
ESAIM: M2AN 58 (2024) 131–155 ESAIM: Mathematical Modelling and Numerical Analysis
https://doi.org/10.1051/m2an/2023102 www.esaim-m2an.org

OPTIMIZING NETWORK ROBUSTNESS VIA KRYLOV SUBSPACES

Stefano Massei1,* and Francesco Tudisco2,3

Abstract. We consider the problem of attaining either the maximal increase or reduction of the ro-
bustness of a complex network by means of a bounded modification of a subset of the edge weights.
We propose two novel strategies combining Krylov subspace approximations with a greedy scheme and
an interior point method employing either the Hessian or its approximation computed via the limited-
memory Broyden-Fletcher-Goldfarb-Shanno algorithm (L-BFGS). The paper discusses the computa-
tional and modeling aspects of our methodology and illustrates the various optimization problems
on networks that can be addressed within the proposed framework. Finally, in the numerical exper-
iments we compare the performances of our algorithms with state-of-the-art techniques on synthetic
and real-world networks.

Mathematics Subject Classification. 65F60, 90B10, 05C82, 91D30, 05C50.

Received March 8, 2023. Accepted December 12, 2023.

1. Introduction

When studying and analyzing a complex network, one of the main questions is how to identify important
nodes and robust connections among them, given the network topology and no other external data. There is
a broad literature on the subject, with many different models and associated algorithms. As a network can be
naturally represented by a matrix, many successful approaches strongly rely on tools from linear algebra and
matrix analysis [12,25].

Spectral models, such as eigenvector centrality [54], PageRank [33], or resistance distance [40], are based on
the eigenvalues and eigenvectors of graph matrices and rely on a mutually reinforcing argument, while path-
based models, such as Katz centrality [55], subgraph centrality and total communicability [22], use the entries
of suitable graph matrix functions and are based on weighted walk counts.

For example, if 𝑥 ≥ 0 is the Perron eigenvector of the adjacency matrix 𝐴 of an undirected graph 𝐺 = (𝑉,𝐸),
then 𝐴𝑥 = 𝜆𝑥 with 𝜆 > 0 and hence 𝑥𝑖 is proportional to

∑︀
𝑗 𝐴𝑖𝑗𝑥𝑗 > 0, for all the nodes 𝑖 ∈ 𝑉 . Thus, we can

interpret the entries of 𝑥 as an importance score for the nodes of 𝐺, known as Bonacich centrality or eigenvector
centrality [54], where 𝑥𝑖, the importance of node 𝑖, is mutually reinforced by the importance of its neighbors.

Keywords and phrases. Network optimization, low-rank approximation, graph robustness optimization, matrix functions,
Krylov-based optimization.

1 Department of Mathematics, University of Pisa, Pisa, Italy.
2 School of Mathematics & Maxwell Institute, University of Edinburgh, Edinburgh, UK.
3 Gran Sasso Science Institute, L’Aquila, Italy.
*Corresponding author: stefano.massei@unipi.it

c○ The authors. Published by EDP Sciences, SMAI 2024

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1051/m2an/2023102
https://www.esaim-m2an.org
https://orcid.org/0000-0003-1813-4181
mailto:stefano.massei@unipi.it
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0

132 S. MASSEI AND F. TUDISCO

Similarly, if we are given a function of the adjacency matrix

𝑓(𝐴) = 𝑎0𝐼 + 𝑎1𝐴 + 𝑎2𝐴
2 + 𝑎3𝐴

3 + . . . , (1)

where the coefficients 𝑎𝑘 are nonnegative, we can interpret the diagonal entries of 𝑓(𝐴) as node impor-
tances. In fact, in a weighted graph 𝐺, the weight of a walk from 𝑖 to 𝑗 of length 𝑘 can be defined as
𝐴𝑢0𝑢1𝐴𝑢1𝑢2 . . . 𝐴𝑢𝑘−1𝑢𝑘

> 0, where all pairs 𝑢𝑖𝑢𝑖+1 are edges and 𝑢0 = 𝑖, 𝑢𝑘 = 𝑗. Thus, the sum of the
weights of all the walks of length 𝑘 from 𝑖 to 𝑗 corresponds to (𝐴𝑘)𝑖𝑗 and the diagonal entry 𝑓(𝐴)𝑖𝑖 defines the
so-called 𝑓–centrality or subgraph centrality score of the node 𝑖 [24], which corresponds to the weighted sum of
all the walks of any length from 𝑖 and returning to 𝑖, i.e. the subgraphs containing 𝑖. Related to the individ-
ual centrality of a node are important notions of network robustness and network connectivity, which can be
quantified by the summations

∑︀
𝑖 𝑥𝑖,

∑︀
𝑖 𝑓(𝐴)𝑖𝑖 and

∑︀
𝑖𝑗 𝑓(𝐴)𝑖𝑗 , respectively (see e.g. [10,20]). These quantities

measure the degree of resiliency of a network in the face of accidental failures or deliberate attacks, modeled as
edge modification, removal, or insertion. Both spectral and matrix function-based centrality measures have been
successfully used in a variety of settings, including discovering relevant proteins in protein-protein interaction
networks [19], as well as keystone species in ecological food webs and landscapes [21].

While spectral centralities require the evaluation of one extremal eigenvector and can thus be computed
in a relatively cheap way by means of standard sparse numerical eigensolvers, computing the entries of a
matrix function can be in general a much more expensive operation, in particular when the matrix is large. This
numerical challenge has prompted extensive research work in recent years. Based on Krylov subspace techniques
as well as Gauss-Lobatto quadrature formulas, a variety of efficient numerical techniques have been proposed
for large-scale sparse networks [2, 6, 26,27,36,47].

Rather than the problem of their efficient evaluation, in this work we focus on the problem of the optimization
of matrix function-based node centrality scores. Roughly, we look for a “small” modification 𝐴+𝑋 of the current
network 𝐴 that yields the largest centrality increase. Here small means that only a limited number of nonzero
entries are allowed in 𝑋 or, in other terms, that we are allowed to modify only a limited number of edges of
the graph. Clearly, the resulting optimization task is more complicated than the centrality evaluation problem,
as already simple first-order optimization methods would require evaluating both 𝑓(𝐴 + 𝑋) and its Fréchet
derivative for many different choices of 𝑋. Based on recent work on low-rank updates of matrix functions and
trace estimators [5,15], we propose two strategies based on the efficient approximation of 𝑓(𝐴 + 𝑋)− 𝑓(𝐴) and
the Fréchet derivative of 𝑓(𝐴) along multiple directions, to optimize the robustness measure Tr(𝑓(𝐴 + 𝑋)) :=∑︀

𝑖 𝑓(𝐴 + 𝑋)𝑖𝑖, for both the combinatorial (unweighted) case, in which both 𝐴 and 𝐴 + 𝑋 are binary matrices,
and the continuous (weighted) case, in which edge weight tuning is allowed. Among the most frequently used
functions 𝑓 we mention the exponential function 𝑓(𝑧) = exp(𝑧), which corresponds to the so-called natural
connectivity [22]; the hyperbolic sine and consine functions 𝑓(𝑧) = sinh(𝑧), 𝑓(𝑧) = cosh(𝑧), which are often used
as a measure of bipartitedness and to define so-called returnability [23]; the resolvent function 𝑓(𝑧) = (1−𝛼𝑧)−1,
which defines the so-called Katz centrality [24].

The remainder of the paper is structured as follows. In Section 2 we introduce the optimization problems that
we are going to analyze. Section 3 describes the greedy algorithm that we propose in the context of unweighted
binary graphs and other techniques that will be used for comparison, see Section 3.4. Section 4 is dedicated
to the gradient method that we propose for weighted graphs. Finally, Section 5 reports numerical experiments
concerning optimization problems on both weighted and unweighted graphs.

1.1. Related work

Optimizing network robustness or network connectivity is in general very challenging, due to the combinatorial
nature of the problem. A large body of work has focused on spectral-based scores. The problem of minimizing
the largest eigenvalue (spectral radius) of 𝐴 by a small number of edge and node removals is considered in
[48,53,57]. This is shown to be an NP-hard problem which is addressed by a number of heuristics in [48,53] or
via a semidefinite program with polynomial time complexity in [57]. A similar problem is considered in [39,51],

OPTIMIZING NETWORK ROBUSTNESS VIA KRYLOV SUBSPACES 133

with the aim of optimizing the network diffusion rate. The works [31,56] studied the problem of maximizing the
algebraic connectivity, i.e., the second smallest eigenvalue of the graph Laplacian, and propose both a convex
relaxation-based method and a greedy perturbation heuristic, based on the entries of the Fiedler eigenvector of
the initial network. In [9] the problem of modifying network edges to reduce external influence is studied. This
is done by controlling the asymptotic consensus value 𝑥𝑇 𝑎, where 𝑥 is the eigenvector centrality, i.e. the Perron
eigenvector of 𝐴, and 𝑎 is a vector of external user consensus coefficients. The eigenvector centrality 𝑥 is also the
subject of [45], where it is observed that, often, modifying a very small subset of edges of a real-world network
is enough to drastically change and thus control the eigenvector centrality value of any node in the network.
Instead, the Perron eigenvector of the PageRank matrix, so–called PageRank or random walk centrality, is the
subject of [30].

Alongside spectral-based coefficients, other network scores have been considered by several authors. For
example, [43] deals with the problem of improving both coverage and betweenness centralities by adding a small
set of edges to the network. Greedy algorithms for improving coverage and closeness centralities are proposed
in [17] and [16], respectively.

Centrality optimization problems for indices defined by means of matrix functions are considered for instance
in [3, 10, 32]. These works target the optimization of a number of robustness and connectivity coefficients of
the network, by modifying, adding, or removing a small subset of edges. In [32], a semidefinite program-based
approach is proposed for the optimization of the total effective resistance, defined as Tr(𝐿+) =

∑︀
𝑖(𝐿

+)𝑖𝑖, where
𝐿+ is the pseudo inverse of the graph Laplacian 𝐿. In [3, 10], instead, given a suitable function 𝑓 , a number of
heuristics are proposed to efficiently enhance the network natural connectivity, defined as 𝑓−1(Tr(𝑓(𝐴))/𝑛), and
the network total communicability 1𝑇 𝑓(𝐴)1 =

∑︀
𝑖𝑗 𝑓(𝐴)𝑖𝑗 , respectively. Both these two studies show that very

good results can be achieved by modifying edges between nodes with high or low centrality values. The recent
work [18] proposes to measure the sensitivity of the network communicability, to the addition or removal of
certain edges, by looking at the derivatives of 1𝑇 𝑓(𝐴)1. The latter quantities, called total network sensitivities,
are defined in terms of evaluations of the Fréchet derivative of 𝑓(𝐴). The preprint by Schweitzer [49], which
appeared in parallel to the first version of this document, introduces an efficient technique that is able to compute
all the total network sensitivities by means of a single evaluation of the Frechét derivative of 𝑓(𝐴) in the rank
one direction 11𝑇 . An analogous technology is applicable for computing the derivatives of the network’s natural
connectivity.

Building on top of this body of work, we focus here on the optimal modification of the network’s natural
𝑓 -connectivity. In the sequel, we formalize the problem and the algorithms we propose.

2. Optimizing the natural connectivity

Networks strongly rely on their robustness, i.e., the ability to maintain a high degree of connectivity when a
portion of the network’s structure is damaged or simply altered. An intuitive notion of graph robustness can be
expressed in terms of the redundancy of routes between vertices. If we consider a source vertex and a termination
vertex, there may be several paths between them. When one path fails, the two vertices can still communicate
via other alternative routes. Hence, the robustness of the network grows with the number of available alternative
routes.Thus, an ideal measure of robustness for a network would be the degree of redundancy of alternative
paths, i.e. the number of alternative routes of different lengths for all pairs of vertices. However, this number is
very difficult to compute.

An alternative definition of robustness, which is usually called “natural connectivity”, counts instead the
number of closed walks of any length. Let 𝐺 = (𝑉,𝐸) be an undirected, possibly weighted graph with 𝑉 =
{1, . . . , 𝑛} and entry wise nonnegative symmetric adjacency matrix 𝐴 ≥ 0, such that 𝐴𝑖𝑗 > 0 if and only if
𝑖𝑗 ∈ 𝐸. As the number of closed walks of length 𝑘 from 𝑖 to itself coincides with the 𝑖-th diagonal entry of the

134 S. MASSEI AND F. TUDISCO

𝑘-th power of the adjacency matrix, we can quantify the natural connectivity by looking at

ln

(︃
1
𝑛

𝑛∑︁
𝑖=1

∞∑︁
𝑘=1

(︀
𝐴𝑘
)︀
𝑖𝑖

𝑘!

)︃
= ln

(︁ 1
𝑛

Tr(exp(𝐴))
)︁

= ln
(︁ 1

𝑛

𝑛∑︁
𝑖=1

𝑒𝜆𝑖

)︁
where 𝜆1 ≤ · · · ≤ 𝜆𝑛 are the eigenvalues of the adjacency matrix 𝐴. The scaling factor 1/𝑘! is required here in
order to have a convergent series and to discount the importance of long walks with respect to short ones. The
logarithm and the scaling factor 1/𝑛 are used to avoid very large numbers as they yield an “average” of the
eigenvalues of the adjacency matrix. More in general, we can consider the natural 𝑓 -connectivity (𝑓 -connectivity,
in short) as the generalized 𝑓 -mean of the eigenvalues of 𝐴

𝜗(𝐴) = 𝑓−1
(︁ 1

𝑛
Tr(𝑓(𝐴))

)︁
= 𝑓−1

(︁ 1
𝑛

𝑛∑︁
𝑖=1

𝑓(𝜆𝑖)
)︁
,

where 𝑓 is a real-valued, increasing, and analytic function on a set containing the spectrum of 𝐴.
As 𝑓 is increasing, it is not difficult to realize that 𝜗(𝐴) itself changes monotonically with the edges of the

graph, that is, 𝜗(𝐴) grows if edges are added, and decreases if they are removed. In the following, we assume
we are given a budget 𝑘 representing the number of edges, or the cumulative edges’ weight, that can be either
removed or added to the graph. Thus, we consider the optimization problem of using the given budget to either
reduce or increase 𝜗(𝐴) the most.

In matrix terms we can formulate the corresponding optimization problem as follows. Assume we are given
the initial graph with adjacency matrix 𝐴. We want to find a modification 𝑋 of the network edges 𝐴 that
either maximizes or minimizes the function 𝜗(𝐴 + 𝑋), subject to suitable constraints on 𝑋 which account for
the budget and for whether we are removing, adding or modifying the weight of the edges, as detailed next.
The constraints on 𝑋 also depend on whether we are considering weighted or unweighted (binary) networks.
To summarize we consider the following three classes of optimization problems.

Edge downgrading

Let us assume that we are given a positive budget 𝑘 and we want to remove or diminish the weight of the
edges that yield the greatest decrease in 𝑓 -connectivity. Given the graph 𝐺 = (𝑉,𝐸), we then consider the set
of admissible modifications

Ω𝑘(𝐸) =
{︁

𝑋 :
∑︀

𝑖𝑗 |𝑋𝑖𝑗 | ≤ 𝑘, 𝑋 = 𝑋𝑇 , 𝑋𝑖𝑗 = 0, for 𝑖𝑗 /∈ 𝐸
}︁

.

The downgrading problem for unweighted graphs, more often referred to as edge breaking problem [10], is:

min 𝜗(𝐴 + 𝑋) s.t. 𝑋 ∈ Ω𝑘(𝐸) and 𝑋𝑖𝑗 ∈ {−1, 0} (DG)

while for weighted graphs the second constraint is replaced by −𝐴𝑖𝑗 ≤ 𝑋𝑖𝑗 ≤ 0, i.e.

min 𝜗(𝐴 + 𝑋) s.t. 𝑋 ∈ Ω𝑘(𝐸) and −𝐴𝑖𝑗 ≤ 𝑋𝑖𝑗 ≤ 0. (DG’)

Edge addition

In this setting, we consider the situation where new edges may be introduced in order to increase the
𝑓 -connectivity of the network. In this case, given a budget 𝑘, the set of admissible modifications takes the
form

Ω𝑘(𝐸) =
{︁

𝑋 :
∑︀

𝑖𝑗 𝑋𝑖𝑗 ≤ 𝑘, 𝑋 = 𝑋𝑇 , 𝑋𝑖𝑗 = 0, for 𝑖𝑗 ∈ 𝐸
}︁

.

For unweighted graphs, we obtain the following optimal edge addition problem

max 𝜗(𝐴 + 𝑋) s.t. 𝑋 ∈ Ω𝑘(𝐸) and 𝑋𝑖𝑗 ∈ {0, 1}. (AD)

OPTIMIZING NETWORK ROBUSTNESS VIA KRYLOV SUBSPACES 135

To avoid trivial solutions, where all the budget is spent on a single most important edge, when dealing with
weighted networks, we further assume we are given a set of maximum weight values 𝑈𝑖𝑗 that we are allowed to
spend on each edge:

max 𝜗(𝐴 + 𝑋) s.t. 𝑋 ∈ Ω𝑘(𝐸) 0 ≤ 𝑋𝑖𝑗 ≤ 𝑈𝑖𝑗 . (AD’)

Edge tuning

Finally, in the third problem, we are given the budget 𝑘 and a weighted graph 𝐺, and we look for a modification
of the edge weights of a limited set 𝐹 ⊆ 𝐸 of the existing edges in order to obtain the largest increase in 𝑓 -
connectivity. We will also consider the case where 𝐹 includes both existing and non existing edges, to address
the scenario where the creation of new links is also allowed; we call this slightly modified problem edge rewiring.
As for (AD’), we assume a set of maximum weight values 𝑈𝑖𝑗 is given, to avoid trivial solutions:

max 𝜗(𝐴 + 𝑋) s.t. 𝑋 ∈ Ω𝑘(𝐹) and −𝐴𝑖𝑗 ≤ 𝑋𝑖𝑗 ≤ 𝑈𝑖𝑗 . (TU)

2.1. Algorithmic set-up

Before moving on to the proposed algorithmic techniques, we make several preliminary remarks.
First, we note that since 𝑓 in the definition of 𝜗 is an increasing function, then so is 𝑓−1. Additionally, note

that minimizing (resp. maximizing) the natural 𝑓 -connectivity is equivalent to minimizing (resp. maximizing)
the trace variation

𝜙𝐴(𝑋) := Tr(𝑓(𝐴 + 𝑋))− Tr(𝑓(𝐴)) ,

with respect to 𝑋.
Secondly, we observe that the dimensions of the constraint sets that involve all the existing (or non-existing)

edges in the graph are usually very large, already for graphs of moderate size. For this reason, in the rest of the
paper we further restrict the optimization problems above to a subset of the edges (or non-existing edges) 𝐹
whose elements are cleverly selected and whose size is kept under control.

The selection of a suitable 𝐹 may depend on the problem at hand, and we will call this procedure “the search
space selection”, which will be discussed case-by-case in Sections 3.2 and 6. Note that, in real applications,
further constraints on the set of modifiable edges (or non-existing edges) may be imposed by the application
set-up: for example, one may have only access to a certain part of the network (as in the case of a street network
where most of the roads may not be modifiable). This additional problem-based constraint can be imposed by
straightforward modifications of the above optimization problems.

3. Edge downgrading and addition for unweighted graphs

In this section we propose some heuristic greedy procedures for addressing the optimization problems (DG)
and (AD). We begin by describing the general greedy template that is behind our method and other algorithms
proposed in the literature. Throughout the discussion we assume to have a budget of 𝑘 edges.

3.1. The greedy paradigm

The most intuitive greedy strategy for problem (DG) (resp. (AD)) consists of sequentially removing (resp.
adding) the edge that attains the largest reduction (resp. increase) of 𝜙𝐴 until 𝑘 deletions (resp. additions) are
performed. Usually, the identification of the 𝑗th edge to be either added or removed is made by evaluating or
approximating the variation of 𝜙𝐴 on a large number of candidate edges. Even in the case of an exhaustive
search of candidates over the whole edge set (or the whole set of missing edges, in the case of (AD)), this greedy
procedure is guaranteed to return the optimal solution only for 𝑘 = 1; on the other hand, when 𝑘 > 1, we expect
that the selected set of 𝑘 edges provides a significant modification of 𝜙𝐴.

When dealing with medium to large networks, the implementation of this greedy procedure poses two major
computational issues:

(𝑖) the large number of edges in the search space to be processed in each step, and

136 S. MASSEI AND F. TUDISCO

Algorithm 1 Template of a greedy method for (DG).
1: procedure greedy downgrade(𝐴, 𝑘)
2: Set Δ𝐴 = 0
3: for 𝑗 = 1, . . . , 𝑘 do
4: 𝑋opt ← 0, 𝛿opt ← +∞
5: Select 𝐹𝑗

6: for (𝑠, 𝑡) ∈ 𝐹𝑗 do
7: 𝑋 ← −(1𝑠1

𝑇
𝑡 + 1𝑡1

𝑇
𝑠) ◁ rank 2 modification that deletes (𝑠, 𝑡)

8: Compute 𝜙𝐴(𝑋) = Tr(𝑓(𝐴 + 𝑋))− Tr(𝑓(𝐴))
9: if 𝜙𝐴(𝑋) ≤ 𝛿opt then

10: 𝛿opt ← 𝜙𝐴(𝑋)
11: 𝑋opt ← 𝑋
12: end if
13: end for
14: Δ𝐴← Δ𝐴 + 𝑋opt

15: 𝐴← 𝐴 + 𝑋opt

16: end for
17: return 𝛿opt, Δ𝐴
18: end procedure

(𝑖𝑖) the cost of evaluating (or approximating) the cost function 𝜙𝐴.

Concerning (𝑖), we remark that, when the graph is sparse, an exhaustive search would require considering 𝒪(𝑛)
edges for problem (DG) and 𝒪(𝑛2) edges for problem (AD). When such sets have large sizes, this step can be
prohibitively expensive. This is circumvented by restricting the search space for the 𝑗th edge to an appropriate
subset 𝐹𝑗 of moderate size. In the case of (DG), 𝐹𝑗 ⊆ 𝐸, while for (AD) 𝐹𝑗 ⊆ 𝑉 × 𝑉 ∖ 𝐸.

Similarly, task (𝑖𝑖) involves 𝑓(𝐴) and 𝑓(𝐴 + 𝑋) but cannot be addressed by directly forming these matrix
functions as 𝑓(𝐴) is dense almost always, even if 𝐴 is sparse, and computing 𝑓(𝐴) directly would require 𝒪(𝑛3)
operations. Even for small to medium-size matrices, as 𝑋 changes at each greedy step, computing 𝑓(𝐴 + 𝑋)
each time would be prohibitively expensive. Efficient greedy methods make use of techniques that approximate
the variation 𝜙𝐴 with a reduced computational cost.

In Algorithm 1 we present a general scheme for the above greedy strategy, for the case of (DG). The analogous
algorithm for (AD) is obtained with straightforward modifications at lines 7 and 8, by changing the sign of the
rank-2 update and reversing the inequality for 𝛿opt, which has to be initially set to −∞ at line 4. Then, in the
next two subsections, we will present our proposed strategy for addressing the two points (𝑖) and (𝑖𝑖) above. In
particular, we propose the use of a Krylov subspace-based approach for the approximation of the variation 𝜙𝐴,
which will guarantee an accurate approximation with a computational cost of 𝒪(𝑛), as detailed in subsection 3.3.

3.2. Selection of the search spaces

The strategy for selecting the sets 𝐹𝑗 has to ensure a feasible size of the search space and that the most
meaningful edges are considered. Intuitively, the second requirement is the trickiest as, due to the combinato-
rial nature of (DG) and (AD), only an exhaustive search space can guarantee it. The latter choice might be
computationally viable for problem (DG) where each 𝐹𝑗 has at most 𝒪(𝑛) edges, assuming the initial graph is
sparse. If 𝑛 is moderate and the cost of evaluating 𝜙𝐴(𝑋) is at most linear on 𝑛, then we consider the following
search spaces {︃

𝐹1 = 𝐸

𝐹𝑗+1 = 𝐸 ∖ Chosen(𝑗),
(Sfull

DG)

with Chosen(𝑗) := {edges selected in the first 𝑗-th steps of Algorithm 1}.
When strategy (Sfull

DG) is too expensive, an alternative is to define a ranking on the set of edges to heuristically
identify the most important ones. Here we propose to rank the edges on the basis of the eigenvector centrality

OPTIMIZING NETWORK ROBUSTNESS VIA KRYLOV SUBSPACES 137

scores of the nodes they connect, as these scores for the nodes are cheap to evaluate for sparse graphs. More
specifically, given two edges (𝑣1, 𝑣2) and (𝑣3, 𝑣4), we consider the following two rankings ≤1 and ≤2 on 𝑉 × 𝑉 :

(𝑣1, 𝑣2) ≤1 (𝑣3, 𝑣4) ⇐⇒ eigc(𝑣1) · eigc(𝑣2) ≤ eigc(𝑣3) · eigc(𝑣4),

(𝑣1, 𝑣2) ≤2 (𝑣3, 𝑣4) ⇐⇒

⎧⎪⎪⎪⎨⎪⎪⎪⎩
min{eigc(𝑣1), eigc(𝑣2)} < min{eigc(𝑣3), eigc(𝑣4)}

or
min{eigc(𝑣1), eigc(𝑣2)} = min{eigc(𝑣3), eigc(𝑣4)}
max{eigc(𝑣1), eigc(𝑣2)} ≤ max{eigc(𝑣3), eigc(𝑣4)}

.

where eigc(𝑣) denotes the eigenvector centrality of node 𝑣 ∈ 𝑉 , i.e. the 𝑣-th entry 𝑥𝑣 of the Perron eigenvector
𝑥 of the adjacency matrix. The ordering ≤1 is a standard way of inferring centralities for edges from the node
scores [3, 52]. However, we note that ≤1 may still assign large importance to edges that connect a node with
small centrality with another having a large centrality; this is prevented by ≤2 which thresholds the edge score
by the smallest node centrality involved. We observe that ≤2 works better in practice, as shown in the numerical
experiments in Section 5.

Finally, given a subset of edges 𝐹 ⊆ 𝑉 × 𝑉 and a positive integer 𝑞, we denote with [𝐹]≤𝑖

𝑞 the subset of 𝐹
made by its largest 𝑞 elements according to ≤𝑖, 𝑖 = 1, 2. The following selection strategies maintain a search
space of size 𝑞 at each step of Algorithm 1:{︃

𝐹1 = [𝐸]≤1
𝑞

𝐹𝑗+1 = [𝐸]≤1
𝑞+𝑗 ∖ Chosen(𝑗)

(S1
DG){︃

𝐹1 = [𝐸]≤2
𝑞

𝐹𝑗+1 = [𝐸]≤2
𝑞+𝑗 ∖ Chosen(𝑗)

(S2
DG)

{︃
𝐹1 = [𝑉 × 𝑉 ∖ 𝐸]≤1

𝑞

𝐹𝑗+1 = [𝑉 × 𝑉 ∖ 𝐸]≤1
𝑞+𝑗 ∖ Chosen(𝑗)

(S1
AD){︃

𝐹1 = [𝑉 × 𝑉 ∖ 𝐸]≤2
𝑞

𝐹𝑗+1 = [𝑉 × 𝑉 ∖ 𝐸]≤2
𝑞+𝑗 ∖ Chosen(𝑗)

(S2
AD)

where we have used the subscripts DG and AD to emphasize that the corresponding strategy is meant for
problem (DG) and (AD), respectively.

Finally, we describe an additional selection strategy for (AD) proposed in [10], a method we will use as
benchmark for comparison in our experiments. Let 𝑑 be the maximum node degree of the graph and denote by
𝑉𝑑 ⊆ 𝑉 the set of 𝑑 nodes of largest degrees. Then, the selection strategy uses the missing edges contained in
𝑉𝑑 × 𝑉𝑑. This is formally expressed with the following equation:{︃

𝐹1 = 𝑉𝑑 × 𝑉𝑑 ∖ 𝐸

𝐹𝑗+1 = 𝑉𝑑 × 𝑉𝑑 ∖ {𝐸 ∪ Chosen(𝑗)}
. (S3

AD)

Note that, strategy (S3
AD) only ensures that the search space has cardinality bounded from above by 𝑑2; this

might be a very weak property for certain graph topologies, as |𝐹𝑗 | can be very small.

3.3. Updating the trace of 𝑓(𝐴)

The main computational efforts of Algorithm 1 come from evaluating 𝜙𝐴(𝑋) at line 8. Note that the matrix
𝑋 at that step of the algorithm is symmetric and has rank 2. Leveraging this key rank property, we can devise
a method of cost 𝒪(𝑛) for computing the variation 𝜙𝐴(𝑋), based on the Krylov subspace method in [5]. We
start by describing in Section 3.3.1 the proposed Krylov method; then, in Section 3.3.2 we report another
approximation of 𝜙𝐴 that has been previously used in the literature and that will be used as a baseline for
comparison later.

3.3.1. A Krylov projection method

Let 𝐴 be a symmetric adjacency matrix, 𝑋 a symmetric low-rank modification and 𝑓(𝑧) a scalar function.
In [5] it has been proved that, under mild assumptions, the matrix ∆𝑓 := 𝑓(𝐴 + 𝑋)− 𝑓(𝐴) is of low numerical

138 S. MASSEI AND F. TUDISCO

rank and its approximation can be performed by means of Krylov subspaces. We will see that, with some minor
modifications, this also allows to cheaply approximate Tr(∆𝑓) = Tr(𝑓(𝐴 + 𝑋))− Tr(𝑓(𝐴)).

Let us assume 𝑋 = 𝑈𝑋𝐵𝑋𝑈*
𝑋 with 𝑈𝑋 ∈ R𝑛×𝑠, 𝐵𝑋 = 𝐵*𝑋 ∈ R𝑠×𝑠 and denote by 𝒦𝑚(𝐴, 𝑈𝑋) the 𝑚-th

order Krylov subspace generated by 𝐴 and the (block) vector 𝑈𝑋 :

𝒦𝑚(𝐴, 𝑈𝑋) := Span{𝑈𝑋 , 𝐴𝑈𝑋 , . . . , 𝐴𝑚−1𝑈𝑋},

where Span indicates the column span. If 𝑚 steps of the Arnoldi process on 𝐴 and 𝑈𝑋 can be carried out
without breakdowns, then it returns an orthonormal basis 𝒰𝑚 = [𝑈1| . . . |𝑈𝑚] ∈ R𝑛×𝑚𝑠 of 𝒦𝑚(𝐴, 𝑈𝑋) which
verifies the following block Arnoldi relation [35]:

𝐴𝒰𝑚 = 𝒰𝑚ℋ𝑚 + 𝑈𝑚+1𝐻𝑚+1,𝑚𝐸𝑇
𝑚, (2)

with a 𝑚𝑠×𝑚𝑠 block tridiagonal matrix ℋ𝑚, a 𝑠× 𝑠 matrix 𝐻𝑚+1,𝑚, and 𝐸𝑇
𝑚 = [0| . . . |0|𝐼𝑠] ∈ R𝑠×𝑚𝑠, where

𝐼𝑠 denotes the 𝑠× 𝑠 identity matrix. An approximation of ∆𝑓 is given by

∆𝑓 ≈ ∆𝑚𝑓 := 𝒰𝑚[𝑓(ℋ𝑚 + 𝑊 𝑚𝐵𝑋𝑊 *
𝑚)− 𝑓(ℋ𝑚)]𝒰*𝑚, (3)

where 𝑊 𝑚 := 𝒰*𝑚𝑈𝑋 ∈ R𝑚𝑠×𝑠. The algorithm proposed in [5], reported in Algorithm 2, builds — incrementally
in 𝑚 — the Arnoldi relations (2) and their corresponding quantities ∆𝑚𝑓 . We remark that the matrix ∆𝑚𝑓 is
kept in the factored form ∆𝑚𝑓 = 𝒰𝑚

̃︀∆𝑚𝑓 𝒰*𝑚 where ̃︀∆𝑚𝑓 := 𝑓(ℋ𝑚 + 𝑊 𝑚𝐵𝑋𝑊 *
𝑚)− 𝑓(ℋ𝑚) ∈ R𝑚𝑠×𝑚𝑠. The

method stops when the heuristic stopping criterion

‖∆𝑚𝑓 −∆𝑚−ℓ𝑓‖2 =
⃦⃦⃦⃦ ̃︀∆𝑚𝑓 −

[︂̃︀∆𝑚−ℓ𝑓 0
0 0

]︂⃦⃦⃦⃦
2

≤ 𝜖

is satisfied for a prescribed tolerance 𝜖 and a positive integer ℓ; in our implementation we set ℓ = 2. We emphasize
that this is just one (arguably, the simplest) of a variety of possible choices for the stopping criterion. Alternative
and more accurate methods for computing error estimates of block Arnoldi methods for matrix functions can
be used, as discussed for example in [11,29].

Concerning the approximation error, the method is exact when 𝑓(𝑧) is a low degree polynomial; more precisely,
∆𝑓 = ∆𝑚𝑓 when 𝑓 ∈ 𝒫𝑚−1, where 𝒫𝑚−1 denotes the set of polynomials of degree at most 𝑚− 1. For a more
general 𝑓 , the error norm is linked to the best polynomial approximation of 𝑓 on a set Π containing the convex
hull of the spectrum of 𝐴 and 𝐴 + 𝑋 [5, Theorem 4.1].

We remark that, if the goal is to approximate Tr(∆𝑓), then we can avoid the evaluation of matrix functions
at all. Indeed, for computing Tr(∆𝑚𝑓) = Tr(𝑓(ℋ𝑚 + 𝑊 𝑚𝐵𝑋𝑊 *

𝑚))−Tr(𝑓(ℋ𝑚)) it is sufficient to retrieve the
eigenvalues of the small symmetric matrices ℋ𝑚 and ℋ𝑚 + 𝑊 𝑚𝐵𝑋𝑊 *

𝑚, and then apply the function 𝑓 to
them. Since only the approximate eigenvalues are needed here, we replace the Arnoldi method with the Lanczos
method for computing the projected matrices. Moreover, a tighter approximation bound is obtained for this
particular case, namely [15, Theorem 3]:

|Tr(∆𝑓)− Tr(∆𝑚𝑓)| ≤ 4𝑛 min
𝑝∈𝒫2𝑚

max
𝑧∈Π

|𝑓(𝑧)− 𝑝(𝑧)|.

We report the pseudocode of the procedure for approximating the variation Tr(𝑓(𝐴 + 𝑋)) − Tr(𝑓(𝐴)) in
Algorithm 3.

Under the assumptions that matrix-vector products with the matrix 𝐴 cost 𝒪(𝑛), that the rank of 𝑋 is
𝑟, and that 𝑘it iterations of the Arnoldi method have been executed before detecting convergence, the cost of
Algorithm 2 is 𝒪(𝑛𝑟2𝑘2

it + 𝑟3𝑘4
it). The term of complexity 𝒪(𝑛𝑟2𝑘2

it) comes from the full re-orthogonalization
applied in the Arnoldi procedure; moreover, computing ̃︀∆𝑚 requires the evaluation of two functions of 𝑟𝑚 ×
𝑟𝑚 symmetric matrices, which typically needs 𝒪(𝑟3𝑚3), and this yields the term of complexity 𝒪(𝑟3𝑘4

it). An
analogous analysis applies to Algorithm 3 that is of complexity 𝒪(𝑛𝑟𝑘it + 𝑟3𝑘4

it); the major difference with

OPTIMIZING NETWORK ROBUSTNESS VIA KRYLOV SUBSPACES 139

Algorithm 2, is that at, each iteration, the Lanczos method only orthogonalizes with respect to the last two
block vectors of the orthonormal basis, and that the eigenvalues of two 𝑟𝑚 × 𝑟𝑚 symmetric matrices are
computed in place of their matrix functions. Note that, when calling Algorithm 3 from Algorithm 1 we always
have 𝑟 = 2.

Algorithm 2 Low-rank approximation of 𝑓(𝐴 + 𝑋)− 𝑓(𝐴).
1: procedure fun update(𝐴, 𝑈𝑋 , 𝐵𝑋 , 𝑓 , ℓ, 𝜖)
2: for 𝑚 = 1, . . . , 𝑚max do

3:
Compute (incrementally) the Arnoldi relation for 𝒦𝑚(𝐴,𝑈𝑋) by means of the Arnoldi method;
store 𝒰𝑚 = [𝑈1| . . . |𝑈𝑚] and ℋ𝑚

4: 𝑊𝑚 ← 𝒰*𝑚𝑈𝑋

5: ̃︀Δ𝑚𝑓 ← 𝑓(ℋ𝑚 +𝑊𝑚𝐵𝑋𝑊
*
𝑚)− 𝑓(ℋ𝑚)

6: if 𝑚 > ℓ and

⃦⃦
⃦⃦ ̃︀Δ𝑚𝑓 −

[︂̃︀Δ𝑚−ℓ𝑓 0
0 0

]︂⃦⃦
⃦⃦

2

≤ 𝜖 then

7: break
8: end if
9: end for

10: return 𝒰𝑚, ̃︀Δ𝑚𝑓
11: end procedure

Algorithm 3 Approximation of Tr(𝑓(𝐴 + 𝑋)− 𝑓(𝐴)).
1: procedure trace fun update(𝐴, 𝑈𝑋 , 𝐵𝑋 , 𝑓 , ℓ, 𝜖)
2: for 𝑚 = 1, . . . , 𝑚max do

3:
Compute (incrementally) the Arnoldi relation for 𝒦𝑚(𝐴,𝑈𝑋) by means of the Lanczos method;
store 𝒰𝑚 = [𝑈1| . . . |𝑈𝑚] and ℋ𝑚

4: 𝑊𝑚 ← 𝒰*𝑚𝑈𝑋

5: Compute the eigenvalues ̃︀𝜆𝑗 of ℋ𝑚 +𝑊𝑚𝐵𝑋𝑊
*
𝑚

6: Compute the eigenvalues 𝜆𝑗 of ℋ𝑚

7: Δ𝑚𝜆←
∑︀

𝑗 𝑓(̃︀𝜆𝑗)− 𝑓(𝜆𝑗)
8: if 𝑚 > ℓ and |Δ𝑚𝜆−Δ𝑚−ℓ𝜆| < 𝜖 then
9: break

10: end if
11: end for
12: return Δ𝑚𝜆
13: end procedure

3.3.2. Approximation via eigendecomposition update

The algorithm make it or break it (MIOBI) proposed in [10] approximates the difference of traces by means
of a first-order approximation of the largest eigenpairs of 𝐴 + 𝑋. More specifically, given a positive integer ℎ,
the procedure starts by computing the eigenpairs (𝜆1, 𝑢1), . . . , (𝜆ℎ, 𝑢ℎ) of 𝐴, corresponding to the ℎ eigenvalues
of largest magnitudes. For each 𝑋, the authors of [10] observe that the dominant ℎ eigenpairs ̂︀𝜆𝑗 , ̂︁𝑢𝑗 of 𝐴 + 𝑋
can be written as ̂︀𝜆𝑗 = ̃︀𝜆𝑗 +𝒪(‖𝑋‖2)̂︀𝑢𝑗 = ̃︀𝑢𝑗 +𝒪(‖𝑋‖2)

with
̃︀𝜆𝑗 = 𝜆𝑗 + 𝑢*𝑗𝑋𝑢𝑗 ,̃︀𝑢𝑗 = 𝑢𝑗 +

∑︀ℎ
𝑖=1,�̸�=𝑗

𝑢*𝑖 𝑋𝑢𝑗

𝜆𝑖−𝜆𝑗
𝑢𝑖.

Thus, it is proposed to consider the pairs (̃︀𝜆𝑗 , ̃︀𝑢𝑗) as approximations of (̂︀𝜆𝑗 , ̂︀𝑢𝑗), i.e., to neglect the high-
order terms 𝒪(‖𝑋2‖). This approach is particularly useful when 𝑋 is a perturbation with small norm. The

140 S. MASSEI AND F. TUDISCO

resulting procedure is of the same form as Algorithm 1, with two main modifications: at line 8 the formula∑︀ℎ
𝑗=1 𝑓(̃︀𝜆𝑗) − 𝑓(𝜆𝑗) is used to approximate the trace update Tr(𝑓(𝐴 + 𝑋)) − Tr(𝑓(𝐴)); then at line 15 both

formulas for ̃︀𝜆𝑗 , ̃︀𝑢𝑗 are used to approximate the ℎ dominant eigenpairs of 𝐴 + 𝑋opt. Overall, this yields an
algorithm with an iteration cost of 𝒪(|𝐹𝑗 |ℎ + 𝑛ℎ2).

3.4. Algorithms for edge downgrading and edge addition

We are now ready to formally introduce the methods that we propose for solving (DG), (AD):

greedy krylov break: Algorithm 1 combined with trace fun update for evaluating the difference of
traces at line 8 and using the strategy (S2

DG) for selecting the sets 𝐹𝑗 .
greedy krylov make: Algorithm 1 combined with trace fun update for evaluating the difference of traces

at line 8 and using the strategy (S2
AD) for selecting the sets 𝐹𝑗 .

Moreover, to provide a comparison with the performance of state-of-the-art greedy schemes, we consider the
following methods:

miobi: Greedy method proposed in [10] that uses (3.3.2) for evaluating the difference of traces and the selection
strategies (Sfull

DG) and (S3
AD) for (DG) and (AD), respectively.

eigenv: Method proposed in [3] that consists in deleting or adding the 𝑘 edges with the largest eigenvector
centrality scores — with respect to ≤1 — in 𝐸 and 𝑉 ×𝑉 ∖𝐸, respectively. The dominant part of its cost is
given by the computation of the dominant eigenvector of the adjacency matrix; in our implementation this
is done by means of the Matlab function eigs.

4. Edge downgrading, addition, and tuning for weighted graphs

When considering the solution of (DG’), (AD’), and (TU), one needs to deal with a constrained continuous
optimization problem involving the objective function 𝜙𝐴(𝑋). Similarly to what has been done for unweighted
graphs in Section 3, we keep the size of the problem under control by imposing that we are allowed to modify
only a subset 𝐹 of the edges (or the missing edges), with cardinality 𝑛𝐹 . With this constraint, we have that
𝜙𝐴 can be seen as a function of 𝑛𝐹 variables 𝜙𝐴 : R𝑛𝐹 → R, which correspond to the variation of the weights
of the edges in 𝐹 . In particular, the matrix 𝑋 has rank bounded by 2𝑛𝐹 ; i.e., to efficiently evaluate 𝜙𝐴(𝑋) we
can rely on Algorithm 3, as far as 2𝑛𝐹 ≪ 𝑛.

We perform the efficient optimization of 𝜙𝐴 via two tailored implementations of an Interior-Point method.
The first one approximates the Hessian of the objective function by means of the Limited-memory BFGS
algorithm (L-BFGS), which iteratively updates the approximation via rank-2 corrections and only requires
the evaluation of the objective function and its gradient. The second one, approximates the true Hessian by
means of a Krylov approach. Note that the second approach involves the computation of the second derivatives
while the first approach does not. The evaluations of 𝜙𝐴(𝑋) are computed by means of Algorithm 3 as in the
discrete setting. The gradient and Hessian computations, instead, require additional analysis as they can be
prohibitively expensive if done in a naive way. We devote the remainder of this section to briefly review the
L-BFGS algorithm and to the description of numerical methods, presented in Algorithm 5 and Algorithm 8,
to efficiently evaluate the gradient and the Hessian of 𝜙𝐴. The ultimate procedures obtained by combining the
Interior-Point method with Algorithm 3 for the objective function evaluation, Algorithm 5 for the gradient,
and either L-BFGS or Algorithm 8 for the Hessian, are denoted by krylov lbfgs and krylov hessian,
respectively. Our implementation of the Interior-Point method relies on the Matlab function fmincon that
allows us to specify handle functions for the evaluation of the objective function, the gradient, and the Hessian
approximation strategy.

OPTIMIZING NETWORK ROBUSTNESS VIA KRYLOV SUBSPACES 141

4.1. The L-BFGS algorithm

The Limited-memory BFGS algorithm is a variation of the Broyden–Fletcher–Goldfarb–Shanno (BFGS) opti-
mization scheme that reduces the amount of memory storage and operations per step of the original algorithm.
For the sake of completeness, we briefly review the main points of L-BFGS in the following and refer the
reader to [46] for more details. L-BFGS belongs to the family of quasi-Newton methods, a class of descent-
direction unconstrained optimization schemes that, given an objective function 𝜙, uses a search direction of the
form 𝑑𝑘 = −𝐵𝑘∇𝜙(𝑥𝑘), with 𝐵𝑘 positive definite, to compute the new approximate minimizer for min 𝜙 as
𝑥𝑘+1 = 𝑥𝑘 +𝛼𝑘𝑑𝑘, with 𝛼𝑘 chosen through a suitable line search step. The standard first-order gradient descent
method is obtained for 𝐵𝑘 = 𝐼 for all 𝑘, while the Newton method is obtained by choosing 𝐵𝑘 = ∇2𝜙(𝑥𝑘)−1,
the inverse of the Hessian at 𝑥𝑘. Rather than inverting the Hessian, which can be computationally prohibitive,
BFGS computes an approximation of ∇2𝜙(𝑥𝑘)−1 by performing a rank-2 correction of the previous approxi-
mation 𝐵𝑘 = 𝐵𝑘−1 + 𝑅𝑘−1, with the parameters in the rank-2 matrix 𝑅𝑘−1 chosen to ensure that (a) 𝐵𝑘 is
positive definite, and (b) 𝐵𝑘 satisfies the secant equation with respect to approximation points 𝑥𝑘 and 𝑥𝑘−1.
This update rule brings down the 𝒪(𝑛3

𝐹) cost of Newton’s scheme to 𝒪(𝑛2
𝐹) and, more importantly, avoids

the computations of second derivatives. To further reduce the cost per step, L-BFGS introduces a “history
parameter” 𝑚 and, starting from 𝐵0 = 𝛾0𝐼, it updates 𝐵𝑘 only for 𝑚 steps and then resets 𝐵𝑘 to a multiple
of the identity 𝐵𝑘 = 𝛾𝑘𝐼, every 𝑚 steps. This operation allows one to further reduce cost and memory storage
of the method to 𝒪(𝑚𝑛𝐹), which effectively coincides with 𝒪(𝑛𝐹) when 𝑚 ≪ 𝑛𝐹 . In our experiments, we set
𝑚 = 10. The pseudocode for L-BFGS is illustrated in Algorithm 4.

In order to apply the L-BFGS approach to the constrained problems (DG’), (AD’), and (TU), we modify
the objective function by introducing a logarithmic barrier for the inequality constraints, following a standard
Interior-Point method approach (see e.g. [7, 8]). In (TU), for example, the objective function is modified into

𝜙𝜇(𝑋) := −𝜙𝐴(𝑋) + 𝜇
∑︁
𝑖𝑗

{︀
log(𝑈𝑖𝑗 −𝑋𝑖𝑗) + log(𝑋𝑖𝑗 −𝐴𝑖𝑗)

}︀
, with 𝜇 > 0 . (4)

L-BFGS is then applied to the unconstrained problem min 𝜙𝜇, and the parameter 𝜇 is reduced throughout
the L-BFGS iterations so that the solution of the approximated problem (4) approaches that of (TU) as the
method approaches convergence. In our experiments, the above Interior-Point method approach with L-BFGS
is run by means of Matlab’s fmincon function, with optimization parameters HessianApproximation=lbfgs
and HistorySize=10.

4.2. Gradient approximation via Krylov methods

We now look at the gradient of 𝜙𝐴, for a Fréchet differentiable 𝑓 . Let us denote by ind : 𝐹 → {1, . . . , 𝑛𝐹 } an
ordering map on the set 𝐹 and observe that the derivative with respect to the 𝑖𝑗th component of the matrix 𝑋
is 𝜕𝑖𝑗𝑓(𝐴 + 𝑋) = 𝐿𝑓 (𝐴 + 𝑋,1𝑖1𝑇

𝑗), where 1𝑖 denotes the indicator vector of the node 𝑖, (1𝑖)𝑗 = 1 if 𝑖 = 𝑗 and
zero otherwise, and 𝐿𝑓 (𝐴 + 𝑋,1𝑖1𝑇

𝑗) indicates the Frchet derivative of 𝑓 at 𝐴 + 𝑋, applied to the matrix 1𝑖1𝑇
𝑗 .

Moreover, 𝐿𝑓 (𝐴 + 𝑋,1𝑖1𝑇
𝑗 + 1𝑗1𝑇

𝑖) = 𝐿𝑓 (𝐴 + 𝑋,1𝑖1𝑇
𝑗) + 𝐿𝑓 (𝐴 + 𝑋,1𝑗1𝑇

𝑖) and, since 𝐴 + 𝑋 is symmetric, it
holds 𝐿𝑓 (𝐴 + 𝑋,1𝑖1𝑇

𝑗) = 𝐿𝑓 (𝐴 + 𝑋,1𝑗1𝑇
𝑖)𝑇 . Putting it all together we have that

(∇𝜙𝐴(𝑋))ind(𝑖,𝑗) = 2 Tr(𝐿𝑓 (𝐴 + 𝑋,1𝑖1𝑇
𝑗)), ∀(𝑖, 𝑗) ∈ 𝐹. (5)

In recent work by Schweitzer [49], it has been shown the following identity

Tr(𝐿𝑓 (𝐴 + 𝑋,1𝑖1𝑇
𝑗)) = 𝑓 ′(𝐴𝑇 + 𝑋𝑇)𝑖𝑗 = 𝑓 ′(𝐴 + 𝑋)𝑖𝑗 , (6)

where 𝑓 ′ denotes the first derivative of 𝑓 . Equation (6) is of key importance because it enables us to simplify the
calculation of the gradient from computing 𝒪(𝑛2

𝐹) actions of the Fréchet derivative to evaluating 𝒪(𝑛2
𝐹) entries

of a single matrix function. Moreover, if the quantities 𝑓 ′(𝐴)𝑖𝑗 are already given, then we can approximate the

142 S. MASSEI AND F. TUDISCO

Algorithm 4 Pseudocode of L-BFGS for unconstrained optimization problem min𝑥 𝜙(𝑥).
1: procedure lbfgs(𝑥0, 𝛾0, 𝑚, 𝜖, maxiter)
2: 𝐵0 = 𝛾0𝐼
3: for 𝑘 = 0, 1, . . . , maxiter do
4: 𝑑𝑘 = −𝐵𝑘∇𝜙(𝑥𝑘)
5: 𝛼𝑘 ← line search using {𝜙,𝑥𝑘,𝑑𝑘}
6: 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘

7: if ‖∇𝜙(𝑥𝑘+1)‖ < 𝜖 then
8: break
9: end if

10: if 𝑘 + 1 is a multiple of 𝑚 then
11: 𝛾𝑘+1 ← scalar approximation of 𝐵𝑘

12: 𝐵𝑘+1 = 𝛾𝑘+1𝐼
13: else
14: 𝐵𝑘+1 ← update 𝐵𝑘 using the L-BFGS rule
15: end if
16: end for
17: return 𝑥𝑘+1

18: end procedure

difference 𝑓 ′(𝐴 + 𝑋)𝑖𝑗 − 𝑓 ′(𝐴)𝑖𝑗 with Algorithm 2. The procedure for evaluating the gradient, for a general 𝑓 ,
is reported in Algorithm 5. The cost of the latter is the one of Algorithm 2 plus extracting 𝑛𝐹 entries from
the low-rank matrix 𝒰𝑋

̃︀∆𝒰*𝑋 ; under the assumption that matvecs with 𝐴 cost 𝒪(𝑛), that 𝑋 has rank always
bounded by 𝑟 ≤ 𝑛𝐹 , and that Algorithm 2 takes 𝑘it iterations to converge (so that ̃︀∆ ∈ R(𝑟·𝑘it)×(𝑟·𝑘it)), we get
an overall complexity of 𝒪((𝑛 + 𝑛𝐹)𝑟2𝑘2

it + 𝑟3𝑘4
it).

Note that, when 𝑓(𝑧) = 𝑒𝑧 = 𝑓 ′(𝑧), the evaluation of the objective function and of the gradient simply rely
on incorporating the computation of the quantity Tr(̃︀∆) in Algorithm 2. The latter has an additional cost of
only 𝒪(𝑟 · 𝑘it) flops.

Algorithm 5 Approximation of ∇𝜙𝐴(𝑋).
1: procedure gradient eval(𝐴, 𝑈𝑋 , 𝐵𝑋 , {𝑓 ′(𝐴)𝑖𝑗}(𝑖,𝑗)∈ind−1({1,...,𝑛𝐹 }), 𝑓 ′, ℓ, 𝜖)

2: [𝒰𝑋 , ̃︀Δ]← fun update(𝐴,𝑈𝑋 , 𝐵𝑋 , 𝑓 ′, ℓ, 𝜖)
3: for ℎ = 1, . . . , 𝑛𝐹 do
4: (𝑖, 𝑗)← ind−1(ℎ)

5: Δℎ ← 𝒰𝑋(𝑖, :) · ̃︀Δ · 𝒰𝑋(:, 𝑗)
6: ∇𝜙𝐴(𝑋)ℎ ← 2(𝑓 ′(𝐴)𝑖𝑗 + Δℎ)
7: end for
8: return ∇𝜙𝐴(𝑋)
9: end procedure

4.3. Hessian evaluation via Krylov methods

By taking the partial derivatives of (6) we get the following expression for the Hessian’s entries:

(𝐻𝜙𝐴(𝑋))ind(𝑖,𝑗),ind(ℎ,𝑘) = 2
(︀
𝐿𝑓 ′(𝐴 + 𝑋,1𝑖1𝑇

𝑗)
)︀
ℎ𝑘

∀(𝑖, 𝑗), (ℎ, 𝑘) ∈ 𝐹. (7)

In particular, (7) tells us that computing the Hessian requires extracting 𝒪(𝑛𝐹) entries from 𝒪(𝑛𝐹) Frchet
derivatives along rank 1 directions. Fortunately, the rank 1 property of the direction implies the low-rank

OPTIMIZING NETWORK ROBUSTNESS VIA KRYLOV SUBSPACES 143

approximability of 𝐿𝑓 ′(𝐴 + 𝑋,1𝑖1𝑇
𝑗) that in turn enables us to leverage an efficient Krylov subspace technique

[38], as discussed next.
To simplify the exposition we temporarily replace 𝑓 ′ with 𝑓 and we describe how to efficiently evaluate

quantities of the form 𝐿𝑓 (𝑀,1𝑖1𝑇
𝑗), for a given symmetric matrix 𝑀 and a given function 𝑓 . The evaluation

of the Fréchet derivative in a certain direction can be recast as evaluating the function of a specific augmented
matrix. More precisely, applying the well-known formula in [42, Theorem 2.1] to our framework, yields

𝑓

(︂[︂
𝑀 1𝑖1𝑇

𝑗

0 𝑀

]︂)︂
=
[︂
𝑓(𝑀) 𝐿𝑓 (𝑀,1𝑖1𝑇

𝑗)
0 𝑓(𝑀)

]︂
(8)

so that we can look at extracting the (1, 2) sub-block of (8). Since[︂
0 𝐿𝑓 (𝑀,1𝑖1𝑇

𝑗)
0 0

]︂
= 𝑓

(︂[︂
𝑀 0
0 𝑀

]︂
+
[︂
0 1𝑖1𝑇

𝑗

0 0

]︂)︂
− 𝑓

(︂[︂
𝑀 0
0 𝑀

]︂)︂

and
[︂
0 1𝑖1𝑇

𝑗

0 0

]︂
is of rank 1, we expect 𝐿𝑓 (𝑀,1𝑖1𝑇

𝑗) to be well approximated by a low-rank matrix. This property

is exploited in [38, Algorithm 2], where a projection method that makes use of tensorized Krylov subspaces
has been proposed. The latter incrementally builds orthonormal bases 𝒰𝑚, 𝒱𝑚 for 𝒦𝑚(𝑀,1𝑖) and 𝒦𝑚(𝑀,1𝑗),
respectively, by means of two Arnoldi processes. The associated Arnoldi relations

𝑀𝒰𝑚 = 𝒰𝑚ℋ𝑚 + 𝑈𝑚+1𝐻𝑚+1,𝑚1𝑇
𝑚, 𝑀𝒱𝑚 = 𝒱𝑚𝒢𝑚 + 𝑈𝑚+1𝐺𝑚+1,𝑚1𝑇

𝑚,

directly provide the expression of the projected augmented matrix[︂
𝒰*𝑚 0
0 𝒱*𝑚

]︂ [︂
𝑀 1𝑖1𝑇

𝑗

0 𝑀

]︂ [︂
𝒰𝑚 0
0 𝒱𝑚

]︂
=
[︂
ℋ𝑚 1𝑖1𝑇

𝑗

0 𝒢𝑚

]︂
.

Thus, the method computes the quantities

𝐿
(𝑖,𝑗)
𝑓,𝑚 := 𝒰𝑚

̃︀𝐿(𝑖,𝑗)
𝑓,𝑚 𝒱*𝑚, ̃︀𝐿(𝑖,𝑗)

𝑓,𝑚 := 𝑓

(︂[︂
ℋ𝑚 1𝑖1𝑇

𝑗

0 𝒢𝑚

]︂)︂
(1,2)

, (9)

where the subscript (1, 2) refers to the extraction of the (1, 2) sub-block, as an approximation of 𝐿𝑓 (𝑀,1𝑖1𝑇
𝑗).

The method then stops when the heuristic stopping criterioñ⃦⃦⃦⃦︀𝐿(𝑖,𝑗)
𝑓,𝑚 −

[︂̃︀𝐿(𝑖,𝑗)
𝑓,𝑚−ℓ 0

0 0

]︂⃦⃦⃦⃦
2

≤ 𝜖

is verified, for a prescribed tolerance 𝜖 and a positive integer ℓ. In our implementation we set ℓ = 2. For
an alternative and more reliable stopping criterion see Section 5 of [37]. The full procedure is reported in
Algorithm 6.

We point out that, the approximation error associated with the sequence 𝐿
(𝑖,𝑗)
𝑓,𝑚 , 𝑚 = 1, 2, . . . , decays at least

as the best polynomial approximation error of 𝑓 ′ on the convex hull of the spectrum of 𝑀 , which we denote by
Π. More precisely, a direct consequence of [38, Corollary 1] is the following bound:⃦⃦⃦

𝐿𝑓 (𝑀,1𝑖1𝑇
𝑗)− 𝐿

(𝑖,𝑗)
𝑓,𝑚)

⃦⃦⃦
𝐹
≤ 2 min

𝑝∈𝒫𝑚−1
max
𝑧∈Π

|𝑓 ′(𝑧)− 𝑝(𝑧)|.

Note that, the cost analysis of Algorithm 6 is very similar to the one of Algorithm 2. In particular, under
the assumptions that matvecs with 𝑀 cost 𝒪(𝑛), and that the Arnoldi procedure takes 𝑘it iterations before
detecting convergence, Algorithm 6 costs 𝒪(𝑛 · 𝑘2

it + 𝑘4
it).

144 S. MASSEI AND F. TUDISCO

Algorithm 6 Approximation of 𝐿𝑓 (𝑀,1𝑖1𝑇
𝑗).

1: procedure frechet eval(𝑀 , 𝑖, 𝑗, 𝑓 , ℓ, 𝜖)
2: for 𝑚 = 1, . . . , 𝑚max do

3:
Compute (incrementally) the Arnoldi relation for 𝒦𝑚(𝑀,1𝑖),𝒦𝑚(𝑀,1𝑗) by means of the Arnoldi
method; store 𝒰𝑚,𝒱𝑚,ℋ𝑚 and 𝒢𝑚

4: ̃︀𝐿(𝑖,𝑗)
𝑓,𝑚 ← 𝑓

(︂[︂
ℋ𝑚 1𝑖1

𝑇
𝑗

0 𝒢𝑚

]︂)︂

(1,2)

5: if 𝑚 > ℓ and

⃦⃦
⃦⃦̃︀𝐿(𝑖,𝑗)

𝑓,𝑚 −
[︂̃︀𝐿(𝑖,𝑗)

𝑓,𝑚−ℓ 0
0 0

]︂⃦⃦
⃦⃦

2

≤ 𝜖 then

6: break
7: end if
8: end for
9: return 𝒰𝑚,𝒱𝑚, ̃︀𝐿(𝑖,𝑗)

𝑓,𝑚

10: end procedure

4.3.1. Multiple evaluations of 𝐿𝑓 (𝑀,1𝑖1𝑇
𝑗)

Evaluating (7) requires to approximate the quantities 𝐿𝑓 ′(𝐴,1𝑖1𝑇
𝑗) for all edges (𝑖, 𝑗) ∈ 𝐹 , with |𝐹 | = 𝑛𝐹 ≪ 𝑛.

In principle, running Algorithm 6 𝑛𝐹 times (on each pair (𝑖, 𝑗) ∈ 𝐹) performs the sought evaluation. On the
other hand, it is possible to enhance the efficiency by avoiding redundant computations due to the repetition of
the same nodes in edges of 𝐹 and thus the same Krylov subspaces. Denote by 𝑉 (𝐹) the set of nodes that are
linked by the edges in 𝐹 , i.e., 𝑉 (𝐹) := {𝑖 ∈ 𝑉 : ∃𝑗 ∈ 𝑉 such that (𝑖, 𝑗) ∈ 𝐹} and for any such node 𝑖 ∈ 𝑉 (𝐹) let
𝑉𝑖(𝐹) be the set of nodes that are connected to 𝑖 via an edge in 𝐹 , i.e., 𝑉𝑖(𝐹) := {𝑗 ∈ 𝑉 : (𝑖, 𝑗) ∈ 𝐹} ⊆ 𝑉 (𝐹).
We proceed as follows:

(i) For each 𝑖 ∈ 𝑉 (𝐹) we compute and store the Arnoldi relation

𝑀𝒰 (𝑖)
𝑚𝑖

= 𝒰 (𝑖)
𝑚𝑖
ℋ(𝑖)

𝑚𝑖
+ 𝑈

(𝑖)
𝑚𝑖+1𝐻

(𝑖)
𝑚𝑖+1,𝑚𝑖

1𝑇
𝑚𝑖

for 𝒦𝑚𝑖(𝑀,1𝑖) where 𝑚𝑖 is such that
⃦⃦⃦̃︀𝐿(𝑖,𝑗)

𝑓,𝑚𝑖
−
[︁
̃︀𝐿(𝑖,𝑗)

𝑓,𝑚𝑖−ℓ 0

0 0

]︁⃦⃦⃦
2
≤ 𝜖, for all 𝑗 ∈ 𝑉𝑖(𝐹).

(ii) While doing (𝑖), for each pair (𝑖, 𝑗) ∈ 𝐹 , we store ̃︀𝐿(𝑖,𝑗)
𝑓,𝑚(𝑖,𝑗)

where 𝑚(𝑖,𝑗) is the smallest integer such that⃦⃦⃦̃︀𝐿(𝑖,𝑗)
𝑓,𝑚(𝑖,𝑗)

−
[︁ ̃︀𝐿(𝑖,𝑗)

𝑓,𝑚(𝑖,𝑗)−ℓ 0

0 0

]︁⃦⃦⃦
2
≤ 𝜖. Note that, 𝑚(𝑖,𝑗) ≤ 𝑚𝑖 which may yield a cheaper trace evaluation for

that particular (𝑖, 𝑗) ∈ 𝐹 .

The procedure which implements these enhancements is reported in Algorithm 7.
Let us denote by 𝑛𝑉 := |𝑉 (𝐹)| and 𝑘it = max(𝑖,𝑗)∈𝐹 𝑚(𝑖,𝑗) and assume that matvecs with 𝑀 cost 𝒪(𝑛).

Then, the complexity of Algorithm 7 is determined by 𝑛𝑉 times the one of Algorithm 6, i.e., 𝒪(𝑛𝑉 (𝑛 ·𝑘2
it +𝑘4

it)).
We remark that Algorithm 7 requires to store 𝒪(𝑛𝑉 · 𝑘it) vectors of length 𝑛 to represent all the Krylov bases;
this might not be feasible for a large value of 𝑛𝑉 , i.e., a large search space 𝐹 .

Finally, the procedure that evaluates the Hessian of 𝜙𝐴(𝑋) is reported in Algorithm 8. The latter consists
in one call to Algorithm 7 and extracting 𝑛𝐹 entries from a matrix of rank 𝑟 · 𝑘it, 𝒪(𝑛𝐹) times; this yields a
complexity estimate of 𝒪(𝑛𝑉 (𝑛 · 𝑘2

it + 𝑘4
it) + 𝑛2

𝐹 𝑘2
it).

5. Numerical experiments with unweighted graphs

We test the performance of greedy krylov break and greedy krylov make, introduced in Section 3.4,
with respect to their effectiveness in manipulating the graph natural connectivity, i.e. 𝑓(𝑧) = 𝑒𝑧, and their
running time on 22 real-world unweighted networks. Details about the networks’ size are reported in Table 1; in
particular, the corresponding adjacency matrices are of size |𝑉 |×|𝑉 | and have at most 2|𝐸| nonzero entries. Those

OPTIMIZING NETWORK ROBUSTNESS VIA KRYLOV SUBSPACES 145

Algorithm 7 Approximation of 𝐿𝑓 (𝑀,1𝑖1𝑇
𝑗) ∀(𝑖, 𝑗) ∈ 𝐹 .

1: procedure multiple frechet eval(𝑀 , 𝐹 , 𝑓 , ℓ, 𝜖)
2: NC ← 𝐹 , 𝑚 = 1 ◁ NC is the set of not converged edges
3: while NC̸= ∅ do
4: for 𝑖 ∈ 𝑉 (𝐹) do
5: if ∃𝑗 ∈ 𝑉𝑖(𝐹) such that (𝑖, 𝑗) ∈ NC then

6:
Compute (incrementally) the Arnoldi relation for 𝒦𝑚(𝑀,1𝑖) by means of the Arnoldi method;

store 𝒰 (𝑖)
𝑚 and ℋ(𝑖)

𝑚
7: end if
8: end for
9: for (𝑖, 𝑗) ∈ NC do

10: ̃︀𝐿(𝑖,𝑗)
𝑓,𝑚 ← 𝑓

(︃[︃
ℋ(𝑖)

𝑚 1𝑖1
𝑇
𝑗

0 ℋ(𝑗)
𝑚

]︃)︃

(1,2)

11: if 𝑚 > ℓ and
⃦⃦
⃦̃︀𝐿(𝑖,𝑗)

𝑓,𝑚 −
[︁
̃︀𝐿(𝑖,𝑗)

𝑓,𝑚−ℓ
0

0 0

]︁⃦⃦
⃦

2
≤ 𝜖 then

12: NC ← NC∖(𝑖, 𝑗), 𝑚(𝑖,𝑗) ← 𝑚
13: end if
14: end for
15: 𝑚← 𝑚 + 1
16: end while
17: return 𝒰 (ℎ)

𝑚 for all nodes ℎ ∈ 𝑉 (𝐹) and ̃︀𝐿(𝑖,𝑗)
𝑓,𝑚(𝑖,𝑗)

for all edges (𝑖, 𝑗) ∈ 𝐹

18: end procedure

Algorithm 8 Approximation of 𝐻𝜙𝐴(𝑋).
1: procedure hessian eval(𝐴, 𝑈𝑋 , 𝐵𝑋 , 𝐹 , 𝑓 ′, ℓ, 𝜖)

2: {𝒰 ind(𝑖,𝑗), ̃︀𝐿(𝑖,𝑗)}(𝑖,𝑗)∈𝐹 ← multiple frechet update(𝐴 +𝑈𝑋𝐵𝑋𝑈
*, 𝐹, 𝑓 ′, ℓ)

3: for 𝑠 = 1, . . . , 𝑛𝐹 do
4: (𝑖, 𝑗)← ind−1(𝑠)
5: for 𝑡 = 𝑠, . . . , 𝑛𝐹 do
6: (ℎ, 𝑘)← ind−1(𝑡)

7: 𝐻𝜙𝐴(𝑋)𝑠𝑡 ← 2 𝒰𝑠(ℎ, 1 : 𝑚(𝑖,𝑗)) ̃︀𝐿(𝑖,𝑗) 𝒰𝑠(𝑘, 1 : 𝑚(𝑖,𝑗))
*

8: 𝐻𝜙𝐴(𝑋)𝑡𝑠 ← 𝐻𝜙𝐴(𝑋)𝑠𝑡

9: end for
10: end for
11: return 𝐻𝜙𝐴(𝑋)
12: end procedure

listed on the left-hand side of Table 1 include social networks of geolocated reciprocated Twitter mentions within
UK cities (Cardiff, Edinburgh), coauthorship networks (ca-AstroPh, ca-CondMat, ca-HephTh, netscience), a
protein-protein interactions network (yeast) and a public transports network (London). All these networks are
publicly available via public repositories, as reported in [4, 13,34,50]. All the networks listed on the right-hand
side of Table 1 are road networks of different cities in the world [28]. Our implementation is written using
MATLAB and is available at the public repository https://github.com/COMPiLELab/krylov_robustness,
together with all the datasets above.

In the proposed experiments we compare with state-of-the-art methods miobi and eigenv, that have been
recalled in Section 3.4. In particular, miobi uses 25 eigenpairs to compute the approximate trace variation as
described in Section 3.3.2 and the search spaces Sfull

DG, S3
AD for problems DG and AD, respectively. If not stated

otherwise, the 𝑓 -connectivity is considered with respect to be the matrix exponential function, i.e., 𝑓 = exp.
To assess the impact of the various methods on the natural connectivity of a network we consider the

magnitude of the relative trace variation that, given the returned modification of the adjacency matrix 𝑋, we

https://github.com/COMPiLELab/krylov_robustness

146 S. MASSEI AND F. TUDISCO

Table 1. Number of vertices and edges of the unweighted graphs used for the numerical
tests. On the left: social, collaboration, transportation, and PPI networks; on the right: graphs
representing road networks.

Dataset |𝑉 | |𝐸|

Cardiff 2685 4444
CollegeMsg 1893 13835
Edinburgh 1645 2146
as 735 6474 12572
ca-AstroPh 17903 19972
ca-CondMat 21363 91286
ca-HephTh 8638 24806
London 369 430
netscience 379 914
socEpinions1 75877 405739
yeast 2224 6609

Dataset |𝑉 | |𝐸|

Anaheim 416 634
Austin 7388 10591
Barcelona 930 1798
Birmingham 14578 20913
ChicagoRegional 12979 20627
DC 9522 14807
Hawaii 21774 26007
Philadelphia 13389 21246
RhodeIsland 51642 66650
Rome 3353 4831
Sydney 32956 38787

define as:

∆𝑇 (𝑋) :=
|Tr(𝑓(𝐴 + 𝑋))− Tr(𝑓(𝐴))|

|Tr(𝑓(𝐴))|
.

To obtain an estimate of the denominator Tr(𝑓(𝐴)) we have employed the stochastic trace estimator
hutch++ [44] combined with the expmv algorithm from [1] to evaluate the action of the matrix exponen-
tial on Rademacher random vectors.

Finally, to evaluate the scalability of the approaches we report their computational times in seconds. The
latter do not include the time spent for estimating Tr(𝑓(𝐴)) at the beginning, as this operation is not required
by the greedy procedures.

The experiments have been performed on a laptop with a dual-core Intel Core i7-7500U 2.70 GHz CPU,
256 KB of level 2 cache, 16 GB of RAM, and operating system Ubuntu 22.04.2. The algorithms are implemented
in MATLAB and tested under MATLAB2022b, with MKL BLAS version 2019.0.3 utilizing both cores.

5.1. Downgrading for unweighted graphs

As a first experiment, we measure the quantity ∆𝑇 when solving problem (DG) with a fixed budget of 𝑘 = 50
edges to be removed. The parameter 𝑞, used by the method greedy krylov break to determine its search
space, is set to the value 250.

The performances of greedy krylov break, miobi, and eigenv are compared over both road and general
networks. The results reported in the left part of Table 2 show that miobi and greedy krylov break always
outperform eigenv on road networks and our greedy krylov break achieves the best score on 6 out of 11
case studies. Also, for general graphs, miobi and greedy krylov break provide the best scores although the
results reported in the right part of Table 2 show a balanced situation: on 7 out of 11 case studies, the difference
between the scores of the methods is less than 2%. The most evident gain of the top method is measured for the
medium-size graph ca-HephTh and the small graph netscience. In view of the significantly lower costs of miobi
and eigenv (see Sect. 5.1.1), these results suggest that greedy krylov break can be a valid competitor for
the road networks dataset only.

5.1.1. Trace reduction and scalability with respect to the budget size

Now we consider a second numerical test where we let the budget size 𝑘 range in the set {10 ·𝑗}, 𝑗 = 1, . . . , 10,
and we measure both the relative trace variation and the time consumption of the methods. Further, we
investigate how the parameter 𝑞, that determines the size of the search space, affects the performance of

OPTIMIZING NETWORK ROBUSTNESS VIA KRYLOV SUBSPACES 147

Table 2. Magnitude of the relative trace variation obtained with the three methods
greedy krylov break (gkb), miobi, eigenv considered for the downgrading of unweighted
graphs on road networks (left) and general networks (right), with a budget of 𝑘 = 50 edges.
The column denoted with ∩ shows the number of edges that have been commonly chosen by
all the methods.

Downgrading
GKB MIOBI EIGENV ∩ GKB MIOBI EIGENV ∩

Anaheim 0.123 0.0956 0.0775 6 Cardiff 0.974 0.974 0.973 43
Austin 0.00863 0.00943 0.00564 6 CollegeMsg 0.773 0.771 0.771 45
Barcelona 0.0871 0.0900 0.0634 10 Edinburgh 0.326 0.335 0.240 19
Birmingham 0.00364 0.00478 0.00234 4 as735 0.965 0.966 0.966 45
ChicagoRegional 0.00530 0.00501 0.00317 4 AstroPh 0.751 0.751 0.751 49
DC 0.00682 0.00643 0.00417 5 CondMat 0.858 0.854 0.854 45
Hawaii 0.00273 0.00287 0.00198 7 HepTh 0.958 0.847 0.847 5
Philadelphia 0.00348 0.00340 0.00236 2 London 0.158 0.151 0.119 12
RhodeIsland 0.00125 0.00124 0.000752 2 netscience 0.704 0.814 0.744 18
Rome 0.0161 0.0158 0.0101 3 Epinions1 0.581 0.587 0.587 41
Sydney 0.00148 0.00250 0.00109 2 yeast 0.878 0.871 0.865 36

greedy krylov break by considering three implementations of this method for 𝑞 = 50, 250, min{1000, |𝐸| −
𝑘}. As case studies, we select 6 road networks: Anaheim, Birmingham, ChicagoRegional, Hawaii, RhodeIsland,
and Rome. Figure 1 reports the magnitude of the relative trace variations attained by the five methods, as
the budget increases. The method greedy krylov break with the largest search space attains the highest
scores on all the examples apart from Birmingham, where the returned trace variation is comparable with
the one of miobi. There is no clear winner between miobi and greedy krylov break with 𝑞 = 500, while
greedy krylov break with 𝑞 = 50 and eigenv always provide the 4th and the 5th scores.

The computational times shown in Figure 2 confirm that the cost of all algorithms has a linear scaling with
respect to the parameter 𝑘. Also, their dependence on 𝑛 is linear, but the hidden constant determines significantly
different running times. In particular, in all case studies the three implementations of greedy krylov break
are the most expensive, then we have miobi and, finally, eigenv that is the cheapest method. As expected,
reducing the parameter 𝑞 improves the timings of greedy krylov break, however, in view of the scores
in Figure 1, the convenience of a smaller search space is questionable. Overall, these results suggest that
greedy krylov break is preferable in a scenario where the robustness reduction matters more than the
computing time.

5.2. Addition for unweighted graphs

Here we consider analogous tests to those performed in the previous section, for the optimization problem
(AD). This time, we compare miobi and eigenv with the performance of our greedy krylov make with
𝑞 = min{1000, |𝐸|}. In the left and right parts of Table 3 it is reported the magnitude of the relative trace
variation, obtained with a budget 𝑘 = 50, for road and general networks, respectively. For all road networks,
greedy krylov make is the clear-cut winner and outperforms the second-highest score of a factor between
1.5 and 5. For general networks, greedy krylov make obtains either the best or near-best score on 10 out of
11 examples, although the gain with respect to the competitors is often more limited than for road networks.

Then, we investigate the impact of varying the budget size 𝑘 in the range 10, 20, . . . , 100 on the trace variation
and the computational time for the road networks considered in section 5.1.1. Also in this case, we consider three
different sizes for the search space of greedy krylov make, corresponding to the choices of the parameter
𝑞 in the set of values 50, 250, min{1000, |𝐸|}. Figure 3 reports the magnitude of the relative trace variation

148 S. MASSEI AND F. TUDISCO

Figure 1. Magnitude of the relative trace variation for downgrading as the budget increases.

Figure 2. Computational times (seconds) of the methods for downgrading as the budget increases.

OPTIMIZING NETWORK ROBUSTNESS VIA KRYLOV SUBSPACES 149

Table 3. Magnitude of the relative trace variation obtained with the three methods
greedy krylov make (gkm), miobi, eigenv considered for the addition of edges to
unweighted graphs on road networks (left) and general networks (right), with a budget of 𝑘 = 50
edges. The column denoted with ∩ shows the number of edges that have been commonly chosen
by all the methods.

Addition
GKM MIOBI EIGENV ∩ GKM MIOBI EIGENV ∩

Anaheim 42.4 12.8 15.9 31 Cardiff 24.0 20.6 20.6 37
Austin 3.49 2.34 2.34 37 CollegeMsg 5.14 5.04 5.04 43
Barcelona 29.5 12.3 12.3 30 Edinburgh 54.2 19.9 19.9 24
Birmingham 1.36 0.353 0.372 19 as735 1.12 2.31 2.31 10
ChicagoRegional 1.64 0.558 0.613 21 AstroPh 1.28 1.27 1.27 39
DC 2.13 0.197 0.495 19 CondMat 4.66 4.94 4.94 30
Hawaii 1.13 0.0745 0.271 16 HepTh 3.16 2.78 2.78 39
Philadelphia 1.43 0.162 0.293 14 London 70.9 26.9 26.9 36
RhodeIsland 0.469 0.150 0.150 27 netscience 52.1 30.5 30.5 25
Rome 6.33 2.34 2.17 22 Epinions1 1.04 1.13 1.13 28
Sydney 0.794 0.274 0.274 38 yeast 23.7 20.4 20.4 32

and highlights a crucial difference with respect to the downgrading problem: For any size of the search space,
greedy krylov make outperforms significantly its competitors on all case studies. We also note that, in
contrast to the downgrading case, eigenv has either comparable or better performances than miobi on all case
studies. Moreover, the computational times reported in Figure 4 demonstrate that by choosing the smallest size
of the search space (𝑞 = 50), the cost of greedy krylov make becomes comparable to the one of miobi. This
is also due to the fact that, for the addition problem, the search space of miobi might be significantly larger
than in the downgrading case. Therefore, we conclude that greedy krylov make should be the method of
choice for problem (AD), unless a very strict limitation on the time consumption has to be applied.

6. Numerical experiments with weighted graphs: tuning, rewiring, addition

Finally, we present results on a set of weighted networks in order to test the performance of the proposed
method for the edge tuning problem (TU), as well as weighted edge-addition and edge rewiring, where we
simultaneously tune the weight of existing edges and add new ones.

While in certain applications the set 𝐹 of edges (or missing edges) that we are allowed to modify is given
a-priori, in our setup we will assume only the cardinality of the set 𝐹 is fixed, i.e. we are free to select a set of
𝑛𝐹 ≥ 1 modifiable edges (or edges to be added) and we need to form 𝐹 by choosing which ones are those that
are best suited to maximize the natural connectivity. This is a more challenging scenario and, clearly, the case
in which the set 𝐹 is specified by external constraints is retrieved as a special case.

In order to find an optimal set 𝐹 , we propose to measure how sensitive the 𝑓 -connectivity, with 𝑓 ∈
{exp, sinh}, with respect to changes in the weight of a certain edge (𝑖, 𝑗) is. To this end, one should look
at the magnitude of the corresponding gradient entry 2𝑓 ′(𝐴 + 𝑋)𝑖𝑗 and select the edges corresponding to the
largest gradient. However, inspecting these quantities for all edges (or missing edges) can be too expensive for
large networks. Thus, in our experiments, we proceed as follows: first, we select a set of 𝑛𝑃 candidate edges,
with 𝑛𝑃 > 𝑛𝐹 , chosen as the most important, with respect to a suitable edge-ordering, among existing and/or
non-existing edges; then, we identify 𝐹 on the basis of the evaluations of the gradient over the 𝑛𝑃 candidate
edges.

In our experiments, we test krylov lbfgs and krylov hessian on a set of electric power grid networks
from different countries, as listed in Table 4. All the considered network datasets were collected from an Open

150 S. MASSEI AND F. TUDISCO

Figure 3. Magnitude of the relative trace variation for addition as the budget increases.

Figure 4. Computational times (seconds) of the methods for addition as the budget increases.

OPTIMIZING NETWORK ROBUSTNESS VIA KRYLOV SUBSPACES 151

Table 4. Number of vertices and edges of the weighted graphs of power grids used for the
numerical tests. In bracket the percentage of voltages that has been added in our preprocessing
stage.

Dataset |𝑉 | |𝐸|

Austria 149 169 (0%)
Denmark 96 105 (0%)
England 504 603 (0.7%)
Germany 1903 2371 (0.4%)
Italy 858 1092 (2.8%)
India 3228 4323 (0.4%)
Mexico 552 743 (2.8%)
Poland 299 390 (0.3%)
Portugal 185 247 (1.5%)
Sweden 268 336 (2.4%)

Street Map project by the Complex Network Group at Telecom Sud-Paris [14]. Each node represents a power
station and edges represent wired connections, weighted by their voltage capacity. A small number (in most
cases less than 1%) of edge voltage capacity data was missing in the original datasets. For those edges we
artificially set the voltage capacity as the average of the neighbors. In all the tests of this section, we consider
the total weight budget 𝑘 = 10.

Concerning the selection of the edges in 𝐹 , we propose three different approaches that deal with different
scenarios, as listed below.
Tuning. This approach applies to the case where we are only allowed to modify edges with an initial non-zero
weight. We select the candidate edges as the first 𝑛𝑃 = 100 existing edges with respect to ≤1; then, we set 𝐹
as the 𝑛𝐹 = 30 edges, among the candidates, with the largest value of the gradient.
Rewiring. This approach applies to the case where we are allowed to both modify existing edges and add new
ones. We select two sets 𝐶1 and 𝐶2 of 50 candidate edges each, as the first 50 existing edges with respect to ≤2

and the first 50 non-existing edges with respect to ≤2, respectively. The resulting set of 𝑛𝑃 = 100 candidate
pairs is then used to form 𝐹 by choosing 𝑛𝐹 = 30 elements from the union of the 15 edges in 𝐶1 and non-existing
edges in 𝐶2 with the largest value of the gradient.
Addition. This approach applies to the case where we are only allowed to add new edges. We select the
candidate edges as the first 𝑛𝑃 = 100 non-existing edges with respect to ≤2; then, we set 𝐹 as the 𝑛𝐹 = 30
edges, among the candidates, with the largest value of the gradient.

Table 5 shows the relative trace variation and the execution time (in seconds), obtained with krylov lbfgs
and krylov hessian, for all the datasets and the three problem cases above. The values of ∆𝑇 obtained with
the two methods are very close, indeed their difference is more than the 10% of the highest value only in two
cases: Austria (Rewiring) and Portugal (Addition). Figure 5 shows the geographical location of the modified
and added edges on the power network of Denmark, obtained with krylov lbfgs, where red edges denote
edges whose weight has been diminished by the algorithm, green edges are edges whose weight was increased,
and yellow lines denote edges that were added. As expected, rewiring is always the most effective procedure,
resulting in the largest increase in natural connectivity, as it combines edge tuning and edge addition in a
simultaneous optimization mechanism. In particular, we see from Figure 5 that the set of edges modified and
added by Rewiring is a subset of those that are modified and added by the other two approaches.

Empirically, we observe that krylov hessian always converges in less iterations; however, the latter are
more expensive and there is no clear winner between the two methods, in terms of speed; krylov lbfgs is
faster on 16 examples while krylov hessian is faster on 14.

152 S. MASSEI AND F. TUDISCO

Figure 5. Results of krylov lbfgs on the electric power grid network of Denmark. Red lines
correspond to edges whose weight was decreased; Green lines correspond to edges whose weight
was increased; Yellow lines denote edges that have been added from scratch.

Table 5. Magnitude of the relative trace variation (∆𝑇), execution time in seconds (𝑡), and
number of iterations (𝑘it), for the tuning, rewiring, and addition optimization problems solved
with krylov lbfgs and krylov hessian approaches, for weighted graphs associated with
power grid networks and for 𝑓 = exp.

Exponential
Tuning Rewiring Addition

lbfgs Hessian lbfgs Hessian lbfgs Hessian
Δ𝑇 𝑡 𝑘it Δ𝑇 𝑡 it Δ𝑇 𝑡 𝑘it Δ𝑇 𝑡 𝑘it Δ𝑇 𝑡 𝑘it Δ𝑇 𝑡 𝑘it

Austria 0.76 0.2 29 0.76 3.2 15 2.89 0.4 34 3.2 1.3 12 0.55 0.2 20 0.55 1.5 11
Denmark 1.22 0.2 47 1.2 1.5 14 6.42 0.1 34 6.42 1.4 12 0.71 0.2 28 0.71 1.2 13
England 0.32 3.2 34 0.32 3.9 14 0.8 9.9 54 0.8 4.5 16 0.2 1.3 19 0.22 2.1 13
Germany 0.19 6.5 42 0.19 4.9 17 0.53 2.4 45 0.53 2.1 12 0.08 1.2 22 0.08 2.0 12
India 0.12 9.0 38 0.12 6.5 15 0.34 7.5 53 0.33 4.4 16 0.06 2.3 17 0.06 2.6 10
Italy 0.41 7.3 37 0.41 4.1 12 1.62 4.6 46 1.62 2.7 12 0.16 2.3 27 0.16 2.0 12
Mexico 0.58 7.7 40 0.58 4.2 12 1.66 13.6 47 1.66 4.5 12 0.2 1.4 18 0.21 2.0 11
Poland 0.62 2.6 37 0.62 2.1 13 1.76 1.8 34 1.76 1.7 10 0.31 1.8 31 0.31 2.1 14
Portugal 1.02 0.5 42 1.02 1.6 14 3.46 0.5 27 3.46 1.4 12 0.6 0.6 35 0.47 1.8 19
Sweden 0.6 1.0 33 0.62 1.6 13 2.49 0.8 26 2.49 1.4 12 0.33 1.2 33 0.33 1.5 13

The numerical test is repeated with 𝑓 = sinh and the corresponding results are reported in Table 6. On
all case studies krylov lbfgs and krylov hessian yields almost equal variations of the 𝑓 -connectivity. The
most significant differences are observed on England (Addition), Germany (Rewiring), Mexico (Addition), and
Poland (Tuning). Similar comments to the exponential case apply to the reported computational times.

7. Conclusions

We have proposed two strategies, based on Krylov subspace approximations, for optimizing the natural
connectivity of a graph. The first one is a greedy heuristic method that is well suited to contexts where we either
add or remove unweighted edges on a large-scale graph. Despite being computationally more expensive than
state-of-the-art alternatives, in the context of the addition problem our approach significantly outperforms the
increase of the natural connectivity. The second proposed strategy combines Krylov subspace approximation
and an interior point scheme using either the Hessian or its L-BFGS approximation, to address continuous

OPTIMIZING NETWORK ROBUSTNESS VIA KRYLOV SUBSPACES 153

Table 6. Magnitude of the relative trace variation (∆𝑇), execution time in seconds (𝑡), and
number of iterations (𝑘it), for the tuning, rewiring, and addition optimization problems solved
with krylov lbfgs and krylov hessian approaches, for weighted graphs associated with
power grid networks and for 𝑓 = sinh.

Hyperbolic sine
Tuning Rewiring Addition

lbfgs Hessian lbfgs Hessian lbfgs Hessian
Δ𝑇 𝑡 𝑘it Δ𝑇 𝑡 𝑘it Δ𝑇 𝑡 𝑘it Δ𝑇 𝑡 𝑘it Δ𝑇 𝑡 𝑘it Δ𝑇 𝑡 𝑘it

Austria 13.98 0.9 41 13.9 1.4 9 67.14 0.4 26 67.14 1.4 10 19.85 0.3 15 19.85 1.0 9
Denmark 15.51 0.3 38 15.5 1.1 11 123.74 0.2 23 123.75 1.3 11 16.72 0.1 19 16.74 1.0 8
England 3.68 10.0 40 3.68 6.0 13 9.7 4.2 35 9.7 2.9 10 3.29 2.0 20 3.67 2.2 10
Germany 2.72 3.0 12 2.74 2.1 7 9.26 2.6 39 9.87 2.1 11 1.19 1.9 24 1.32 1.8 10
India 6.86 6.8 24 6.86 4.9 12 32.21 5.0 29 32.17 3.2 9 5.26 3.5 24 5.26 2.7 9
Italy 5.48 11.1 47 5.54 4.1 12 19.46 3.2 20 19.46 3.2 10 2.8 2.1 30 2.8 2.4 10
Mexico 5.02 4.9 25 5.01 3.0 9 12.75 7.4 33 12.72 3.1 9 2.05 3.6 35 2.6 3.2 15
Poland 6.23 1.4 17 6.44 1.7 9 14.45 2.7 28 14.46 2.2 10 4.05 3.2 27 4.0 1.5 7
Portugal 9.67 1.1 27 9.68 2.6 10 40.63 0.8 24 41.3 1.3 10 6.41 0.9 29 6.4 1.5 12
Sweden 6.9 1.7 27 6.9 7.2 34 43.36 1.8 24 43.09 1.6 8 5.27 1.7 25 5.27 1.5 8

optimization problems that include edge tuning and rewiring. To the best of our knowledge, this is the first
attempt to tackle the optimization of the natural connectivity with first and second order methods, and the
reported experiments demonstrate the feasibility of the approach at least for graphs up to medium size.

Finally, we highlight that the proposed computational strategies are quite flexible as they can be adapted
with minor changes to the optimization of other matrix function based measures on graphs and it is conceptually
easy to incorporate further constraints on the set of modifiable edges.

Acknowledgements. We would like to thank the department of Math and Stats of Uni Strathclyde for hosting us and
the European Union’s Horizon 2020 research and innovation programme who has provided support for the researchers
to engage in collaborating activities via the Marie Sk lodowska-Curie individual fellowship “MAGNET” No 744014. The
work of S.M. was partially supported by the INdAM/GNCS project CUP E53C22001930001 “Metodi basati su matrici
e tensori strutturati per problemi di algebra lineare di grandi dimensioni”.
Data Availability Statement. The code implementing all the algorithms and numerical tests described in this paper is
available at the public GitHub repository https://github.com/COMPiLELab/krylov_robustness [41].

References

[1] A.H. Al-Mohy and N.J. Higham, Computing the action of the matrix exponential, with an application to exponential integra-
tors. SIAM J. Sci. Comput. 33 (2011) 488–511.

[2] H. Alqahtani and L. Reichel, Multiple orthogonal polynomials applied to matrix function evaluation. BIT Numer. Math. 58
(2018) 835–849.

[3] F. Arrigo and M. Benzi, Updating and downdating techniques for optimizing network communicability. SIAM J. Sci. Comput.
38 (2016) B25–B49.

[4] V. Batagelj and A. Mrvar, Pajek datasets collection. http://vlado.fmf.uni-lj.si/pub/networks/data/ (2006).

[5] B. Beckermann, D. Kressner and M. Schweitzer, Low-rank updates of matrix functions. SIAM J. Matrix Anal. Appl. 39 (2018)
539–565.

[6] M. Bellalij, L. Reichel, G. Rodriguez and H. Sadok, Bounding matrix functionals via partial global block lanczos decomposition.
Appl. Numer. Math. 94 (2015) 127–139.

[7] R.H. Byrd, M.E. Hribar and J. Nocedal, An interior point algorithm for large-scale nonlinear programming. SIAM J. Optim.
9 (1999) 877–900.

[8] R.H. Byrd, J.C. Gilbert and J. Nocedal, A trust region method based on interior point techniques for nonlinear programming.
Math. Program. 89 (2000) 149–185.

https://github.com/COMPiLELab/krylov_robustness
http://vlado.fmf.uni-lj.si/pub/networks/data/

154 S. MASSEI AND F. TUDISCO

[9] H. Chan and L. Akoglu, Optimizing network robustness by edge rewiring: a general framework. Data Min. Knowl. Discov. 30
(2016) 1395–1425.

[10] H. Chan, L. Akoglu and H. Tong, Make it or break it: Manipulating robustness in large networks. In Proceedings of the 2014
SIAM International Conference on Data Mining. SIAM (2014) 325–333.

[11] T. Chen, A. Greenbaum, C. Musco and C. Musco, Error bounds for lanczos-based matrix function approximation. SIAM J.
Matrix Anal. Appl. 43 (2022) 787–811.

[12] F. Chung, F.R. Chung, F.C. Graham and L. Lu, Complex Graphs and Networks. American Mathematical Soc., Number 107
(2006).

[13] S. Cipolla, F. Durastante and F. Tudisco, Nonlocal pagerank. ESAIM Math. Model. Numer. Anal. 55 (2021) 77–97.

[14] ComplexNetTSP PowerGrids, Highvoltage power grid networks. https://github.com/ComplexNetTSP/Power_grids/tree/v1.
0.0 (2023).

[15] A. Cortinovis, D. Kressner and S. Massei, Divide-and-conquer methods for functions of matrices with banded or hierarchical
low-rank structure. SIAM J. Matrix Anal. Appl. 43 (2022) 151–177.

[16] P. Crescenzi, G. D’angelo, L. Severini and Y. Velaj, Greedily improving our own closeness centrality in a network. ACM Trans.
Knowl. Discov. Data (TKDD) 11 (2016) 1–32.

[17] G. D’Angelo, M. Olsen and L. Severini, Coverage centrality maximization in undirected networks. In Vol. 33 Proceedings of
the AAAI Conference on Artificial Intelligence (2019) 501–508.

[18] O. De la Cruz Cabrera, J. Jin, S. Noschese and L. Reichel, Communication in complex networks. Appl. Numer. Math. 172
(2022) 186–205.

[19] E. Estrada, Virtual identification of essential proteins within the protein interaction network of yeast. Proteomics 6 (2006)
35–40.

[20] E. Estrada and N. Hatano, Statistical-mechanical approach to subgraph centrality in complex networks. Chem. Phys. Lett.
439 (2007) 247–251.

[21] E. Estrada and Ö. Bodin, Using network centrality measures to manage landscape connectivity. Ecol. Appl. 18 (2008) 1810–
1825.

[22] E. Estrada and N. Hatano, Communicability in complex networks. Phys. Rev. E 77 (2008) 036111.

[23] E. Estrada and N. Hatano, Returnability in complex directed networks (digraphs). Linear Algebra Appl. 430 (2009) 1886–1896.

[24] E. Estrada and D.J. Higham, Network properties revealed through matrix functions. SIAM Rev. 52 (2010) 696–714.

[25] E. Estrada and P.A. Knight, A First Course in Network Theory. Oxford University Press, USA (2015).

[26] C. Fenu, D. Martin, L. Reichel and G. Rodriguez, Block Gauss and anti-Gauss quadrature with application to networks. SIAM
J. Matrix Anal. Appl. 34 (2013) 1655–1684.

[27] P. Fika and M. Mitrouli, Aitken’s method for estimating bilinear forms arising in applications. Calcolo 54 (2017) 455–470.

[28] T.N. for Research Core Team, https://github.com/bstabler/TransportationNetworks (2023).

[29] A. Frommer, K. Lund and D.B. Szyld, Block krylov subspace methods for functions of matrices. Electron. Trans. Numer.
Anal. 47 (2017) 100–126.

[30] K. Garimella, G. De Francisci Morales, A. Gionis and M. Mathioudakis, Reducing controversy by connecting opposing views.
In Proceedings of the Tenth ACM International Conference on Web Search and Data Mining. ACM (2017) 81–90.

[31] A. Ghosh and S. Boyd, Growing well-connected graphs. In Proceedings of the 45th IEEE Conference on Decision and Control.
IEEE (2006) 6605–6611.

[32] A. Ghosh, S. Boyd and A. Saberi, Minimizing effective resistance of a graph. SIAM Rev. 50 (2008) 37–66.

[33] D.F. Gleich, Pagerank beyond the web. SIAM Rev. 57 (2015) 321–363.

[34] P. Grindrod and T. Lee, Comparison of social structures within cities of very different sizes. R. Soc. Open Sci. 3 (2016) 150526.

[35] M.H. Gutknecht, Block Krylov space methods for linear systems with multiple right-hand sides: An introduction, edited by
A.H. Siddiqi, I.S. Duff and O. Christensen. In Modern Mathematical Models, Methods and Algorithms for Real World Systems.
New Delhi, Anamaya (2007) 420–447.

[36] N. Hale, N.J. Higham and L.N. Trefethen, Computing 𝐴𝛼, log(𝐴), and related matrix functions by contour integrals. SIAM
J. Numer. Anal. 46 (2008) 2505–2523.

[37] P. Kandolf, A. Koskela, S.D. Relton and M. Schweitzer, Computing low-rank approximations of the Fréchet derivative of a
matrix function using Krylov subspace methods. Numer. Linear Algebra Appl. 28 (2021) e2401.

[38] D. Kressner, A Krylov subspace method for the approximation of bivariate matrix functions. In Structured Matrices in Numer-
ical Linear Algebra, Vol. 30 of Springer INdAM Series. Springer, Cham (2019) 197–214.

[39] L.T. Le, T. Eliassi-Rad and H. Tong, Met: A fast algorithm for minimizing propagation in large graphs with small eigen-gaps.
In Proceedings of the 2015 SIAM International Conference on Data Mining.SIAM (2015) 694–702.

[40] U. Luxburg, A. Radl and M. Hein, Getting lost in space: Large sample analysis of the resistance distance. Adv. Neural Inf.
Process. Syst. 23 (2010).

[41] S. Massei and F. Tudisco, Matlab code for “Optimizing network robustness via Krylov subspaces”. https://github.com/
COMPiLELab/krylov_robustness (2023).

[42] R. Mathias, A chain rule for matrix functions and applications. SIAM J. Matrix Anal. Appl. 17 (1996) 610–620.

[43] S. Medya, A. Silva, A. Singh, P. Basu and A. Swami, Group centrality maximization via network design. In Proceedings of the
2018 SIAM International Conference on Data Mining. SIAM (2018) 126–134.

https://github.com/ComplexNetTSP/Power_grids/tree/v1.0.0
https://github.com/ComplexNetTSP/Power_grids/tree/v1.0.0
https://github.com/bstabler/TransportationNetworks
https://github.com/COMPiLELab/krylov_robustness
https://github.com/COMPiLELab/krylov_robustness

OPTIMIZING NETWORK ROBUSTNESS VIA KRYLOV SUBSPACES 155

[44] R.A. Meyer, C. Musco, C. Musco and D.P. Woodruff, Hutch++: optimal stochastic trace estimation. In Symposium on
Simplicity in Algorithms (SOSA). Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2021) 142–155.

[45] V. Nicosia, R. Criado, M. Romance, G. Russo and V. Latora, Controlling centrality in complex networks. Sci. Rep. 2 (2012)
218.

[46] J. Nocedal and S.J. Wright, Numerical Optimization. Springer (1999).

[47] S. Pozza and F. Tudisco, On the stability of network indices defined by means of matrix functions. SIAM J. Matrix Anal.
Appl. 39 (2018) 1521–1546.

[48] S. Saha, A. Adiga, B.A. Prakash and A.K.S. Vullikanti, Approximation algorithms for reducing the spectral radius to control
epidemic spread. In Proceedings of the 2015 SIAM International Conference on Data Mining. SIAM (2015) 568–576.

[49] M. Schweitzer, Sensitivity of matrix function based network communicability measures: Computational methods and a priori
bounds. Preprint: arXiv:2303.01339 (2023).

[50] S.N.A.P. (SNAP), sparse networks collection. http://snap.stanford.edu/data/index.html (2023).

[51] H. Tong, B.A. Prakash, T. Eliassi-Rad, M. Faloutsos and C. Faloutsos, Gelling, and melting, large graphs by edge manipulation.
In Proceedings of the 21st ACM International Conference on Information and Knowledge Management. ACM (2012) 245–254.

[52] F. Tudisco and D.J. Higham, Node and edge nonlinear eigenvector centrality for hypergraphs. Commun. Phys. 4 (2021) 201.

[53] P. Van Mieghem, D. Stevanović, F. Kuipers, C. Li, R. Van De Bovenkamp, D. Liu and H. Wang, Decreasing the spectral radius
of a graph by link removals. Phys. Rev. E 84 (2011) 016101.

[54] S. Vigna, Spectral ranking. Netw. Sci. 4 (2016) 433–445.

[55] S. Wasserman and K. Faust, Social Network Analysis: Methods and Applications (1994).

[56] Z. Yu, C. Wang, J. Bu, X. Wang, Y. Wu and C. Chen, Friend recommendation with content spread enhancement in social
networks. Inf. Sci. 309 (2015) 102–118.

[57] Y. Zhang, A. Adiga, A. Vullikanti and B.A. Prakash, Controlling propagation at group scale on networks. In 2015 IEEE
International Conference on Data Mining. IEEE (2015) 619–628.

Please help to maintain this journal in open access!

This journal is currently published in open access under the Subscribe to Open model
(S2O). We are thankful to our subscribers and supporters for making it possible to
publish this journal in open access in the current year, free of charge for authors and
readers.

Check with your library that it subscribes to the journal, or consider making a personal donation to
the S2O programme by contacting subscribers@edpsciences.org.

More information, including a list of supporters and financial transparency reports,
is available at https://edpsciences.org/en/subscribe-to-open-s2o.

https://arxiv.org/abs/2303.01339
http://snap.stanford.edu/data/index.html
mailto:subscribers@edpsciences.org
https://edpsciences.org/en/subscribe-to-open-s2o

	Introduction
	Related work

	Optimizing the natural connectivity
	Edge downgrading
	Edge addition
	Edge tuning

	Algorithmic set-up

	Edge downgrading and addition for unweighted graphs
	The greedy paradigm
	Selection of the search spaces
	Updating the trace of f(A)
	A Krylov projection method
	Approximation via eigendecomposition update

	Algorithms for edge downgrading and edge addition

	Edge downgrading, addition, and tuning for weighted graphs
	The L-BFGS algorithm
	Gradient approximation via Krylov methods
	Hessian evaluation via Krylov methods
	Multiple evaluations of Lf(M,bold0mu mumu 111111ibold0mu mumu 111111jT)

	Numerical experiments with unweighted graphs
	Downgrading for unweighted graphs
	Trace reduction and scalability with respect to the budget size

	Addition for unweighted graphs

	Numerical experiments with weighted graphs: tuning, rewiring, addition
	Conclusions
	References

