reference area.
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3.1.2. Different Densities of Semilandmarks

The vertices of the estimated mean surfaces from every semilandmarking approach
and density were submitted to separate GPA and PCA. Superimposed scatterplots of the
first two PCs from each analysis are presented in Figure 10, and the proportion of the
total variance explained by each axis is expressed as a percentage and tabulated in Table 3.
Superimposition facilitates the visual appraisal of differences in PC scores derived using
each semilandmarking approach and density.

Sliding TPS Sliding TPS
— ° LS&ICP * TPS&NICP
’ * TPS&NICP 0.002 50
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/ 204 1000 /4800
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800,
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0.000 sors gpo 400609 5o / 0.000 \
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] —
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-0.002 0.000 0.002 =0.002 0.000 0.002
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Figure 10. Superimposed scatterplots of PC 1 and PC 2 of mean shape surfaces using sliding TPS (red
points), LS&ICP (green points), and TPS&NICP (cyan points) approaches. (a) Human heads. (b) Ape
crania.

Table 3. Percentages of total variance explained by PC 1 and PC 2 of the mean surface shape.

Human Heads Ape Crania
PC1 PC2 PC1 PC2
Sliding TPS 79.96% 7.37% 42.12% 27.51%
LS&ICP 68.32% 9.68% - -
TPS&NICP 64.15% 13.48% 42.33% 24.76%

Figure 10a shows the superimposed scatterplots of PC1 vs. PC2 from separate PCAs of
the estimates of the mean surface of the human heads obtained using each semilandmarking
approach. The sliding TPS and TPS&NICP approaches result in very similar PC plots, while
the PCA of estimated mean surfaces generated by LS&ICP approach in a plot showing a
similar pattern of variation among means, but with greater variance in both PCs (larger
scatter). Similarly, for estimates of the mean surface among the ape crania derived using
the sliding TPS and TPS&NICP approaches, the first two PCs from each separate PCA are
superimposed in Figure 8b. These plots indicate that sliding TPS and TPS&NICP produce
very similar scatters of estimated means. Both plots of Figure 10 present “U’-shaped curves,
with the means estimated using the lowest and highest densities of semilandmarks having
higher scores on PC2, although they are widely separated in PC1.

These results are supported by the Procrustes distances computed between the mean
surface mesh vertices derived from each lower density and the maximum density of
the semilandmarks, as shown in Tables 4 and 5 and Figure 11. For both datasets, all
semilandmarking approaches show convergence between the surfaces based on increasing
numbers of semilandmarks and those based on the maximum number. For the headspace
data (Table 4; Figure 11a), sliding TPS and TPS&NICP perform similarly, in that they result
in mean surfaces based on <1000 semilandmarks that are closer to those based on 1000
semilandmarks than their equivalents from LS&ICP. Likewise, sliding TPS and TPS&NICP
perform similarly and show convergence for the ape cranial dataset (Table 5, Figure 11b).
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Table 4. Procrustes distances between the vertices of the estimated mean human head surfaces using
1000 semilandmarks and those using increasing numbers of semilandmarks from each approach after
re-semilandmarking and re-warping the template mesh.

20 40 60 80 100 200 400 600 800
Sl}clljlgg 0.0029 0.0026 0.0027 0.0026 0.0026 0.0024 0.0016 0.0011 0.0007
LS&ICP 0.0055 0.0058 0.0050 0.0046 0.0050 0.0037 0.0027 0.0020 0.0015
TPS&NICP  0.0023 0.0020 0.0020 0.0021 0.0021 0.0019 0.0014 0.0012 0.0008

Table 5. Procrustes distances between the vertices of mean ape cranial surfaces estimated by each
approach using 800 semilandmarks and those estimated using increasing numbers of semilandmarks
after re-semilandmarking and re-warping the template mesh.

50 100 200 400
Sliding TPS 0.0050 0.0051 0.0044 0.0034
TPS&NICP 0.0049 0.0044 0.0038 0.0036
Procrustes distance Procrustes distance
i Sliding TPS o Sliding TPS
—+— LS&ICP 0.0050 1 —s— TPS&NICP
0.005 1 — TPS&NICP
0.004 1 0.0045 1
0.003 1
0.0040 1
002] Te—e— SO
0.001 1 ., | 000351
20 40 60 80 100 200 400 600 800 50 100 200 400
The number 01(" s)emi-landmarks The number of semi-landmarks
a (b)

Figure 11. Procrustes distances of estimated mean surfaces between every density and the maximum
density from each approach to semilandmarking. (a) Human heads. (b) Ape crania.

Within each approach to semilandmarking, the local variations in the area between
the human head mean surfaces estimated by increasing semilandmark densities and the
surface from the 1000 semilandmarks were visualised as colour maps. These are presented
in Figure 12a—c. Consistent with the Procrustes distances presented in Table 4, the closest
fitting surfaces are between the surfaces derived using semilandmarks from sliding TPS
and TPS&NICP. The colour maps comparing these surfaces with those from the 1000
semilandmarks are relatively smooth (Figure 12a,b). Further, as semilandmarking density
increases, the surfaces based on lower densities of semilandmarks converge with the
surface from the 1000 semilandmarks. Differences are more pronounced between surfaces
derived using lower semilandmarks densities and the 1000 semilandmarks generated by
the LS&ICP approach. This reflects the generally greater Procrustes distances presented
in Table 4, and, visually, differences are most evident in the face (Figure 12c). The nasal,
ocular, and perioral regions show localized large differences but converge with increasing
semilandmarking density on the surface derived using 1000 semilandmarks, particularly
around the nose and eyes. However, with increasing semilandmark densities generated
by LS&ICP, the quality of the mean surfaces is poor (i.e., less sharp features around the
eyes and mouth in Figure 4c) because equivalent semilandmarks lie in different anatomical
locations.
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Figure 12. Colour maps of local surface mesh area differences between mean surfaces of human heads
derived using lower densities (target) and from 1000 semilandmarks (reference) using different semi-
landmarking approaches. (a) Sliding TPS. (b) TPS&NICP. (c) LS&ICP. Scale bar indicates difference
in local area between reference and target surfaces expressed as a proportion of the reference area.

Similar comparisons were undertaken for the ape crania. Figure 13a,b show regional
differences in the area of mean surfaces computed between lower densities and the max-
imum density of 800 semilandmarks generated by the sliding TPS and TPS&NICP ap-
proaches. In both, the smallest differences are found in the cranial vault, where the colour
map is smooth and indicative of small local area differences. Larger differences are ob-
served around the frontal bone, supraorbital ridges, zygomatic arches, malar region, nasal
bones, and maxillae. Consistent with Table 5, with increasing semilandmark density, a
degree of convergence occurs with the surface based on the 800 semilandmarks.

DD B

50 semi-landmarks

DD B,
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100 semi-landmarks 0.0
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200 s;mi-landmarks 200 semi-landmarks

/5:{;1:;4 @ @ e
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Figure 13. Colour maps of local surface mesh area differences among mean surfaces of ape crania
derived using lower densities (target) and 800 semilandmarks (reference) based on different semi-
landmarking approaches. (a) Sliding TPS. (b) TPS&NICP. Scale bar indicates difference in local area
between reference and target surfaces expressed as a proportion of the reference area.
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Procrustes distance

3.2. Comparison of Estimates of Allometrically Scaled Surfaces

We generated surface meshes warped by TPS to the predicted landmark and semiland-
mark configurations representing the extreme limits (maximum and minimum centroid
sizes) of the allometric vector; then, after re-sliding and re-warping, we assessed the over-
all and regional differences between surfaces generated by different semilandmarking
approaches and densities.

3.2.1. Different Semilandmarking Approaches

Procrustes distances between the vertices of the allometrically scaled surfaces of
human heads representing the maximum centroid size generated by different approaches
are illustrated in Figure 14a. Likewise, Procrustes distances between the fitted surfaces
representing the minimum centroid size are illustrated in Figure 14b. In both cases, in
comparisons between LS&ICP and the other two approaches, Procrustes distances between
surface meshes increase with increasing numbers of semilandmarks, while those between
sliding TPS and TPS&NICP decrease. Sliding TPS and TPS&NICP approaches result in the
most similar predictions as the semilandmarking density increases. The distances between
predicted shapes at minimum size are somewhat greater than those at the maximum size
because of the skewed distribution of centroid sizes (see Figure 17).

Procrustes distance
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Figure 14. Procrustes distances computed between the vertices of human head surfaces, allometrically
scaled to the maximum and minimum centroid sizes, based on different semilandmarking approaches
after re-semilandmarking and re-warping the template mesh. (a) Maximum. (b) Minimum.

Additionally, the differences between the allometric predictions of the large and small
surfaces were visualised between different semilandmarking approaches and different
semilandmarks densities in Figure 15. The visualizations show differences in the surface
area of the equivalent triangles among the re-warped and re-semilandmarked surface
meshes predicted for the maximum centroid size in Figure 15a, and those corresponding
to the minimum centroid size are illustrated in Figure 15b. In both cases, the differences
between the surface mesh predictions based on landmarks and semilandmarks from sliding
TPS and TPS&NICP are small (middle rows in Figure 15a,b). They reflect the Procrustes
distances in Figure 14a,b in becoming more similar with an increasing semilandmark
density and in being more similar for comparisons among predictions of the surface at the
maximum centroid size than at the minimum. The differences between surface meshes
predicted by LS&ICP and the other approaches (top and bottom rows in Figure 15a,b)
also reflect the Procrustes distances in Figure 14a,b in being large, becoming larger with
increasing density, and in being larger for comparisons of the predicted surfaces at the
minimum centroid size.
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Figure 15. Visualization of the differences in mesh triangle surface areas between predicted allomet-
rically scaled surfaces of human heads representing the (a) maximum and (b) minimum centroid
size generated by different semilandmarking approaches. In each figure—top row: sliding TPS
(reference) vs. LS&ICP (target); middle row: sliding TPS (reference) and TPS&NICP (target); bottom
row: TPS&NICP (reference) vs. LS&ICP (target). Scale bar indicates difference in local area between
reference and target surfaces expressed as a proportion of the reference area.

Similar visualisations compared allometrically scaled surfaces of the ape cranial
dataset. The LS&ICP approach was not evaluated because it failed to produce sensi-
ble semilandmarks when applied to these more complex and variable surfaces. Procrustes
distances between the mesh vertices of the predicted cranial surface corresponding to the
maximum and minimum centroid size estimated using the sliding TPS and TPS&NICP
approaches are compared in Table 6. These distances indicate that differences between both
the allometric predictions of the surface increase with an increasing semilandmark density,
as with the comparison of the means from the ape data estimated using the sliding TPS and
TPS&NICP approaches (Table 1). In Table 6, Procrustes distances at the maximum centroid
size are less than those at the minimum, consistent with the skewing of the distribution
of centroid sizes towards the maximum, which results in greater allometric warping of
the mean shape towards the minimum than the maximum centroid size (see Figure 18).
Further, the Procrustes distances are somewhat larger than those between the estimated
mean surfaces in Table 1, indicating greater differences between the allometrically scaled
surfaces.
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50 semi-landmarks

Table 6. Procrustes distances computed between vertices of ape cranial surfaces allometrically
scaled to the maximum (Max) and minimum (Min) centroid size from sliding TPS and TPS&NICP
semilandmarking approaches after re-semilandmarking and re-warping the template mesh.

50 100 200 400 800
Max 0.0040 0.0039 0.0044 0.0052 0.0055
Min 0.0072 0.0056 0.0088 0.0077 0.0100

These differences are visualized in Figure 16 and are consistent with the Procrustes dis-
tances of Table 6; differences in mesh triangle surface areas increase with semilandmarking
density, are greater for estimates of the mean ape cranium scaled to the minimum centroid
size, and are more pronounced around more complex surface regions, e.g., the periorbital
region, crests, and the infratemporal region.

100 semi-landmarks 200 semi-landmarks 400 semi-landmarks 800 semi-landmarks
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Figure 16. Visualization of the differences in mesh triangle surface areas between the fitted surface
shapes of ape crania generated by the sliding TPS (reference) and TPS&NICP (target) approaches after
re-semilandmarking and re-warping the template. (a) Comparison of predictions corresponding to
the maximum centroid size. (b) Comparison of predictions corresponding to the minimum centroid
size. Scale bar indicates difference in local area between reference and target surfaces expressed as a
proportion of the reference area.

Finally, these predictions are compared through GPA and PCA of allometrically scaled
mesh vertices created using varying numbers of semilandmarks from each semilandmark-
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ing approach. The first two PCs from PCAs of the mean and allometrically scaled head
surfaces are presented in Figure 17, and those of the ape surfaces are in Figure 18. The first
two PCs in both of these analyses account for nearly all of the variance among the surfaces
(heads 97%; ape crania >99%), so they represent the differences between them well.
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Figure 17. PC1 (92.4% of total variance) vs. PC2 (4.7%) from PCA of the mean and allometrically
scaled head surfaces derived using varying densities of semilandmarks and each semilandmarking
approach. Triangles = means, squares = allometric predictions of surfaces at the sample minimum
centroid size, circles = allometric predictions of surfaces at the sample maximum centroid size. Red =
sliding TPS, blue = TPS&NICP, green = LS&ICP. Numbers indicate number of semilandmarks. The
sliding TPS and TPS&NICP means are nearly superimposed.
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Figure 18. PC1 (99.5% of total variance) vs. PC2 (0.15%) from PCA of the mean and allometrically
scaled head surfaces derived using varying densities of semilandmarks and the sliding TPS and
TPS&NICP semilandmarking approaches. Triangles = means, squares = allometric predictions of
surfaces at the sample minimum centroid size, circles = allometric predictions of surfaces at the
sample maximum centroid size. Red = sliding TPS, blue = TPS&NICP. Numbers indicate number of
semilandmarks. Means are nearly superimposed.

Consistent with the visualisations in Figure 15 and the Procrustes distances in Table 4
and Figure 14, the PC plot of head data (Figure 17) shows that sliding TPS and TPS&NICP
achieve very similar results (surfaces) with the means plotting on top of each other; the
allometric predictions of the mean surface at the sample maximum centroid size (PC1
left, circles) grouping closely and those at the sample minimum centroid size (PC1 right,
rectangles) being more variable. The mean and allometrically scaled surfaces from LS&ICP
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Procrustes distance

(green) are somewhat dissimilar based on the PC plots, Procrustes distances, and colour
maps. Likewise, the PC plot of ape cranial surfaces (Figure 18) is consistent with the
visualisations in Figure 16 and the Procrustes distances in Tables 5 and 6. This shows that
the mean and allometrically scaled surfaces of ape crania derived using sliding TPS and
TPS&NICP are very similar to each other, with smaller variance among the predictions of
surface mesh shape at the sample maximum centroid size (PC1 left, circles) than those at
the sample minimum centroid size (PC1 right, rectangles).

Further, the plots of Figures 17 and 18 serve to provide perspectives on the differences
seen in Table 6 and Figures 14-16. While the colour maps are highly sensitive to differences
in surfaces and identify many regions of difference, when they are set against the differences
between the estimates of the means and allometrically scaled means in the PC plots, they
appear much more similar, especially for comparisons of the results obtained using the
sliding TPS and TPS&NICP approaches at all semilandmarking densities.

3.2.2. Different Densities of Semilandmarks

For each semilandmarking approach and dataset, the differences in shape between the
allometrically scaled surfaces derived from lower semilandmark densities and those from
the maximum density were assessed by computing the Procrustes distances between their
vertices and visualizing differences in local surface areas. For the head surfaces, Table 7
presents and Figure 19 plots these Procrustes distances. In both cases, the sliding TPS and
TPS&NICP approaches consistently result in surfaces from lower semilandmarking den-
sities being more similar (smaller Procrustes distances) to the surface with the maximum
semilandmarking density than for those derived using the LS&ICP approach. Further, at
lower semilandmarking densities, distances from the TPS&NICP approach are slightly
smaller than those from sliding TPS. Procrustes distances are a little larger among the pre-
dicted surfaces at the sample minimum centroid size, especially at lower semilandmarking
densities, than among those at the sample maximum centroid size because of the skewed
distribution of centroid sizes (see Figure 17).
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Figure 19. Procrustes distances, after re-semilandmarking and re-warping, between the allometrically
scaled head surfaces derived from the maximum density and those from lower semilandmark densi-
ties. (a) Procrustes distances between predicted surfaces at the maximum centroid size. (b) Procrustes
distances between predicted surfaces at the minimum centroid size.
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Table 7. Procrustes distances between vertices of the allometrically scaled surfaces of heads at
the maximum and minimum centroid sizes using the landmarks and highest density of semiland-
marks and surfaces estimated using the landmarks and lower densities of semilandmarks after
re-semilandmarking and re-warping.

Size 20 40 60 80 100 200 400 600 800
Sliding Max 0.0075 0.0063 0.0066 0.0059 0.0056 0.0048 0.0031 0.0019 0.0014
TPS Min 0.0137 0.0102 0.0100 0.0091 0.0084 0.0083 0.0048 0.0031 0.0022
Max 0.0140 0.0124 0.0120 0.0112 0.0103 0.0082 0.0050 0.0044 0.0030

LS&ICP
Min 0.0182 0.0160 0.0128 0.0145 0.0137 0.0104 0.0073 0.0067 0.0037
Max 0.0067 0.0049 0.0050 0.0041 0.0038 0.0036 0.0025 0.0019 0.0012
TPS&NICP 3

in 0.0119 0.0084 0.0079 0.0081 0.0083 0.0074 0.0056 0.0036 0.0017

Additionally, local differences in the area between the allometric predictions of head
surfaces derived using the maximum density semilandmarks and lower densities from each
semilandmarking approach are visualized in the colour maps in Figure 20. Figure 20a,b
present the visualisations corresponding to the sample maximum and minimum cen-
troid size, respectively. Consistent with the Procrustes distances presented in Table 7
and Figure 19, the LS&ICP approach shows the greatest differences between surfaces de-
rived from lower densities and the maximum, while sliding TPS and TPS&NICP perform
similarly. In all cases, shape differences between lower and maximum semilandmark-
ing densities become smaller with increasing density. The greatest differences between
semilandmarking densities are found around the nose, mouth, ears, and chin, where the
topography is complex, and the smallest are found around the forehead and scalp, where
the surface is smooth and lacks identifiable landmarks.

These analyses were repeated using the allometric predictions of ape cranial surfaces
between every density and the maximum density of semilandmarks generated by sliding
TPS and TPS&NICP, respectively. The Procrustes distances between the allometrically
scaled predictions of the ape crania from varying semilandmarking densities and those
from the maximum semilandmarking density are presented in Table 8 and plotted in
Figure 21. These are very similar in magnitude for surfaces derived using both sliding TPS
and TPS&NICP approaches at all densities and, with increasing density, show a similar
trend of convergence on the surface derived using 800 semilandmarks. Procrustes distances
between this surface and those derived using lower density semilandmarks are greater for
estimates of the allometric predictions of surfaces at the minimum centroid size than at the
maximum. This reflects the skewed distribution of centroid sizes, in particular, the greater
difference between the overall mean and the predicted mean surface at the minimum than
at the maximum centroid size (see Figure 18).

Table 8. Procrustes distances between vertices of the estimated predictions of ape cranial surfaces at
the maximum and minimum centroid sizes derived from the maximum density of semilandmarks
and those from lower densities of semilandmarks after re-semilandmarking and re-warping.

Size 50 100 200 400

Max 0.0139 0.0094 0.0076 0.0058
Sliding TPS

Min 0.0267 0.0191 0.0146 0.0104

Max 0.0141 0.0099 0.0075 0.0058
TPS&NICP

Min 0.0272 0.0199 0.0157 0.0119




Animals 2023, 13, 385

23 of 36

40 semi-landmarks

100 semi-landmarks 400 semi-landmarks

600 semi-landmarks 800 semi-landmarks

Figure 20. Colour map of local area differences computed between the re-semilandmarked and

re-warped allometric predictions of surfaces of human heads at the (a) maximum and (b) minimum

sample centroid sizes, computed between lower densities (reference) and the maximum density

(target) of semilandmarking. In each figure—top row: sliding TPS; middle row: LS&ICP; bottom

row: TPS&NICP. Scale bar indicates difference in local area between reference and target surfaces

expressed as a proportion of the reference area.

Procrustes distance

0.014 1

0.012 1

0.010 1

0.008 1

0.006 1

—— Sliding TPS
—s— TPS&NICP

50

100 200 400
The number o{ s)emi-landmarks
a

Procrustes distance
0.028

0.026 1
0.024 1
0.022 1
0.020 1
0.018 1
0.016 1
0.014 1
0.012 1

0.010 1

—=— Sliding TPS
—=— TPS&NICP

50 100 200 400
The number of semi-landmarks

Figure 21. Procrustes distances, after re-semilandmarking and re-warping, between the allometrically

scaled ape cranial surfaces derived from the maximum density and those from lower densities of

semilandmarks. (a) Procrustes distances between predicted surfaces at the maximum centroid size.

(b) Procrustes distances between predicted surfaces at the minimum centroid size.
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These localised variations in the surface areas of the allometrically scaled surfaces are
visualised in Figure 22. These visualisations reflect the Procrustes distances presented in
Table 8 and Figure 21 in showing greater differences between semilandmarking densities for
the allometric predictions of the ape crania at the minimum centroid size than those at the
maximum and convergence with an increasing semilandmarking density. The largest shape
differences are observed in the facial region; the zygomatic arches; and the supraorbital,
temporal, and nuchal regions, where surface topography is most complex, and the least are
observed over the cranial vault.

0.0
I— 0.05

¥ other

(b)

Figure 22. Colour map of local area differences computed between the re-semilandmarked and
re-warped allometric predictions of surfaces of ape crania at the (a) maximum and (b) minimum
sample centroid sizes, computed between lower densities (reference) and the maximum density
(target) of semilandmarking. Left: sliding TPS; right: TPS&NICP. Scale bar indicates difference in
local area between reference and target surfaces expressed as a proportion of the reference area.

3.3. Comparisons of Mean and Allometrically Scaled Surface Resulting from Landmarks Alone

For each dataset, the mean surface from the sliding TPS and 1000 semilandmarks was
compared with warped surfaces derived using only the landmarks. The template surfaces,
which are themselves an initial estimate of the average surface (see Methods), were fitted to
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the mean landmarks (Figure 23 for heads and Figure 24 for apes). In practice, it is common
to use the surface of an individual close to the mean for visualisation, yet the effects of the
choice of surface are unclear. Therefore, the estimation of mean surfaces was repeated, this
time using the head surface with the smallest Procrustes distance to the mean and the ape
surface used to generate the ape template. The resulting predictions of mean head surfaces
for each dataset were compared using colour maps of local mesh surface area changes
(Figure 23). For the ape surface comparison, two different colour maps were drawn, the
first using the same colour scale range used in the preceding analyses to allow for a direct
comparison with them and the second using an extended range to better visualise the full
range of local area differences (Figure 24).

To the naked eye, the mean head surfaces (Figure 23a—c) differ, but to a lesser degree
than the mean ape cranial surfaces (Figure 24a—c). In both cases, the greatest similarity
(d, in each figure) is between (a), the surface estimated by warping the template surface
to the mean configuration of landmarks and the 1000 semilandmarks from sliding TPS,
and (b), the surface estimated by warping the template surface to the mean landmark
configuration. More marked differences (e) are found by comparing (a) with (c). In the
case of the head dataset, both comparisons with Figure 23c show very similar differences
in the face (Figure 23e compared with Figure 23f), especially around the nose, mouth, and
eyes where landmarks are present, but there are contrasting differences over the scalp,
which lacks identifiable landmarks to control warping. In the case of the ape cranial dataset,
where landmarks are distributed over the entire surface, both comparisons with Figure 24d
are similar (Figure 24e compared with Figure 24f), with the main differences concentrated
around crests and ridges.

I— 0.05

s other

Figure 23. (a) Mean head surface estimated by warping the template surface to the mean configuration
of landmarks and 1000 semilandmarks from sliding TPS. (b) Mean head surface estimated by warping
the template surface to the mean landmark configuration. (c) Mean head surface estimated by warping
the surface of the head with minimum Procrustes distance from the mean to the mean landmark
configuration. (d) Colour map between surfaces a (reference) and b (target). (e) Colour map between
surfaces a (reference) and c (target). (f) Colour map between surfaces b (reference) and c (target).
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Figure 24. Top row: (a) Mean ape cranial surface estimated by warping the template surface to the
mean configuration of landmarks and 1000 semilandmarks from sliding TPS. (b) Mean ape cranial
surface estimated by warping the template surface to the mean landmark configuration. (c) Mean
ape cranial surface estimated by warping the surface of the cranium used to generate the template to
the mean landmark configuration. Colour maps between the surfaces using different colour ranges
(see text) in the middle row and bottom rows: (d) Colour map between surfaces a (reference) and
b (target). (e) Colour map between surfaces a (reference) and c (target). (f) Colour maps between
surfaces b (reference) and c (target).

Similar analyses are conducted to assess how landmarks alone perform in predicting
allometrically scaled surfaces, just as they might be carried out where no initial estimate
of the mean surface is possible (e.g., hand-collected landmark data), but a surface mesh
is available for warping. These focus on the comparison of the surface of the individual
head closest to the mean and the ape surface used to generate the template, warped to the
allometrically scaled landmark configurations, with those from the allometric scaling of the
template surfaces based on all landmarks and the maximum densities of the semilandmarks.
The results for the predictions of surfaces at the maximum sample centroid sizes are
presented in Figure 25, and the minimum centroid sizes are in Figure 26. Note that
the scale bar used to compare ape cranial means is wider than those used elsewhere
because the differences are greater. In both cases, the surfaces of individuals warped to
fit the allometrically scaled landmark configurations (Figure 25b,e and Figure 26b,e), are
superficially similar to those derived by warping the template to the allometrically scaled
landmark and the highest density semilandmark configurations for each dataset. However,
they differ in detail such that the human head surfaces estimated using landmarks alone
and the surface of the individual nearest to the mean (Figures 25b and 26b) present more
rounded faces with subtle differences around the eyes, mouth, and nose when compared
with the template surfaces warped to the allometrically scaled landmark and semilandmark
configurations (Figures 25a and 26a). The same comparisons for the ape crania (Figure 25d
vs. Figures 25e and 26d vs. Figure 26e) present more obvious differences, particularly
around sagittal and nuchal crests, orbits, and temporal fossae.
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Figure 25. (a) Allometric prediction of head surface at the sample maximum centroid size using the
template surface, estimated using landmarks and 1000 semilandmarks from sliding TPS. (b) Allomet-
ric prediction of head surface at the sample maximum centroid size using the surface of the head with
minimum Procrustes distance to the mean warped using landmarks alone. (c) Colour map between
surfaces a (reference) and b (target). (d) Allometric prediction of ape surface at the sample maximum
centroid size using the template surface, estimated using landmarks and 800 semilandmarks from
sliding TPS. (e) Allometric prediction of ape surface at the sample maximum centroid size using
the ape cranium used to generate the template, estimated using landmarks alone. (f) Colour maps
between surfaces d (reference) and e (target) using different ranges.
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Figure 26. (a) Allometric prediction of mean head surface at the sample minimum centroid size
using the template surface, estimated using landmarks and 1000 semilandmarks from sliding TPS.
(b) Allometric prediction of mean head surface at the sample minimum centroid size using the
surface of the head with minimum Procrustes distance to the mean warped using landmarks alone.
(c) Colour map between surfaces a (reference) and b (target). (d) Allometric prediction of mean ape
surface at the sample minimum centroid size using the template surface, estimated using landmarks
and 800 semilandmarks from sliding TPS. (e) Allometric prediction of mean ape surface at the
sample minimum centroid size using the ape cranium used to generate the template, estimated using
landmarks alone. (f) Colour maps between surfaces d (reference) and e (target) using different ranges.

These warped surfaces were added to the PCAs of the mean and allometrically scaled
head surfaces derived using varying densities of semilandmarks and each semilandmarking
approach in Figures 17 and 18. Figure 27 presents plots of PC1 vs. PC2 and PC1 vs.
PC3 (accounting for 95% of the total variance) of the mean and allometrically scaled
head surfaces. A further 3% of the total variance is explained by PC4. The plot of PC1
vs. PC4 from this analysis (not shown) is very similar to that of Figure 17, indicating a
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difference in the allometric vector direction between LS&ICP and all other approaches. It
is clear that the surfaces estimated by warping the surface of the individual head with
the minimum Procrustes distance from the mean to the mean and allometrically scaled
landmark configurations are distinct from those estimated using the template surface
and semilandmarks. Additionally, the vector connecting this mean and the allometrically
scaled means is not parallel to the vector connecting the semilandmark-derived mean
and scaled surfaces. Further, the template surfaces warped to fit the mean and scaled
landmark configurations are arranged along a vector parallel to them, but with the mean
near the mean of the surfaces warped using semilandmarks. Thus, while these surfaces
are warped to exactly fit the overall mean and the allometrically scaled mean landmark
configurations, the regions between the landmarks are deformed in the same way for
both surfaces but differently to the template surface warped to fit the landmark and
semilandmark configurations. This is consistent with the visual comparisons in Figure 23a
vs. Figure 23c, Figure 25a vs. Figure 25b, and Figure 26a vs. Figure 26b.
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Figure 27. Top: PC1 (72.1% of total variance) vs. PC2 (17.5%); bottom: PC1 vs. PC3 (5.36%) from PCA
of the mean and allometrically scaled head surfaces derived using varying semilandmark densities
from each semilandmarking approach (from Figure 17). Red = sliding TPS, blue = TPS&NICP,
green = LS&ICP. Also included in this PCA are surfaces warped to the mean and scaled landmark
configurations; the head surface with minimum Procrustes distance from the mean (black); and
the template surface (grey). Triangles = means, squares = allometric predictions of surfaces at the
sample minimum centroid size, circles = allometric predictions of surfaces at the sample maximum

centroid size.
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Similarly, Figure 28 presents a plot of PC1 vs. PC2 of the mean and allometrically
scaled ape cranial surfaces. This plot accounts for 99% of the total variance. The surfaces es-
timated by warping the ape cranial surface used to generate the template and allometrically
scaled landmark configurations are again distinct from those using the template surface
and semilandmarks. As with the head surfaces, the vector connecting the semilandmark-
derived mean and allometrically scaled surfaces is not parallel to the vector connecting
these estimates of the mean and allometrically scaled surfaces, and the surfaces obtained
by warping the template to fit the mean and allometrically scaled landmark configurations
lie along a parallel vector to the latter, with the mean near the means of surfaces derived
using semilandmarks. Thus, as with the head surfaces, the surface between the landmarks
is different to the template surface warped to fit the landmark and semilandmark configu-
rations, and it is deformed differently. Again, this is consistent with the visual comparisons
of Figure 24a vs. Figure 24c, Figure 25d vs. Figure 25e, and Figure 26d vs. Figure 26e.
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Figure 28. PC1 (93.2% of total variance) vs. PC2 (6.04%) from PCA of the mean and allometrically
scaled ape cranial surfaces derived using varying semilandmark densities and each semilandmarking
approach (from Figure 18). Red = sliding TPS; blue = TPS&NICP. Also included in this PCA are
surfaces warped to the mean and scaled landmark configurations; the ape cranial surface used to
generate the template (black); and the template surface (grey). Triangles = means, squares = allometric
predictions of surfaces at the sample minimum centroid size, circles = allometric predictions of
surfaces at the sample maximum centroid size.

4. Discussion

The use of digital surface meshes of biological and anthropological specimens in 3D
GM studies has become increasingly common, as has the use of landmarks and semiland-
marks generated by different semilandmarking approaches in order to compare the details
of morphology [10,13,18,21,34,40]. While dense coverage by semilandmarks allows for
more detailed descriptions of form and, potentially, biological signals [41], it introduces
several difficulties in comparing forms. Further, given that semilandmarks are treated as
equivalent between specimens in GM analyses and are given the same weight as landmarks,
the basis of equivalence is an important consideration. In studies of biological transfor-
mations such as those that occur during development and evolution, the equivalences
required to model and compare them are developmental or evolutionary. Landmarks and
semilandmarks at each stage need mark-up points that are equivalent between specimens
in terms of development or evolution at another stage (homologous points). For land-
marks, this matching is based on prior knowledge, but for semilandmarks, it is algorithmic
and relies on mathematical mappings and topographical features. As such, the extent to
which semilandmarks can be considered homologous has contributed to the debate about
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their validity and usefulness in relation to the study of developmental or evolutionary
transformations [6,7,41].

It has been noted by previous researchers that because the locations of semilandmarks
on surfaces and curves are uncertain they should not be interpreted singly, but rather as a
whole [3,6,29]. While this avoids overinterpreting differences in individual semilandmark
locations, it does not avoid statistical issues. Thus, differences in semilandmark locations
will lead to different distance matrices among specimens and, thus, to different analytical
results. The extent of this issue has been explored in several previous studies [11,13,18-22].
Additionally, the use of high-density semilandmarks raises statistical issues related to the
ratio of variables to specimens (i.e., high p and low 1) and in assessing covariances within
landmark and semilandmark configurations [7,42].

Statistical considerations aside, high-density semilandmarks are routinely used to
assess shape variations and covariations and to perform classification [41,43-45], with
results presented as visualisations of a warped surface mesh. It is, therefore, of interest
to know how different semilandmarking approaches and semilandmark densities affect
visualisations. This has been addressed by the analyses presented here.

In this study, we compare surface meshes warped to configurations of landmarks and
semilandmarks arising from GM analyses that represent the overall mean and allometrically
scaled surfaces. The aim is to compare the surface meshes used for visualisation rather
than the statistical outcomes of analyses of the landmark and semilandmark configurations.
These were compared in [24]. Three different semilandmarking approaches were used
with varying semilandmark densities. These are the method of sliding semilandmarks,
minimising the bending energy of a set of thin-plate splines or Procrustes distances [37], the
non-rigid combined approach of TPS&NICP [26], and the rigid LS&ICP approach. These
lead to semilandmark configurations that differ in the locations of semilandmarks. These
differences are smallest between sliding the TPS and TPS&NICP approaches and larger
when comparing these with the LS&ICP approach (Figure 2). However, the locations of
individual semilandmarks are not interpretable and, as noted above, they lie on the surface
and so should be interpreted as a whole in terms of the differences between surfaces that fit
them.

This study aimed to achieve this by empirically testing two hypotheses using surface
scans of human heads and ape crania: that there are no differences in surface mesh shape
between estimates derived using different semilandmarking densities and approaches
applied to surfaces representing (a) the mean of a sample and (b) allometrically scaled
shapes. The surfaces were quantitatively compared using the coordinates of their vertices
after re-semilandmarking and re-warping (see Methods) to calculate Procrustes distances
between them and, where relevant, by extracting and comparing principal components.
They were visually compared using colour maps of differences in local surface areas. Both
hypotheses are falsified; differences clearly exist between estimated mean and allometrically
scaled surfaces, but the degree of difference between semilandmarking approaches is small
to moderate, with the non-rigid semilandmarking approaches (sliding TPS and TPS&NICP)
showing a high degree of consistency.

Because landmarks have more secure homology than semilandmarks and should be
chosen with respect to the question at hand [6,7], they are likely few in number and less
likely to result in statistical issues arising from large numbers of variables relative to the
number of specimens. Additionally, surfaces can be warped to landmarks to visualise
analytical results, albeit with less detail than warping based on dense correspondences.
Thus, the present study also assessed differences between warped surfaces based on
landmarks and semilandmarks and those based on the landmark configuration alone,
using different reference surfaces.

Three semilandmarking approaches were used to estimate the sample mean surface
meshes by warping the template (an initial estimate of the average surface in each dataset)
to the mean landmark and semilandmark coordinates arising from each method using
varying semilandmark densities. For the head surfaces, the means are visually quite similar
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(Figure 4) but differ in detail (Figures 6 and 7). The resulting mean surfaces from sliding
TPS and TPS&NICP are the most similar, and those from LS&ICP are the most different.
Similar results are obtained in estimating the mean surface of the ape crania (Table 1 and
Figures 8 and 9), but the LS&ICP approach performed poorly in locating semilandmarks
in reasonably corresponding locations with the more complex ape cranial surfaces. In
both datasets, estimated mean surfaces converge with increasing semilandmarking density
on the surface from the highest density (Tables 4 and 5 and Figures 10-12). For the head
surface data, warping the template surface to the mean landmark configuration (Figure 23b)
resulted in a surface that was quite similar in general to that warped to landmarks and
high-density semilandmarks, but differed in detail from the semilandmark-based mean
(Figure 23d). This similarity is in large part due to the fact that the template surface is
already an initial estimate of the mean. Repeating the analysis using the surface of the
individual nearest to the mean landmarks and semilandmarks resulted in an estimate of the
mean surface (Figure 23c) that presented greater differences from the semilandmark-based
mean surface (Figure 23e). Visually, this approach worked reasonably despite the lack of
identifiable landmarks to guide the warping of the scalp; however, this is likely because
the template scalp was not an initial estimate of, and very similar to, the mean.

The mean ape surfaces estimated using sliding TPS and TPS&NICP with varying
densities of semilandmarks are also visually quite similar (Figure 8), although the surface
from LS&ICP shows some obvious differences. Focusing on sliding TPS and TPS&NICP, the
mean surfaces resulting from these methods using varying numbers of semilandmarks are
very similar, with differences increasing with semilandmarking density, especially where
surface topography is complex (Figure 9 and Table 1). Surfaces estimated using increasing
numbers of semilandmarks converge on the surface estimated using the maximum number
of semilandmarks (Figures 10, 11 and 13).

It should be noted that in the implementation of NICP used here, the initial registration
of surfaces between the template and target uses a triplet of TPS. This is also the case for
the sliding TPS approach. This shared initial, non-rigid registration doubtless contributes
to the similarities in results obtained using these approaches when compared to the rigid,
least-squares registration employed in the LS&ICP approach. However, even the LS&ICP
approach used the same landmark set for registration. It would be of interest in future work
to assess the impact of using different landmark configurations to estimate semilandmarks.

Using the mean landmark configuration alone to warp the template surface mesh
results in a visually similar surface to the mean based on landmarks and high-density
semilandmarks, but it differs in detail, especially around crests and ridges (Figure 24a,b,d).
Visualising the mean by warping the ape surface used to generate the template results in
a more different surface (Figure 24c,e,f), which, in some ways resembles the mean based
on landmarks and high-density semilandmarks (Figure 24a), but it differs particularly in
regions with complex topography (Figure 24c,f). These landmark-based warpings differ in
detail from the landmark and semilandmark-based ones, but they also bear a resemblance.
Whether or not they are adequate depends on the purpose to which they are put. They may
be sufficient to describe general aspects of shape variation but would likely yield different
results if used to build finite element models (FEM). The warping of a surface that is an
initial estimate of the mean to the landmarks alone inevitably yields a surface more like
that based on landmarks and semilandmarks than warping a surface from an individual,
even if close to the mean. This also applies to comparisons of mean surfaces resulting from
semilandmarking approaches and densities.

The predicted allometrically scaled mean surfaces were also compared among semi-
landmarking approaches and densities. With the head surface dataset, sliding TPS and
TPS&NICP produced very similar surfaces, particularly at the highest semilandmarking
densities (Figures 14 and 15). The surfaces from LS&ICP were dissimilar. Likewise, for ape
cranial surfaces, the allometrically scaled mean surfaces from sliding TPS and TPS&NICP
are similar but differ in detail, especially around ridges and crests (Table 6 and Figure 16).
They become more dissimilar in the regions of crests and ridges as semilandmarking
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density increases, reflecting the more detailed control of warping from greater semiland-
mark densities. Both semilandmarking approaches show a similar pattern of convergence
on the surface derived from the highest density, of surfaces with increasing densities of
semilandmarking (Figures 21 and 22, and Table 8).

These differences among allometrically scaled means from both datasets and the
different approaches and densities of semilandmarking are summarized by the PC plots
in Figures 17 and 18. Figure 17 presents for the head surface data, the first two PCs from
an analysis of the mean, and allometrically scaled mean surfaces derived from varying
densities of semilandmarks and each approach. It shows that sliding TPS and TPS&NICP
achieve very similar results, with many points overlapping, but LS&ICP results in quite
different estimates of the same surfaces, which vary along a different vector from the other
two approaches. The comparable analysis for the ape crania compared only sliding TPS
and TPS&NICP, and the resulting PC plot shows that these achieve very similar results.
These findings provide a perspective on the differences identified in the Procrustes distance
matrices and visual comparisons in the analyses described above. Thus, the Procrustes
distances between the mean surfaces from varying the semilandmarking approaches and
densities are small compared with those between surfaces allometrically scaled to the
maximum and minimum sample centroid sizes. The colour maps are very sensitive,
identifying and emphasising what are, in reality, very small differences.

Allometrically scaled ape cranial surfaces from sliding TPS with 800 semilandmarks
are compared with surfaces derived by warping the template surface and the surface used
to generate the template to the allometrically scaled landmark configurations. The resulting
predictions of surfaces at both the sample maximum and minimum centroid sizes share
general similarities with, but differ in detail from, the surfaces based on semilandmarks
(Figures 25d,e,f and 26d,e,f). As with the head surfaces, these differences reflect similar
aspects of scaling, which may be adequate in describing general scaling trends but would
likely lead to differences in FEA results among models based upon them.

The differences in scaling are emphasised by the PCAs of Figures 27 and 28, where,
for both datasets, the surfaces derived by warping the surface of the individual nearest
to the mean to the allometrically scaled mean landmark configurations are distant from
the semilandmark-based surfaces and are arranged along a vector that is not parallel to
the vector between surfaces scaled using semilandmarks. Warping the template surface
to the mean and allometrically scaled means in both datasets results in a vector parallel
to that derived by warping the head surface of the individual nearest to the mean or the
ape cranium used to generate the template, but with the mean close to the means from the
semilandmark-based approaches. This indicates that these different surfaces scale in very
similar ways. Thus, the choice of template surface determines where in the shape space
the allometric vector is located while the landmarks and semilandmarks used to deform
the surface determine how it is deformed. Semilandmarks result in the surface regions
between landmarks being deformed differently from what is achieved by warping to the
landmark configurations alone. This is not surprising and underlines how semilandmarks
contribute to controlling surface deformations.

The results of this study show that different semilandmarking approaches and densi-
ties achieve different visualisations of mean and allometrically scaled surfaces. The degree
of difference depends on the approach, with non-rigid semilandmarking (sliding TPS and
TPS&NICP) producing surfaces that are consistently more similar to each other than to
those derived using the rigid LS&ICP approach. Additionally, the non-rigid approaches
show consistency in the surfaces produced using semilandmarks of varying densities.
While Procrustes distances and colour maps emphasise differences among the approaches,
PCAs comparing the scaled mean surfaces show that the differences between surfaces
from non-rigid semilandmarking approaches are very small when compared to the differ-
ences among allometrically scaled means. The differences between surfaces derived using
LS&ICP are greater.
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Semilandmarking involves a great deal of extra effort compared with landmarking
alone, and, as has been noted earlier, brings with it some severe statistical issues. This
has led to the questioning of their benefits and criticism stating that they may lead to
erroneous conclusions [7,42]. Thus, this study compared surfaces warped using landmark
configurations alone with those from landmark and semilandmarking configurations.
These comparisons have shown that if a surface that is an initial estimate of the mean
surface is used then the mean surfaces are well estimated. This is to be expected since
the mean landmarks have little warping to do. This finding likely explains why LS&ICP
results in more similar mean surfaces to those from sliding TPS and TPS&NICP at lower
rather than higher semilandmarking densities (Figures 6 and 7). When an alternative
surface is used, the surface visualisation is different, having inherited features from this
new surface. Surfaces warped to scaled landmark configurations show differences and
some similarities to those warped to landmarks and semilandmarks in combination. Such
analyses and visualisations based on landmarks alone may be perfectly adequate for many
questions; they involve less work to produce and avoid the statistical issues that can arise
with many semilandmarks and few specimens. However, compared with surfaces from
semilandmarks, they would likely lead to different results if used to build finite element
models.

Finally, we should emphasise that consistency is not the same as accuracy [7]. It is
tempting to conclude that the remarkable consistency of surface shapes derived using
sliding TPS and TPS&NICP reflects accuracy in the estimation of means. Our results
cannot, however, support or refute this possibility since no ‘true mean’ is known (or
knowable). Estimates of means depend on what quantities are measured and compared
because means are a statistical, rather than biological, entity, particular to the data used
to calculate the mean. The results are ‘correct’ for the variables (semilandmark locations)
resulting from each method. However, with semilandmarks, there is inevitable uncertainty
about the extent to which they are equivalent between specimens in terms of homology.
Our studies show that differences in semilandmark locations among specimens will lead
to differences in statistical results [24] and visualisations (present study). In these studies,
these differences are quite small relative to the differences among specimens, but it is not
clear to what extent these empirical results apply to diverse datasets and semilandmarking
approaches (e.g., minimisation of Procrustes distances by sliding [10]; morphometric
‘fishnets’ [46]). This can only be addressed by further extensive studies of real data and
through simulation experiments, in which an initial ‘mean’ is perturbed and then estimated
from the perturbed data.

For now, we have shown that the two non-rigid semilandmarking approaches yield
consistent estimates of mean and scaled surfaces. Semilandmarking involves a great
deal of additional work and runs statistical risks in analyses. With these things in mind,
the investigator should carefully consider if semilandmarking is necessary to answer the
question at hand and balance this need against the statistical and biological (e.g., regarding
homology) downsides and the time involved in gathering and using semilandmarks to
assess shape variances and covariances. It may be a more secure strategy to base statistical
tests on homologous landmarks and visualisations on landmarks and semilandmarks from
parallel analyses.

It should be borne in mind that homology is often also uncertain for landmarks and
that different sets of landmarks will lead to different results. However, the three approaches
that we compared in this study led to visually similar estimates of surface meshes that
may be adequate for visualisation and functional simulation, in the sense that they are
likely to be fair representations of average and scaled surfaces, but there is no single ‘true’
representation against which to assess this (see above). Their applicability depends on how
much error in the estimation of the surface shapes is judged acceptable given the context of
the particular study.

Finally, it should be noted that this study is limited in its scope; being based on only
human heads and ape crania, different datasets need to be examined to assess the reliability
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of the findings. Studies also need to be conducted using simulated data in which true
mean and allometrically scaled surfaces are known in order to assess the accuracy of the
estimates of these surfaces. Additionally, this study compared a limited range of possible
approaches to semilandmarking, and future work needs to extend these comparisons to
include other methods and ‘landmark-free” approaches.

5. Conclusions

This study examined the effects of different semilandmarking approaches and semi-
landmarking densities on estimates of mean and allometrically scaled mean surfaces. These
were investigated by assessing overall and regional shape differences based on Procrustes
distances and colour maps of local surface mesh area differences. The results show that
the mean and fitted surfaces generated by the sliding TPS and TPS&NICP approaches
are very similar, while the LS&ICP approach yields surfaces that differ most. Surfaces
warped to landmark configurations differ from these depending on the degree of similarity
of the surface to the mean and show a different vector of allometric scaling, reflecting the
differences between TPS interpolation and the semilandmark control of surfaces between
landmarks. In conclusion, visualisations derived using semilandmarks from non-rigid
semilandmarking approaches especially are likely to fairly represent surfaces and differ-
ences between them, but they are not identical. The extent to which these differences are
important depends on the particular study context and aims.
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