
PARABOLIC IMPLOSION FOR ENDOMORPHISMS OF C2

FABRIZIO BIANCHI

We give an estimate of the discontinuity of the large Julia set for a perturbation of a class of maps
tangent to the identity, by means of a two-dimensional Lavaurs Theorem. We adapt to our situation a
strategy due to Bedford, Smillie and Ueda in the semiattracting setting. We also prove the discontinuity
of the filled Julia set for such perturbations of regular polynomials.

Notation. The symbol O(x) will stand for some element in the ideal generated by x. More
generally, given any f , O(f) will stand for some element in the ideal generated by f . Analogously,
O(f1, . . . , fk) will stand for some element in the ideal generated by f1, . . . , fk.

The notation O2(x, y) will be a shortcut for O(x2, xy, y2). Given a point p ∈ C2, we shall
denote its coordinates by x(p) and y(p).

1. Introduction and results

Parabolic dynamics and the study of parabolic perturbations have been at the heart of
holomorphic dynamics in the last couple of decades. Starting with the work by Lavaurs [14],
the theory of parabolic implosion has provided useful tools for a very precise control of these
perturbations and for the proof of some of the most striking recent results in the field, e.g., the
construction of Julia sets of positive area [7, 5], significative steps toward the setting of the
hyperbolicity conjecture for quadratic polynomials [8] and the construction of endomorphisms
of P2(C) with a wandering domain [4]. In particular, these techniques have proved extremely
useful in the study of bifurcation loci (see, e.g., [15]).

In several complex variables, the study of parabolic perturbations and the theory of parabolic
implosion are just at the start, with recent results only in the semiattracting setting [6, 11].
The goal of this paper is to provide a starting point for an analogous theory in the completely
parabolic setting, by a precise study of perturbations of germs of endomorphisms of C2 tangent
to the identity at the origin.

Let us briefly recall the foundational results of the one-dimensional theory. We refer to [10]
for a more extended introduction to the subject, as well as to the original work by Lavaurs
[14]. Consider an endomorphism of C tangent to the identity at the origin, given by f(z) =
z + z2 +O(z2). The origin is a parabolic fixed point for f . The dynamics is attracting near the
negative real axis: there exists a parabolic basin B for 0, i.e., an open set of points converging
to the origin after iteration. The origin is on the boundary of B, and the convergence happens
tangentially to the negative real axis. The iteration of f on B is semiconjugated to a translation
by 1. More precisely, there exists an incoming Fatou coordinate (unique up to postcomposition
with a translation) ϕι : B → C such that, for every z ∈ B, we have ϕι ◦ f(z) = f(z) + 1. One
way to construct such a coordinate is to define it as the limit ϕι(z) := limn(wι0(f

n(z)) − n).
Here wι0(z) := −1

z − q log(−z), where log is the principal branch of the logarithm and q + 1 is

the coefficient of z3 in the expression of f . We will consider this normalization in the sequel.
The same happens for the inverse iteration near the positive real axis: we have a repelling basin

R of points converging to 0 under some inverse iteration, and the convergence happens tangentially
to the positive real axis. We can construct in this case an outgoing Fatou parametrization, i.e., a
map ψo from a subset of C to R (unique up to precomposition with a translation) such that
f ◦ ψo(z) = ψo(z + 1). Here we will consider as ψo the inverse of the map ϕo arising as the limit
ϕ0(z) := limn(wo0(f−n(z)) + n), where wo0(z) := −1

z − q log(z). It is worth noticing here that the
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union of B and R contains a full pointed neighbourhood of the origin. The map ψo can also be
extended to C, with image equal to C.

Notice that the incoming Fatou coordinate is a map from the dynamical plane to C, while the
outgoing Fatou parametrization is a map from C to the dynamical plane. In particular, given
any α ∈ C and denoting by tα the translation by α on C, the composition Lα := ψo ◦ tα ◦ ϕι
is well defined as a function from B to R. Such a map is usually called a Lavaurs map, or a
transfer map.

We consider now the perturbation fε(z) = z+ (z2 + ε2)(1 +O(z) +O(ε2)) of the system f , for
ε real and positive. As ε 6= 0, the dynamics abruptly changes: the parabolic point splits in two
(repelling) points ±iε, and the orbits of points in B can now pass through the “gate” between
these two points. Using the Lavaurs map it is possible to give a very precise description of this
phenomenon, by studying the dynamics of high iterates of the perturbed maps fε, as ε → 0.
The following definition plays a central role in this study.

Definition 1.1. Given α ∈ C, an α-sequence is a sequence (εν , nν)ν∈N ∈ (C× N)N such that
nν →∞ and nν − π

εν
→ α as ν → +∞.

Notice in particular that the definition of α-sequence implies that εν tends to the origin
tangentially to the positive real axis. More precisely, there exists a constant c such that, for every
ν sufficiently large, we have |Im εν | ≤ c |εν |2. The following result gives the limit description of
suitable high iterates of fε.

Theorem 1.2 (Lavaurs [14]). Let fε(z) = z + (z2 + ε2)(1 +O(z) +O(ε2)) and (εν , nν) be an
α-sequence. Then fnνεν → Lα, locally uniformly on B, as ν → +∞.

One of the most direct consequences of Lavaurs theorem is the fact that the set-valued
functions ε 7→ J(fε) and ε 7→ K(fε) are discontinuous at ε = 0 for the Hausdorff topology.
Here J(fε) and K(fε) denote the Julia set and the filled Julia set of fε, respectively (recall
– see e.g. [10] – that ε 7→ J(fε) is always lower semicontinuous, while ε 7→ K(fε) is always
upper semicontinuous). More precisely, define the Lavaurs-Julia set J(f0, Lα) and the filled
Lavaurs-Julia set K(f0, Lα) by

J(f0, Lα) := { z ∈ C : ∃m ∈ N, Lmα (z) ∈ J(f0) }
K(f0, Lα) := { z ∈ C : ∃m ∈ N, Lmα (z) /∈ K(f0) }c

Notice that the Lavaurs-Julia set J(f0, Lα) is in general larger than the Julia set of f0. On the
other hand, the set K(f0, Lα) is in general smaller than K(f0). The following Theorem then
gives an estimate of the discontinuity of the maps ε 7→ J(fε) at ε = 0.

Theorem 1.3 (Lavaurs [14]). Let fε(z) = z + (z2 + ε2)(1 +O(z) +O(ε2)) and (εν , nν) be an
α-sequence. Then

lim inf J(fεν ) ⊇ J(f0, Lα) and lim supK(fεν ) ⊆ K(f0, Lα)

In particular, at ε = 0,

(1) the map ε→ J(fε) is lower semicontinuous, but not continuous;
(2) the map ε→ K(fε) is upper semicontinuous, but not continuous.

The goal of this paper is to make a step towards the generalization of Theorems 1.2 and 1.3
to the two-variables setting, by studying the perturbation of a class of maps tangent to the
identity (i.e., with differential at a fixed point equal to the identity). More precisely, we consider
an endomorphism of C2 of the form

F0

(
x
y

)
=

(
x+ x2 · α0(x, y)

y(1 + ρx+O(x2, xy, y2))

)
,

where α0(x, y) = 1 + O(x, y) and ρ > 1. For instance, F0 may be the local expression of an
endomorphism of P2 (e.g., if the two components of F0 are polynomials of the same degree in
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(x, y) with 0 as the only common root of their higher-degree homogeneous parts). We shall
primarily be interested in this situation.

The map F0 has a fixed point tangent to the identity at the origin, and two invariant lines
{x = 0 } and { y = 0 }. By the work of Hakim [12] (see Section 2), since ρ > 1 we know that
[1 : 0] is a non-degenerate characteristic direction, and that there exists an open set B of initial
conditions, with the origin on the boundary, such that every point in B is attracted to the origin

tangentially to the direction [1 : 0]. Moreover there exists, on an open subset C̃0 of B, a (one
dimensional) Fatou coordinate ϕ̃ι, with values in C, such that ϕ̃ι ◦F0(p) = ϕ̃ι(p) + 1 (see Lemma
2.2).

A similar description holds for the inverse map. Indeed, after restricting ourselves to a
neighbourhood U of the origin where F0 is invertible, we can define the set R of point that are
attracted to the origin tangentially to the direction [1 : 0] by backward iteration. There is then

a well defined map ϕ̃o : −C̃0 ∩ U → C such that ϕ̃o ◦ F0(p) = ϕ̃o(p) + 1 whenever the left hand
side is defined. It is actually possible to construct two-dimensional Fatou coordinates (see [12]),
but we shall not need them in this work. In the following, we shall need some specific coefficients
of F0. We thus write its expression as

(1.1) F0

(
x
y

)
=

(
x+ x2(1 + (q + 1)x+ ry +O(x2, xy, y2))

y(1 + ρx+O(x2, xy, y2))

)
,

where ρ is real and greater than 1 and q, r ∈ C.
Consider now a perturbation Fε of F0 of the form

(1.2)

Fε

(
x
y

)
=

(
x+ (x2 + ε2)αε(x, y)
y(1 + ρx+ βε(x, y))

)
=

(
x+ (x2 + ε2)(1 + (q + 1)x+ ry +O(x2, xy, y2) +O(ε2))

y(1 + ρx+O(x2, xy, y2) +O(ε2))

)
.

Our goal is to study the dependence of the large Julia set1 J1(Fε) on ε near the parameter ε = 0.
Notice that the line {y = 0} is invariant for all the maps in the family, and that on this line we
have a classical (1-dimensional) parabolic implosion phenomenon.

Our main result is the following Theorem, which is a partial generalization of Theorem 1.2 to

our setting. As in dimension 1, α-sequences play a crucial role. The set C̃0 introduced above
will be precisely defined in Proposition 2.1, and the Fatou coordinates ϕ̃ι and ϕ̃o in Lemma 2.2.

Theorem 1.4. Let Fε be a holomorphic family of endomorphisms of C2 as in (1.2). Let B be
the attracting basin for the origin for the map F0 with respect to the characteristic direction
[1 : 0]. Let α be a complex number and (nν , εν) be an α-sequence. Then the family Fnνεν is normal
on a neighbourhood of B ∩ { y = 0 } in B. In addition every limit L has the following properties:

• it is an open holomorphic map;
• it coincides with the 1-dimensional Lavaurs map Lα on the invariant line {y = 0};
• it satisfies

(1.3) ϕ̃o ◦ L(p) = α+ ϕ̃ι(p)

whenever both sides are defined, where ϕ̃ι : C̃0 → C and ϕ̃o : −C̃0 → C are suitably normalized
(1-dimensional) Fatou coordinates for F0.

The reason we do not get the normality of the sequence on all the basin B is that, a priori,
the neighbourhood where we prove the normality does not necessarily contain a fundamental
domain for the dynamics. If this were the case, the result would easily extend to the full basin.

Remark 1.5. Computer experiments suggest that given any α-sequence (εν , nν) there is a

neighbourhood of C0 in C̃0 such that the sequence Fnνεν converges to a (unique) limit map L,
without the need of extracting a subsequence.

1i.e., the complement of the Fatou set, which in general is larger than the Julia set defined as the support of
the equilibrium measure for endomorphisms of P2, see [9].
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As a consequence, we shall deduce an estimate of the discontinuity of the large Julia set in
this context (notice that the discontinuity itself follows from an application of Theorem 1.2 to

the invariant line { y = 0 }). We say that, given U ⊂ C̃0, a map L : U → C2 is a Lavaurs map if
there exists an α-sequence (εν , nν) such that Fnνεν → L on U . We then have the following result

(see Section 7 for the definition of the Lavaurs-Julia sets J1(F0, L) in this setting).

Theorem 1.6. Let Fε be a holomorphic family of endomorphisms of P2 as in (1.2) and L : U →
C2 be a Lavaurs map such that Fnνεν → L on U for some α-sequence (εν , nν). Then

lim inf J1(Fεν ) ⊇ J1(F0, L).

Finally, in the last section, we consider a family of regular polynomials, i.e., polynomial
endomorphisms of C2 admitting an extension to P2(C). For these maps, it is meaningful to
define the filled Julia set K as the set of points with bounded orbit. In analogy with the
one-dimensional theory, we deduce from Theorem 1.4 an estimate for the discontinuity of the
filled Julia set at ε = 0 (see Section 8 for the definition of the set K(F0, L)) and in particular
deduce that ε 7→ K(Fε) is discontinuous at ε = 0. Notice that, differently from the case of the
large Julia set, this is not already a direct consequence of the 1-dimensional theory.

Theorem 1.7. Let Fε be a holomorphic family of regular polynomial maps of C2 as in (1.2)
and L : U → C2 be a Lavaurs map such that Fnνεν → L on U for some α-sequence (εν , nν). Then

K(F0, L) ⊇ lim supK(Fεν ).

Moreover, ε 7→ K(Fε) is discontinuous at ε = 0.

The paper is organized as follows. In Section 2 we recall the results by Hakim describing the
local dynamics of the map (1.1) near the origin, and introduce the Fatou coordinates associated
to the attracting and repelling basins. In Section 3 we define and study suitable perturbations
of the Fatou coordinates, that allow to semiconjugate the iteration of Fε to a translation by
1, up to a controlled error. In Sections 4 and 5 we carefully study the orbits of points under
iteration by Fε and prove some preliminary convergence result needed for the proof of Theorem
1.4, which is given in Section 6. In Section 7 and 8 we deduce from Theorem 1.4 the estimates
of the discontinuity of the large Julia set and (for regular polynomials) of the filled Julia set at
ε = 0.

2. Preliminaries and Fatou coordinates

Following the work of Hakim [12] (see also [13, 3]), we start giving a description of the local
dynamics near the origin for F0 by recalling some classical notions in this setting. Let Φ be a
germ of transformation tangent to the identity at the origin of C2. We can locally write it near
the origin as

Φ

(
x
y

)
=

(
x+ P (x, y) + . . .
y +Q(x, y) + . . .

)
,

where P and Q are homogeneous polynomials of degree 2. In the following, we shall always assume
that P (x, y) is not identically zero. A characteristic direction is a direction V = [x : y] ∈ P1(C)
such that the complex line through the origin in the direction [x : y] is invariant for (P,Q). The
direction is degenerate if (P,Q) sends the line to the origin, non degenerate otherwise.

The homogeneous part of degree 2 of Φ can be seen as a self map of the tangent space at the
origin. The characteristic directions correspond to the invariant lines through the origin for this
map. When a direction is non degenerate, the homogeneous map induces a holomorphic map
defined on (a neighbourhood of this direction in) P1(C) and fixing this direction. The director
(see [1, Definition 2.4]) of this direction is defined as ρ−1, where ρ is the multiplier of the map at
the fixed direction. Equivalently, one can take coordinates such that the characteristic direction
is V = [1 : u0]. Notice that the fact that [1 : u0] is a characteristic direction is equivalent to u0
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being a zero of r(u) := Q(1, u)− uP (1, u). The director of the characteristic direction [1 : u0] is
thus equal to

r′(u0)

P (1, u0)
.

Given a germ Φ and a non degenerate characteristic direction V for Φ we can assume, without
loss of generality, that V = [1 : 0] and that the coefficient of x2 in P (x, y) is 1 (notice that Hakim
has the opposite normalization, i.e., with the term −x2). The following result by Hakim ([12,
Proposition 2.6]) gives an explicit description of an invariant subdomain of the attracting basin
B. In all this work, we will restrict ourselves to points belonging to such an invariant domain.

Proposition 2.1 (Hakim). Let Φ be a germ of transformation of C2 tangent to the identity
(normalized as above), such that V = [1 : 0] is a nondegenerate characteristic direction with
director δ whose real part is greater than some 0 < α ∈ R. Then, if γ, s and R are small enough
positive constants, every point of the set

C̃0(γ,R, s) := { (x0, y0) ∈ C2 : |Imx0| ≤ −γ Rex0, |x0| ≤ R, |y0| ≤ s |x0| }

is attracted to the origin in the direction V and x(Φn(x0, y0)) ∼ − 1
n . Moreover we have

(2.1) |x(Φn(x0, y0))| ≤
2

n
and |y(Φn(x0, y0))| |x(Φn(x0, y0))|−α−1 ≤ |y0| |x0|−α−1 .

Notice that, for a γ1 slightly smaller than γ, we have F0(C̃0(γ,R, s)) ⊆ C̃0(γ,R, s).
Let us now consider F0 as in (1.1). It is immediate to see that [1 : 0] is a non-degenerate

characteristic direction, with director equal to ρ− 1. This is the reason we made the assumption
that ρ > 1. It will be even clearer later (Lemma 5.1) that this a crucial assumption.

An important feature of our setting is that the (local) inverse of a map tangent to the
identity shares a lot of properties with the original map (this does not happen for instance
in the semi-parabolic situation). In fact, it is immediate to see that the local inverse of an
endomorphism tangent to the identity is still tangent to the identity, with the same characteristic
directions and moreover the same Hakim directors (this follows since the homogeneous part of
degree 2 of F−1 is the opposite of the homogeneous part of degree 2 of F , and thus induces the
same map on P1(C) ). In our situation, (0, 0) is still a double fixed point for the local inverse
G0, which has the following form (see for example the explicit description of the coefficients of
the inverse of an endomorphism tangent to the identity given in [2]),

G0

(
x
y

)
=

(
x− x2(1 + (q − 1)x+ ry +O2(x, y))

y(1− ρx+O2(x, y))

)
and the stated properties are readily verified.

In the following, we will fix a neighbourhood U of the origin where F0 is invertible, and

consider an invariant domain C̃0 as in Proposition 2.1 for F0 such that −C̃0 satisfies the same

property for G0 and both C̃0 and −C̃0 are contained in U .

We now briefly recall how to construct a (one dimensional) Fatou coordinate ϕ̃ι on C̃0

semiconjugating F0 to a translation by 1. We notice here that it is actually possible to construct

a two-dimensional Fatou coordinate, on a subset of C̃0, with values in C2 and semiconjugating
the system to the translation by (1, 0). Since we will not use it, we do not detail the construction
here, but we refer the interested reader to [12].

The first step of the construction of ϕ̃ι is to consider the map

(2.2) w̃ι0(x, y) := −1

x
− q log(−x).
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Notice that, in the chart w̃ι0, the map F0 already looks like a translation by 1. Indeed, by (1.1),
we have

(2.3)

w̃ι0(F0(x, y)) = − 1

x(F0(x, y))
− q log(−x(F0(x, y)))

= −1

x
− q log(−x) + 1 + ry +O2(x, y)

= w̃ι0(x, y) + 1 + ry +O2(x, y).

In order to get an actual Fatou coordinate, we consider the functions

(2.4) ϕ̃ι0,n := w̃ι(Fn0 (x, y))− n.

The following Lemma proves that the the sequence
(
ϕ̃ι0,n

)
converges to an actual Fatou coordinate

ϕ̃ι as n→∞.

Lemma 2.2. The functions ϕ̃ι0,n converge, locally uniformly on C̃0, to an analytic function

ϕ̃ι : C̃0 → C satisfying
ϕ̃ι(F0(p)) = ϕ̃ι(p) + 1.

Proof. Set A0(x, y) := w̃ι0(F0(x, y)) − w̃ι0(x, y) − 1 = ϕ̃ι0,1(x, y) − ϕ̃ι0,0(x, y) and notice that

A0(F
n
0 (x, y)) = ϕ̃ι0,n+1(x, y)− ϕ̃ι0,n(x, y). In order to ensure the convergence of the sequence(

ϕ̃ι0,n
)

we can prove that the series with general term A0(Fn0 (x, y))’s converges normally on C̃0.
It follows from (2.3) that

A0(F
n
0 (x, y)) = ry(Fn0 (x, y)) +O2(x(Fn0 (x, y)), y(Fn0 (x, y))).

By Proposition 2.1, we have |x(Fn0 (x, y))| ≤ 2/n and |y(Fn0 (x, y))| ≤ 1/nα+1, for some α > 0.
This implies that the series

∑∞
n=0 |A0(F

n(x, y))| converges normally to

ϕ̃ι(x, y) := ϕ̃ι0(x, y) +
∞∑
n=0

A0(F
n
0 (x, y)).

The functional relation is also easily verified, since |A0(F
n(x, y))| → 0. �

In the repelling basin the situation is completely analogous. Setting w̃o0 := − 1
x − q log(x)

on −C̃0 and ϕ̃o0,n := w̃o0(F−n0 (x, y)) + n, we have ϕ̃o0,n → ϕ̃o locally uniformly on −C̃0, where

ϕ̃o : C̃0 → C satisfies the functional relation ϕ̃o ◦ F0(p) = ϕ̃o(p) + 1.
We notice that the Fatou coordinates are not unique. For instance, we can add any constant

to them and still have a coordinate satisfying the desired functional relation. In the following
(and in Theorem 1.4), we shall use as coordinate the one obtained in Lemma 2.2 above.

3. The perturbed Fatou coordinates

We consider now the perturbation (1.2) of the system F0. The goal of this section is modify
the Fatou coordinate ϕ̃ι built in Section 2 to an approximate coordinate for Fε. More precisely,
we are going to construct some coordinates ϕ̃ιε (with values in C) that, on suitable subsets of

C̃0:

(1) almost conjugate Fε to a translation by 1, in the sense that the error that we have in
considering Fε as a translation in this new chart will be bounded and explicitly estimated;
and

(2) tend to the one-dimensional Fatou coordinates ϕ̃ι for F0 as ε→ 0.

We shall only be concerned with ε small and satisfying

(3.1)

{
Re ε > 0

|Im ε| < c
∣∣ε2∣∣ .

Notice that this means that ε is contained in the region, in a neighbouhood of the origin, of
the points with positive real part and bounded by two circles of the same radius centered on

6



the imaginary axis and tangent one to the other at the origin. Notice in particular that, by
definition, every sequence εν associated to an α sequence (εν , nν) (see Definition 1.1) satisfies
the above property.

First of all, we fix a small neighbourhood U of the origin, such that Fε is invertible in U ,
for ε sufficiently small. In this section, we shall only be concerned with this local situation.

Then, fix sufficiently small γ < γ′, R and s such that Proposition 2.1 holds on C̃0(γ,R, s) and

C̃0(γ′, R, s) for both F0 and H0, where H0(x, y) := −F−10 (−x, y). By taking γ and γ′ sufficiently

close, we can assume that F0(C̃0(γ
′, R, s)) and H0(C̃0(γ

′, R, s)) are contained in C̃0. Denote by

C̃0, C̃
′
0 ⊂ U (dropping for simplicity the dependence on the parameters) these sets and by C0, C

′
0

their projections on the x-plane. We shall assume that Rρ� 1, and so that C̃0 ⊂ C̃ ′0 b U .
We consider the classical 1-variable change of coordinates on x (and depending on ε) given by

(3.2) uε(x) =
1

ε
arctan

(x
ε

)
=

1

2iε
log

(
iε− x
iε+ x

)
defined on C \ {±iεt : t ≥ 1 }, where log is the branch of the logarithm such that uε(0) = 0. The
geometric idea behind this map is the following: for ε small as in (3.1), circular arcs connecting
the two points ±iε are sent to parallel (and almost vertical) lines. In particular, the image of

the map uε is contained in the strip
{
− π

2|ε| < Re
(
ε
|ε|w

)
< π

2|ε|

}
and the image of the disc of

radius ε centred at the origin is the strip
{
− π

4|ε| < Re
(
ε
|ε|w

)
< π

4|ε|

}
. Notice that the inverse of

this function on
{
− π

2|ε| < Re
(
ε
|ε|w

)
< π

2|ε|

}
is given by w 7→ ε tan (εw). We gather in the next

Lemma the main properties of uε that we shall need in the sequel.

Lemma 3.1. Let uε be given by (3.2). Then the following hold.

(1) For every compact subset C ⊂ C0 there exist two positive constants M−(C) and M+(C)
such that, for every x ∈ C, we have

(3.3) − π

2 |ε|
+M− < Re

(
ε

|ε|
uε(x)

)
< − π

2 |ε|
+M+

for every ε sufficiently small.

(2) If − π
2|ε| < Re

(
ε
|ε|uε(x)

)
< − π

4|ε| , then |x| ≤ 1
π

2|ε|+Re( ε|ε|uε(x))
.

Proof. For the first assertion the main point is to notice that, by the compactness of C, we have

uε(x) +
π

2ε
→ −1

x

uniformly on C, as ε→ 0. From this we deduce the existence of constants M−,M+ such that
(3.3) holds for every x ∈ C.

For the second one, we exploit the inverse of uε on {− π
2|ε| < Re

(
ε
|ε|w

)
< π

2|ε|}, which is given

by w 7→ ε tan(εw). We have

π

4
< |Rew| < π

2
⇒ |tanw| ≤ tan |Rew| < 1

π
2 − |Rew|

and the assertion follows putting w = εuε(x). �

We define now, by means of the functions uε, different regions in the dynamical plane. In
order to do this, we have to define some constants (independent on ε) that we shall repeatedly
use in the sequel.

First of all, fix some 1 < ρ′ < ρ. Then, fix some 1 < ρ′′ < 5/4 such that∣∣∣∣ 4π(ρ′′ − 1)

tan (4π(ρ′′ − 1))

∣∣∣∣ > 1

ρ′
.
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This is possible since ρ′ > 1. In particular, ρ′′ may be very close to 1. Finally, set

(3.4) K := 2π(ρ′′ − 1) and τ :=

∣∣∣∣tan

(
−π

2
+
K

2

)∣∣∣∣ .
Without loss of generality, we can take ρ′′ small enough to ensure that K ≤ π/4. Moreover, we
shall assume that γ′ and s are small enough such that

(3.5)

{
ρ′ < ρ 1−γ′√

1+γ′2
,

4τs < 1.

Denote by Dε the subset of C given by

(3.6) x ∈ Dε ⇔ −
π

2 |ε|
+
K

|ε|
< Re

(
ε

|ε|
uε(x)

)
<

π

2 |ε|
− K

2 |ε|
.

Notice the asymmetry in the definition of Dε. This will be explained in Lemma 6.2.

iε

−iε 0

π
2ε

− π
2ε

− π
2ε + K

ε
π
2ε −

K
2ε

uε

Figure 1. The region Dε, for a real ε

Let us now move to C2. Let D̃ε be the product Dε × D2e4πρτ |ε| ⊂ C2 (the constant e4πρτ will
be explained in Proposition 4.7), where Dr ⊂ C denotes the open disc of radius r. By definition,
since K ≤ π/4, we have

(3.7) D|ε| × D2e4πρτ |ε| ⊂ D̃ε ⊂ Dτ |ε| × D2e4πρτ |ε|.

Notice in particular that the ratios τ and 2e4πρτ are independent of ε.

Set Cε := ε
|ε|C0 \Dε and C̃ε :=

(
ε
|ε| , 1

)
· C̃0 \ D̃ε the rotations of C0 and C̃0 of ε

|ε| around the

y plane. Notice that C̃ε → C̃0 and C̃ε ∪ D̃ε → C̃0 as ε→ 0. Morevover, we have C̃ε ⊂ C̃ ′0 for ε
sufficiently small (and satisfying (3.1)) The following Lemma will be very useful in the sequel.

Lemma 3.2. For ε sufficiently small, we have Fε(C̃ε) ⊂ C̃ε ∪ D̃ε.

Proof. By the choice of C̃0 and C̃ ′0, we have F0(C̃
′
0) ⊂ C̃0. Moreover, Fε = F0 +O(ε2) and Fε

uniformly converges to F0 on compact subsets of C̃ ′0. The assertion then follows from the the
first inclusion in (3.7). �

The first step in the construction of the almost Fatou coordinates consists in considering the
functions ũε given by

ũε(x, y) := uε(x).

The following lemma gives the fundamental estimate on ũε: in this chart, the map Fε(x, y)
approximately acts as a translation by 1 on the first coordinate. Here and in the following, it
will be useful to consider the expression

γε(x, y) :=
αε(x, y)

1 + xαε(x, y)
,

8



where αε(x, y) is as in (1.2). It is immediate to see that γε(x, y) = 1 + qx+ ry+O2(x, y) +O(ε2).

Lemma 3.3. Take p = (x, y) ∈ C̃ε ∪ D̃ε. Then

ũε(Fε(p))− ũε(p) = 1 + qx+ ry +O2(x, y) +O(ε2).

In particular, when γ,R, s and ε(γ,R, s) are small enough, for p = (x, y) ∈ C̃ε ∪ D̃ε we have

|ũε(Fε(p))− ũε(p)− 1| < ρ′′ − 1 and

∣∣∣∣ ε|ε| (ũε(Fε(p))− ũε(p))− 1

∣∣∣∣ < ρ′′ − 1.

Proof. Since x(Fε(x, y)) = x+ (x2 + ε2)αε(x, y), it follows that

iε− x(Fε(x, y))

iε+ x(Fε(x, y))
=

(iε− x) (1 + (x+ iε)αε(x, y))

(iε+ x) (1 + (x− iε)αε(x, y))

and so
iε+ x

iε− x
iε− x(Fε(x, y))

iε+ x(Fε(x, y))
=

1 + iεγε(x, y)

1− iεγε(x, y)
.

The desired difference is then equal to

ũε(Fε(p))− ũε(p) =
1

2iε
log

1 + iεγε(x, y)

1− iεγε(x, y)

=
1

iε

[
iεγε(x, y) +

1

3
(iεγε(x, y))3 +O(ε4)

]
= γε(x, y) +O(ε2)

= 1 + qx+ ry +O2(x, y) +O(ε2)

and the assertion is proved. �

The next step is to slightly modify our coordinate ũε to a coordinate w̃ιε satisfying the following
two properties:

(1) w̃ιε → w̃ι0 (with w̃ι0 as in (2.2)) as ε→ 0, and

(2) w̃ιε(F
n
ε (p))− n→ ϕ̃ι when ε→ 0 and n→∞ satisfying some relation to be determined

later.

We also look for functions w̃oε satisfying analogous properties on −C̃0. Recall that the functions
w̃ι0(x, y) and w̃o0(x, y) almost semiconjugate the (first coordinate of the) system F0 to a translation
by 1 (by (2.3)).

We set

w̃ε(x, y) := ũε(x, y)− q

2
log(ε2 + x2) =

1

2iε
log

(
iε− x
iε+ x

)
− q

2
log(ε2 + x2).

and consider their incoming and outgoing normalizations w̃ιε and w̃oε given by

w̃ιε(x, y) :=
1

2iε
log

(
iε− x
iε+ x

)
− q

2
log(ε2 + x2) +

π

2ε
,

w̃oε(x, y) :=
1

2iε
log

(
iε− x
iε+ x

)
− q

2
log(ε2 + x2)− π

2ε
.

It is immediate to check that the first request is satisfied, i.e., that w̃ιε(x, y)→ w̃ι0 on C̃0 (and

w̃oε(x, y)→ w̃o0 on −C̃0) as ε→ 0. In the next proposition we estimate the distance between the
reading of Fε in this new chart w̃ε and the translation by 1. We want to prove, in particular,
that now the error has no linear terms in the x variable. Indeed, notice that also for the system
F0 we had to remove this term (see Lemma 2.2) to ensure the convergence of the series with
general term A0(F

n
0 (p)), by the harmonic behaviour of x(Fn0 (p)). For convenience of notation,

we denote this error by
Aε(x, y) := w̃ε(Fε(x, y))− w̃ε(x, y)− 1

We then have the following estimate.
9



Proposition 3.4. Aε(x, y) = ry +O2(x, y) +O(ε2).

Notice that, differently from [6], here the error is still linear in y. The reason is that we do not
add any correction term in y in the expression of w̃ε. On the other hand, by our assumptions we
do not have any linear dependence in ε.

Proof. The computation is analogous to the one in [6]. By the definition of w̃ε and the analogous
property of ũε (Lemma 3.3) we have

w̃ε(Fε(x, y))− w̃ε(x, y) = ũε(Fε(x, y))− ũε(x, y)

− q

2
log(ε2 + x(Fε(x, y))2) +

q

2
log(ε2 + x2)

= 1 + qx+ ry +O2(x, y) +O(ε2)

− q

2
log

ε2 + x(Fε(x, y))2

ε2 + x2
.

It is thus sufficient to prove that

ε2 + x(Fε(x, y))2

ε2 + x2
= 1 + 2x+O2(x, y) +O(ε2).

But
ε2 + x(Fε(x, y))2 = ε2 + x2 + (x2 + ε2)2α2

ε(x, y) + 2x(x2 + ε2)αε(x, y)

= (x2 + ε2)(1 + 2xαε(x, y) +O(x2, ε2))

= (x2 + ε2)(1 + 2x+O2(x, y) +O(ε2))

and the assertion follows. �

Let us finally introduce the incoming almost Fatou coordinate, by means of the w̃ιε, as it was
done for the map F0 in (2.4). Set

(3.8) ϕ̃ιε,n(p) := w̃ιε(F
n
ε (p))− n = w̃ιε(p) +

n−1∑
j=0

Aε(F
j
ε (p)).

We shall be particularly interested in the following relation between the parameter ε and the
number of iterations.

Definition 3.5. A sequence (εν ,mν) ⊂ (C× N)N such that εν → 0 will be said of bounded type
if π

2εν
−mν is bounded in ν.

Notice that, given an α-sequence (εν , nν), the sequence (εν , nν/2) is of bounded type.
The following result in particular proves that the coordinates w̃ιε satisfy the second request.

This convergence will be crucial in order to prove Theorem 1.4. Here ϕ̃ι denotes the Fatou

coordinate on C̃0 given by Lemma 2.2.

Proposition 3.6. Let (εν ,mν)ν∈N be a sequence of bounded type. Then

ϕ̃ιεν ,mν → ϕ̃ι

locally uniformly on C̃0.

We can also define the outgoing almost Fatou coordinates on −C̃0 as

ϕ̃oε,n(p) := w̃o(F−nε (p)) + n

(recall that by assumption −C̃0 is contained in a neighbourhood U of the origin where Fε is
invertible, for ε sufficiently small). The following convergence is then an immediate consequence
of Proposition 3.6 applied to the inverse system.

Corollary 3.7. Let (εν ,mν) be a sequence of bounded type. Then

ϕ̃oεν ,mν → ϕ̃o

locally uniformly on −C̃0.
10



To prove Proposition 3.6, we need to estimate the series of the errors in (3.8). In particular,

we need to bound the modulus of the two coordinates of the orbit F jε (p), for p ∈ C̃0 and j up to
(approximately) π/(2 |ε|). This is the content of the next section. The proof of Proposition 3.6
will then be given in Section 5.

In our study, we will need to carefully compare the behaviour of Fε in C̃0 and the one of F−1ε

on −C̃0. Notice that F−1ε is given by

F−1ε

(
x
y

)
=

(
x− (x2 + ε2)(1 + (q − 1)x+ ry + +O(ε2) +O2(x, y))

y(1− ρx+O(ε2) +O2(x, y))

)
In order to compare the behaviour of the orbits for F−1ε with the ones for Fε, it will be useful to
consider the change of coordinate (x, y) 7→ (−x, y) and thus study the maps

(3.9)

Hε

(
x
y

)
=

(
x+ (x2 + ε2)(1 + (−q + 1)x+ ry + +O(ε2) +O2(x, y))

y(1 + ρx+O(ε2) +O2(x, y))

)
=

(
x+ (x2 + ε2)αHε (x, y)
y(1 + ρx+ βHε (x, y))

)
In this way, we can study both Fε and Hε in the same region of space. Notice that the main
difference between Fε and Hε is that the coefficient q has changed sign.

4. The estimates for the points in the orbit

In this section we are going to study the orbit of a point p ∈ C̃0 under the iteration of Fε.
In particular, since the main application we have in mind is the study of Fnνεν when (εν , nν) is
an α-sequence, we shall be primarily interested in the study of orbit up to an order of π/ |ε|
iterations.

Recall that the set C̃0 is given by Proposition 2.1 and in particular consists of points that
converge to the origin under F0 tangentially to the (negative) real axis of the complex direction

[1 : 0]. We shall still assume (by taking R � 1 small enough) that C̃0 is contained in a small
neighbourhood U of the origin where F0 and Fε are invertible, for ε sufficiently small.

By Lemma 3.1, for every compact C ⊂ C̃0 there exist two constants M−(C) and M+(C) such
that

(4.1) − π

2 |ε|
+M−(C) ≤ Re

(
ε

|ε|
ũε(p)

)
≤ − π

2 |ε|
+M+(C) ∀p ∈ C, ∀ε ≤ ε0.

Without loss of generality, we will assume that M− and M+ are integers and � 1 (since R� 1).

We shall divide the estimates of the coordinates of F jε (p) according to its position with respect

to the set D̃ε, i.e., according to the position of x(F jε (p)) with respect to Dε as in (3.6). The
following notation will be consistently used through all our study.

Definition 4.1. Given p ∈ C̃0 and ε such that p ∈ C̃ε, we define the entry time np(ε) and the
exit time n′p(ε) by

(4.2)
np(ε) := min { j ∈ N : F jε (p) ∈ D̃ε }

n′p(ε) := min { j ∈ N : F jε /∈ C̃ε ∪ D̃ε }

The next Proposition gives the bounds on np(ε) that we shall need in the sequel.

Proposition 4.2. Let C ⊂ C̃0 be a compact subset and M−,M+ be as in (4.1). Then, for every
p = (x, y) ∈ C and ε sufficiently small,

K

ρ′′ |ε|
− M+

ρ′′
≤ np(ε) ≤

K

(2− ρ′′) |ε|
− M−

2− ρ′′
.

In particular, F jε (p) ∈ C̃ε for 0 ≤ j < K
ρ′′|ε| −

M+

ρ′′ .
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Proof. Notice that, since Fε(C̃ε) ⊂ C̃ε ∪ D̃ε (by Lemma 3.2), we only have to study the first

coordinate of the orbit. Since C̃ε → C̃0, we have that C ⊂ C̃ε for ε sufficiently small. From
Lemma 3.3 it follows that

2− ρ′′ < Re

(
ε

|ε|
ũε(Fε(p))

)
− Re

(
ε

|ε|
ũε(p)

)
< ρ′′.

Thus, we deduce that

(4.3) − π

2 |ε|
+M− + (2− ρ′′)j < Re

(
ε

|ε|
ũε(F

j
ε (q))

)
< − π

2 |ε|
+M+ + ρ′′j

and the assertion follows from the definition of Dε (see (3.6)). �

4.1. Up to np(ε). Given p in some compact subset C ∈ C̃0, here we study the modulus of the

two coordinates of the points in the orbit of p for Fε until they fall in D̃ε, i.e., for a number of
iteration up to np(ε). We start estimating the first coordinate. Here we shall make use of the
definition of K (see (3.4)).

Lemma 4.3. Let C ⊂ C̃0 be a compact subset and M− be as in (4.1). Then∣∣x(F jε (p))
∣∣ ≤ 2

j +M−

for every p ∈ C, for ε small enough and j ≤ np(ε).

Proof. The statement follows from Lemma 3.1 (2) and the (first) inequality in (4.3). Indeed, we
have (recall that 3/4 < 2− ρ′′ < 1)∣∣x(F jε (p))

∣∣ < 1
π
2|ε| + Re( ε

|ε| ũε(F
j
ε (p)))

≤ 1
π
2|ε| −

π
2|ε| + (2− ρ′′)j +M−

≤ 1

2− ρ′′
1

j +M−
≤ 2

j +M−
.

and the inequality is proved. �

We now come to the second coordinate. Estimating this is the main difference between our

setting and the semiparabolic one. Notice that, by (1.2), in order to bound the terms
∣∣∣y(F jε (p))

∣∣∣,
we will need to get an estimate from below of the first coordinate. This will be done by means
of the following lemma.

Lemma 4.4. Let C ⊂ C̃0 be a compact subset and M− be as in (4.1). Let p, q ∈ C and
set qj := ε (tan (ε(ũε(q) + j))) and q̃j := ε (tan (ε(ũε(q) + |ε| j/ε))). Then, for some positive
constants C depending on C and Cε depending on C and ε, and going to zero as Re ε→ 0,

(4.4)
∣∣x(F jε (p))− qj

∣∣ < C
1 + log(M− + j)

(M− + j)2

and

(4.5)
∣∣x(F jε (p))− q̃j

∣∣ < C
1 + log(M− + j)

(M− + j)2
+ Cε

1

M+ + j

for every 0 ≤ j ≤ np(ε).

Notice in particular that the two estimates reduce to the same for ε real.

Proof. The idea is to first estimate the distance between the two sequences ũε(F
j
ε (p)) and

ũε(q) + j (and between ũε(F
j
ε (p)) and ũε(q) + |ε| j/ε) and then to see how this distance is

transformed by the application of the inverse of uε. Notice that, since j ≤ np(ε), by definition of

D̃ε (see (3.6)) we have Re
(
ε
|ε| ũε(F

j
ε (p))

)
< − π

4|ε| for the points in the orbit under consideration

(since K ≤ π/4).
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We first prove that

(4.6)
∣∣ũε(F jε (p))− ũε(q)− j

∣∣ ≤ C1

(
1 + log(M− + j)

)
.

Notice that this is an improvement with respect to the estimate obtained in Lemma 3.3, but
that we shall need both that estimate and the bound from above obtained in Lemma 4.3 in
order to get this one.

By the definition of M−, we have that |x(p)| and |x(q)| are bounded above by 2/M−. Recalling

that |y| ≤ s |x| for every (x, y) ∈ C̃ε, Lemma 3.3 gives∣∣ũε(F jε (p))− ũε(p)− j
∣∣ ≤ c1∑

i<j

∣∣x(F iε(p))
∣∣+ c2

∑
i<j

(∣∣x(F iε(p))
∣∣2 + |ε|2

)
.

Since by Lemma 4.3 we have
∣∣∣x(F jε (p))

∣∣∣ ≤ 2/(j +M−) and the maximal number of iterations

np(ε) is bounded by a constant times 1/ |ε|, this gives∣∣ũε(F jε (p))− ũε(p)− j
∣∣ ≤ C2

(
1 + log(M− + j)

)
for some positive C2, and the estimate (4.6) follows since the two sequences (ũε(p) + j)j and

(ũε(q) + j)j obviously stay at constant distance.

We then consider the sequence q̃j . Using (4.6), it is immediate to see that

(4.7)
∣∣ũε(F jε (p))− ũε(q)− |ε| j/ε

∣∣ ≤ C1

(
1 + log(M− + j)

)
+ |arg(ε)| j,

since the distance between the two sequences ũε(q) + j and ũε(q) + |ε| j/ε. is bounded by the
last term.

We now need to estimate how the errors in (4.6) and (4.7) are transformed when passing to
the dynamical space, and in particular recover the quadratic denominator in (4.4). By (4.7) we
have

Re

(
ε

|ε|
ũε(F

j
ε (p))

)
≥ − π

2 |ε|
+M− + j − C1

(
1 + log(M− + j)

)
− |arg ε| j

> − π

2 |ε|
+ C3(M

− + j)

for ε sufficiently small (as in (3.1)), j ≤ np(ε) and some C3 > 0. So, given L > 0, it is
enough to bound from above the modulus of the derivative of the inverse of uε on the strip{
− π

2|ε| + L ≤ Re
(
ε
|ε|w

)
< − π

4|ε|

}
by (a constant times) 1/ |L|2. This can be done with a straight-

forward computation. Recall that uε(z) = 1
ε arctan

(
z
ε

)
, so that its inverse is given by ε tan(εw).

The derivative of this inverse at a point −π/2ε + w is thus given by ψε(w) = ε2 (cos (εw))−2.
On the strip in consideration, ψε takes its maximum at w = − π

2ε + L, where we have

ψε(− π
2ε + L) = ε2/ sin2(εL). The estimate then follows since x ≤ 2 sin(x) on [0, π/4]. �

Proposition 4.5. Let C ⊂ C̃0 be a compact subset, M−,M+ be as in (4.1) and C,Cε as in
Lemma 4.4. Then(

1

ρ′
− Cε

)
1

M+ + j
− C 1 + log(M− + j)

(M− + j)2
≤
∣∣x(F jε (p))

∣∣ ≤ 2

j +M−

for every p ∈ C, for ε small enough and j ≤ np(ε).

Proof. The second inequality is the content of Lemma 4.3. Let us then prove the lower bound.
By Lemma 4.4, it is enough to get the bound

1

ρ′(M+ + j)
≤ |q̃j |

where q̃j := ε tan (ε(Re(ũε(p)) + |ε| j/ε)) as in Lemma 4.4. Notice that we arranged the points
ε
|ε| ũε(q̃j) to be on the real axis. Since we have Re ε

|ε| ũε(q0) < − π
2|ε|+M

+ (and thus Re ε
|ε|uε (q̃j) ≤
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− π
2|ε| +M+ + j), it follows that

|q̃j | ≥ |ε|
∣∣∣∣tan

(
ε

(
− π

2 |ε|
+ (M+ + j)

|ε|
ε

))∣∣∣∣ =
|ε|

tan (M+ |ε|+ j |ε|)
.

We thus have to prove that, for ε sufficiently small and j ≤ np(ε),

|ε|M+ + |ε| j
tan (M+ |ε|+ j |ε|)

>
1

ρ′
.

The left hand side is decreasing in j, so we can evaluate it at j = np(ε), which is less or equal

than K
(2−ρ′′)|ε| by Proposition 4.2. We thus need to prove that, for ε sufficiently small,

|ε|M+ + K
2−ρ′′∣∣∣tan

(
M+ |ε|+ K

2−ρ′′
)∣∣∣ > 1

ρ′
.

This follows since |ε|M+ + K
2−ρ′′ < 2K for |ε| � 1 and, by assumption, K satisfies

∣∣∣ 2K
tan(2K)

∣∣∣ > 1
ρ′ .

This concludes the proof. �

We can now give the estimate for the second coordinate.

Proposition 4.6. Let C ⊂ C̃0 be a compact subset and M+ be as in (4.1). There exists a
positive constant c1, depending on C, such that for p ∈ C and J ≤ np(ε),

∣∣y(F Jε (p))
∣∣ ≤ c1 |y(p)|

M++J−1∏
l=M+

(
1− ρ̃

l

)

for some 1 < ρ̃ < ρ
ρ′

1−γ′√
1+γ′2

.

Notice that 1 < ρ
ρ′

1−γ′√
1+γ′2

by the assumption (3.5).

Proof. We shall make use of both estimates obtained in Proposition 4.5. Since the part of orbit

which we are considering is in C̃ε (at least) up to J − 1, we have
∣∣∣y(F jε (p))

∣∣∣ ≤ s ∣∣∣x(F jε (p))
∣∣∣ and∣∣∣x(F jε (p))

∣∣∣ > |ε|, for j ≤ J − 1. So, by the expression of y(Fε(p)) in (1.2), we get

∣∣y(F Jε (p))
∣∣ ≤ |y(p)|

J−1∏
j=0

∣∣1 + ρx(F jε (p)) +O(x2(F jε (p))
∣∣

≤ |y(p)|
J−1∏
j=0

(∣∣1 + ρx(F jε (p))
∣∣+ c̃1

∣∣x2(F jε (p))
∣∣)

for some positive c̃1. For ε sufficiently small, we have C̃ε ⊂ C̃ ′0 = C̃0(γ
′, R, s) (see Proposition

2.1). This implies that
∣∣∣Im(x(F jε (p))

)∣∣∣ < γ′
∣∣∣Re

(
x(F jε (p))

)∣∣∣ for every j < np(ε). Thus∣∣1 + ρx(F jε (p))
∣∣ ≤ 1− ρ

∣∣Re
(
x(F jε (p))

)∣∣+ ρ
∣∣Im (x(F jε (p))

)∣∣
≤ 1− ρ(1− γ′)

∣∣Re
(
x(F jε (p))

)∣∣
≤ 1− ρ 1− γ′√

1 + γ′2

∣∣x(F jε (p))
∣∣
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and thus, by the estimates on x(F jε (p)) in Proposition 4.5 we deduce that (for ε sufficiently
small)

∣∣y(F Jε (p))
∣∣ ≤ |y(p)|

J−1∏
j=0

(
1− ρ 1− γ′√

1 + γ′2

(
1

ρ′
− Cε

)
1

M+ + j
+ c̃′1

1 + log(M− + j)

(M− + j)2

)

≤ c1 |y(p)|
J−1∏
j=0

(
1− ρ̃ 1

M+ + j

)
where ρ̃ is some constant such that 1 < ρ̃ < ρ

ρ′
1−γ′√
1+γ′2

, and the assertion follows. �

4.2. From np(ε) to n′p(ε). Notice that D̃ε needs not to be Fε-invariant. In this section we

estimate the second coordinate for points in an orbit entering D̃ε (and in particular explain the

constant e4πρτ in the definition of D̃ε). Our goal is prove a lower bound on n′p(ε) (and moreover

to prove that the orbit cannot come back to C̃ε). This will in particular give an estimate for the

coordinates of the point in the orbit for j up to the lower bound of n′p(ε) (since in D̃ε both |x|
and |y| are bounded by (a constant times) |ε|).

Proposition 4.7. Let C ⊂ C̃0 be a compact subset. Then, for every p ∈ C, and np(ε) < j ≤ n′p(ε),
we have ∣∣y(F jε (p))

∣∣ ≤ e4πρτ ∣∣∣y(F
np(ε)
ε (p))

∣∣∣ ≤ e4πρτ |ε|
Proof. Recall that τ = tan

(
−π

2 + K
2

)
and that by the assumption (3.5) we have 4sτ < 1. Since

the part of orbit under consideration is contained in D̃ε (and thus
∣∣∣x(F jε (p))

∣∣∣ ≤ τ |ε|, by (3.7)),

we have ∣∣y(F jε (p))
∣∣ ≤ ∣∣∣y(F

np(ε)
ε (p))

∣∣∣ j−1∏
i=np(ε)

(1 + 2ρτ |ε|)

≤
∣∣∣y(F

np(ε)
ε (p))

∣∣∣ b
π−K/2

(2−ρ′′)|ε| c∏
i=np(ε)

(1 + 2ρτ |ε|) .

The product is bounded by (1+2ρτ |ε|)2π/|ε| ≤ e4πρτ as ε→ 0. Moreover, we have
∣∣∣y(F

np(ε)
ε (p))

∣∣∣ ≤∣∣∣y(F
np(ε)−1
ε (p))

∣∣∣ ∣∣∣1 + ρx(F
np(ε)−1
ε )

∣∣∣ ≤ 4sτ |ε| < |ε|. This gives the assertion. �

We can now give the estimate on n′p(ε).

Proposition 4.8. Let C ⊂ C̃0 be a compact subset and M−,M+ be as in (4.1). Then, for every
p ∈ C,

π −K/2
ρ′′ |ε|

− M+

ρ′′
≤ n′p(ε) ≤

π −K/2
(2− ρ′′) |ε|

− M−

2− ρ′′
.

Moreover, we have
∣∣∣y(F jε (p))

∣∣∣ ≤ e4πρτ |ε| for np(ε) ≤ j < n′p(ε) and

Re

(
ε

|ε|
ũε

(
F
n′p(ε)
ε

))
≥ π −K

2 |ε|
.

In particular, once entered in D̃ε, the orbit cannot come back to C̃ε.

Proof. By Proposition 4.7, the modulus of the second coordinate of the points of the orbit is

bounded by e4ρπτ |ε| for np(ε) < j ≤ n′p(ε). Since for j ≤ np(ε) it is bounded by s
∣∣∣x(F jε (p))

∣∣∣,
the assertion follows from Equation (4.3). �
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4.3. After n′p(ε). In order to study the behaviour of Fε after D̃ε, we shall make use of the
family Hε introduced in (3.9). The following proposition is an immediate consequence of the
analogous results for Fε (first assertion of Lemma 4.4). We denote by nHp (ε) the entry time for
H (see Definition 4.1).

Lemma 4.9. Let C ⊂ C̃0 be a compact subset and M− be as in (4.1). Let p, q be contained in

some compact subset C ⊂ C̃0. Then, for ε sufficiently small,∣∣x(F jε (p))− x(Hj
ε (q))

∣∣ < C
1 + log(M− + j)

(M− + j)2

for every 0 ≤ j ≤ min(np(ε), n
H
q (ε)), for some positive constant C.

We will get the estimates on the second coordinate in this part of the orbit directly in Section
6, when proving Theorem 1.4, by applying Proposition 4.6 to both Fε and Hε.

5. A preliminary convergence: proof of Proposition 3.6

In this section we prove Proposition 3.6. Namely, given a sequence (εν ,mν) of bounded type

(see Definition 3.5), we prove that ϕ̃ιεν ,mν → ϕ̃ι and ϕ̃oεν ,mν → ϕ̃o, locally uniformly on C̃0

and −C̃0, where ϕ̃ι and ϕ̃o are the Fatou coordinates for F0 given by Lemma 2.2. Recall that
by assumption these two sets are contained in a neighbourhood U of the origin where Fε is
invertible, for ε sufficiently small, ans thus in particular where ϕ̃o is well defined. We shall need
the following elementary Lemma.

Lemma 5.1. Let a ∈ R, be strictly greater than 1. Then, for every j0 ≥ l0 ≥ 1 such that
0 < 1− a

l < 1 for every l ≥ l0, the series

∞∑
j=j0

j∏
l=l0

(
1− a

l

)
converges.

Notice that the Lemma is false when a = 1, since the series reduces to an harmonic one. In
our applications a will essentially be ρ, which we assume by hyphotesis to be greater than 1.

Proof. As in [16, Lemma 4], let us set Pj :=
∏j
l=l0

(1 − a
l ) and notice that the Pj ’s admit an

explicit expression as

Pj = c
Γ(j + 1− a)

Γ(j + 1)

for some constant c = c(l0), where Γ is the Euler Gamma function. Since Γ(j + 1− a) ∼ 1
ja j! as

j →∞, we deduce that Pj ∼ c 1
ja , and so

∑
j Pj converges. �

We can now prove Proposition 3.6. The proof follows the main ideas of the one of [6, Theorem
2.6]. The major issue (and the main difference with respect to [6]) will be to take into account
the errors due the O(y)-terms in the estimates. This will be done by means of the following
Lemma, which relies on Propositions 4.6 and 4.7.

Lemma 5.2. Let p ∈ C̃0 and np(ε) be as in (4.2). Let n(ε) be such that np(ε) ≤ n(ε) ≤ 3π
5|ε| .

Then the following hold:

(1) the function ε 7→
∑n(ε)

j=1

(∣∣∣y (F jε (p)
)∣∣∣+

∣∣∣y (F j0 (p)
)∣∣∣) is bounded, locally uniformly on p,

for ε sufficiently small;

(2) limε→0
∑n(ε)

j=np(ε)+1

∣∣∣y(F jε (p))
∣∣∣ = 0, locally uniformly on p.
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Notice that, by Proposition 4.8, n′p(ε) ≥
π−K/2
ρ′′|ε| −

M+

ρ′′ ≥
7π
8

5
4|ε| −

M+

ρ′′ ≥
3π
5|ε| for ε sufficiently

small. So, in particular, the orbit up to time n(ε) is contained in C̃ε ∪ D̃ε. On the other hand,

we have np(ε) + M−

2−ρ′′ ≤
K

(2−ρ′′)|ε| ≤
π/4

(2−5/4)|ε| −
M−

2−ρ′′ ≤
π
3|ε| . So, in particular, the assumption of

Lemma 5.2 is satisfied when (εν , n(εν)) is of bounded type.

Proof. We start with the first point. The convergence of the second part of the series is immediate

from Proposition 2.1, by the harmonic behaviour of x(F j0 (p)) and the estimate (2.1). Let us
thus consider the first part. Here we split this series in a first part, with the indices up to np(ε)
and in the remaining part starting from np(ε) + 1. The sum is thus given by

np(ε)∑
j=1

∣∣y (F jε (p)
)∣∣+

n(ε)∑
j=np(ε)+1

∣∣y (F jε (p)
)∣∣

and, by Propositions 4.6 and 4.7, this is bounded by (a constant times)

np(ε)∑
j=1

M++j−1∏
l=M+

(
1− ρ̃

l

)
+

np(ε)−1+M+∏
j=M+

(
1− ρ̃

j

) · n(ε)∑
j=np(ε)

e4πρτ

where M+ is as in (4.1) and ρ̃ is (as in Proposition 4.6) a constant greater than 1. By the lower
estimates on np(ε) in Proposition 4.2 and the asymptotic behaviour proved in Lemma 5.1, the
last expression is bounded by

∞∑
j=1

j−1+M+∏
l=M+

(
1− ρ̃

l

)
+

3π

5 |ε|
· e4πρτ ·

(
1

K
ρ′′|ε| −

M+

ρ′′ − 1 +M+

)ρ̃
.

The first term is bounded, again by Lemma 5.1, and the second one (which, up to a constant, is
in particular a majorant for the sum in the second point in the statement) goes to zero as ε→ 0
(since ρ̃ > 1). This proves both statements. �

Proof of Proposition 3.6. First of all, recall that by Lemma 2.2 the sequence

ϕ̃ι0,mν = w̃ι0 +

mν−1∑
j=0

A0(F
j
0 (p))

converges to a (1-dimensional) Fatou coordinate ϕ̃ι (for this we just need that mν → ∞). It
is then enough to show that the difference ϕ̃ιεν ,mν − ϕ̃ι0,mν goes to zero as ν → ∞. Here we
shall make use of the hypothesis that the sequence (εν ,mν) is of bounded type. The difference
is equal to

ϕ̃ιεν ,mν (p)− ϕ̃ι0,mν (p) = w̃ιεν (p)− w̃ι0(p) +

mν−1∑
j=0

(
Aεν (F jεν (p))−A0(F

j
0 (p))

)
and we see that the first difference goes to zero as ν →∞. We thus only have to estimate the
second part, whose modulus is bounded by∑

I

+
∑
II

:=

mν−1∑
j=0

∣∣∣A0(F
j
εν (p))−A0(F

j
0 (p))

∣∣∣
+

mν−1∑
j=0

∣∣Aεν (F jεν (p))−A0(F
j
εν (p))

∣∣ .
Let us consider the first sum. First of all, we prove that the majorant

mν−1∑
j=1

(∣∣A0(F
j
εν (p))

∣∣+
∣∣∣A0(F

j
0 (p))

∣∣∣)
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converges. This follows from the fact that A0(p) = O(x2, y) by Proposition 3.4, the estimates on∣∣∣x(F j0 (p))
∣∣∣ and

∣∣∣x(F jεν (p))
∣∣∣ in Propositions 2.1 and 4.5 and from Lemma 5.2 (1). Indeed, with

M+ as in (4.1), we have (for some positive constant K0),∑
I

≤
mν−1∑
j=1

(∣∣A0(F
j
εν (p))

∣∣+
∣∣∣A0(F

j
0 (p))

∣∣∣)

≤ K0

mν−1∑
j=1

(∣∣x(F jεν (p))
∣∣2 +

∣∣∣x(F j0 (p))
∣∣∣2)+K0

mν−1∑
j=1

(∣∣y(F jεν (p))
∣∣+
∣∣∣y(F j0 (p))

∣∣∣)

≤ K0

mν−1∑
j=1

(
8

(j +M+)2
+ |εν |2

)
+K0

mν−1∑
j=1

(∣∣y(F jεν (p))
∣∣+
∣∣∣y(F j0 (p))

∣∣∣) ≤ B
where in the last passage we used the assumption that the sequence (εν ,mν) is of bounded type

to estimate the sum of the |εν |2’s and in order to apply Lemma 5.2 (1) for the second sum.

We now prove that
∑
I

goes to zero, as ν →∞. Given any small η, we look for a sufficiently

large J such that the sum
mν−1∑
j=J

∣∣∣A0(F
j
εν (p))−A0(F

j
0 (p))

∣∣∣
is less than η for |εν | smaller than some ε0. The convergence to 0 of

∑
I

will then follow from

the fact that A0(F
j
εν (p))− A0(F

j
0 (p))→ 0 as ν →∞, for every fixed j. As above, this sum is

bounded by

(5.1)

mν−1∑
j=J

(
8

(j +M+)2
+ |εν |2

)
+

mν−1∑
j=J

∣∣y(F jεν (p))
∣∣+

mν−1∑
j=J

∣∣∣y(F j0 (p))
∣∣∣ .

For J sufficiently large, the first sum is smaller than η/3 (uniformly in ε), since (εν ,mν) is of

bounded type. The same is true for the third one, by the harmonic behaviour of x(F j0 (p)) and
the estimate (2.1). We are thus left with the second sum of (5.1). We split it as in Lemma 5.2:

(5.2)

mν−1∑
j=J

∣∣y(F jεν (p))
∣∣ ≤ np(εν)∑

j=J

∣∣y(F jεν (p))
∣∣+

mν−1∑
j=np(εν)+1

∣∣y(F jεν (p))
∣∣ .

Lemma 5.2 (2) implies that the second sum of the right hand side goes to zero as εν → 0. We
are thus left with the first sum in the right hand side of (5.2). We estimate it by applying twice
Proposition 4.6 and Lemma 5.1:

np(εν)∑
j=J

∣∣y(F jεν (p))
∣∣ ≤ c1 np(εν)∑

j=J

∣∣y(F Jεν (p))
∣∣ j−1+M+∏
l=J+M+

(
1− ρ̃

l

)

≤ c1
∣∣y(F Jεν (p))

∣∣ ∞∑
j=J

j−1+M+∏
l=J+M+

(
1− ρ̃

l

)
≤ C1

∣∣y(F Jεν (p))
∣∣

≤ C2 |y(p)|
J−1+M+∏
l=M+

(
1− ρ̃

l

)
.

We can then take J large enough (and independent from ε) so that the last term is smaller than
η
6 . Notice in particular the independence of J from ε (for ε sufficiently small).
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So, until now we have proved that
∑

I goes to zero as ν →∞. It is immediate to check that
the same holds for

∑
II . Indeed,

∑
II

≤
mν−1∑
j=0

∣∣Aεν (F jεν (p))−A0(F
j
εν (p))

∣∣ ≤ mν−1∑
j=0

K1 |εν |2

for some positive constant K1. The assertion then follows since (εν ,mν) is of bounded type. �

6. The convergence to the Lavaurs map

In this section we prove Theorem 1.4. We shall exploit the 1-dimensional Theorem 1.2, i.e.,

the convergence of the restriction of Fnνεν on C0 = C̃0 ∩ { y = 0 } to the 1-dimensional Lavaurs
map Lα.

Lemma 6.1. Let p0 ∈ C̃0 ∩ { y = 0 } and (εν , nν) be an α-sequence. Assume that q0 := Lα(p0)

belongs to −C̃0 ∩{ y = 0 }. Then for every δ there exists η such that (after possibly shrinking C̃0)

ϕ̃o
(
−C̃0 ∩ Fnνεν

(
C̃0 ∩

(
ϕ̃ι
)−1 (D(ϕ̃ι(p0), η)

)))
⊂ D(ϕ̃o(q0), δ)

for every ν sufficiently large.

The need of shrinking C̃0 is just due to the fact that Proposition 3.6 and Corollary 3.7 give

the convergence on compact subsets of C̃0 (and −C̃0).

Proof. Let mo
ν and mι

ν be sequences of bounded type such that mι
ν +mo

ν = nν . By definition of

ϕ̃ιε,n and ϕ̃oε,n we have

(6.1)

ϕ̃oεν ,moν ◦ F
nν
εν (p) = w̃εν

(
F−m

o

εν (Fnνεν (p))
)
− π

2εν
+mo

ν

= w̃εν

(
F
mιεν
εν (p)

)
− π

2εν
−mι

ν + nν

= ϕ̃ιεν ,moν (p) + nν −
π

εν

whenever Fnνεν (p) ∈ −C̃0. The assertion follows from Proposition 3.6 and Corollary 3.7. �

Lemma 6.2. Let p0 ∈ C̃0 ∩ { y = 0 } and (εν , nν) be an α-sequence. Assume that q0 := Lα(p0)

belongs to −C̃0 ∩ { y = 0 }. Then, for every polydisc ∆q0 centered at q0 and contained in −C̃0

there exists a polydisc ∆p0 centered at p0 and contained in C̃0 such that Fnνεν (∆p0) ⊂ ∆q0 for ν
sufficiently large.

Proof. Set ∆q0 = D1
q0 × D2

q0 and analogously ∆p0 = D1
p0 × D2

p0 . By Lemma 6.1 it is enough to
prove that, if ∆p0 is sufficiently small, for every ν sufficiently large we have

max
D1
p0
×∂D2

p0

∣∣y(Fm
ι
ν

εν )
∣∣ ≤ 1

2
min

D1
q0
×∂D2

q0

∣∣y(F−m
o
ν

εν )
∣∣ .

We shall use the estimates collected in Section 4. First of all, notice that, by Proposition 4.7, it
is enough to prove that

max
p∈D1

p0
×∂D2

p0

∣∣∣y(F
np(εν)
εν )

∣∣∣ ≤ c min
q∈−D1

q0
×∂D2

q0

∣∣∣y(H
nν−n′p(εν)
εν )

∣∣∣
for some constant c, where Hε is as in (3.9). Geometrically, we want to ensure that the vertical
expansion in the third part of the orbit (i.e., after n′p(ε)) is balanced by a suitable contraction
during the first part (i.e., up to np(ε)).

This means proving that, for every p ∈ D1
p0 × ∂D

2
p0 and q ∈ −D1

q0 × ∂D
2
q0 ,
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(6.2)

∣∣∣∣∣∣
np(ε)∏
j=0

(
1 + ρx(F jεν (p)) + βεν (x(F jεν (p)), y(F jεν (p)))

)∣∣∣∣∣∣
≤ c′

∣∣∣∣∣∣
nν−n′p(εν)∏

j=0

(
1 + ρx(Hj

εν (q)) + βHεν (x(Hj
εν (q)), y(Hj

εν (q)))
)∣∣∣∣∣∣

for some positive c′. First of all, we claim that there exists a constant K1 (independent from
ν) such that K1 + np(εν) ≥ nν − n′p(εν), i.e., the number of points in the orbit for Fε before

entering in D̃εν (and thus in the contracting part) is at least the same (up to the constant) of
the number of points in the expanding part. Indeed, recalling the definition (3.4) of K, we have
K

ρ′′|εν | ≥
π
|εν | −

π−K/2
ρ′′|εν | . So, by Propositions 4.2 and 4.8 we have, with M+ as in (4.1),

1 + |α|+ M+

ρ′′
+ np(εν) ≥ 1 + |α|+ M+

ρ′′
+

K

ρ′′ |εν |
− M+

ρ′′

≥ nν −
π

|εν |
+

π

|εν |
− π −K/2

ρ′′ |εν |
≥ nν − n′p(εν)

for ν sufficiently large, and the desired inequality is proved. The inequality (6.2) now follows
from Lemma 4.9 (and Proposition 4.5), and the assertion follows. �

We can now prove Theorem 1.4.

Proof of Theorem 1.4. First of all, we can assume that p0 belongs to C0 = { y = 0 } ∩ C̃0.

Indeed, there exists some N0 such that FN0
0 (p0) ∈ C̃0. So, we can prove the Theorem for the

(α−N0)-sequence (εν , nν −N0) and the base point FN0
0 (p0) and the assertion then follows since

FN0
εν → FN0

0 . For the same reason, we can assume that q0 := Lα(p0) belongs to −C̃0.
By Lemma 6.2, there exists a polydisc ∆p0 centered at p0 such that the sequence Fnνεν is

bounded on ∆p0 . In particular, up to a subsequence, this sequence converges to a limit map

L, defined in ∆p0 with values in −C̃0. Notice that the limit must be open, since the same
arguments apply to the inverse system. The relation (1.3) then follows from (6.1) and the
assertion follows. �

In the following, given a subset U ⊂ C̃0, we denote by Tα(U) the set

Tα(U) := {L : U → C2 : ∃(εν , nν) α− sequence such that Fnνεν → L on U }

We denote by Tα the union of all the Tα(U)’s, where U ⊂ C̃0, and call the elements of Tα
Lavaurs maps. Theorem 1.4 can then be restated as follows: every compact subset C0 ⊂ C0 has

a neighbouhhood UC0 ⊂ C̃0 such that every Tα(UC0) is not empty.

7. The discontinuity of the large Julia set

In this section we shall prove Theorem 1.6. By means of the Lavaurs maps L, we first define
a 2-dimensional analogous of the Julia-Lavaurs set J1(F0, L), and use this set to estimate the
discontinuity of the Julia set at ε = 0.

Definition 7.1. Let U ⊂ C̃0 and L ∈ Tα(U). The Julia-Lavaurs set J1(F0, L) is the set

J1(F0, L) := { z ∈ P2|∃m ∈ N : Lm(z) ∈ J1(F0) }.

The condition Lm(z) ∈ J1(F0) means that we require Li(z) to be defined, for i = 0, . . .m. In
particular, we have z, . . . , Lm−1(z) ∈ U .

From the definition it follows that J1(F0) ⊆ J1(F0, L), for every L ∈ Tα. The following result
gives the key estimate for the lower-semicontinuity of the large Julia sets at ε = 0. The proof is
analogous to the 1-dimensional case, exploiting the fact that the maps L are open.

20



Theorem 7.2. Let L ∈ Tα be defined on U ⊂ C̃0 and (nν , εν) be an α-sequence such that
Fnνεν → L on U . Then

lim inf J1(Fεν ) ⊇ J1(F0, L).

Proof. The key ingredients are the lower semicontinuity of J1(Fε) and Theorem 1.4. By definition,
the set of all z’s admitting an m such that Lm(z) ∈ J1(F0) is dense in J1(F0, L). Thus, given z0
and m satisfying the previous condition, we only need to find a sequence of points zν ∈ J1(Fεν )
such that zν → z0, for some sequence εν → 0.

Set p0 := Lm(z0). By the lower semicontinuity of ε 7→ J1(Fε) we can find a sequence of points
pν ∈ J1(Fεν ) such that pν → p0. By Theorem 1.4 we have Fmnνεν → Lm uniformly near z0, and

this (since L is open) gives a sequence zν converging to z0 such that Fmnνεν (zν) = pν ∈ J1(Fεν ).

This implies that zν ∈ J1(Fεν ), and the assertion follows. �

Notice the function ε 7→ J1(Fε) is discontinuous at ε = 0 since, by means of just the one-

dimensional Lavaurs Theorem 1.2, we can create points in C̃0 ∩ { y = 0 } (which is contained in
the Fatou set) satisfying Lα(p) ∈ J1(F0). Indeed, the following property holds:

(7.1) ∀p ∈ C̃0 ∩ { y = 0 } there exists α such that p ∈ J1((F0)|y=0 , Lα).

where Lα is the 1-dimensional Lavaurs map on the invariant line { y = 0 } associated to α. Indeed,
since ∂B ⊆ J1(F0) and B intersects the repelling basin R, we can find q ∈ J1(F0) ∩ { y = 0 } in
the image of the Fatou parametrization ψo for (F0)|{ y=0 }. The assertion follows considering α

such that Lα(p) = q.
In our context, given any p ∈ C0 and q ∈ −C0 as above, by means of Theorem 1.4 we can

consider a neighbourhood of p where a sequence Fnνεν converges to a Lavaurs map L (necessarily

coinciding with Lα on the line { y = 0 }). Since L is open, we have that L−1(J1(F0)) is contained
in the liminf of the Julia sets J1(fεν ). This gives a two-dimensional estimate of the discontinuity.

8. The discontinuity of the filled Julia set

For regular polynomial endomorphism of C2 it is meaningful to consider the filled Julia set,
defined in the following way.

Definition 8.1. Given a regular polynomial endomorphism F of C2, the filled Julia set K(F )
is the set of points whose orbit is bounded.

Equivalently, given any sufficiently large ball BR, such that F−1(BR) b BR, the filled Julia
set is equal to

K(F ) :=
⋂
n≥0

F−n(BR).

In this section we shall prove that, if the family (1.2) is induced by regular polynomials, then
the set-valued function ε 7→ K(Fε) is discontinuous at ε = 0.

Recall that the function ε 7→ K(Fε) is always upper semicontinuous (see [10]). Here the key
definition will be the following analogous of the filled Lavaurs-Julia set in dimension 1 ([14]).

Definition 8.2. Given U ⊂ C̃0 and L ∈ Tα(U), the filled Lavaurs-Julia set K(F0, L) is the
complement of the points p such that there exists m ≥ 0 such that Lm(p) is defined and is not
in K(F0).

Notice in particular that K(F0, L) ⊆ K(F0) and coincides with K(F0) outside U . Moreover,
notice that K(F0, L) is closed.

Theorem 8.3. Let L ∈ Tα be defined on some U ⊂ C̃0. and let (εν , nν) be an α-sequence such
that Fnνεν → L on U . Then

K(F0, L) ⊇ lim supK(Fεν ).
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Proof. Since the set-valued function ε 7→ Kε is upper-semicontinuous, there exists a large closed
ball B such that, for ν ≥ ν0, we have ∪νK(Fεν ) ⊂ B. Without loss of generality we can assume
that ν0 = 1. Let us consider the space

P := { { 0 } ∪
⋃
ν

{εν} } ×B

and its subset X given by

X := { (0, z) : x ∈ K(F0, L) } ∪
⋃
ν

{ (εν , z) : z ∈ K(Fεν ) } .

By [10, Proposition 2.1] and the fact that P is compact, it is enough to prove that X is closed
in P . This follows from Theorem 1.4. Indeed, let z be in the complement of K(F0, L). Since
this set is closed, a small ball Bz around z is outside K(F0, L), too. By definition, this means
that, for some m, we have Lm(Bz) ⊂ K(F0)c. Theorem 1.4 implies that, up to shrinking the ball
Bz, we have Fnνεν (Bz) ⊂ K(F0)c for ν sufficiently large. The upper semicontinuity of ε 7→ K(Fε)
then implies that Fnνεν (Bz) ⊂ K(Fεν )c, for ν large enough. So, Bz ⊂ K(Fεν )c and this gives the
assertion. �

Corollary 8.4. Let Fε be a holomorphic family of regular polynomials of C2 as in (1.2). Then
the set-valued function ε 7→ K(Fε) is discontinuous at ε = 0.

Proof. The argument is the same used to prove the discontinuity of J1(Fε) in Section 7. If the
function ε 7→ K(Fε) were continuous, Theorem 8.3 and the fact that K(F0, L) ⊆ K(F0) for every

Lavaurs map L would imply that all the K(F0, L)’s were equal to K(F0). Since C̃0 ⊆ K(F0), it

is enough to find p ∈ C̃0 and α such that p /∈ K(F0, L). To do this, it is enough to take any point
q in { y = 0 } not contained in K(F0) (recall that K(F0) is compact) and then consider a point

p ∈ C̃0 ∩ { y = 0 } and α such that Lα(p) = q. The existence of such points is a consequence
of the property (7.1). Then, consider a neighbourhood U of p such that some sequence Fnνεν
converges to a Lavaurs map L on U . The assertion follows since L is open and coincides with
Lα on the intersection with the invariant line { y = 0 }. �
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