
1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3158063, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. YY, ZZZZ 1

Hide and Mine in Strings: Hardness, Algorithms,
and Experiments

Giulia Bernardini, Alessio Conte, Garance Gourdel, Roberto Grossi, Grigorios Loukides, Member, IEEE ,
Nadia Pisanti, Solon P. Pissis, Giulia Punzi, Leen Stougie, Michelle Sweering

Abstract—Data sanitization and frequent pattern mining are two well-studied topics in data mining. Data sanitization is the process of
disguising (hiding) confidential information in a given dataset. Typically, this process incurs some utility loss that should be minimized.
Frequent pattern mining is the process of obtaining all patterns occurring frequently enough in a given dataset. Our work initiates a
study on the fundamental relation between data sanitization and frequent pattern mining in the context of sequential (string) data.
Current methods for string sanitization hide confidential patterns. This, however, may lead to spurious patterns that harm the utility of
frequent pattern mining. The main computational problem is to minimize this harm. Our contribution here is as follows. First, we present
several hardness results, for different variants of this problem, essentially showing that these variants cannot be solved or even be
approximated in polynomial time. Second, we propose integer linear programming formulations for these variants and algorithms to
solve them, which work in polynomial time under realistic assumptions on the input parameters. We also complement the integer linear
programming algorithms with a greedy heuristic. Third, we present an extensive experimental study, using both synthetic and real-world
datasets, that demonstrates the effectiveness and efficiency of our methods. Beyond sanitization, the process of missing value
replacement may also lead to spurious patterns. Interestingly, our results apply in this context as well. We show that, unlike popular
approaches, our methods can fill missing values in genomic sequences, while preserving the accuracy of frequent pattern mining.

Index Terms—Data privacy, Data sanitization, Knowledge hiding, Frequent pattern mining, String algorithms

✦

1 INTRODUCTION

A STRING is a sequence of letters over some alphabet Σ.
Strings are commonly used to represent individuals’

data in domains ranging from transportation to web analyt-
ics and bioinformatics. For example, a string can represent
a user’s location profile, with each letter corresponding
to a visited location [1], a user’s purchasing history, with
each letter corresponding to a purchased product [2], or a
patient’s genome sequence, with each letter corresponding
to a DNA base [3]. Mining patterns from such strings is thus
useful in a gamut of applications: mining patterns from loca-
tion history data helps route planning [4]; mining patterns of
co-purchased products from market-basket data improves
business decision making [2]; mining patterns from genome
sequences can improve clinical diagnostics [3]. To support
these applications while preserving privacy, strings repre-
senting individuals’ data are often being disseminated after
sanitization [5], [6] or anonymization [7].

• G. Bernardini is with the University of Trieste, Italy and CWI, The
Netherlands. Email: giulia.bernardini@units.it

• A. Conte and G. Punzi are with Università di Pisa, Italy.
Email: conte@di.unipi.it, giulia.punzi@phd.unipi.it

• G. Gourdel is with Inria Rennes, École normale supérieure, ENS Paris-
Saclay, France and Università di Pisa, Italy.
Email: garance.gourdel@irisa.fr

• R. Grossi and N. Pisanti are with Università di Pisa, Italy and the
ERABLE Team, France. Email:{grossi,pisanti}@di.unipi.it

• G. Loukides is with King’s College London, United Kingdom.
Email: grigorios.loukides@kcl.ac.uk

• S. P. Pissis and L. Stougie are with CWI and the Vrije Universiteit, The
Netherlands, and with the ERABLE Team, France.
Email: {solon.pissis, leen.stougie}@cwi.nl

• M. Sweering is with CWI, The Netherlands.
Email: michelle.sweering@cwi.nl

Manuscript received...

In this paper, we study the fundamental relation between
data sanitization [5], [6], [8] (also known as knowledge hiding)
and frequent pattern mining [9], [10], [11], [12]. The objec-
tive of frequent pattern mining in strings is to obtain all
patterns occurring frequently enough (according to a given
frequency threshold τ) in a string, or in a collection of
strings. There may also be constraints for the mined strings
(e.g., to be of fixed length k [13], [14]). In string sanitization,
an adversary seeks to determine whether one or more
sensitive patterns modeling confidential knowledge occur in
(the sanitized version of) a string. For example, an adversary
may want to determine whether a series of purchased
products (resp. search queries) indicating pregnancy occur
in a user’s purchasing history (resp. search history) [15].
The adversary knows only the sanitized version of a string,
the alphabet Σ over which the string is derived, and a set
of sensitive patterns. The adversary succeeds if, based on
their knowledge, they can determine whether one or more
sensitive patterns occur in the string. In our example, the
adversary’s success would allow them to infer that a user is
pregnant and potentially use this information in unsolicited
advertisement [15]. The privacy objective of string sanitiza-
tion is to negate the adversary’s success criterion [8], [16],
[17]. Of note, the adversary model and privacy objective of
string sanitization is similar to that of itemset [5], [18] or
sequence [19], [20] sanitization.

Let W be the input string over Σ, k be a positive integer,
and S be the set of sensitive length-k substrings. Recently
proposed methods [8], [16], [17] construct a string X satis-
fying the following properties: (I) X contains no element of
S as a substring; (II) the total order and thus the frequency
of all non-sensitive length-k substrings of W is preserved in

Authorized licensed use limited to: University of Pisa. Downloaded on March 14,2022 at 14:07:50 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3158063, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. YY, ZZZZ 2

X , or a partial order of these substrings and their frequency
is preserved in X ; and (III) the length of X is minimized [8],
or the edit distance between W and X is minimized [16],
[17]. These methods work by copying carefully selected
substrings of W into X and separating them by a special
letter # /∈ Σ. Clearly, the privacy objective (i.e., property
I) may be achieved by removing some letters from the
sensitive patterns occurring in W , or by concatenating the
non-sensitive substrings in W and separating them by #.
Yet, the first strategy is ineffective at preserving the utility
of the string as it incurs large changes to the set of length-
k frequent substrings [8], [16], while the second one leads
to an unnecessarily long string that has a negative impact
on the efficiency of any subsequent analysis tasks [8], [16].
On the other hand, the methods in [8], [16], [17] satisfy
property I; ensure no accuracy loss in sequentiality-based or
frequency-based tasks (e.g., that the same length-k frequent
substrings can be mined from W and from X) due to
property II; and help the subsequent analysis on X in terms
of efficiency [8], [16] or utility [17] due to property III.
Furthermore, they are efficient (i.e., they match or are close
to the time-complexity lower bounds).

Example 1. Let W = GACAAAAACCCAT, k = 3, and the set of
sensitive patterns S = {ACA,CAA,AAA,AAC,CCA}. Further,
let XTR = GAC#ACC#CCC#CAT, XMIN = GACCC#CAT and
XED = GAC#AA#ACCC#CAT be three sanitized strings. All
three strings contain no sensitive pattern and preserve the
total order and thus the frequency of all non-sensitive length-3
substrings of W : XTR is the trivial solution of interleaving
the non-sensitive length-3 substrings of W with #; XMIN

is the shortest possible such string [8]; and XED is a string
closest to W in terms of edit distance [17].

Unfortunately, as noted in [8], the occurrences of #
reveal the locations of sensitive patterns. Thus, an adversary
who knows how #’s are added to X , in addition to knowing
X , Σ, and S, can infer the sensitive patterns in X . To prevent
this, the occurrences of #’s must be ultimately replaced by
letters of the original alphabet Σ. This replacement gives
rise to another string over Σ, which we denote by Z. The
replacement must ensure that sensitive patterns, as well as
any implausible patterns (i.e., known or likely artefacts of
sanitization that could be exploited to locate the positions
of replaced #’s), do not occur in Z (see [16] for details).
However, Z may contain spurious patterns that could not
be mined from X at a minimum frequency threshold τ but
would be mined from Z at the same frequency threshold.
These patterns are referred to as τ -ghosts.

Motivated by the importance of string sanitization and
the useful properties of the methods of [8], [16], [17], we
investigate the crucial interplay between # replacements
and τ -ghosts. We pose here the following question that,
to the best of our knowledge, has not been addressed:
Given a string X containing #’s, a positive integer k, and a
positive integer τ , how should we replace the #’s in X with
letters from Σ, so that the number of length-k τ -ghosts in the
resulting string Z is minimized? Answering this question
helps preserving the accuracy of frequent pattern mining
and tasks based on it (e.g., pattern-based clustering [21] and
classification [22], as well as sequential rule mining [23])
that we may not know a priori. For example, in the context

of data sanitization, answering this question would enable
the mining of frequent patterns that model useful infor-
mation about individuals (trips in location sequences, co-
purchased products in market-basket sequences, or motifs
in genomic sequences), as well as the protection of individu-
als’ confidential information (certain location sequences, co-
purchased products or parts of genome) [6], [8]. In addition,
it would allow an organization to share sales data (e.g., a
string in which a letter denotes the sale of a product) with
a third party for collaboration purposes, without enabling
the mining of information that could provide competitive
advantage to the third party (e.g., a sequence of products
that are sold unexpectedly frequently) [20].

The above question is also of quite general interest,
as it applies to sequential datasets that may have occur-
rences of a special letter for a variety of reasons beyond
data sanitization. This special letter, denoted here by #
for consistency, represents some information that is missing
(i.e., a missing value) from these datasets. For instance, in
genome sequencing data, # corresponds to an unknown
DNA base [24]; in databases, # represents a value that has
not been recorded [25], [26]; and in masked data outputted
by other privacy-preserving methods [27], # is introduced
deliberately to achieve their privacy goal.

Like in data outputted by sanitization methods, the
occurrences of # in other string datasets often have to be
replaced. For example, since the DNA alphabet consists
of four letters (A, C, G, and T), off-the-shelf algorithms for
processing DNA data use a two-bits-per-base encoding to
compactly represent the DNA alphabet. In order to use these
algorithms with input strings containing unknown bases,
we would have to amend them to work on the extended
alphabet {A,C,G,T,#}. This solution may have a negative
impact on the time efficiency of the algorithms or the space
efficiency of the data structures they use. Thus, instead, in
several state-of-the-art DNA data processing tools (e.g., [28],
[29]), the occurrences of # are replaced by an arbitrarily
chosen letter from the DNA alphabet, so that off-the-shelf
algorithms can be directly employed. This, however, may
introduce many spurious patterns, including patterns that
are unlikely to occur in a genomic sequence [30], [31],
negatively affecting the accuracy of frequent pattern mining.
This is in contrast to our approach, which aims to replace
unknown bases (occurrences of #) in a way that avoids
these patterns to preserve data utility (see Section 9 for
further details).

Replacing the occurrences of # in a database is also often
needed to be able to perform frequent pattern mining with
off-the-shelf algorithms [26]. To this end, the occurrences
of # are commonly replaced by some statistical estimate,
such as the most frequent value [26], [32]. However, such
a replacement does not generally maintain the accuracy of
frequent pattern mining, since it may introduce many spuri-
ous patterns [26]. The goal of our approach is to preserve as
much as possible the accuracy of frequent pattern mining,
by minimizing the creation of spurious frequent patterns.

Example 2. Let again W = GACAAAAACCCAT, k = 3, and
S = {ACA,CAA,AAA,AAC,CCA}. Further, let the frequency
threshold be τ = 2. Note that the frequency of all non-
sensitive patterns (length-3 substrings) in W is preserved

Authorized licensed use limited to: University of Pisa. Downloaded on March 14,2022 at 14:07:50 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3158063, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. YY, ZZZZ 3

in all three sanitized strings XTR = GAC#ACC#CCC#CAT,
XMIN = GACCC#CAT, and XED = GAC#AA#ACCC#CAT.
Replacing, however, all #’s with G would create τ -ghost
GAC both in XTR and in XED.

Contributions. To our knowledge, there does not exist a
general solution to the question we pose here that simul-
taneously guarantees effectiveness and efficiency. In this
work, we provide compelling evidence as to why this is
the case. We also provide algorithms for answering this
question. Specifically:

1) We embark on a theoretical study to understand the
relation between replacing #’s and creating τ -ghosts. In
particular, we define the following problems, which all
require that any two #’s in X are at least k positions apart,
and examine their hardness:

• HMD (Hide and Mine decision): This is the core
decision version of the problem, asking whether or
not we can replace all #’s in X , so that no sensi-
tive pattern and no τ -ghost occurs in Z. Deciding
this may allow for sanitizing X with no utility loss
in frequent pattern mining. We show that HMD is
strongly NP-complete via a reduction from a variant
of the well-known Bin Packing problem [33] (see
Section 4). This is the most technically involved part
of the paper, as the provided reduction is highly non-
trivial.

• HM (Hide and Mine): This is the optimization ver-
sion of HMD asking how we can replace all #’s,
while ensuring that no sensitive patterns and a min-
imal number of τ -ghosts occur in Z . This would
minimize the utility loss in frequent pattern mining.
HM is clearly NP-hard as a consequence of HMD
being NP-complete, but we also show that it is hard
to approximate.

• HMMT (Hide and Mine minimum threshold): Given
a parameter τ , this problem asks for the minimum
frequency threshold τ1 ≥ τ for which no sensitive
pattern and no τ1-ghost occurs in Z. Solving HMMT
would imply no utility loss in frequent pattern min-
ing at a higher frequency threshold τ1 that is as close
as possible to τ . We show that HMMT is (NP-hard
and) hard to approximate.

The hardness (see Section 4) and inapproximabilty (see
Section 5) results for our problems provide solid evidence
for the lack of exact or approximation polynomial-time algo-
rithms for these problems (also for the generalized problem,
in which there are no restrictions on the distance between
#’s), and motivate our next contributions. These results
are general and independent of the application for which
#’s are replaced. In particular, they rigorously answer how
difficult is to apply frequent pattern mining and missing
value replacement from the lower bound point of view.

2) We develop exact algorithms for HMD and HM that
require polynomial time, under certain realistic assumptions
on the problem parameters. We also develop an efficient
and effective heuristic for HM. In particular, we develop
the following:

• Exact algorithms based on an Integer Linear Pro-
gramming (ILP) formulation of HMD. The main idea
is to identify all length-k strings over Σ in X that
may potentially become τ -ghosts in Z , and then
decide whether each of the #’s can be replaced by
a letter in Σ without creating any τ -ghost pattern or
any sensitive pattern in Z. We prove that HMD is
fixed-parameter tractable1 in most cases encountered in
practice (e.g., when the number of distinct letters in
the string and the length k of sensitive patterns are
upper bounded by a constant).

• Exact algorithms based on an ILP formulation of
HM. This ILP formulation differs from the HMD
formulation in that it takes into account the num-
ber of τ -ghosts created by replacing #’s, so as to
minimize their number. We prove that HM is fixed-
parameter tractable in many cases encountered in
practice (e.g., when the length k of sensitive patterns
and the number of distinct patterns that may become
τ -ghosts are upper bounded by a constant).

• A greedy heuristic that replaces the #’s from left to
right, while avoiding the creation of non-sensitive
patterns that may become τ -ghosts. The heuristic
has three variants which aim to minimize different
measures based on: the number of newly created
patterns with frequency f < τ , the sum of (τ −f)−1,
or the max of (τ − f)−1, where frequency f is taken
over the newly created patterns.

The ILP-based algorithms are presented in Section 6, and
the greedy heuristic in Section 7.
3) We conduct an extensive experimental study (see Sec-
tion 8). We show that our methods: (I) allow for frequent
length-k pattern mining with no or insignificant utility loss
(i.e., they create zero or few τ -ghosts); (II) incur very low
distortion; and (III) are practical.
4) We consider the generalization of the HM problem, which
removes the requirement that any two #’s in X are at least
k positions apart. This problem has a direct application on
missing value replacement, where the input set of sensitive
patterns corresponds to patterns that are less likely than ex-
pected to occur. We adapt the algorithms of Sections 6 and 7
to address this problem. In particular, we show that our
methods substantially outperform missing value strategies
employed by state-of-the-art DNA data processing tools.
These results answer how difficult is to apply frequent
pattern mining and missing value replacement from the
upper bound point of view. See Section 9.

A preliminary version of this paper appeared in [35].

2 RELATED WORK

Our work is related to three areas: (I) data sanitization
(a.k.a. knowledge hiding) [36], [37], which aims to prevent
the mining of confidential knowledge from a disseminated
dataset, (II) anonymization [38], which aims to prevent the
inference of information about individuals represented in a

1. A problem with parameters p and q is fixed-parameter tractable (FPT)
in p if there exists a function f and a polynomial P such that the
problem has time complexity O(f(p) · P (q)) [34].

Authorized licensed use limited to: University of Pisa. Downloaded on March 14,2022 at 14:07:50 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3158063, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. YY, ZZZZ 4

disseminated dataset, and (III) missing value treatment [39].
We next briefly review related works in these areas.

2.1 Data Sanitization

Data sanitization approaches are typically applied to a
collection of transactions [5], [18], [40], a collection of se-
quences [6], [19], [20], or a single sequence [41]. These ap-
proaches employ integer programming [18], [40], dynamic
programming [41], or heuristics [5], [6], [19], [20]. The objec-
tive of these approaches is twofold: to reduce the frequency
(support) of sensitive patterns, so that they cannot be mined
at a given frequency threshold τ ; and to preserve data utility,
often by preserving the set of frequent patterns that can be
mined at threshold τ [5], [18], [19], [20], [40]. The patterns
considered in these approaches are: itemsets in [5], [18], [40],
subsequences in [6], [19], [20], and single letters in [41].

We discuss approaches for sanitizing a collection of
sequences in more detail. The works of [6], [19], [20] consid-
ered the general problem of hiding a given set of sensitive
patterns from an input collection of sequences, so that
no sensitive pattern occurs as a subsequence (and not as
a substring) in at least τ sequences in the collection. To
deal with the problem, they proposed deletion-based [6],
[19] or permutation-based [20] heuristics. The work of [41]
considered the problem of hiding a given set of sensitive
events (i.e., single letters) from an event sequence, in which
each event is a multi-set of letters that is associated with a
timestamp. To deal with the problem, it proposed a dynamic
programming algorithm.

Unlike our work, all the approaches that were discussed
so far do not aim at hiding sensitive strings, nor at minimiz-
ing changes to the set of frequent substrings.

As discussed in Introduction, in the recently proposed
approaches for string sanitization [8], [16], [17], #’s must be
ultimately replaced so that the locations of sensitive patterns
are not exposed. To this end, [8] considered the problem of
replacing #’s so as to minimize the total cost of τ -ghost
occurrences and showed that this problem is NP-hard. Note
that HM, the problem of minimizing the total number of τ -
ghosts we consider here, is fundamentally different from the
problem of minimizing the total cost of τ -ghost occurrences
and, in particular, it cannot be reduced from Multiple-
Choice Knapsack because no arbitrary weights or costs are
involved. On the hardness side, this makes our hardness
proof considerably more challenging. On the algorithmic
side, [8] proposed a heuristic inspired by algorithms for
Multiple-Choice Knapsack. This heuristic assumes that each
replacement forces all length-k strings that could become
τ -ghosts with this replacement, to actually do become τ -
ghosts. Based on this assumption, it assigns a cost to every
replacement of every #, and then chooses the replacements
that minimize the total cost of τ -ghost occurrences. Due
to this pessimistic assumption, this heuristic may not be
effective at minimizing the number of τ -ghosts.

2.2 Data Anonymization

Data anonymization approaches for string data are applied
to a collection of strings [7], [42], [43], [44], [45], [46], or to a
single string [47], [48], [49].

We first discuss approaches applied to a collection of
strings. Some works [7], [42], [43] propose heuristics, based
on k-anonymity [50]. The goal of [7], [42] is to create a
synthetic string that represents a cluster of strings in the
input dataset, while that of [43] is to upper-bound the prob-
ability of inferring any letter in any string of the published
collection of strings. Other works [44], [45], [46] propose
heuristics based on differential privacy [51]. The goal of [45]
is to release a differentially private string collection. On the
other hand, [44] and [46] focus on frequent substrings: [44]
aims to release differentially private top-k frequent sub-
strings, where k denotes the number of frequent substrings
required, while [46] aims to release differentially private
frequent substrings with gap constraints [52].

We now discuss approaches applied to a single
string [47], [48], [49]. The goal of [47] is to prevent in-
ferences about a given set of sensitive sequences, by lim-
iting the mutual information between the frequency dis-
tribution of sensitive sequences in the string before and
after anonymization. To achieve this, it proposed heuristics
which replace letters with other letters that represent more
abstract (coarse) information. The goal of [48] is to prevent
sensitive sequences from occurring within a time window of
a temporally-annotated string. To achieve this, it proposed
algorithms that delete letters from a string, while preserving
occurrences of non-sensitive sequences. The goal of [49] is
to prevent the inference of the exact frequency (multiplicity)
of any length-k substring in a string based on differential
privacy. To achieve this, it proposed exact polynomial-time
algorithms based on dynamic programming and linear pro-
gramming, as well as several linear-time heuristics.

We stress that the above data anonymization approaches
are not alternatives to our approach. This is because they
cannot be applied to hide a collection of sensitive patterns
while preserving utility for frequent pattern mining.

2.3 Missing Value Treatment

Missing values occur in string datasets for a number of
reasons [39], and they need to be treated to improve the
quality of obtained statistics [53], query answers [25], and
data mining models (e.g., association rules [54], [55], sequen-
tial patterns [26], clustering [56], and classification [57]).
Therefore, existing works remove [53] or replace missing
values [25], [56], [57], or alternatively utilize interestingness
measures that are suited to mining patterns with missing
values [26], [54]. Hence these works are tailored to specific
settings and cannot deal with our problem. This is because
they do not aim at minimizing the impact that replacing
missing values in a string has on frequent pattern mining.

3 PRELIMINARIES AND PROBLEM STATEMENT

An alphabet Σ is a finite nonempty set whose elements are
called letters. We also consider an alphabet Σ# = Σ ∪ {#},
where # is a special letter not in Σ. We fix a string
X = X[0] · · ·X[n − 1] of length |X| = n over Σ#. The
set of length-k strings over Σ is denoted by Σk. For two
indices 0 ≤ i ≤ j < n, X[i . . j] = X[i] · · ·X[j] is the
substring of X that starts at position i and ends at position j
of X . FreqX(U) denotes the number of occurrences (starting

Authorized licensed use limited to: University of Pisa. Downloaded on March 14,2022 at 14:07:50 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3158063, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. YY, ZZZZ 5

positions) of string U as a substring of X . A prefix of X is
a substring of X of the form X[0 . . j], and a suffix of X is
a substring of X of the form X[i . . n − 1]. A dictionary over
Σ is a set of strings over Σ. We will consider a dictionary of
length-k strings that do not occur in X , referred to as sensi-
tive patterns. Any element of Σk that is not in this dictionary
is referred to as a non-sensitive pattern. In combinatorics on
words, such a dictionary is known as antidictionary and the
sensitive patterns are known as forbidden patterns (e.g., [58]).

Problem 1 (HIDE & MINE (HM)). Given an integer k > 0, a
string X = X0#X1# · · ·#Xδ of length n over an alphabet
Σ#, with |Xi| ≥ k − 1, for all i ∈ [0, δ], a dictionary S ⊆ Σk

such that no S ∈ S occurs in X , and an integer τ > 0,
compute a function g : [δ] → Σ such that the following hold
for string Z = X0g(1)X1g(2) · · · g(δ)Xδ :

I The number of strings U ∈ Σk, with FreqX(U) < τ
and FreqZ(U) ≥ τ in Z , is minimized. These strings
are called τ -ghosts.

II No sensitive pattern S ∈ S occurs in Z .

Note that function g replaces each # by exactly one letter
from Σ. Condition |Xi| ≥ k− 1, for all i ∈ [0, δ], means that
any two #’s in X are at least k positions apart. Thus, any
length-k substring X[i . . i+k−1] of X is affected by at most
one # replacement. The sanitization method of [8, Lemma
1] produces an X satisfying this condition, for any given
set S, to guarantee that the frequency of every non-sensitive
pattern is preserved in X . Thus, HM is directly applicable to
the output of [8]. We also consider the generalized version
of the HM problem, in which we drop the condition |Xi| ≥
k − 1, for all i ∈ [0, δ], specifying that # occurrences must
not be close to each other. This problem is referred to as
GENERALIZED HIDE & MINE (GHM).

To prove NP-completeness, we consider the decision
variant HMD of HM, which asks to decide if there exists
any function g : [δ] → Σ such that the following hold:

I No τ -ghost pattern occurs in Z.
II No sensitive pattern S ∈ S occurs in Z .

4 HMD IS NP-COMPLETE

Problem HMD is clearly in NP, as the presence of τ -ghosts
or sensitive patterns can be verified in polynomial time. In
this section, we show that HMD is strongly NP-complete
via exhibiting a reduction from a variant of the Bin Packing
problem [33]. As a consequence, HM is NP-hard. In what
follows, we will denote an instance of a problem P with IP.

4.1 The UNIQUE-WEIGHTS BIN PACKING problem
The BIN PACKING (BP) problem is defined as follows. Given
three positive integers, M (number of bins), B (capacity of
every bin), and N (number of items), as well as a vector
[w1, . . . , wN] of positive integers representing the weights of
the items, the BP problem asks whether we can partition the
items into M subsets (bins) without exceeding the capacity
of any bin. Formally, we need to decide whether there exists
a function f : [N] → [M], assigning items to bins, such that:

∀i ∈ [M],
∑

j∈[N],f(j)=i

wj ≤ B.

Crucially, BP is strongly NP-complete [33], i.e., it is
NP-complete even when weights and bin capacities are
bounded by a polynomial function of N and M . In the
following, we will consider this case, and use gadgets whose
size is proportional to the numerical values in IBP, as if we
were representing those numbers in unary notation.

We will assume that no two items have the same weight.
We refer to this variant of BP as the UNIQUE-WEIGHTS
BIN PACKING (UWBP) problem; see Supplemental Material
for an example. To justify the unique weights assumption,
we show that UWBP is still strongly NP-complete by a
polynomial-time reduction from standard BP.

Lemma 1. UWBP is strongly NP-complete.

Proof. Consider an instance IBP = M,B,N,w1, . . . , wN of
BP with possibly duplicated weights, where all values are
polynomial in the size of IBP: we construct in polynomial
time an instance I ′

BP = M ′, B′, N ′, w′
1, . . . , w

′
N ′ of UWBP

(where no two weights are the same) that has polynomial
values, and has a positive answer if and only if IBP does.

To obtain I ′
BP we proceed as follows. Firstly, set M ′ = M ,

N ′ = N and B′ = B ·N2 + (N2 − 1). To obtain the weights
w′

i multiply each wi by N2, then add “flavoring” by taking
groups of items with the same weight one by one and, for
each group, adding 0 to its first item, 1 to the second, 2 to
the third, and so on. Essentially, we increase the scale of
the numbers (a 1-weight item becomes N2-weight) so much
that we can make all weights different without affecting the
way groups of items fit in bins: the extra (N2 − 1) capacity
in B′ does not allow to fit an extra unit of item-weight (that
is N2 weight), but it is enough to account for the flavoring
of any set of items. Indeed, in the worst case (when all items
have the same weight), the cumulative amount of flavoring
added to all N items is 0 + 1 + 2 + . . . + N − 1 < N2/2.
Hence, an assignment of items to bins is valid for IBP if and
only if it is valid for I ′

BP.

4.2 Overview of the Reduction from UWBP to HMD

We now show that, for any UWBP instance, we can produce
in polynomial time an instance of HMD that has positive
answer if and only if the UWBP instance has positive
answer. To this end, we will introduce several gadgets which
will serve to model the different constraints of UWBP. Each
gadget consists of a string of length 2k − 1 over a specific
alphabet, with a # in the middle. We will explain how all
UWBP constraints are linked to the gadgets. It will then
suffice to concatenate the gadgets into one long string, to
obtain an instance of HMD that implies a solution of UWBP.

First, we will consider gadgets tij , which model whether
item j is placed in bin i. The structure of these gadgets
ensures that the maximum capacity B of the bins is not
exceeded.

Then, gadgets uij will be introduced. The structure of
this second kind of gadgets, together with tij , ensures that
each item is placed in some bin.

The set of sensitive patterns S and the threshold τ will
be carefully chosen to build and link the gadgets. Sensitive
patterns will be used to force a specific subset of letters to
replace a # (by forbidding the length-k strings obtained
from unwanted replacements).

Authorized licensed use limited to: University of Pisa. Downloaded on March 14,2022 at 14:07:50 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3158063, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. YY, ZZZZ 6

In essence, to replace a # inside a tij gadget we will
only have two choices: one corresponding to the positive
choice “place the j-th item into the i-th bin”, and one to
the negative choice of not doing so. The first choice will
create wj copies of some length-k substring specific to bin
i; the capacity of bin i is modeled by the number of such
substrings we can create without exceeding the threshold.
On the other hand, the gadgets uij are there to ensure that,
for each item ȷ̂, at least one # among the tiȷ̂ is replaced
with the positive choice, that is, each item is placed in at
least one bin.2 The threshold τ is essential in linking the
gadgets and modeling the capacity of the bins: since no
pattern that occurs less than τ times is allowed to reach
that same threshold after the replacements, we will repeat
the pattern in the string so as to bound the number of its
additional occurrences that can be created by replacing a #.

4.3 Construction of an Instance of HMD

The alphabet of the string X of the instance of HMD will be
made of letters #, x, y, $, and a letter bi for each i ∈ [M].

For i ∈ [M], j ∈ [N], and k = maxj wj+3, we define the
gadgets tij and uij as the following strings of length 2k− 1:

tij = bi x . . . x︸ ︷︷ ︸
k−1−wj

bi . . . bi︸ ︷︷ ︸
wj−1

bi . . . bi︸ ︷︷ ︸
k−1

uij = bi x . . . x︸ ︷︷ ︸
k−1−wj

bi . . . bi︸ ︷︷ ︸
wj−1

y . . . y︸ ︷︷ ︸
wj

x . . . x︸ ︷︷ ︸
k−wj−2

y

Example 3. Consider an instance IBP with M = 2, B = 5,
N = 3, w1 = 2, w2 = 5, w3 = 3, which will be the running
example for how to build a corresponding instance of HMD
along this section. We will have Σ = {b1, b2,#, x, y, $} and
k = maxj wj + 3 = 8. The gadgets t1j are:

t11 = b1xxxxxb1#b1b1b1b1b1b1b1

t12 = b1xxb1b1b1b1#b1b1b1b1b1b1b1

t13 = b1xxxxb1b1#b1b1b1b1b1b1b1.

Gadgets t2j only differ from gadgets t1j in that in the former
b1 is substituted with b2. For the same IBP, gadgets u1j are:

u11 = b1xxxxxb1#yyxxxxy

u12 = b1xxb1b1b1b1#yyyyyxy

u13 = b1xxxxb1b1#yyyxxxy.

Again, u2j can be obtained from u1j by replacing b1 with b2.

For the sake of readability, from now on we will write U ℓ to
denote U . . . U︸ ︷︷ ︸

ℓ

(i.e., ℓ concatenations of a string U starting

with the empty string). We then define S, the set of sensitive
patterns, as the union of the following sets:

1) {bi′bk−1
i | i, i′ ∈ [M], i′ ̸= i} which forbids putting a bi′

to replace the # in any tij if i′ ̸= i.
2) {biybk−2

i | i ∈ [M]}, which forbids putting a y to
replace the # in a tij .

3) {bi$bk−2
i | i ∈ [M]}, which forbids putting a $ to

replace the # in a tij .

2. Note that our reduction technically allows placing an item in
several bins, however such a solution can trivially be turned into a
proper one by selecting one of the bins arbitrarily and removing the
item from all others.

4) {biywjxk−wj−2y | i ∈ [M], j ∈ [N]}, which forbids
putting any bi to replace the # in a uij .

5) {bi$ywjxk−wj−2 | i ∈ [M], j ∈ [N]}, which forbids
putting a $ to replace the # in a uij .

Example 4. Continuing the running example, the sensitive
patterns set for the corresponding instance of HMD will be

S = {b1b72, b2b71, b1yb61, b2yb62, b1$b61, b2$b62, b1y2x4y,

b1y
5xy, b1y

3x3y, b2y
2x4y, b2y

5xy, b2y
3x3y, b1$y

2x4,

b1$y
5x, b1$y

3x3, b2$y
2x4, b2$y

5x, b2$y
3x3}.

As explained below, we will use tij and uij to construct
an instance of string X . By this definition of S, the # in a
tij can only be replaced with bi or x, and the # in a uij only
with x or y, so that X does not contain sensitive patterns.

We model the size B of the bins using the threshold
τ : specifically, we link the filling of the i-th bin with the
number of occurrences of a specific non-sensitive pattern
(namely, bki). However, this is not the only pattern we need
to constrain: we have many different length-k substrings
that come into play, all of which need specific thresholds.
Thus, a common threshold τ for all non-sensitive patterns
is too restrictive. We implement this by choosing τ high
enough, and artificially lowering the allowed occurrences of
each specific non-sensitive pattern by adding an appropriate
amount of extra copies of the non-sensitive pattern itself at
the end of the string. This way we can choose a different
threshold for each non-sensitive pattern.

In accordance with this reasoning, we choose τ =
max{M,B} + 1. We finally construct the string X as a
concatenation of the following components, separated by
$$ as follows:

1) tij , ∀i, j
2) uij , ∀i, j
3) τ −B − 1 occurrences of bki , ∀i
4) τ − 2 occurrences of bixk−wj−1b

wj−1
i x, ∀i, j

5) τ −M occurrences of ywj+1xk−wj−2y, ∀j.

Component (3) ensures that a valid solution of this
instance cannot add more than B occurrences of any bki .
Each time we replace the # in a tij with bi (corresponding
to assigning item j to bin i), we introduce wj additional
occurrences of bki : this models the consumption of space in
each bin, and the limit B ensures that no bin overflows.

By Component (4), for each i, j, only one additional
occurrence of bix

k−wj−1b
wj−1
i x can be created, either by

replacing the # with x in a tij or in a uij . This ensures
that, if we substitute x for # in one of the two gadgets, then
we cannot do the same in the other one. Let us consider a
specific item j; if we do not place it in bin i, then we are
forced to substitute y for # in uij , creating an occurrence
of length-k substring ywj+1xk−wj−2y. Since, by Component
(5), we can only add M−1 occurrences of this latter pattern
over all M bins, there must be an i such that the # in uij is
replaced with x. The corresponding # in tij is then forced
to be replaced with a bi, ensuring that item j is assigned to
some bin.

Authorized licensed use limited to: University of Pisa. Downloaded on March 14,2022 at 14:07:50 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3158063, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. YY, ZZZZ 7

Example 5. To conclude the running example, the instance
of HMD equivalent to the original IBP is given by the string

X = t11$$t12$$t13$$t21$$t22$$t23$$u11$$u12$$u13$$u21$$

u22$$u23($$b1x
5b1x$$b1x

2b41x$$b1x
4b21x$$b2x

5b2x$$

b2x
2b42x$$b2x

4b22x)
4($$y3x4y$$y6xy$$y4x3y)4

of length n = 562 over alphabet Σ# = {b1, b2, x, y, $,#},
with k = 8, τ = max{M,B} + 1 = 6, and the sensitive
patterns set S given before.

4.4 Correctness
We have shown how to construct in polynomial time an in-
stance IHMD from any given instance IUWBP. We now prove
that IHMD has a positive answer if and only if IUWBP does.
For the sake of readability, let us refer to the # in tij and
uij as #t

ij and #u
ij , respectively. The solution to IHMD can

then be expressed via a function g : {#t
ij ,#

u
ij , ∀i, j} → Σ.

Let f : [N] → [M] be a solution for a given IUWBP. We
create the corresponding solution to IHMD in the following
manner, for each item j ∈ [N] and bin i ∈ [M]:

f(j) = i ⇒ g(#t
ij) = bi and g(#u

ij) = x;

f(j) ̸= i ⇒ g(#t
ij) = x and g(#u

ij) = y.

For a given item j such that f(j) = i, we get wj occurrences
of bki , one occurrence of bixk−wj−1b

wj−1
i x, and for all h ̸= i

one occurrence of bhx
k−wj−1b

wj−1
h x and ywj+1xk−wj−2y.

Since the bin capacity in the solution of UWBP is not
overflown, we added at most B copies of bki for each i.
Finally, since each element is taken once in UWBP, we
created exactly (M − 1) occurrences of ywj+1xk−wj−2y and
one occurrence of bixk−wj−1b

wj−1
i x. We thus do not create

τ -ghosts, and we have a valid solution for HMD.
Vice versa, given a solution g to our HMD instance, to

obtain the solution to the original UWBP, it suffices to prove
that the following two claims are satisfied:

1) We do not overload any bin; formally

∀i ∈ [M]
∑

j∈[N] s.t. g(#t
ij)=bi

wj ≤ B.

2) Each item is assigned to some bin; formally

∀j ∈ [N] |{i ∈ [M] s.t. g(#t
ij) = bi}| ≥ 1.

If these claims are satisfied, we can extract an assignment for
UWBP: for every item j we choose an arbitrary bin i such
that g(#t

ij) = bi, and set f(j) = i. By construction of the
instance of HMD, these claims are satisfied. By Lemma 1,
we obtain the following result.

Theorem 1. HMD is strongly NP-complete.

5 HM IS HARD TO APPROXIMATE

Given the hardness of HMD, in this section, we shift our
focus on checking whether an approximately optimal solu-
tion of HM can be obtained instead. Unfortunately, in The-
orem 2, we show that there is no approximation algorithm
for HM with additive or multiplicative guarantees unless
P=NP. This provides necessary justification for developing
alternative approaches, which we describe next.

Theorem 2. There are no α ≥ 1, β ≥ 0 such that there is an
approximation algorithm A in P which answers HM by γ with
γ ≤ α · OPT + β, unless P=NP.

Proof. Assume there are α ≥ 1, β ≥ 0 such that there exists
such an approximation algorithm A. We could use A to
solve HMD: If γ > β, then we know OPT ≥ 1 and the
instance cannot be solved without any τ -ghosts. Otherwise
we create a new instance with β + 1 copies of X , separated
by k special letters $, and each copy with a different alphabet
Σi = {ai : a ∈ Σ}. Let γ′ be the solution of A on this new
instance. Either γ′ > β and OPT′ = (β + 1) · OPT ≥ 1 so
OPT > 1, else γ′ ≤ β, so there is one of the β + 1 copies
that can be solved without any τ -ghost, which gives us a
solution with no τ -ghost for the original instance.

The reader may now wonder whether the problem be-
comes easier should one relax the requirement for a fixed
threshold τ . Thus, the following problem arises naturally.

Problem 2 (HMMT). Given an integer k > 0, a string
X = X0#X1# · · ·#Xδ of length n over alphabet Σ#,
with |Xi| ≥ k − 1, for all i ∈ [0, δ], a dictionary S ⊆ Σk

such that no S ∈ S occurs in X , and an integer τ0 > 0,
compute the smallest integer τ1 ≥ τ0 so that there exists a
function g : [δ] → Σ, such that the following hold for string
Z = X0g(1)X1g(2) · · · g(δ)Xδ :

I No τ1-ghost occurs in Z.
II No sensitive pattern S ∈ S occurs in Z .

The practical rationale for considering HMMT is that it
could be useful if, for instance, τ1 is only slightly larger
than τ in a given HM instance. Unfortunately, we show that
HMMT is NP-hard, and it is even hard to approximate. Due
to these provably negative results, we conclude that there is
no theoretical gain in studying HMMT instead of HM.

Corollary 3. HMMT is NP-hard.

Proof. We reduce HMD to HMMT. Let IHMD be the instance
of HMD we would like to solve for some threshold τ . We
construct an instance of HMMT consisting of the X , k, and S
from IHMD, and we also set τ0 = τ . We denote this instance
by IHMMT. The reduction takes linear time in the size of
HMD. We seek to find the minimum threshold τ1 ≥ τ0 such
that no length-k substring of Z is a τ1-ghost. Then IHMD has
a positive answer if and only if the answer τ1 of IHMMT is
equal to τ0 = τ . The statement thus follows.

Observe that a pattern U is a τ -ghost if and only if
τ ∈ (FreqX(U),FreqZ(U)]. Therefore, the minimal number
of τ -ghosts is not monotonous in τ . On the contrary, the
minimal number of τ -ghosts is zero when τ = 0 and all
patterns are already frequent (i.e., they appear at least τ
times), or when τ > n and the threshold is so high that
no pattern can ever become a τ -ghost. In between, the
minimal number of τ -ghosts increases whenever τ equals
the frequency of some patterns in X , and then slowly
decreases again. We will use this behavior, and the fact
that HMD is NP-hard, to construct a string for which we
cannot determine in polynomial time whether τ1 = τ0 or
τ1 > α(ατ0 + β) + β (and for which we can prove that

Authorized licensed use limited to: University of Pisa. Downloaded on March 14,2022 at 14:07:50 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3158063, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. YY, ZZZZ 8

τ1 ̸∈ [τ0 + 1, α(ατ0 + β) + β]), implying both additive and
multiplicative inapproximability.

Theorem 4. There are no α ≥ 1, β ≥ 0 such that there is an
approximation algorithm A in P which answers HMMT by γ
with α−1(OPT − β) ≤ γ ≤ α · OPT + β, unless P=NP.

Proof. Let X be an arbitrary string and S be the set of sensi-
tive patterns as defined in HMD. Further, let T be the length-
(k − 2) suffix of X and Z be a string obtained by replacing
the #’s of X . From this instance of HMD, we will construct
an instance of HMMT consisting of a string Y and a set
S′ of sensitive patterns, so that if an (α, β)-approximation
algorithm existed for HMMT, we could decide HMD in
polynomial time. We define Y over Σ ∪ {#,&} to be

Y = X(&&T)τ0&(#T&)⌈(α
2−1)τ0+αβ+β⌉.

Let R be the set of all strings &sT , with s ∈ Σ. We define
the dictionary of sensitive patterns be S′ = S∪R. Note that
we need to replace all #’s in (#T&)⌈(α

2−1)τ0+αβ+β⌉ by &’s
in order not to introduce any sensitive patterns. However,
doing so increases the number of &T& patterns (and all
other newly created patterns) from τ0 to ⌈α(ατ0 + β) + β⌉.
Therefore, if τ = τ0, then the number of τ -ghosts in Z

equals that in Z(&&T)τ0&(&T&)⌈(α
2−1)τ0+αβ+β⌉, because

the additional new patterns were already occurring at least τ
times in Y . However if τ0 < τ ≤ ⌈α(ατ0+β)+β⌉, then there
will always be at least one τ -ghost, namely &T&. Recall that
deciding HMD is NP-complete. Therefore it is NP-complete
to decide whether or not τ1 = τ0 or τ1 > ⌈α(ατ0 + β) + β⌉.
We conclude that there exists no (α, β)-approximation algo-
rithm for HMMT, unless P=NP.

6 EXACT ALGORITHMS FOR HM
We resort to ILP to design exact algorithms for HMD and
HM. In particular, we show that both problems are fixed-
parameter tractable (FPT) for several combinations of param-
eters. We recall that a problem with parameters p and q is
fixed-parameter tractable in p if there exists a function f and
a polynomial P such that the problem has time complexity
O(f(p) · P (q)) [34].

6.1 ILPs for HMD and HM

We say that the length-(k− 1) substring U preceding an
occurrence of # in X , and the length-(k−1) substring V
following it, form its context UV . Recall that there are δ
occurrences of # in X , and that any two occurrences are at
least k letters apart, so UV is in Σ2k−2. We assign to every
context UV a unique identifier (id). We write #i for # in
X if its context UV has id i. A string N ∈ Σk is critical if
it may become a τ -ghost, i.e., if an additional occurrence of
N can be created by replacing some # by a letter in Σ and
FreqX(N) ∈ [τ − kδ, τ − 1]. This is because the frequency
of N cannot increase by more than kδ, and the frequency of
N in X must be less than τ for N to become τ -ghost. We
assign to each critical string N a unique id ℓ, and denote it
by Nℓ. We introduce the following parameters:

γ number of distinct contexts present in X ;
δi number of occurrences of #i in X , for i ∈ [γ];

λ number of distinct critical length-k strings;
αi

ℓ,j additional number of occurrences of Nℓ intro-
duced by replacing a #i with j ∈ Σ, for ℓ ∈ [λ];

eℓ difference (τ − 1)− FreqX(Nℓ), for ℓ ∈ [λ].

Intuitively, eℓ is the budget we have for Nℓ: the number
of its additional occurrences we can afford. Since replacing
an occurrence of #i by j ∈ Σ adds k new strings in Σk,
αi

ℓ,j counts how many of them are equal to Nℓ. Let xi,j

be the number of times we replace #i by j ∈ Σ, and
F ⊆ [γ]×Σ be the set of forbidden replacements: (i, j) ∈ F if
and only if replacing #i by j introduces a sensitive pattern.
To determine whether there exists a way of replacing all
#’s with letters without introducing any sensitive patterns
nor τ -ghosts, we need to find a solution x ∈ Zγ×|Σ| to the
following problem:

xi,j ≥ 0 ∀(i, j) ∈ [γ]× Σ

xi,j = 0 ∀(i, j) ∈ F∑
i∈[γ],j∈Σ αi

ℓ,jxi,j ≤ eℓ ∀ℓ ∈ [λ]∑
j∈Σ xi,j = δi ∀i ∈ [γ]

(1)

The first and fourth constraints ensure that each # is
replaced by exactly one letter, the second constraint that
we do not reinstate any sensitive patterns, and the third
constraint that we do not introduce any τ -ghosts.

Let us now focus on solving HM. As opposed to HMD,
we can decide in polynomial time if HM has a solu-
tion: we check all |Σ| letter replacements at each of the
δ positions where a # occurs. If at each position there
exists at least one letter replacement that does not create
a sensitive pattern then HM has a solution. Thus without
loss of generality, for the rest of this paper, we assume
that HM always has a solution. To minimize τ -ghosts in
Z = X0g(1)X1g(2) · · · g(δ)Xδ , that is, the number of strings
U ∈ Σk with FreqX(U) < τ and FreqZ(U) ≥ τ , we define
a binary variable zℓ, ℓ ∈ [λ], which is equal to 1 when Nℓ

has become τ -ghost, and is equal to 0 otherwise. The ILP
formulation for HM is to find x ∈ Zγ×|Σ| so as to:
Minimize

∑λ
ℓ=1 zℓ subject to

xi,j ≥ 0 ∀(i, j) ∈ [γ]× Σ

xi,j = 0 ∀(i, j) ∈ F
zℓ ≥ 0 ∀ℓ ∈ [λ]∑

i∈[γ],j∈Σ αi
ℓ,jxi,j − kδzℓ ≤ eℓ ∀ℓ ∈ [λ]∑

j∈Σ xi,j = δi ∀i ∈ [γ]

(2)

Note that, in the ILP of Eq. 2, if Nℓ is a τ -ghost then∑
i∈[γ],j∈Σ αi

ℓ,jxi,j − kδzℓ ≤ eℓ if and only if zℓ = 1.

6.2 HMD and HM are FPT
Eq. 1 is clearly an ILP with m = γ|Σ| variables and at most
2m+λ+ γ constraints. The algorithm by Frank and Tar-
dos [59] solves the ILP problem in linear time in the number
constraints (resp. variables) when the number of variables
(resp. constraints) is upper bounded by a constant. Hence,
although HMD is NP-complete in general, if appropriate
subsets of parameters are bounded by a constant, we can
count on polynomial-time solutions.

To show that HMD takes polynomial time in certain
cases, let us start with a general preprocessing step. We
construct a static dictionary with O(1) access time of the

Authorized licensed use limited to: University of Pisa. Downloaded on March 14,2022 at 14:07:50 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3158063, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. YY, ZZZZ 9

letters in X and the letters in strings of S. The value (id)
of each key (letter) is chosen from {1, . . . , k|S| + n}. This
construction can be done in O(k|S| + n) time using perfect
hashing [60]. We can then lexicographically sort all length-
k substrings of X and all length-k strings in S (viewed as
strings over letter id’s) using radix sort in O(k|S| + kn)
time, and construct two dictionaries, one for X and one for
S, as follows. The dictionary for X is a trie of all its non-
sensitive length-k substrings, in which each such substring
is associated to its frequency in X . The dictionary for S is
simply a trie of all its strings. In both tries, for every node,
we store the first letter on each of its outgoing edges in a
static dictionary with O(1) access time [60]. Thus both trie
dictionaries support O(k) access time: if a length-k string Q
is given as a query, we first convert it to a string I(Q) of
id’s in O(k) time using the letter dictionary, and then search
for I(Q) from the root of the tries in O(k) time. The total
construction time is O(k|S|+ kn).

Observe that δ = O(n/k). When δ = O(1), the brute-
force algorithm checking all possible ways to replace the #’s
with letters of Σ runs in polynomial time. There are indeed
|Σ|δ ways to replace the #’s; each way generates δk new
length-k strings for which we must check if they are sensi-
tive or create a τ -ghost. We can check if they are sensitive
using the trie of S in O(k) time per each such string. We can
count the additional number of occurrences of each length-k
substring of X using the trie of X in O(k) time. Finally, we
can count the number of occurrences of each length-k string
not occurring in X by constructing a trie of all (at most δk)
such strings, similar to the preprocessing step. This gives
O(kn+ k|S|+ k2δ|Σ|δ) time in total.

The following theorems explain when an FPT algorithm
exists for HMD and for HM.

Theorem 5. HMD is fixed-parameter tractable if

(a) |Σ| = O(1) and γ = O(1); or
(b) |Σ| = O(1) and k = O(1); or
(c) k = O(1) and λ = O(1).

Proof. We first perform the above-mentioned preprocessing.
(a) We will solve this case by constructing and solving

the ILP in Eq. 1. We can count the number of occurrences of
each length-k substring of X using the trie of X (and thus
determine eℓ for these strings) in O(kn) time. The id i of
the context of each # and its number δi of occurrences can
be determined within the same complexity using a similar
preprocessing: this is possible because the length of every
context is 2k − 2 = O(k). Finally, all values αi

ℓ,j and set F
can be computed in O(γ|Σ|k2) total time as follows. When
we replace #i with a letter j we create k new length-k
strings, each of which is either sensitive (in which event we
add (i, j) to F) or non-sensitive (we increase αi

ℓ,j by 1). We
check if they are sensitive using the trie of S in O(k) time
per string; we count the additional number of occurrences
of a critical length-k substring of X using the trie of X in
O(k) time; we finally count the number of occurrences of a
critical length-k string that does not occur in X (note that
eℓ = τ − 1 for these strings) by constructing a trie of all
such strings, similar to the preprocessing step. The ILP is
thus constructed in O(kn+ k|S|+ γ|Σ|k2) total time. Since
the number of variables in the ILP is m = γ|Σ| = O(1)

and solving ILP’s is fixed-parameter linear in the number of
variables [59], HMD is FPT if γ and |Σ| are fixed.

(b) Since every context has length 2k − 2 and both |Σ|
and k are O(1), we have that γ ≤ |Σ|2k−2 = O(1). Thus, if
k and |Σ| are fixed, we are in case (a), and HMD is FPT.

(c) If k = O(1) and λ = O(1), the numbers of constraints
and variables in the ILP are not necessarily upper bounded
by a constant, and therefore we cannot directly solve the
ILP in polynomial time. However, note that the only letters
we need to discern are the ones contained in the λ critical
length-k strings, which are at most λk in total. Since we do
not need to distinguish between the rest of the letters, we
can represent all of them using the same special letter. Let
σ ⊆ Σ denote the set of letters contained in critical length-
k strings, which can be determined as described in (a):
σ can be specified and indexed using perfect hashing [60]
within the same time complexity. We introduce a new letter
$ representing all the letters in Σ \ σ, and we denote by F|$
the set of forbidden replacements where all pairs (i, j) ∈ F
with j ∈ Σ \ σ are collapsed in a single pair (i, $). We thus
need to find a solution x ∈ Zγ×(|σ|+1) for:

xi,j ≥ 0 ∀i ∈ [γ], j ∈ σ ∪ {$}
xi,j = 0 ∀(i, j) ∈ F|$∑

i∈[γ],j∈σ αi
ℓ,jxi,j ≤ eℓ ∀ℓ ∈ [λ]∑

j∈σ∪{$} xi,j = δi ∀i ∈ [γ]

(3)

This new ILP can be constructed in O(kn + k|S| + γ|Σ|k2)
time, like Eq. 1. Since the ILP has only γ(|σ| + 1) = O(1)
variables, HMD is FPT for fixed k and λ [59]. We can obtain
a solution to the original problem by replacing $ by any
letter in Σ \ σ that does not create a sensitive pattern.

Theorem 6. HM is fixed-parameter tractable if

(a) |Σ| = O(1), γ = O(1), and λ = O(1); or
(b) k = O(1) and λ = O(1).

Proof. (a) We can obtain the ILP of Eq. 2 in O(λ) time from
the ILP of Eq. 1, which can be constructed in O(kn+ k|S|+
γ|Σ|k2) time; see the proof of Theorem 5(a). The ILP of Eq. 2
has at most 2m+ 2λ+ γ constraints and m+ λ = |Σ|γ + λ
variables. Therefore HM is FPT if |Σ|, γ and λ are fixed [59].

(b) Similar to the ILP of Eq. 3 (see Theorem 5(c)), we can
reduce the alphabet Σ to the letters of the critical length-k
strings and a special letter $. This new minimization ILP
has γ(|σ| + 1) + λ ≤ (kλ + 1)2k−1 + λ = O(1) variables.
Therefore HM is FPT if k and λ are fixed [59].

Theorems 5 and 6 show that we are able to design
polynomial-time algorithms for HMD and HM when some
input parameters to these problems are fixed, despite the
hardness of the problems. This is particularly encouraging
because these parameters are small in most real cases.

7 GREEDY HEURISTIC FOR HM
We present a heuristic that aims at minimizing τ -ghosts by
controlling the number and frequency of length-k strings
that may become τ -ghosts. Our heuristic performs two left-
to-right passes over the input string X to incrementally
construct Z from left to right. In the first pass, it computes
statistics by creating a dictionary TS that stores all sensitive

Authorized licensed use limited to: University of Pisa. Downloaded on March 14,2022 at 14:07:50 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3158063, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. YY, ZZZZ 10

patterns in S as strings of length k. This dictionary can
be implemented using a hash table or a trie, and supports
membership queries for S. Moreover, our heuristic creates
a (hash or trie) map TX∪Z that stores pairs (Y,Freq(Y)),
where the key Y is a length-k substring that either appears
in X or is created when an occurrence of # is replaced
by a letter in Z . The associated value Freq(Y) is given
by the number of occurrences of Y in X (possibly zero)
plus any new occurrences in the current Z created by #
replacements. The reason for using TX∪Z rather than just the
occurrences of Y in Z, is to get better statistics by knowing
“some future” (i.e., the remaining part of X in which #
are yet to be expanded but some occurrences of Y may be
found). The query supported for a length-k string Y is the
following: if any pair (Y,Freq(Y)) exists, it is unique and
the value of Freq(Y) is returned; otherwise, the value zero
is returned. Initially TX∪Z stores the statistics for X alone,
as Z has yet to be generated. As discussed next, the con-
struction of Z is incrementally performed from left to right
in the second pass, where our heuristic greedily replaces the
occurrences of #, based on the statistics maintained using
TX∪Z and in a way that aims at minimizing τ -ghosts.

The pseudocode of our heuristic is provided in Algo-
rithm 1. In the first pass (Lines 1 to 3), the heuristic con-
structs TS and TX∪Z to efficiently maintain pattern frequen-
cies, and also initializes Z, which maintains the sanitized
string. Then, the heuristic performs the second pass over
X in Lines 4 to 23, scanning some letters of X from left
to right. If the current letter X[i] ̸= #, then it is simply
appended to Z in Line 23. Therefore, we focus on the main
case, when X[i] = #: the heuristic considers the context UV
and iterates over each letter j in the alphabet Σ∪{ϵ} to find
a replacement j∗ (if any3) for X[i] as follows (Lines 7 to 21).
It constructs the set Sj of all length-k substrings of string
U · j · V (Line 11). If Sj contains no sensitive patterns (i.e.,
Sj ∩ TS = ∅), the heuristic considers the subset S<τ

j ⊆ Sj

containing those length-k substrings with frequency less
than τ , and computes

∑
Y ∈S<τ

j
(τ − Freq(Y))−1 through

queries to the map TX∪Z (Lines 12 to 16). Thus, it computes
a gap measure indicating how far from τ are the frequencies
of the potential patterns that may become τ -ghosts in S<τ

j . If
j∗ is empty then the heuristic fails, as all replacements of #
with a letter j ∈ Σ ∪ {ϵ} would reinstate a sensitive pattern
(Line 18). Otherwise, the heuristic replaces # with j∗ as the
latter optimizes the gap measure, it appends both j∗ and V
to Z, and increases the frequencies in the map TX∪Z with
the frequencies of the strings in Sj∗ as substrings of U ·j∗ ·V
(Lines 19 to 21). After completing the second pass over X ,
the heuristic returns Z and terminates (Line 24).

An example of our heuristic is in Supplemental Material.

Our heuristic takes O(k|S| + kn + δ|Σ|k2) = O(k|S| +
kn|Σ|) time as δ = O(n/k). The first two terms in O(k|S|+
kn + δ|Σ|k2) correspond to the cost of constructing TS and
TX∪Z . The third term is the cost of the second left-to-right
pass. As can be seen in Lines 5 to 21, this is dominated by the
cost of processing each of the δ occurrences of # in X , which
requires O(|Σ|k2) time, as processing Sj takes O(k2) time

3. Following [8], we added the empty letter ϵ to Σ to model the
deletion of #’s as this can lower the number of τ -ghosts.

Algorithm 1 GREEDY-HEURISTIC(k,X,Σ,S, τ)

Require: wlog X has no # in its first and last k − 1 positions

1: TS ← dictionary storing all sensitive patterns in S
2: Z ← X[0 . . k − 2]
3: TX∪Z ← map storing pairs (Y,Freq(Y)) for all non-

sensitive length-k substrings of X plus those added in Z
4: i← k − 1
5: while i < |X| do
6: if X[i] = # then
7: U ← Z[|Z| − k + 1 . . |Z| − 1]
8: V ← X[i+ 1 . . i+ k − 1]
9: best ← +∞

10: for each letter j ∈ Σ ∪ {ϵ} do
11: Sj ← set of length-k substrings of U · j · V
12: if Sj ∩ TS = ∅ then
13: sum ← 0
14: S<τ

j ← {Y ∈ Sj | Freq(Y) < τ}
15: for each string Y ∈ S<τ

j , using TX∪Z do
16: sum ← sum + (τ − Freq(Y))−1

17: if sum < best then j∗ ← j; best ← sum

18: if best = +∞ then return FAIL
19: Z ← Z · j∗ · V
20: Update TX∪Z for the strings in Sj∗

21: i← i+ 1 + |V |
22: else
23: Z ← Z ·X[i]; i← i+ 1 // no update of TX∪Z

24: return Z

for a letter j ∈ Σ∪{ϵ}, plus the O(n)-time scan of X , which
is in turn dominated by the term O(|Σ|k2) = O(kn|Σ|).

There are three benefits of the heuristic compared to the
exact algorithm: (I) It has polynomial time complexity, even
when none of the input parameters of HM is fixed. (II) It can
be trivially adapted to address the GHM problem within
the same time complexity (see Section 9). (III) By design,
it prevents large increases in the frequency of patterns that
do not become τ -ghosts but have increased frequency as
a result of # replacement, since the sum computed in
Lines 14–16 increases with Freq(Y). This helps reducing
distortion, a secondary consideration in sanitization [5], [8],
[16], [18], [19], [20]. We have also considered two variants
of the heuristic (at no extra time cost), which replace the
sum

∑
Y ∈S<τ

j
(τ − Freq(Y))−1 computed in Lines 14–16

with |S<τ
j |; or with max

Y ∈S<τ
j

(τ − Freq(Y))−1. Clearly, the

former aims at minimizing the number of patterns that
could become τ -ghosts by subsequent letter replacements
without considering their frequency, while the latter aims
at reducing the frequency of the substring that is closer to
become τ -ghost by subsequent letter replacements.

8 EXPERIMENTS

Experimental Setup and Datasets. The string sanitization
method of [8] takes as input a string W over Σ, a positive
integer k, and a set S of sensitive patterns, and then it
performs the following three steps: (I) It constructs the
shortest string X over Σ# such that X contains no sensitive
pattern and the order (and thus frequency) of all non-
sensitive patterns in X and W is the same (see Section 1).
(II) It further tries to minimize the length of X by preserving
the exact frequency of non-sensitive patterns but relaxing

Authorized licensed use limited to: University of Pisa. Downloaded on March 14,2022 at 14:07:50 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3158063, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. YY, ZZZZ 11

(a) OLD (b) TRU (c) MSN (d) DNA

Fig. 1: Number of τ -ghosts for each dataset and varying τ (on the top of each bar, we show the number of τ -ghosts). The
values of |P | are averaged over 10 runs.

the order property, so that instead of a total order a partial
order is preserved. The output of this step is a string Y
over Σ#. (III) It replaces #’s in Y by the Multiple-Choice
Knapsack based heuristic (see Section 2). The output of this
step is a string Z over Σ.

In our evaluation, we performed Steps (I) and (II) to
obtain Y , which we process by different methods: the ILP
formulation in Eq. 2 (denoted by ILP), our greedy heuristic
(denoted by HEU), or the heuristic of [8] described in Step
(III) (denoted by TPM). Following [8], we added the empty
letter ϵ to the set of letters that may be used to replace #.
This effectively models the deletion of #’s and can lower
the number of τ -ghosts. We omit the results for the other
variants of our heuristic because HEU outperformed them.

The utility of any sanitized string Z is measured by two
well-established utility measures for sanitized data:

1) The number of τ -ghosts in Z ; i.e., the size of the set
{U ∈ Σk : FreqX(U) < τ and FreqZ(U) ≥ τ}. All
tested methods are guaranteed to create no τ -lost, i.e.,
the set {U ∈ Σk : FreqX(U) ≥ τ and FreqZ(U) < τ} is
empty. Clearly, zero τ -lost and τ -ghost patterns imply
no utility loss for frequent length-k substring mining.

2) The Distortion measure [8], which is defined as∑
U (FreqW (U) − FreqZ(U))2, where U ∈ Σk is a non-

sensitive pattern. This measure penalizes changes in the
frequency of non-sensitive patterns; low values imply
high utility for frequency-based tasks [61].

Minimizing the number of τ -ghosts is crucial, as it is
the primary goal of data sanitization [5], [18], [19], [20].
Distortion considers the frequency of all patterns and can
thus be seen as a secondary criterion aiming to capture
utility when the sanitized dataset is released for frequency-
based tasks other than frequent pattern mining.

We used publicly available datasets that were also used
in the evaluation of [8]: Oldenburg (OLD) [62], Trucks
(TRU) [63], MSNBC (MSN) [64], and the complete genome
of Escherichia coli (DNA) [65]. OLD contains movement
data, TRU contains transportation data, MSN contains
clickstream data, and DNA contains genomic data. We also
used uniformly random string datasets, referred to as SYN1
and SYN2. See Table 1a for the characteristics of these
datasets. In this table, an interval for a parameter contains
the values we used for that parameter. Let us remark that
|S| denotes the number of sensitive patterns whereas |P |
denotes the total number of positions where a sensitive
pattern occurs in the input string.

TABLE 1: (a) Dataset characteristics. (b) Default values used.

Dataset length alphabet num sens num sens pattern threshold
n size |Σ| patterns |S| positions |P| length k τ

OLD 85,563 100 [60, 480] [606, 6663] [3, 7] [3, 15]
TRU 5,763 100 [40, 160] [920, 4137] [2, 5] [5, 30]
MSN 4,698,764 17 [100, 600] [30036, 180118] [4, 10] [50, 300]
DNA 4,641,652 4 [30, 60] [321, 1608] [9, 15] [5, 30]
SYN1 20,000,000 10 [10, 1000] [1994, 2000537] [3, 6] [5, 20]
SYN2 5,000,000 10 [10, 1000] [79, 3500168] [3, 6] [5, 15]

(a)
Dataset num sens patterns pattern length threshold

|S| k τ

OLD 240 6 5
TRU 120 3 5
MSN 300 8 200
DNA 50 11 20
SYN1 100 5 10
SYN2 700 6 7

(b)

The configuration of parameters was performed as in [8]
(see Table 1b for default values). That is, the sensitive
patterns were selected randomly among the frequent length-
k substrings of minimum support τ , following [8], [16].
This is because there are no patterns that are known to be
sensitive in these datasets. We averaged the results over 10
runs, following [6]. The weight, costs, and θ parameters in
TPM were configured as in [8]. Our code was written in C++
and is available at https://github.com/fnareoh/hide and
mine. The code of TPM was also written in C++ and is avail-
able at [66]. We used the Gurobi solver v. 9.0.1 (single-thread
configuration) to solve ILP instances. All experiments ran
on an Intel Core i7-10810U CPU @ 1.10 GHz with 32GB
RAM, which indicates the low computational requirements
of the methods.

Data Utility. We show that our methods: (I) allow for fre-
quent length-k pattern mining with no or negligible utility
loss (i.e., they create zero or few τ -ghosts), unlike TPM, and
(II) incur substantially lower distortion than TPM.

Number of τ -ghosts. We examined the impact of τ , k,
and |S| on τ -ghosts, in Figs. 1, 2, and 3, respectively. As
can be seen, ILP and HEU created a significantly smaller
number of τ -ghosts than TPM in all cases. This is because
ILP finds the best possible solution by design, while HEU
specifically tries to avoid the creation of τ -ghosts by limiting
the frequency of critical patterns. TPM did not perform
well because it does not explicitly consider the number
of τ -ghosts; it only tries to minimize the total cost of τ -
ghost occurrences, as discussed in Section 2. Note that DNA
was challenging to sanitize with few τ -ghosts, because its
small alphabet size makes it difficult to find letters that

Authorized licensed use limited to: University of Pisa. Downloaded on March 14,2022 at 14:07:50 UTC from IEEE Xplore. Restrictions apply.

https://github.com/fnareoh/hide_and_mine
https://github.com/fnareoh/hide_and_mine

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3158063, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. YY, ZZZZ 12

(a) OLD (b) TRU (c) MSN (d) DNA

Fig. 2: Number of τ -ghosts for each dataset and varying pattern length k (on the top of each bar, we show the number of
τ -ghosts). The values of |P | are averaged over 10 runs.

(a) OLD (b) TRU (c) MSN (d) DNA

Fig. 3: Number of τ -ghosts for each dataset and varying number of sensitive patterns |S| (on the top of each bar, we show
the number of τ -ghosts). The values of |P | are averaged over 10 runs.

(a) OLD (b) OLD (c) OLD

Fig. 4: Distortion for varying: (a) τ , (b) k, and (c) number of
sensitive patterns |S|. The values of |P | are averaged over
10 runs.

replace #’s without creating τ -ghosts. Again, on DNA,
ILP and HEU outperformed TPM by 1548% and 795%
on average, while HEU was worse than ILP by 137% on
average, which is expected as ILP guarantees minimizing
τ -ghosts. Our results show that both our methods allow for
substantially more accurate frequent pattern mining than
TPM and indicate that the heuristic which replaces #’s in
TPM is ineffective to minimize the number of τ -ghosts.

Distortion. We examined the impact of τ , k and |S|
on Distortion, in Fig. 4. Our methods outperformed TPM
because its objective function favors the replacements of #’s
with letters that increase the frequency of already frequent
patterns. Increasing the frequency of such patterns does not
incur τ -ghosts, but significantly increases Distortion (see
the Distortion computation formula). HEU outperformed
ILP, incurring 37% lower Distortion on average on the
OLD dataset for the reason mentioned in Section 7. Fur-
ther discussion of this reason and additional results are in
Supplemental Material.

Runtime. We examined the impact of input string length

(a) Substr. of SYN1 (b) SYN1 (c) SYN1

(d) SYN2 (e) SYN2 (f) SYN2

Fig. 5: Runtime for varying: (a) n, (b) k, and (c) |S| on SYN1.
Runtime for varying: (d) k, (e) |S|, and (f) τ on SYN2. The
values of |P | are averaged over 10 runs. An ✖ with ratio
x/10 corresponds to an instance in which ILP was stopped
after 1 hour to produce a feasible solution in x out of 10 runs.

n, k, τ , and |S| on runtime. We considered two different
settings using SYN1 and SYN2, respectively.

Setting I. As can be seen in Fig. 5a, our methods required
less than one second to process the 20-million letter string.
They also remained efficient when sanitizing patterns of
different length (Fig. 5b), as well as when sanitizing a
large number of sensitive patterns (Fig. 5c). An interesting
observation from Fig. 5c is that ILP scaled much better than

Authorized licensed use limited to: University of Pisa. Downloaded on March 14,2022 at 14:07:50 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3158063, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. YY, ZZZZ 13

TPM and HEU with respect to |S|. This is because it groups
#’s by context when formulating the last two constraints in
Eq. 2 in terms of γ (i.e., in terms of the number of distinct
contexts). Thus, its runtime may improve when a larger
number of #’s have the same context due to the grouping.
This is different from TPM and HEU which replace #’s one
by one and thus spend time for computing the alternative
ways in which each # can be substituted. For example, the
time spent by HEU for this process is O(|Σ|k2) per #,
as can be seen from Lines 7 to 21. Overall, ILP was the
fastest and HEU was substantially faster than TPM. We
omit the runtime experiments for varying τ because they
were quantitatively similar to those reported here.

Setting II. As can be seen in Figs. 5d, 5e, and 5f, HEU
again outperformed TPM substantially in all cases. How-
ever, ILP was not consistently faster than HEU and TPM
as in Setting I. In some cases, it took less than 1 second
to produce an optimal solution, while in others it did not
produce an optimal solution within 1 hour. In the latter
cases, we stopped the solver after 1 hour to obtain a feasible
(suboptimal) solution. As expected, these cases correspond
to instances in which a very large number of τ -ghosts could
be incurred. This can be seen in Supplementary Material,
along with experiments for varying n. Overall, the exper-
iments in this setting establish the main benefit of HEU
over ILP: predictable running time due to its guaranteed
polynomial-time complexity.

Similar observations can be made in the case of real
datasets. For example, ILP was faster than HEU in the
case of DNA, whereas HEU was faster in the case of
OLD (e.g., HEU was 2.5 times faster, taking 0.4 seconds
on average over the results of Fig. 1a). Furthermore, there
were cases when ILP took too much time. For example, in
the experiment of Fig. 3c, ILP took 36 minutes to run on
MSN when the number of sensitive patterns was 600, while
HEU took only seconds. Also, in the experiment of Fig. 1b,
ILP took 20 seconds to run on TRU when τ was 3, while
HEU took less than 0.12 seconds.

9 THE GENERALIZED HIDE & MINE PROBLEM

The GENERALIZED HIDE & MINE (GHM) problem is the
generalized version of HM, in which we drop the condition
specifying that occurrences of # must not be close to each
other. In particular, any two occurrences of # are not neces-
sarily at least k positions apart. Since HM is NP-hard and
hard to approximate, it follows that the more general GHM
is also NP-hard and hard to approximate. However, GHM
cannot be addressed by our exact algorithm for HM. This is
because it does not consider how combinations of #’s can
give rise to sensitive and non-sensitive pattern occurrences.
To address this issue, we proceed as follows.

We consider all occurrences of #’s in X : for each such
occurrence s ∈ [δ], we consider all occurrences t ∈ [δ] within
k positions to the right of occurrence s. Let P be the set of
all such pairs (s, t) for all s. For each pair (s, t) ∈ P and
each array over Σ of possible replacements J = (Js, . . . , Jt),
we check which patterns are created by the substitution of
the i-th occurrence of # by Ji, for all i ∈ [s, t] (note, we
omit patterns which are created by substituting a proper
prefix or suffix of these #’s). If this substitution creates a
sensitive pattern occurrence, we set (s, t, J) ∈ F . Otherwise

let αs,t
ℓ,J be the number of occurrences of Nℓ it creates (recall

from Section 6 that Nℓ is a critical string). Moreover, let
y(s,t),J ∈ {0, 1} be such that (I) if each occurrence of # from
s to t is replaced by its corresponding letter from J , then
y(s,t),J = 1, and (II) if replacing each occurrence of # from
s to t introduces some sensitive pattern, then y(s,t),J = 0.
In any other case y(s,t),J can have either value. Variable
xi,j ∈ {0, 1} simply indicates whether the i-th occurrence
of # is replaced by letter j ∈ Σ, in contrast with Section 6,
where xi,j ∈ Z≥0 accounted for the number of times an
occurrence of # with context i was replaced by j ∈ Σ.

The other variables are defined as in Section 6. The
ILP formulation for GHM is to find x ∈ {0, 1}δ×|Σ| and
y(s,t),J ∈ {0, 1} for all {(s, t, J) | (s, t) ∈ P, J ∈ Σt−s+1} so
as to minimize

∑λ
ℓ=1 zℓ subject to

0 ≤ xi,j ≤ 1 ∀(i, j) ∈ [δ]× Σ

0 ≤ y(s,t),J ≤ 1 ∀(s, t) ∈ P, J ∈ Σt−s+1

y(s,t),J = 0 ∀(s, t, J) ∈ F
zℓ ≥ 0 ∀ℓ ∈ [λ]

t− s+ y(s,t),J ≥
∑

i∈[s,t] xi,Ji ∀(s, t) ∈ P, J ∈ Σt−s+1∑
j∈Σ xi,j = 1 ∀i ∈ [δ]∑
(s,t)∈P,

J∈Σt−s+1

αs,t
ℓ,Jy(s,t),J − kδzℓ ≤ eℓ ∀ℓ ∈ [λ]

(4)
Constraints 1 to 4, 6 and 7 of Eq. 4 are analogous to

constraints 1 to 5 in Eq. 2 of Section 6. Constraint 5 of Eq. 4
states that an array of #’s is replaced by an array of letters,
if each of those #’s is replaced by the corresponding letter.

Note that, since for any t − s + 1 #’s occurring within
k positions we have variables for all J ∈ Σt−s+1, the size
of this ILP grows exponentially in the number of #’s that
can be in a pattern. Even if we remove variables y(s,t),J and
the corresponding constraints 2 and 5 for all substitutions
J that do not create any critical or sensitive patterns, the
number of constraints and variables of the ILP can grow
exponentially, as there can be exponentially many critical
patterns (and thus variables αs,t

ℓ,J). This ILP can therefore be
of exponential size even when the set of sensitive patterns is
empty. To construct a feasible solution in polynomial time,
we can slightly modify the heuristic in Section 7: looking
at Algorithm 1, the only required modification is in Line 8,
where V is now assigned the substring X[i + 1 . . i + ℓ] for
the largest ℓ < k such that X[i+ 1 . . i+ ℓ] does not contain
any #’s; V can be empty as any two #’s can be consecutive.

We demonstrate the impact of GHM in the context of
missing value replacement. A missing value corresponds
to a #, and the set of sensitive patterns to patterns that
are much less likely than expected to occur, based on devi-
ation, a well-established statistical significance measure for
strings [30], [31] (see Supplemental Material). These patterns
would be an artefact of missing value replacement, and thus
we do not allow them to occur in the output string. We eval-
uate the ILP formulation in Eq. 4 and our modified heuristic,
denoted by G-ILP and G-HEU, respectively, against two
alternative strategies: (I) FIXED and (II) RANDOM. FIXED
replaces every occurrence of # with the same letter, which
is selected from {A,C,T,G}. RANDOM replaces every oc-
currence of # with a letter selected uniformly at random
from {A,C,T,G}. These strategies are employed by state-of-
the-art DNA data processing tools (e.g., [28], [29]).

Authorized licensed use limited to: University of Pisa. Downloaded on March 14,2022 at 14:07:50 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3158063, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. YY, ZZZZ 14

(a) READS (b) READS (c) READS

Fig. 6: Number of τ -ghosts for varying: (a) τ , (b) input string length n, and (c) k. The ✖ symbol in (a) corresponds to an
instance in which G-ILP was stopped after 1 hour to produce a feasible solution. (δ is the total number of #’s.)

We applied G-HEU to READS, a real dataset comprised
of 75, 446 mouse reads each of length 35 and containing at
least one missing value (unknown DNA base represented
by #) [67]. The dataset has total length n = 2, 640, 610, it
contains 77, 107 #’s, and the alphabet size is |Σ| = 4, with
/∈ Σ. The default values were k = 9 and τ = 20; as
sensitive patterns we used the 100 patterns that were the
least likely than expected to occur, according to deviation.
All experiments ran on the PC mentioned in Section 8.

We measured the number of τ -ghosts incurred by all
methods in Fig. 6. Specifically, Figs. 6a, 6b, and 6c show
the impact of τ , n, and k on the number of τ -ghosts, respec-
tively. Our methods outperformed FIXED and RANDOM,
which shows their effectiveness at minimizing τ -ghosts.
As can be seen in Fig. 6a, a larger τ leads all methods
to create fewer τ -ghosts because there are fewer frequent
patterns and thus fewer of them may become τ -ghosts. As
in Section 8, G-ILP did not produce an optimal solution
within 1 hour when there was a large number of τ -ghosts
that could be incurred (see also Supplemental Material),
while the other methods finished within seconds. In this
case, we stopped G-ILP after 1 hour to obtain a feasible
(suboptimal) solution. As can be seen in Fig. 6b, a larger
n leads all methods to create more τ -ghosts, because there
are more #’s to replace. Also, observe in Fig. 6c that the
number of τ -ghosts for all methods increases from k = 8 to
k = 9 and then decreases as k gets larger. The increase for
k = 8 and k = 9 is because there are more frequent patterns
compared to when k is larger and hence more patterns may
become τ -ghosts. The decrease for k = 10 and k = 11 is
because there are more total possible length-k patterns (their
number grows exponentially in k), so it is easier to create
distinct length-k patterns and avoid τ -ghosts. Overall, ILP
performed much better than HEU, but in difficult instances
it did not finish within 1 hour, while both ILP and HEU
vastly outperformed FIXED and RANDOM.

10 OUTLOOK

In addition to strings, frequent pattern mining is also ap-
plied on other data types, such as graphs, trees, itemsets
etc. [12]. Given the fact that string is one of the most basic
data types, our hardness results support the intuition that
replacing missing values with no utility loss for frequent
pattern mining in these more complex data types may not
be possible in polynomial time; based on our results, we
further anticipate that it might even be hard to approximate

such solutions in polynomial time. Given the successful
deployment of ILP in the string representations presented in
this paper, ILP might be a promising strategy to be applied
for replacing missing values in other data representations
and settings. Also, it is interesting to design ILP formula-
tions that consider additional utility requirements, such as
preserving the segmental structure of the input string [68]
or the frequency of certain substrings.

ACKNOWLEDGMENTS

GB is partially supported by the Netherlands Organ-
isation for Scientific Research (NWO) under project
OCENW.GROOT.2019.015 “Optimization for and with Ma-
chine Learning (OPTIMAL)” AC, RG, and NP are partially
supported by the University of Pisa under the “PRA – Pro-
getti di Ricerca di Ateneo” (Institutional Research Grants) -
Project no. PRA 20202021 26 “Metodi Informatici Integrati
per la Biomedica”. GG is partially funded by the grant ANR-
20-CE48-0001 from the French National Research Agency
(ANR). GL is partially supported by the Leverhulme Trust
RPG-2019-399 project. NP, SPP, and LS are partially sup-
ported by the ALPACA project that has received funding
from the European Union’s Horizon 2020 research and inno-
vation programme under the Marie Skłodowska-Curie grant
agreement no. 956229. SPP and LS is partially supported
by the PANGAIA project that has received funding from
the European Union’s Horizon 2020 research and innova-
tion programme under the Marie Skłodowska-Curie grant
agreement no. 872539. MS and LS are supported by the
Netherlands Organisation for Scientific Research (NWO)
through Gravitation-grant NETWORKS-024.002.003.

REFERENCES

[1] J. J. Ying, W. Lee, T. Weng, and V. S. Tseng, “Semantic trajectory
mining for location prediction,” in SIGSPATIAL, 2011, pp. 34–43.

[2] R. Agrawal and R. Srikant, “Mining sequential patterns,” in ICDE,
1995, pp. 3–14.

[3] D. C. Koboldt, K. M. Steinberg, D. E. Larson, R. K. Wilson, and
E. R. Mardis, “The next-generation sequencing revolution and its
impact on genomics,” Cell, vol. 155, no. 1, pp. 27–38, 2013.

[4] M. Chen, X. Yu, and Y. Liu, “Mining moving patterns for predict-
ing next location,” Inf. Syst., vol. 54, no. C, pp. 156–168, 2015.

[5] Y. Wu, C. Chiang, and A. L. P. Chen, “Hiding sensitive association
rules with limited side effects,” TKDE, vol. 19, no. 1, pp. 29–42,
2007.

[6] O. Abul, F. Bonchi, and F. Giannotti, “Hiding sequential and
spatiotemporal patterns,” TKDE, vol. 22, no. 12, pp. 1709–1723,
2010.

Authorized licensed use limited to: University of Pisa. Downloaded on March 14,2022 at 14:07:50 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3158063, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. YY, ZZZZ 15

[7] C. C. Aggarwal and P. S. Yu, “A framework for condensation-
based anonymization of string data,” DMKD, vol. 16, no. 3, pp.
251–275, 2008.

[8] G. Bernardini, H. Chen, A. Conte, R. Grossi, G. Loukides,
N. Pisanti, S. P. Pissis, and G. Rosone, “String sanitization: A
combinatorial approach,” in ECML/PKDD, 2019, pp. 627–644.

[9] H. M. Martinez, “An efficient method for finding repeats in
molecular sequences,” Nucleic Acids Res., vol. 11, no. 13, pp. 4629–
4634, 1983.

[10] U. Keich and P. A. Pevzner, “Finding motifs in the twilight zone,”
Bioinform., vol. 18, no. 10, pp. 1374–1381, 2002.

[11] L. Marsan and M. Sagot, “Algorithms for extracting structured
motifs using a suffix tree with an application to promoter and
regulatory site consensus identification,” J. Comput. Biol., vol. 7,
no. 3-4, pp. 345–362, 2000.

[12] W. Shen, J. Wang, and J. Han, “Sequential pattern mining,” in
Frequent Pattern Mining, 2014, pp. 261–282.

[13] H. Arimura and T. Uno, “An efficient polynomial space and
polynomial delay algorithm for enumeration of maximal motifs
in a sequence,” J. Comb. Optim., vol. 13, no. 3, pp. 243–262, 2007.

[14] N. Cristianini and M. W. Hahn, Introduction to computational ge-
nomics - a case studies approach. Cambridge University Press, 2007.

[15] I. Ajunwa, K. Crawford, and J. Ford, “Health and big data: An
ethical framework for health information collection by corporate
wellness programs,” J. of Law, Medicine and Ethics, vol. 44, pp. 474–
480, 2016.

[16] G. Bernardini, H. Chen, A. Conte, R. Grossi, G. Loukides,
N. Pisanti, S. P. Pissis, G. Rosone, and M. Sweering, “Combina-
torial algorithms for string sanitization,” TKDD, vol. 15, no. 1, pp.
8:1–8:34, 2021.

[17] G. Bernardini, H. Chen, G. Loukides, N. Pisanti, S. P. Pissis,
L. Stougie, and M. Sweering, “String sanitization under edit
distance,” in CPM, 2020, pp. 7:1–7:14.

[18] A. Gkoulalas-Divanis and V. S. Verykios, “Exact knowledge hiding
through database extension,” TKDE, vol. 21, no. 5, pp. 699–713,
2009.

[19] A. Gkoulalas-Divanis and G. Loukides, “Revisiting sequential
pattern hiding to enhance utility,” in KDD, 2011, pp. 1316–1324.

[20] R. Gwadera, A. Gkoulalas-Divanis, and G. Loukides,
“Permutation-based sequential pattern hiding,” in ICDM,
2013, pp. 241–250.

[21] V. Guralnik and G. Karypis, “A scalable algorithm for clustering
sequential data,” in ICDM, 2001, pp. 179–186.

[22] S. Rangavittal, R. S. Harris, M. Cechova, M. Tomaszkiewicz,
R. Chikhi, K. D. Makova, and P. Medvedev, “RecoverY: k-mer-
based read classification for Y-chromosome-specific sequencing
and assembly,” Bioinform., vol. 34, no. 7, pp. 1125–1131, 2017.

[23] M. Spiliopoulou, “Managing interesting rules in sequence min-
ing,” in PKDD, 1999, pp. 554–560.

[24] IUPAC-IUB Commission on Biochemical Nomenclature, “Abbre-
viations and symbols for nucleic acids, polynucleotides, and their
constituents,” Biochemistry, vol. 9, no. 20, pp. 4022–4027, 1970.

[25] F. Biessmann, D. Salinas, S. Schelter, P. Schmidt, and D. Lange,
“”Deep” learning for missing value imputation in tables with non-
numerical data,” in CIKM, 2018, pp. 2017–2025.

[26] C. Fiot, A. Laurent, and M. Teisseire, “Approximate sequential
patterns for incomplete sequence database mining,” in FUZZ,
2007, pp. 1–6.

[27] E. Bier, R. Chow, P. Golle, T. H. King, and J. Staddon, “The rules of
redaction: Identify, protect, review (and repeat),” IEEE Secur. Priv.,
vol. 7, no. 6, pp. 46–53, 2009.

[28] R. Li, C. Yu, Y. Li, T. W. Lam, S. Yiu, K. Kristiansen, and J. Wang,
“SOAP2: an improved ultrafast tool for short read alignment,”
Bioinform., vol. 25, no. 15, pp. 1966–1967, 2009.

[29] H. Li and R. Durbin, “Fast and accurate long-read alignment with
burrows-wheeler transform,” Bioinform., vol. 26, no. 5, pp. 589–595,
2010.

[30] V. Brendel, J. S. Beckmann, and E. N. Trifonov, “Linguistics of nu-
cleotide sequences: Morphology and comparison of vocabularies,”
J. of Biomol. Structure and Dynamics, vol. 4, no. 1, pp. 11–21, 1986.

[31] M. Régnier and M. Vandenbogaert, “Comparison of statistical
significance criteria,” J. Bioinform. and Comput. Biology, vol. 4, no. 2,
pp. 537–552, 2006.

[32] J. W. Grzymala-Busse and M. Hu, “A comparison of several
approaches to missing attribute values in data mining,” in Rough
Sets and Current Trends in Computing, 2001, pp. 378–385.

[33] M. R. Garey and D. S. Johnson, ““Strong” NP-completeness re-
sults: Motivation, examples, and implications,” J. ACM, vol. 25,
no. 3, pp. 499–508, 1978.

[34] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx,
M. Pilipczuk, M. Pilipczuk, and S. Saurabh, Parameterized Algo-
rithms. Springer Publishing Company, Incorporated, 2015.

[35] G. Bernardini, A. Conte, G. Gourdel, R. Grossi, G. Loukides,
N. Pisanti, S. P. Pissis, G. Punzi, L. Stougie, and M. Sweering,
“Hide and mine in strings: Hardness and algorithms,” in ICDM,
2020, pp. 924–929.

[36] C. C. Aggarwal and P. S. Yu, Privacy-Preserving Data Mining: Models
and Algorithms. Springer, 2008.

[37] F. Bonchi and E. Ferrari, Privacy-Aware Knowledge Discovery: Novel
Applications and New Techniques. CRC Press, 2010.

[38] B. C. M. Fung, K. Wang, R. Chen, and P. S. Yu, “Privacy-preserving
data publishing: A survey of recent developments,” ACM Comput.
Surv., vol. 42, no. 4, Jun. 2010.

[39] C. C. Aggarwal. and S. Parthasarathy, “Mining massively incom-
plete data sets by conceptual reconstruction,” in KDD, 2001, p.
227–232.

[40] E. C. Stavropoulos, V. S. Verykios, and V. Kagklis, “A transversal
hypergraph approach for the frequent itemset hiding problem,”
Knowl. Inf. Syst., vol. 47, no. 3, pp. 625–645, 2016.

[41] G. Loukides and R. Gwadera, “Optimal event sequence sanitiza-
tion,” in SDM, 2015, pp. 775–783.

[42] C. C. Aggarwal and P. S. Yu, “On anonymization of string data,”
in SDM, 2007, pp. 419–424.

[43] M. Terrovitis, G. Poulis, N. Mamoulis, and S. Skiadopoulos, “Local
suppression and splitting techniques for privacy preserving pub-
lication of trajectories,” TKDE, vol. 29, no. 7, pp. 1466–1479, 2017.

[44] L. Bonomi and L. Xiong, “A two-phase algorithm for mining
sequential patterns with differential privacy,” in CIKM, 2013, pp.
269–278.

[45] R. Chen, G. Acs, and C. Castelluccia, “Differentially private se-
quential data publication via variable-length n-grams,” in CCS,
2012, pp. 638–649.

[46] S. Xu, X. Cheng, S. Su, K. Xiao, and L. Xiong, “Differentially
private frequent sequence mining,” TKDE, vol. 28, no. 11, pp.
2910–2926, 2016.

[47] L. Bonomi, L. Fan, and H. Jin, “An information-theoretic approach
to individual sequential data sanitization,” in WSDM, 2016, pp.
337–346.

[48] D. Wang, Y. He, E. Rundensteiner, and J. F. Naughton, “Utility-
maximizing event stream suppression,” in SIGMOD, 2013, pp.
589–600.

[49] H. Chen, C. Dong, L. Fan, G. Loukides, S. P. Pissis, and L. Stougie,
“Differentially private string sanitization for frequency-based min-
ing tasks,” in ICDM, 2021, pp. 41–50.

[50] P. Samarati and L. Sweeney, “Generalizing data to provide
anonymity when disclosing information (abstract),” in PODS,
1998, p. 188.

[51] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating
noise to sensitivity in private data analysis,” in TCC, 2006, pp.
265–284.

[52] R. Srikant and R. Agrawal, “Mining sequential patterns: Gener-
alizations and performance improvements,” in EDBT, 1996, pp.
1–17.

[53] R. J. Little and D. B. Rubin, Statistical Analysis with Missing Data
(3rd ed.). USA: John Wiley & Sons, Inc., 2019.

[54] T. Calders, B. Goethals, and M. Mampaey, “Mining itemsets in the
presence of missing values,” in SAC, 2007, pp. 404–408.

[55] A. A. Ragel and B. Crémilleux, “Treatment of missing values for
association rules,” in PAKDD, 1998, pp. 258–270.

[56] J. Tuikkala, L. Elo, O. Nevalainen, and T. Aittokallio, “Missing
value imputation improves clustering and interpretation of gene
expression microarray data,” BMC Bioinform., vol. 9, 2008.

[57] B. Dong, S. Xie, J. Gao, W. Fan, and P. S. Yu, “Onlinecm: Real-time
consensus classification with missing values,” in SDM, 2015, pp.
685–693.

[58] M. Crochemore, F. Mignosi, A. Restivo, and S. Salemi, “Text
compression using antidictionaries,” in ICALP, 1999, pp. 261–270.

[59] A. Frank and E. Tardos, “An application of simultaneous diophan-
tine approximation in combinatorial optimization,” Combinatorica,
vol. 7, no. 1, p. 49–65, 1987.

[60] M. L. Fredman, J. Komlós, and E. Szemerédi, “Storing a sparse
table with O(1) worst case access time,” J. ACM, vol. 31, no. 3, pp.
538–544, 1984.

Authorized licensed use limited to: University of Pisa. Downloaded on March 14,2022 at 14:07:50 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3158063, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. YY, ZZZZ 16

[61] S. P. Pissis, “MoTeX-II: structured MoTif eXtraction from large-
scale datasets,” BMC Bioinform., vol. 15, p. 235, 2014.

[62] https://www.cs.utah.edu/∼lifeifei/SpatialDataset.htm.
[63] https://bitbucket.org/stringsanitization/

stringsanitizationpkdd19/src/master/truck char.txt.
[64] http://archive.ics.uci.edu/ml/datasets/msnbc.com+

anonymous+web+data.
[65] http://bacteria.ensembl.org/Escherichia coli str k 12 substr

mg1655/.
[66] https://bitbucket.org/stringsanitization/

stringsanitizationpkdd19.
[67] A. Mortazavi, B. Williams, K. McCue, L. Schaeffer, and B. Wold,

“Mapping and quantifying mammalian transcriptomes by rna-
seq,” Nature Methods, vol. 5, pp. 621–628, 2008.

[68] G. Shani, C. Meek, and A. Gunawardana, “Hierarchical probabilis-
tic segmentation of discrete events,” in ICDM, 2009, pp. 974–979.

Giulia Bernardini is an Assistant Professor at the University of Trieste.
Her research interests lie in theory of algorithms and their application in
bioinformatics and data mining.

Alessio Conte is Assistant Professor at the University of Pisa. His
research focuses on efficient subgraph enumeration and mining for
“real-world” networks, with applications such as community detection,
network design or bioinformatics.

Garance Gourdel is a PhD student at Inria Rennes and ENS. Her topics
of interest include algorithms on strings, compact data structures and
hashing techniques, as well as their applications to bioinformatics.

Roberto Grossi is a Professor of computer science with the University
of Pisa. He has authored or coauthored more than 160 articles in the
area of design and analysis of algorithms and data structures.

Grigorios Loukides is an Associate Professor at King’s College Lon-
don. His research interests are in data privacy, data mining, and biomed-
ical informatics.

Nadia Pisanti is an Associate Professor at the University of Pisa. Her
research is on algorithms for the analysis of (genomic) data.

Solon P. Pissis is a Senior Researcher at CWI and an Associate
Professor at the Vrije Universiteit, both in Amsterdam. His research
focuses on theory of algorithms and their application in data mining.

Giulia Punzi is a PhD student at the University of Pisa. Her research
focuses on algorithm design and analysis, for problems concerning
pattern discovery in strings and graphs.

Leen Stougie is a Senior Researcher at CWI and a Professor of
Operations Research at the Vrije Universiteit, both in Amsterdam. He
is also a member of the INRIA-Erable team. His research focuses on
the design and analysis of algorithms for optimization.

Michelle Sweering is a PhD student at CWI. Her research focuses on
combinatorial algorithms on strings and graphs.

Authorized licensed use limited to: University of Pisa. Downloaded on March 14,2022 at 14:07:50 UTC from IEEE Xplore. Restrictions apply.

https://www.cs.utah.edu/~lifeifei/SpatialDataset.htm
https://bitbucket.org/stringsanitization/stringsanitizationpkdd19/src/master/truck_char.txt
https://bitbucket.org/stringsanitization/stringsanitizationpkdd19/src/master/truck_char.txt
http://archive.ics.uci.edu/ml/datasets/msnbc.com+anonymous+web+data
http://archive.ics.uci.edu/ml/datasets/msnbc.com+anonymous+web+data
http://bacteria.ensembl.org/Escherichia_coli_str_k_12_substr_mg1655/
http://bacteria.ensembl.org/Escherichia_coli_str_k_12_substr_mg1655/
https://bitbucket.org/stringsanitization/stringsanitizationpkdd19
https://bitbucket.org/stringsanitization/stringsanitizationpkdd19

