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Abstract
The Laplace resonance is a mean-motion resonance that involves the three inner Galilean
moons of Jupiter. However, its true nature is in part unclear; in particular, different views can
be found in the literature on whether the Laplace resonance is a pure three-body resonance or
a mere superposition of two-body resonances. To settle this question, we conduct a thorough
analysis of themany resonances involved, starting from the two-body 2:1 commensurabilities
of the couples Io–Europa and Europa–Ganymede, and ending with the three-body 4:2:1
commensurability between the three moons. By artificially varying the parameters of the
system and monitoring its fundamental frequencies, we cartography all resonances involved
and their interactions. From the analysis of the individual 2:1 commensurabilities, we find
that despite the oscillation of the resonant angles they are not genuine resonances, as the
trajectory of the system in the phase space is not enclosed by separatrices. On the contrary, as
suggested by previous works, we show that the only current true mean-motion resonance is
the pure three-body resonance between all three satellites. Moreover, we find that the current
values of the moons’ orbital elements make the Laplace resonance sufficiently separated
from the individual two-body 2:1 resonances, preventing chaotic effects from appearing.

Keywords Satellites · Mean-motion resonances · Fundamental frequencies

1 Introduction

The Galilean satellites of Jupiter, which in order from the planet are Io (1), Europa (2),
Ganymede (3) and Callisto (4), are in a orbital configuration which is unique in the solar
system. Indeed, the three inner moons are locked in a mean-motion resonance (MMR) for
which their mean motions are nearly integer multiples: n1 ≈ 2n2 ≈ 4n3. The resonant chain
is composed by a 2:1 commensurability between Io and Europa, and a 2:1 commensurability
between Europa andGanymede. For each of these commensurabilities, we have an oscillating
angle: let be λi the mean longitude of the i th satellite and �i its longitude of pericenter, we
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Fig. 1 Classic phase portraits of an integrable Hamiltonian for a first-order two-body MMR (Henrard and
Lemaitre 1983). On the left, the case with only one equilibrium point: all orbits circulate around the unique
center point. On the right, the case with three equilibrium points: the phase space is divided in different regions
by the separatrices (blue curves), which pass through the saddle point. The resonant region is the part of the
space enclosed by the separatrices; an example of resonant curve is highlighted in red

currently have

λ1 − 2λ2 + �1 ∼ 0,

λ1 − 2λ2 + �2 ∼ π,

λ2 − 2λ3 + �2 ∼ 0, (1)

where symbol ∼ stands for “closely oscillates around”. From the difference between the last
two equations, we obtain:

λ1 − 3λ2 + 2λ3 ∼ π, (2)

which involves the mean longitudes of all three satellites. This relation, or better the corre-
sponding one between mean motions n1 − 3n2 + 2n3 ≈ 0, is commonly known as “Laplace
resonance”.

By reviewing the past literature, we can note a persistent ambiguity on the nature of the
Laplace resonance. Because of the many (two-body and three-body) resonant angles present
in the system (see Eqs. 1, 2), it is not clear which commensurabilities correspond to actual
resonances and different works often disagree about this. In particular, one could wonder
whether the Laplace resonance is a superposition of two-bodyMMRs, so that Eq. (1) is just a
geometric relation, or a genuine three-body resonance. This issue is pointed out for instance
in the discussion at the end of Sinclair (1975), where Lieske argues that the oscillation of
the two-body resonant angles observed by Sinclair has not the same dynamical meaning as
the libration of the three-body resonant angle. Since then, several authors have referred to all
current commensurabilities in the Galilean system as resonances (see, e.g., Yoder and Peale
1981; Malhotra 1991). In fact, Peale and Lee (2002) use the definition “Laplace relation”
for the three-body commensurability, suggesting that the only genuine resonances are the
two-body MMRs.

It is worth noting that the presence of an oscillating angle does not necessarily imply
the establishment of a MMR. A resonance can be defined when the phase space features
two qualitatively different families of trajectories delimited by a separatrix, as illustrated
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in the right plot of Fig. 1. In this case, if we compute the fundamental frequencies of the
system (Arnold 1989; Laskar 1993), we obtain a discontinuity between the orbits inside
and outside the separatrix (e.g., Michtchenko et al. 2008). More precisely, when varying
the parameters of a nearly integrable system, the crossing of a separatrix (and therefore the
existence of a resonance) is revealed by the disappearance of one fundamental frequency,
which is replaced by a new frequency, that we can relate to the libration of the resonant
angle. When determining the fundamental frequencies of the Galilean system, Lainey et al.
(2006) did not find fundamental frequencies associated with the 2:1 MMR of the couples
Io–Europa and Europa–Ganymede, but only with the Laplace three-body resonance. Their
conclusion was that the only genuine mean-motion resonance in the system is the three-body
one between the three inner moons, even though the two-body angles in Eq. (1) are observed
to oscillate. Gallardo et al. (2016) defines a three-body MMR as “pure” when it cannot be
decomposed into a chain of two-body MMRs. In case the Laplace resonance is the only
genuine MMR between the three moons, we can consider it to be pure.

While many analytical models have been developed to study two-body MMRs (see, e.g.,
Henrard and Lemaitre 1983; Murray and Dermott 2000 and references therein), for three-
body resonances the construction of such models is more challenging, as also second-order
terms in the masses must be taken into account in the final averaged Hamiltonian (Nesvorný
and Morbidelli 1998; Quillen 2011; Petit 2021). Apart from the Galilean moons, resonant
chains and three-body MMRs are of much interest for exoplanetary systems (Luger et al.
2017; Siegel and Fabrycky 2021) and probably play or played a role in the evolution of other
satellite systems (Quillen and French 2014; Ćuk and El Moutamid 2022). Gallardo et al.
(2016) used a semi-analytical method to investigate the strength of three-body MMRs and
applied it to their study of the Galilean satellites. They showed that the Laplace resonance
affects the moons’ dynamics more than the individual 2:1 MMRs in terms of oscillations of
semi-major axes and that it persists even under strong dissipative effects (see also Lari et al.
2020; Celletti et al. 2022). This apparent dominant role of the Laplace resonance suggests
that the three-body MMR is indeed pure.

Most resonant models of the Galilean satellites found in the literature are based on an
averaged Hamiltonian formulation which contains the 2:1 resonant terms of the mutual
perturbations of the couples Io–Europa and Europa–Ganymede (see Sect. 2). The result-
ing dynamics includes the effects of the two-body resonances, but also the ones due to
the emerging pure three-body resonance, so that when analyzing the moons’ motion it is
not straightforward to determine which is the actual dominant resonance. Interpreting the
Laplace resonance as a superposition of different two-body MMRs could be suggested by
the behavior of the two-body resonant angles, but also by the forced values of the moons’
eccentricities, which can be obtained analytically from the individual two-body resonant
terms of the Hamiltonian (Sinclair 1975). On the other hand, the results presented by Lainey
et al. (2006) and Gallardo et al. (2016) lean toward a pure three-body MMR. Hence, the
question is not settled, and good arguments in both directions can be found in the literature.

Several authors showed that it is possible to reduce the Laplace resonance dynamics in
a pendulum-like motion (see, e.g., Yoder and Peale 1981; Henrard 1984; Showman and
Malhotra 1997). This way, they built an analytical model with which it was possible to
compute the libration frequency of the Laplace angle and the resonance width (see also
Celletti et al. 2022). These results were obtained by forcing the two-body resonant angles
to their equilibrium value and neglecting the moons’ free eccentricities. A recent work by
Pucacco (2021) computed normal forms for the Laplace resonance in the vicinity of its
equilibrium values, which allowed to obtain accurate analytical descriptions of the main
dynamical features of the system (see also Henrard 1984). However, in order to compute

123



19 Page 4 of 22 G. Lari, M. Saillenfest

these normal forms, a given behavior must be assumed for the two-body angles, so that the
dynamics can be averaged over fast variables. This implicitly assumes that the two-body
commensurabilities are forced by the Laplace resonance; hence, in the approach followed by
Pucacco (2021), the Laplace resonance is assumed a priori to be the only genuine resonance.
Therefore, the most agnostic way of settling this question is to keep the Hamiltonian function
to its lowest averaging level and to leave all commensurabilities free to vary over the course
of numerical integrations.

In this context, our goal is to elucidate the nature of the Laplace resonance as we observe
it today, with an eye on the possible pathways through which it has evolved toward its current
state. To this aim, we build resonant models for the Galilean satellites and cartography the
extent of the various (two-body and three-body) resonant regions through frequency analysis.
A detailed study of the resonances at play provides a key information on the system and its
past evolution. Indeed, it is still not sure whether the Laplace resonance was formed through
subsequent resonant captures driven by tidal migration (on a billion-year timescale, see
Yoder 1979; Yoder and Peale 1981) or directly into the circumjovian disk (on a million-
year timescale, see Greenberg 1982; Peale and Lee 2002). Different orbital evolutions imply
different histories for the resonances of the system (see also Tittemore 1990; Showman and
Malhotra 1997), whose final result is constrained by the current configuration of the moons.

The paper is structured as follows: in Sect. 2, we introduce the dynamical model we use
for describing the motion of the moons and the process of frequency analysis we apply to
the numerical integrations. In Sect. 3, we analyze the case of two-body resonances, focusing
on the 2:1 commensurabilities of the couples Io–Europa and Europa–Ganymede, while, in
Sect. 4, we analyze the Laplace resonance between the three moons. In Sect. 5, we discuss the
current resonant state of the Galilean system and its possible evolution in light of the results
presented in the previous sections. Finally, in Sect. 6, we summarize the obtained results.

2 Dynamical model

As we want to investigate the resonant dynamics of the system, we use an averaged model
where we remove all short-period terms, which are unimportant for resonant and secular
timescales. This way, the relevant frequencies will be easier to detect and identify by the
frequency analysis (see below). Averaged models also allow large portions of the parameter
space to be explored in reasonable computing time. As all current resonances in the system
are eccentricity type, we consider a planar motion for the satellites, neglecting their small
inclinations. This choice allows us to keep themodel as simple as possiblewhile still capturing
the essence of the dynamics. For a more complete model of the averaged dynamics of the
satellites, we refer to Lari (2018), which has been proven to reproduce well both the resonant
and secular features of the Galilean system. On long timescales, tidal dissipation in the Jovian
system produces a slow drift in the moons’ orbits (Lari et al. 2020, 2023). However, here we
are only interested in the current state of the moons, so we neglect tides and we keep only
the main terms of the dynamics (see also Malhotra 1991).

Let be G, m0, RJ and J2 the gravitational constant, the mass, equatorial radius and
quadrupolemoment of Jupiter, respectively,whilemi andβi = m0mi/(m0+mi ) (i = 1, 2, 3)
are the Galilean satellites’ masses and reduced masses. We neglect the gravitational effect
of Callisto here (i = 4), as it is not currently involved in any resonance and its contribution
to the resonant dynamics is unimportant. We describe the motion of the satellites through
their Keplerian elements (ai , ei ,�i , λi ), which are the semi-major axis, eccentricity, longi-
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tude of the pericenter and mean longitude, respectively. We introduce also the mean motion

ni =
√
G(m0 + mi )/a3i .

We use an equatorial frame centered at Jupiter and neglect the motion of its spin axis, so
that our full averaged model is described by the Hamiltonian

H = H0 + εH1, (3)

which is split in the Keplerian part

H0 = −
3∑

i=1

Gm0mi

2ai
, (4)

and the perturbation

εH1 = HJ + HM. (5)

In the perturbative function, we consider the oblateness of Jupiter and themutual gravitational
attraction of the satellites. The expression of their corresponding Hamiltonian functions is

HJ =
3∑

i=1

Gm0mi

ai

[
J2

(
RJ

ai

)2 (
−1

2
− 3

4
e2i

) ]
(6)

and

HM = H(1ord)
M + H(2ord)

M (7)

that we split in first-order and second-order terms with respect to eccentricities. The first part
is

H(1ord)
M =

∑
i j=(12,23)

[
βi ni ai β j n j a j

m0
e j cos(2λ j − λi − � j )

−Gmim j

a j

(
f27 ei cos(2λ j − λi − �i )

+ f31 e j cos(2λ j − λi − � j )

)]
, (8)

which contains only resonant terms, and the other part is

H(2ord)
M = −

∑
1�i< j�3

Gmim j

a j

(
f1 + f2(e

2
i + e2j ) + f10ei e j cos(� j − �i )

)

−
∑

i j=(12,23)

Gmim j

a j

(
f45 e

2
i cos(4λ j − 2λi − 2�i )

+ f53 e
2
j cos(4λ j − 2λi − 2� j )

+ f49 ei e j cos(4λ j − 2λi − �i − � j )

)
, (9)

which contains both resonant and secular terms. We included the term f1 in Eq. (9), even
though its actual order is zero, as its contribution to the resonant dynamics is minor (it
contributes almost as a constant term in the Hamiltonian function). The first term in Eq. (8),
which comes from the indirect part of the perturbation, can be included in the third one just
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Table 1 Mean semi-major axes
and eccentricities of Io, Europa,
and Ganymede at J2000 epoch.
Values of semi-major axes are
given in Jupiter’s radii
(RJ = 71398 km)

Io Europa Ganymede

a 5.9191 9.4147 15.0157

e 0.0041 0.0095 0.0015

changing the definition of f31. The above Hamiltonian functions are already averaged and
truncated at the second order in eccentricities. The coefficients fk in Eqs. (8) and (9) are
combinations of Laplace coefficients and depend on the ratio of the semi-major axes ai/a j .
Their expression can be found in Murray and Dermott (2000). We note that, if in Eq. (7) we
neglect second-order terms, the Hamiltonian function only contains the two resonant terms
with arguments (2λ j − λi − �i ) and (2λ j − λi − � j ).

From the Hamiltonian in Eq. (3), written in suitable canonical coordinates (see, e.g., Lari
2018), we can compute the equations of motion. In this work, we consider the following
canonical angle coordinates: −�i (i = 1, 2, 3) and λi − 2λi+1 (i = 1, 2), so that the
final system results to have five degrees of freedom. Actually, it is possible to use a more
efficient canonical transformationwhich removes a further degree of freedom (Henrard 1984;
Malhotra 1991; Pucacco 2021). However, we prefer to employ variables which are easily
comparable to the case we remove or add a satellite in the model (Lari et al. 2020). The
values of all parameters and moons’ mean initial conditions at J2000 epoch can be found in
Lari et al. (2020). For convenience, in Table 1 we reported only the values of semi-major
axes and eccentricities.

In this article, our goal is to scan the phase space around the current location of the
Galilean satellites in order to locate the various resonant regions. Therefore, we perform a
frequency analysis over a grid of initial conditions, varying one parameter at a time, and we
monitor the behavior of each fundamental frequency. In general, if we consider an integrable
approximation of the system (and under some technical conditions), there exists a set of
action-angle coordinates such that the actions are constant and the angles circulate with
constant frequencies (see Arnold 1989). If the system is non-degenerate, there is a one-to-one
relation between the actions and the constant fundamental frequencies. In a one-degree-of-
freedom model as that illustrated in Fig. 1, the constant action is directly related to the area
enclosed by the trajectory. We see that there is a qualitative difference in the definition of
action variables for resonant and non-resonant trajectories, with a discontinuity occurring
on the separatrix. This discontinuity is a characteristic of the presence of a resonance and is
reflected in the computation of the fundamental frequencies of the system.

In practice, we perform hundreds of integrations of the moons’ system, changing either
the initial condition of the semi-major axis or the eccentricity of a single moon. For each
integration, we set an integration time of 2000 years and a time step of 0.03 years. Using
the software TRIP (Gastineau and Laskar 2011), we perform the spectral analysis of the
time evolution of the system and we obtain numerically an estimate of its fundamental
frequencies (Laskar 1988, 1993). Following the evolution of the fundamental frequencies
when the parameters vary, we can identify the location of the different resonances and their
possible interactions.
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Fig. 2 Behavior of the two-body resonant angles of the 2:1 commensurabilities for the couples Io–Europa
(left) and Europa–Ganymede (right). The violet curve is obtained integrating the system without the third
moon, while the black with all three moons

3 Two-body resonances in the Galilean system

In this section, we investigate the current state of the 2:1 commensurabilities of the couples
Io–Europa and Europa–Ganymede. We know that n1 − 2n2 ≈ 0 and n2 − 2n3 ≈ 0, but do
these commensurabilities correspond to genuine two-body MMRs? A naive but simple way
to answer to this question is to remove one of the satellites (Io or Ganymede), so that the
three-body MMR vanishes and there is only one 2:1 commensurability. The motion of the
two remaining moons can be described by the model presented in Sect. 2, considering the
sums over two bodies, instead of three (i.e., removing the index 1 or 3). For simplicity, we
use the same initial conditions, even though the removal of one of the satellites makes the
mean orbital elements slightly change.

We stress that the system obtained here is artificial; it does not realistically reproduce the
behavior of the real moons and it is not supposed to do so. The initial conditions are also not
physically realistic because in reality the Galilean moons have relaxed for billions of years
toward an equilibrium configuration composed of three resonant bodies instead of two. This
simplified setting is used here on purpose as a tool to map the resonant regions.

From Fig. 2, we can see the behavior of the two-body resonant angles. Their oscillation
amplitudes are quite small, even though they are higher when considering only two moons
than when considering the complete system, as shown in the figure. As explained above, this
is due to the fact that we took the same initial conditions even though the dynamical system
is different. The fact that the angles oscillate in the two cases could suggest that these 2:1
commensurabilities are real resonances. However, as explained in Sect. 1, this condition is
not sufficient, andwemust verifywhether the resonant orbit is enclosed between separatrices.

In order to investigate this point, we analyze the phase portrait of the simplified prob-
lem. Indeed, two-body 2:1 MMRs can be described by an integrable one-degree-of-freedom
Hamiltonian, but it is necessary to perform some approximations of the dynamics. We use
the classic approach and only keep first-order terms in the model, so that all secular terms of
the mutual perturbation between the moons and the oblateness of the planet are neglected.
Between the different formulations presented in the literature (starting from Henrard and
Lemaitre 1983), we use the model presented in Batygin and Morbidelli (2013), which differ-
ently from the restricted case (see, e.g., Murray and Dermott 2000), takes into account both
first-order resonant terms present in Eq. (8). Such a model reduces the initial Hamiltonian
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Fig. 3 Phase space of the 2:1 MMR for Io–Europa (left) and Europa–Ganymede (right). The black curves are
the level curves of the integrable one-degree-of-freedom Hamiltonian, while the red curves are the orbits of
the two systems considering their current mean orbital elements

(with only two satellites)

H = H0 + H(1ord)
M (10)

to an integrable one-degree-of-freedom Hamiltonian defined as (see Eq. 29 of Batygin and
Morbidelli 2013),

H̃ = δ̂(� + 	1 + 	2) − (� + 	1 + 	2)
2 − √

2	1 cosψ1 (11)

which is equivalent to the second fundamentalmodel for (first-order) resonances (Henrard and
Lemaitre 1983). In Eq. (11), the only variables are the coordinateψ1, which is a combination
of the two resonant arguments, and its momentum 	1, which is related to the eccentricities
of the bodies. All other quantities are constant, and their definition can be found in Batygin
and Morbidelli (2013).

Considering the parameters and the initial conditions (in mean elements) of the Galilean
system, for the couples Io–Europa and Europa–Ganymede, we obtain the phase portraits in
Fig. 3. They are represented in the Cartesian plane (x, y), where x = √

2	1 cosψ1 and
y = √

2	1 sinψ1. As the orbits (red curves) do not surround the origin, the resonant angles
indeed oscillate around a fixed value, as shown also in Fig. 2. However, the orbits correspond
to a circulation around a center shifted from origin. Indeed, given the values of the parameters
and the current moons’ orbits, both systems have only one stable equilibrium point, so that
the saddle point and its separatrices do not appear in the phase portrait (compare with Fig. 1).
Therefore, the orbits are not enclosed between separatrices and the moons are not locked in
a true resonance.

However, despite this, the two-body resonant interaction between the moons has signifi-
cant effects on the dynamics, as evidenced by the forced value of the moons’ eccentricities,
which is due to the shift of the equilibrium point toward the left caused by the proximity to the
two-body MMR. Indeed, the nonzero eccentricity of Io (e1 = 0.0041, see Table 1) is almost
entirely due to the two-body first-order term with argument 2λ2 − λ1 − �1, which gives a
proportional relation between −�̇1 (that follows the commensurability) and 1/e1 (see, e.g.,
Yoder and Peale 1981). With the current value of n1 − 2n2, we obtain e1 ≈ 0.0045. Pucacco
(2021) presented a more accurate estimate of the forced values of the moons’ eccentricities,
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Table 2 Fundamental
frequencies (rad/day) of the
Io–Europa system, considering a
dynamical system including first
and second-order terms in
eccentricities of the model
presented in Sect. 2

a1 g1 g2 ν

5.90 0.002389 0.000510 0.029704

5.92 0.002731 0.000548 0.011695

5.94 0.005633 0.001146 0.001264

5.96 0.002491 0.000551 −0.022006

Fig. 4 Evolution of the fundamental frequencies for the Io–Europa system in function of the value of a1. We
consider two different models: only first-order terms (left), also second-order and J2 terms (right). Vertical
asymptotes and chaotic regions reveal the encounter with a separatrix

which come from the analytical expression of the equilibrium points of the system with all
three satellites. Just like Io, also Europa’s forced eccentricity is mainly the result of two-
body interactions and an estimate can be obtained considering the dynamical effect of the
first-order terms 2λ2−λ1−�2 (Io’s perturbation) and 2λ3−λ2−�2 (Ganymede’s perturba-
tion). Differently from the first two satellites, Ganymede’s eccentricity has a significant free
component (see, e.g., Sinclair 1975). Due to this strong effect of the nearby two-body reso-
nances, one can easily being misled into thinking that these commensurabilities are genuine
resonances and that they dominate the Galilean satellites’ dynamics.

The results obtained so far rely on a largely approximated model of the moons’ dynamics.
In order to work with a more realistic model, we need to re-include most terms of the
dynamical model presented in Sect. 2. In this way, however, we lose the one-degree-of-
freedom expression of theHamiltonian, and the phase space is not described anymore through
simple two-dimensional curves. Nevertheless, we can analyze the fundamental frequencies
of the system, in order to investigate its dynamical features. We follow the evolution of the
fundamental frequencies while varying one of the system’s parameters, in order to see how
they change from within to outside the MMR. We consider the resonant system composed
by Io and Europa (the case of Europa and Ganymede is similar) and we show the results
obtained by changing slightly the initial mean value of a1.

As in the averaged model we have three angle variables, there are three fundamental
frequencies: g1, g2 and ν (see Table 2). The frequencies g1 and g2 are associated with the
secular precession of the pericenters �1 and �2, respectively. The frequency ν is associated
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Fig. 5 Orbits of the Io–Europa
system in the
one-degree-of-freedom phase
space, considering different
initial values of a1

with the behavior of the combination of mean longitudes λ1 − 2λ2. Far from the resonance,
the moons’ orbital motions are decoupled, such that ν ≈ n1 − 2n2. However, close to the
resonance, the value of ν is dictated by the resonant dynamics, either in the case of libration
or circulation. We note that the frequencies g1, g2 and ν are not always the dominant terms in
the quasi-periodic approximation of the dynamics obtained through the frequency analysis.
Therefore, the correct identification of each frequency requires to carefully follow their
behavior from outside to inside the resonance.

In Fig. 4, we report the plot of the fundamental frequencies g1, g2 and ν. We considered
two different levels of approximation of the dynamics. The left plot of Fig. 4 shows the
frequencies for the simplest model (only first-order terms and neglecting the oblateness of
Jupiter), which is almost equivalent to the integrable model defined by Eq. (11). If we read
the plot from left to right, we can see how the frequency ν (red curve) starts from high values
(ν > 0, see Table 2), as the system is far from the resonance (the nominal 2:1 resonance is
at a1 ≈ 5.931 RJ). As a1 increases, ν decreases and the system approaches the resonance.
The fundamental frequency evolves smoothly inside the resonance; in fact, there is no clear
discontinuity which indicates the entrance into resonance, as the orbit does not cross the
separatrices, but it remains trapped inside when they appear. However, from the integrable
Hamiltonian approximation (see Fig. 5), we can compute the value of a1 for which three
equilibrium points appear, that results to be a bit smaller than 5.940 RJ (note that the current
value is a1 = 5.919 RJ, see Table 1). As we continue to increase the value of a1, finally
the orbit encounters the separatrix and the frequency combination ν + g1 goes to 0. In the
plot, we can see a vertical asymptote for the frequencies at around a1 ≈ 5.947 RJ; this is
due to the separatrix crossing: the system passes instantaneously from a libration regime to
a circulation regime. Moving further, if we take values of a1 > 5.947 RJ, we see that the
absolute value of the frequency increases rapidly (here ν < 0, Table 2), as the system is again
outside the resonance and moves away from it.

In Fig. 5, we can appreciate how the orbits change in the one-degree-of-freedom phase
space for different values of a1, while we keep the same value for the other orbital elements.
Only for a1 = 5.94 RJ, which is in the interval (5.940, 5.947) RJ, we have a genuine
resonant orbit, while the others represent circulating or librating orbits not enclosed within
separatrices. All curves in Fig. 5 pass through a common point, because the initial conditions
for eccentricities and resonant angles are the same for all considered orbits.
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Fig. 6 Orbits of the Io–Europa system in the phase space (x, y), considering three different initial values of
a1. In this case, as we consider second-order terms in the Hamiltonian, the system is not integrable and the
orbits do not follow precisely the curves defined by the resonant Hamiltonian

The other plot in Fig. 4 (right) shows again the evolution of the fundamental frequencies,
but with a more complete model of the 2:1 resonant system, which includes J2 and second-
order terms of the mutual gravitational perturbation. The first difference we note with respect
to the plot on the left is that the secular frequencies g1 and g2 starts from values signifi-
cantly higher than in the previous case. This is due to the secular perturbations (previously
neglected), which makes Io and Europa’s pericenters precess. In general, as �̇1 > 0, the
resonance position (n1 − 2n2 + �̇1 = 0) results to be slightly shifted toward right (in terms
of a1 values) with respect to its nominal location (n1 − 2n2 = 0).

The evolution of the frequency ν outside the resonance is very similar to the one already
described. Interestingly, at a1 ≈ 5.933 RJ, we can note a small discontinuity of the fun-
damental frequencies, which is due to the crossing of a secondary resonance given by the
combination ν + g2 − (g1 − g2) = 0. However, we find a completely new behavior of the
frequencies once the system enters the resonance region. Indeed, we can observe that, from
a1 ≈ 5.943 RJ, the fundamental frequencies start to show chaotic effects, which persist up
to ≈ 5.952 RJ. If we plot the orbits in the plane (x, y), we see a major difference with the
case of the integrable system: in that case, the orbits moved on the fixed level curves of the
Hamiltonian (see Fig. 5), while now the orbits can vary greatly, exploring a whole range
of curves of the space (see Fig. 6). This is due to the non-integrable nature of the system;
nevertheless, we can find orbits that present just small deviations from the level curves, while
for other we have extremely wide variations. This difference is due to the orbits’ distance
from the separatrices. Indeed, if a considered orbit is close enough to the separatrices, the
perturbation to the resonant motion can push the orbit to cross them. The orbit can then jump
through different regions of the phase space, which make its path chaotic. In the right plot
of Fig. 6, we can recognize the shape of the separatrix of the MMR and how the orbit moves
between its outer and inner regions. Instead, for orbits far from separatrices or in the case
they are not present, the motion follows approximately close curves (left plot).

Although on one hand the chaos adds complexity to the description of the dynamics, on
the other it helps to recognize the location of the resonance in the case of a non-integrable
system. Indeed, the chaos indicates the presence of separatrices, therefore of the resonance.

In the end, thanks to the analysis of the fundamental frequencies, we have a general view
of the various regions of the 2:1 MMR, which will be useful to interpret some of the results
on the complete model with all three satellites.
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Table 3 Fundamental frequencies (rad/day) of the Io–Europa–Ganymede system, considering a dynamical
system including first and second-order terms in eccentricities of the model presented in Sect. 2

a1 g1 g2 g3 ν1 ν2 μ

5.90 0.002475 0.000787 0.000131 0.029492 0.013102 –

5.92 0.002705 0.000672 0.000132 0.012616 – 0.003091

5.94 * * * * * *

5.96 0.002582 0.000860 0.000132 −0.021953 0.012182 –

For a1 = 5.94 RJ we did not report any value (symbol ’*’), as the motion is affected by chaos, so that it cannot
be approximated by quasi-periodic series. Symbol ’-’ means that the corresponding frequency is not present
or is not an independent fundamental frequency of the system

4 Mapping the Laplace resonance

In this section, we consider the system with all three satellites. In particular, we want to
analyze the Laplace resonance and find evidences that it is a pure three-body MMR, i.e.,
not just the geometric consequence of a chain of two two-body MMRs. We aim also at
determining how the emergence of the Laplace resonance relates with the 2:1 two-body
resonances we studied in the previous section.

As in our dynamical model we have five angle variables, there are five fundamental
frequencies: the three secular frequencies g1, g2 and g3 associated with the precession of the
pericenters, and other two frequencies associated with the combinations of mean longitudes
(see Table 3). Outside all resonances, we can consider the two separate frequencies ν1 and ν2
associated with the circulation of λ1 − 2λ2 and λ2 − 2λ3, respectively. However, inside the
resonant region, the values of ν1 and ν2 are dictated by the resonant dynamics. In particular,
we are interested in their behavior when the Laplace resonance is active.

In Fig. 7, we show two plots similar to the ones already presented in Sect. 3. On the left,
we have the case of the model with only first-order terms of the mutual perturbations between
the three moons, while on the right the model includes also the second-order terms presented
in Sect. 2. Apart from the values of the secular fundamental frequencies, which differ in the
two setups because of the secular perturbations, the two plots are very similar. Therefore, in
our analysis, we will focus on the results for the more complete model.

As we change only a1 and we take the other initial conditions equal to their actual values,
the 2:1 commensurability between Europa and Ganymede is preserved, while we move Io
in order to explore the other resonances. This is reflected in the values of the frequencies
ν1 and ν2: the frequency ν1 decreases fast on the left (ν1 > 0) and right (ν1 < 0) of the
resonant region, while ν2 remains almost constant. Interestingly, at a1 ≈ 5.903 RJ, we can
note a small discontinuity in the fundamental frequencies, which is due to the crossing of a
secondary resonance close to the combination ν1 − 2ν2 ≈ 0.

Moving on the right of the plot, we encounter a major change of the system at a1 =
5.911 RJ, due to the activation of the three-body resonance. The frequencies ν1 and ν2 become
equal such that the system loses one fundamental frequency (the yellow and red line coincide
in the plot), and a new fundamental frequencyμ appear (orange line). This is the fundamental
frequency associated with the libration of the three-body resonant angle λ1 −3λ2 +2λ3, and
wemanage to identify it for a1 ∈ (5.911, 5.930) RJ. In this interval, the system is described by
the fundamental frequencies (ν1, μ) instead of (ν1, ν2) (see Table 3). Indeed, the individual
frequencies ν1 and ν2 disappear, and are replaced by a single fundamental frequency. We can
retrieve this frequency either from the analysis of the time series of λ1 − 2λ2 or λ2 − 2λ3. To
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Fig. 7 Evolution of the fundamental frequencies for the Io–Europa–Ganymede system in function of the value
of a1. We consider two different models: only first-order terms (left), also second-order and J2 terms. Vertical
asymptotes and chaotic regions reveal the encounter with a separatrix

Fig. 8 Evolution of the Laplace resonance angle and the eccentricity of Io considering two propagations, one
with a1 = 5.92 RJ (violet) and the other a1 = 5.94 RJ (green) as initial condition

emphasize this fact, in Fig. 7, we have plotted both the yellow line (coming from the analysis
of λ2 − 2λ3) and superimposed red dots (coming from the analysis of λ1 − 2λ2). As the
current value of a1 is inside this range (a1 = 5.919 RJ, see Table 1) and we know that the
individual two-body resonances are not enclosed by separatrices, we can state that the system
is in a pure three-body MMR (see also Lainey et al. 2006). If we observe the evolution of the
frequency μ, we can see that it is similar to an inverted U, so that its values are smaller at the
extremes of the interval, while it has a maximum close to the center. This behavior suggests
that both at left and right we are approaching a separatrix of the three-body resonance, and
that today we are close to the center of the resonance. This relaxed configuration of the
system is probably the result of tidal dissipation over hundred million years (Yoder and Peale
1981). It is worth noting that, inside the three-body resonance, the frequency ν1 (or ν2) is
forced to decrease almost linearly. This behavior allows to maintain the three-body relation
n1 − 3n2 + 2n3 ≈ 0 as we continue to increase a1.
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Table 4 Frequency analysis and identification for the system including Io, Europa and Ganymede, and taking
a1 = 5.92 RJ as initial condition (which is very close but not equal to the actual value)

Series Frequency (rad/day) Amplitude g1 g2 g3 ν1 μ

a1 (RJ) 0.000000000000000 5.919880149957742 0 0 0 0 0

0.003091322131045 0.000107230418926 0 0 0 0 1

0.015320591901851 0.000009556727727 1 0 0 1 0

0.013288415642651 0.000004285244000 0 1 0 1 0

0.012229269785063 0.000000951757181 1 0 0 1 −1

a2 (RJ) 0.000000000000000 9.415417858204680 0 0 0 0 0

0.003091322131043 0.000756924806115 0 0 0 0 1

0.015320591903769 0.000046184290242 1 0 0 1 0

0.012747585374909 0.000036943727087 0 0 1 1 0

0.013288415658627 0.000023657207205 0 1 0 1 0

a3 (RJ) 0.000000000000000 15.015536085998430 0 0 0 0 0

0.003091322131051 0.000207493040720 0 0 0 0 1

0.013288415634833 0.000035809095988 0 1 0 1 0

0.012747585372630 0.000031633018404 0 0 1 1 0

0.009656263252274 0.000001613346959 0 0 1 1 −1

d1 (rad) 0.012615988896097 0.992879239808884 0 0 0 1 0

0.009524666765044 0.084152322639125 0 0 0 1 −1

0.015707311027184 0.084140614710325 0 0 0 1 1

0.018798633158515 0.003627670019291 0 0 0 1 2

0.006433344633894 0.003487460070612 0 0 0 1 −2

d2 (rad) 0.012615988896102 0.998375521648426 0 0 0 1 0

0.009524666765035 0.040270100082682 0 0 0 1 −1

0.015707311027173 0.040269844497231 0 0 0 1 1

0.018798633158461 0.000815134325314 0 0 0 1 2

0.006433344633992 0.000808543298309 0 0 0 1 −2

z1 −0.012615988896097 0.004190813653809 0 0 0 −1 0

−0.009524666765039 0.000426784400617 0 0 0 −1 1

−0.015707311027177 0.000280627379559 0 0 0 −1 −1

0.002704603005886 0.000194145324601 1 0 0 0 0

0.000131596475921 0.000074306914986 0 0 1 0 0

z2 −0.012615988896101 0.009656919662512 0 0 0 −1 0

0.000672426774343 0.000298930191083 0 1 0 0 0

0.000131596469531 0.000254871409549 0 0 1 0 0

−0.009524666765019 0.000213711282456 0 0 0 −1 1

−0.015707311027141 0.000133325231924 0 0 0 −1 −1
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Table 4 continued

Series Frequency (rad/day) Amplitude g1 g2 g3 ν1 μ

z3 0.000131596472831 0.001695475235159 0 0 1 0 0

−0.012615988896102 0.000652291709819 0 0 0 −1 0

−0.009524666765020 0.000030497500934 0 0 0 −1 1

−0.015707311027170 0.000019535651072 0 0 0 −1 −1

0.000672426758489 0.000011092379890 0 1 0 0 0

We analyzed the numerical series a j , z j = e j exp iω j and d j = exp i(λ j − 2λ j+1), obtained from numerical
integrations of the averaged model. We reported only the first five terms of their quasi-periodic approximation,
and we identified the corresponding frequencies as linear combinations of the fundamental frequencies g1,
g2, g3, ν1, μ (for their definition see the main text)

Fig. 9 Evolution of the fundamental frequencies in function of the value of e1 for two different models. On
the left, we consider the moons Io and Europa only, while, on the right, all three satellites. In both cases, the
dynamical model includes first- and second-order terms in eccentricities

From a1 = 5.931 RJ, we see the first signs of instability in the computation of the
fundamental frequencies; even though the frequencies ν1 and ν2 still stick together, μ is
not easily identified anymore and it disappears as we continue to increase a1. In the interval
(5.940, 5.952) RJ, we observe chaos spreading further in the computation of the fundamental
frequencies. This interval almost coincides with the interval occupied by the two-bodyMMR
between Io and Europa (see Sect. 3). From the plot in Fig. 7, we can appreciate how the three-
body and two-body resonant regions arewell separated. The picture drawnby the fundamental
frequencies shows that, with the current values of the moons’ orbital elements (especially
their eccentricities), the three-body resonance permits to have a regular motion, while the
two-body MMR is located in a chaotic region.

In Fig. 8, we plot the evolution of the three-body resonant angle λ1 − 3λ2 + 2λ3 and
Io’s eccentricity e1 for two propagations with a1 = 5.92 and 5.94 RJ, respectively. In the
first case, the bodies are well inside the three-body resonance: the angle librates with a small
amplitude and the variations in eccentricity are small and showquasi-periodic features.On the
contrary, in the second case, the system is inside the unstable region. We can appreciate both
the chaotic path of the eccentricity and the different behaviors of the resonant angle, which
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alternates phases of circulation and libration. This second evolution cannot be approximated
by quasi-periodic series and indeed the computation of fundamental frequencies produces
unstable values (see Fig. 7).

Finally, in Table 4, we report the frequency analysis of the system, taking a1 = 5.92 RJ and
limiting the computation to the dominant five terms of the quasi-periodic series. All extracted
frequencies are identified as a combination of the fundamental frequencies reported inTable 3.
For easier comparison with previous works, we also performed a frequency analysis on the
coordinate set of Henrard (1984), for which a further action variable is constant and the
system is reduced to four degrees of freedom (see also Pucacco 2021). In that case, the four
fundamental frequencies outside the three-body MMR are ν1 + g1, ν1 + g2, ν1 + g3 and
ν1 − ν2. Inside the three-body MMR, the four frequencies are ν1 + g1, ν1 + g2, ν1 + g3 and
μ

5 Discussion

In Sect. 4, we followed the evolution of the fundamental frequencies of the Galilean system
while varying Io’s semi-major axis in a neighborhood of the resonant region. We managed to
identify an interval of a1 where the two fundamental frequencies ν1 and ν2 merge and the new
frequency μ associated with the three-body resonance appears. In our exploration, we kept
all other initial conditions unchanged. In order to map the Laplace resonance along its other
dimensions, we explore also the frequencies’ response to a variation in the eccentricities.

We produce maps similar to the ones presented in Sect. 3 and 4, but this time we make
Io’s mean eccentricity vary and we sample it in the interval (0, 0.1). In Fig. 9, we report
the evolution of the fundamental frequencies in the case of two (left, Io–Europa) and three
(right, Io–Europa–Ganymede) satellites. For both, we considered dynamical models includ-
ing second-order terms in eccentricities.

In the first plot, we highlighted three intervals of e1 (see vertical dotted lines). In the
interval (0, 0.029), the motion corresponds to a circulation around the only equilibrium point
of the system: the frequency ν associated with the resonant combination λ1 − 2λ2 decreases
and the system approaches the resonance. In the interval (0.029, 0.059), the motion is chaotic
because of the proximity to a separatrix. Finally, for e1 > 0.059, the motion is regular again
and it corresponds to a libration around the resonance center, so that the orbit is enclosed
between the separatrices and it is far enough from them to avoid chaos.

In the second plot, we highlighted two intervals of e1. In the interval (0, 0.022), the
bodies are inside the three-bodyMMR: the two frequencies ν1 and ν2 coincide and the three-
body resonance frequency is present. Differently from the case where we made a1 vary, the
frequency μ is almost constant in this interval, so that we do not see a net decreasing due
to the approaching of the three-body MMR separatrix. For e1 > 0.022, the system starts
to show chaotic diffusion and the two frequencies ν1 and ν2 become clearly separated for

Table 5 Intervals of the
individual mean orbital elements
in which the pure three-body
MMR is identified

a1 a2 a3 e1 e2 e3

Lower limit 5.911 9.406 14.952 0 0 0

Upper limit 5.930 9.422 15.052 0.022 0.029 0.078

The intervals are obtained varying only the corresponding element in the
moons’ initial conditions. Semi-major axes are given in RJ units
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e1 > 0.04. Interestingly, for higher values of e1, the frequency ν1 follows the same path
presented in the left plot of Fig. 9; we deduce that Io and Europa have probably entered the
two-body MMR.

Similarly to what we have shown in Sect. 3 and 4, also for e1 we find two separated
resonant intervals: one for the three-body MMR between all three moons and the other for
the two-body MMR between Io and Europa. Keeping the current values of all other orbital
elements, the Laplace resonance persists for small values of e1, while the separatrix of the
two-body resonance appears for larger values of e1. Even thoughwe have a clear identification
of μ only for e1 < 0.022, the resonance possibly occupies a larger interval (e1 � 0.03), but
chaos due to the proximity to the separatrix prevents fundamental frequencies to exist in this
interval; in practice, the frequency analysis gives values that vary over time. The same is true
also in the previous analysis for a1 (see Sect. 4), where the region occupied by the three-body
MMR is possibly slightly larger than the interval (5.911, 5.930) RJ. Indeed, in both cases,
we can observe an intermediate region where ν1 and ν2 are close to each other, but their plot
is quite distorted. This could be to the proximity to the separatrix of the three-body MMR.
Further away, the chaos is much stronger and the frequencies are more scattered; we suspect
that it is due to the appearance of the two-body MMR separatrix, and possibly to the overlap
between the two-body and three-body resonances.

In Table 5, we report the ranges of all ai and ei (i = 1, 3) where the three-body resonant
frequency μ is present. For computing such intervals, we made the corresponding initial
condition vary, while we kept all the other unchanged. They provide ameasure of the width of
the Laplace resonance, which can be compared to analytical predictions present in literature
(see, e.g., Pucacco 2021). Reducing the system to a pendulum-like motion, Celletti et al.
(2022) computed the resonance width �, where � is the action coordinate associated with
the Laplace angle. We can translate their � to a width with respect to the semi-major axis
ai , assuming a j fixed for j �= i . By doing this, we obtain a1 = 0.0035, a2 = 0.0165
and a3 = 0.0067 RJ. When compared with the intervals in Table 5, we find a very good
agreement for the a2 variable, while we obtain much larger widths for a1 (a1 = 0.019 RJ)
and a3 (a3 = 0.100 RJ). This discrepancy is probably related to the assumptions used by
Celletti et al. (2022) in order to derive their pendulum-like approximation of the Laplace
resonance.

In Fig. 10, we considered all six combinations between the mean semi-major axes and
eccentricities of Io and Europa, and we reported the computed value of the fundamental
frequency μ, when present. As shown by the four (ai , e j ) plots, the interval where the three-
bodyMMR exists is larger for small eccentricities. The frequencyμ decreases near the edges
of the resonance due to the proximity of the separatrix. Instead, for larger eccentricities,
the interval where μ can be identified becomes thinner and thinner, before it completely
disappears In the (e1, e2) plot, we observe that the value of μ has the smallest variation
(similarly to what we already found in Fig. 9) between all six plots. We deduce that varying
the eccentricities does not shift the moons with respect to the resonance center, contrary
to varying their semi-major axes as one could have expected. This is particularly visible in
the top right panel, where the resonance lies in a diagonal band which roughly follows the
relation n1−3n2+2n3 = 0. All plots we presented not only show that the Laplace resonance
is a true three-body MMR but also that the system is very close to its center.

It is worth noting that the structure presented in the (a2, e2) plot of Fig. 10 is similar to
the dynamical map presented by Gallardo et al. (2016) where the borders of the Laplace
resonance region are numerically evaluated. The width that we can deduce from their plot
coincides very well with the one we obtained (see also Table 5).
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Fig. 10 Regions of the phase space where the fundamental frequency μ of the three-body resonance can be
identified. For all six plots, we made two mean initial conditions vary and we performed a frequency analysis
on the corresponding numerical integrations. In the white regions, the Laplace resonance is not active, while
in the colored ones it is and we reported the value of the frequency μ. The green diamonds indicate the actual
position of the system

Even though the above analysis focuses on the current configuration of the Galilean
moons, it informs us on the pathways that may have been followed by the system in the past.
The establishment of the Laplace resonance is almost certainly the result of a convergent
migration of the moons, which could have happened at the time of their formation because
of the drag in the circumjovian disk (Peale and Lee 2002) or on a billion-year timescale
because of Jupiter’s tidal dissipation (Yoder 1979). In both cases, there was one moon that
migrated faster (Ganymede in the first scenario, Io in the second) and encountered the 2:1
commensurability with Europa. The two satellites then evolved maintaining the proportion
in their mean motions and finally captured the last moon. If the eccentricities of the moons
remained small during the evolution (for example, because of tidal dissipation), it is possible
that they never entered the 2:1 MMR (i.e., the separatrix never appeared) and that the capture
into the Laplace resonance of all three satellites was a smooth process. On the contrary, if
the eccentricity of one or several moons has been substantial in the past, the system may
have needed to cross a separatrix in order to evolve from the 2:1 MMRs to the current three-
body MMR. Even though numerical simulations are essential to explore the assembly of
resonant chains (see, e.g., Lari et al. 2020; Charalambous et al. 2023), an analytical study
of the possible dynamical pathways would be useful in order to track down connection arcs
between the two-body and three-body resonances (see, e.g., Delisle 2017). Malhotra (1991)
found that the convergent evolution of the moons toward the Laplace resonance does not have
a single outcome, as the moons can be trapped in other three-body MMRs. Indeed, as shown
by Lari et al. (2020), before encountering the Laplace resonance (n1 − 3n2 + 2n3 ≈ 0),
the system encounters the multiplet of resonances corresponding to 2n1 − 5n2 + 2n3 ≈ 0
and it can be trapped by these resonances. As the moons continue to migrate outwards,
the eccentricities of the two outer moons can increase up to large values (e ≈ 0.1), before
eventually this other resonant combination breaks down and theLaplace resonance is reached.
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6 Conclusion

In this article, we explored the nature of the Laplace resonance between Io, Europa and
Ganymede. More precisely, we wanted to investigate whether such a configuration is a pure
three-bodyMMR or the geometric result of the superposition of two-bodyMMRs. To answer
this, we followed the evolution of the fundamental frequencies of the system while changing
themoons’ initial conditions in a neighborhood of the resonant region. This way, wemanaged
to map both the two-body and three-body MMRs.

We observed that, for some intervals of the phase space, there is a major change in the
set of fundamental frequencies of the system. Indeed, far from the resonances, there are two
distinct frequencies ν1 and ν2, associated with the circulation of the longitude combinations
λ1 − 2λ2 and λ2 − 2λ3, respectively. However, when we approach the configuration given
by the Laplace relation, the two frequencies become equal, so that they cannot be defined
as independent fundamental frequencies anymore. Instead, a new fundamental frequency
μ appears, which is associated with the libration of the Laplace angle defined in Eq. (2).
The appearance of this new fundamental frequency is the indication of the presence of a true
three-bodyMMR. Looking at the plots in Figs. 7 and 10, we can see how the current values of
the mean orbital elements of the moons place the system close to the center of this resonance.
This is the result of the damping due to the tidal dissipation over hundreds millions of years
after the system entered the resonance (Yoder and Peale 1981).

In contrast, by studying the dynamics of the pairs Io–Europa and Europa–Ganymede, we
found that their individual two-body commensurabilities are not genuine resonances. Indeed,
even though the two-body resonant angles are observed to oscillate (see Eq. 1), currently there
are no separatrices associated with these resonances. Therefore, the orbits of the moons just
circulate around a center that is shifted from the origin (see Fig. 3). The position of the
equilibrium points is forced by the proximity to the 2:1 MMR, which is responsible for the
current forced eccentricities of the satellites (Sinclair 1975).

Considering the current values of the moons’ orbital elements, we found that the two-
body and three-body MMRs are well separated, even though they are associated with the
same ratio of the mean motions, i.e., n1 ≈ 2n2 and n2 ≈ 2n3. More precisely, we showed
that a regular region for the Laplace resonance lies in the interval a1 ∈ (5.911, 5.930) RJ,
while the separatrix of the two-body MMR between Io and Europa appears at a1 � 5.94.
Close to this limit value, chaos affects themotion because of the proximity to the separatrices.
Chaotic effects areweaker closer to the three-bodyMMR (small scattering of the fundamental
frequencies) and stronger close the two-bodyMMR (large scattering). The ranges of the semi-
major axes given inTable 5 provide a numerical estimate of thewidth of theLaplace resonance
which agrees in part with the analytical predictions of Celletti et al. (2022) obtained with a
pendulum-like model.

For larger values of the eccentricities (e1 � 0.05), the three-body MMR disappears,
while the two-body MMR is shifted toward smaller values of a1 (see Fig. 9). Therefore, the
Laplace resonance lies in the part of the phase space with moderately small eccentricities,
similarly to the current configuration of the system. This is not necessarily true for other
three-body MMRs, which have been observed to pump moons’ eccentricities up to large
values (Malhotra 1991; Showman and Malhotra 1997; Lari et al. 2020). Moreover, even
different equilibrium configurations of the Laplace resonance consent larger values of the
eccentricities, as observed in the exoplanetary system GJ 876 (Martí et al. 2013; Pucacco
2021).
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In the end, our results show that the only true resonance of the Galilean system is the
Laplace three-bodyMMR, which confirms what has been suggested by some previous works
(Lainey et al. 2006; Gallardo et al. 2016). The other commensurabilities given by Eq. (1) are
not resonances, in the sense that their related motion corresponds to a circulation instead of a
proper libration. Therefore, the idea that the Galilean system consists in many simultaneous
resonances, which can be found in many former (e.g., Yoder and Peale 1981; Malhotra
1991) and recent works (e.g., Lari et al. 2020; Ćuk and El Moutamid 2022), is formally
incorrect. However, it is possible that during the billion-year evolution of the system, two or
more satellites have been trapped into genuine two-body MMRs before forming the Laplace
resonance. For the future, it will be interesting to study in details the possible dynamical
pathways through which the system could have passed from two-body MMRs to a three-
body MMR.

Mapping fundamental frequencies can be useful also for scanning the various resonant
chains observed in exoplanetary systems (Siegel and Fabrycky 2021). Charalambous et al.
(2023) showed that tidal evolution of exoplanets in resonant chains makes them depart from
nominal two-body MMRs and follow instead period ratios dictated by three-body MMRs.
Systems with resonant chains involving more than three bodies can present more than one
librating Laplace (or Laplace-like) angle (Mills et al. 2016; Leleu et al. 2021, but see also Lari
et al. 2020 for the future evolution of the Galilean satellites). From their combinations, there
can be oscillating angles that include themean longitudes of four (ormore) bodies. Frequency
analyses of the system can reveal the presence of a libration frequencies associated with four-
body commensurabilities, in order to assess whether they are the result of superposition of
adjacent Laplace-like resonances or genuine four-body MMRs.
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