
1

Optimal reconstruction of human motion
from scarce multi-modal data
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Abstract—Wearable sensing has emerged as a promising
solution for enabling unobtrusive and ergonomic measurements of
the human motion. However, the reconstruction performance of
these devices strongly depends on the quality and the number of
sensors, which are typically limited by wearability and economic
constraints. A promising approach to minimize the number of
sensors is to exploit dimensionality reduction approaches that
fuse prior information with insufficient sensing signals, through
Minimum Variance Estimation. These methods were successfully
used for static hand pose reconstruction, but their translation to
motion reconstruction has not been attempted yet. In this work, we
propose the usage of functional PCA to decompose multi-modal,
time-varying motion profiles in terms of linear combinations of
basis functions. Functional decomposition enables the estimation
of the a priori covariance matrix, and hence the fusion of scarce
and noisy measured data with a priori information. We also
consider the problem of identifying which elemental variables
to measure as the most informative for a given class of tasks.
We applied our method to two different datasets of upper limb
motion D1 (joint trajectories) and D2 (joint trajectories + EMG
data) considering an optimal set of measures (four joints for D1
out of seven, three joints and eight EMGs for D2 out of seven
and twelve respectively). We found that our approach enables a
reconstruction of the temporal evolution of upper limb motion
with a median error of 0.013±0.006 rad for D1, and 0.038±0.023
rad and 0.003±0.002 mV for D2.

I. INTRODUCTION

A correct sensing of human bio-mechanics, and more
specifically human body motion, is of paramount importance
in many trans-disciplinary fields, which include rehabilitation
and assistive applications [1], and human-robot interaction
[2]. With the aim of providing unobtrusive and comfortable
sensing solutions that can be suitably employed in everyday-
life as well as in unstructured environments (like human-robot
workspace), the research and technological effort have been
focused on the development of wearable systems for evaluating
human ergonomics [3]. These systems usually gather kinematic
information (i.e. joint angle information) [4] and/or record
human muscular activity, e.g. through surface electromyography
(sEMG) electrodes [5]. This multi-modal information can be
also used to devise informed models of the human neuro-
musculo-skeletal system [6], e.g. for a correct biomechanical
risk assessment.
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However, correctly retrieving human body motion is a
challenging task because of its complex architecture. Indeed,
while it is ideally feasible under a technological point of view,
there are several implementation issues that are difficult to
overcome, such as the difficulty of tracking - with common
sensors - the movement of certain DoFs (among the others the
rotation and the elevation of the scapula), and the uncertainties
due to relative motion between bones and sensors, see e.g. [7],
[8], [9].

A possible solution to deal with such abundancy - and
hence to reduce the dimensionality of the problem - can
come from neuroscience. Indeed, there is a vast neuroscientific
literature that has highlighted the dependencies between human
body DoFs [10]. These dependencies have been studied and
formalized within the general concept of motor synergies [11],
which, in a broad sense, provides a theoretical framework
to analyze motion coordination in terms of goal-oriented
functional couplings of elemental variables (e.g. joints, muscles)
[12], [13], [14]. This framework has found fertile ground in the
study of human hands, in grasping, manipulation and haptic
exploration tasks (see, among the others, [15]), producing
interesting transdisciplinary outcomes in robotics [16]. Indeed,
the dimensionality reduction that is intrinsic to the concept
of synergies has been successfully exploited for the design
[17], the control [18] and the planning [19] of artificial robotic
systems [16].

Under a pure observability point of view, i.e. for the sim-
plification of the problem of retrieving information on human
body posture and motion, the synergy-inspired dimensionality
reduction has also produced interesting results [20]. In [21],
the authors presented CODE, a COordination-based action
DEscriptor, which considers minimum and maximum joint
velocities and the correlations between the most informative
joints (i.e. the joints that are mostly involved in the execution
of a certain action), for whole-body action classification. In
[22], a compact 6D view-invariant skeletal feature (skeletal
quad) based on a local skeleton descriptor for encoding the
relative position of joint quadruples was proposed for action
recognition from single depth images.

In the field of computer vision and computer graphics, data-
driven approaches have been also proposed, e.g. to address
the problem of motion infilling for 3D human motion data.
In [23] the authors presented a convolutional autoencoder
that, given a start and end sequence, can complete the
missing gaps in between. In [24], a recurrent neural network
based approach was presented, for the prediction of future
motion when a seed sequence is given. Hierarchical Non
Linear Principal Component Analysis NLPCA neural networks
were successfully employed to reduce the dimension of the
configuration space, for the representation of human/humanoid
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Fig. 1. Schematics of the estimation method proposed in this paper. Temporal
measures of a limited number of joints and muscles are mapped (encoding) on
the extended state space of weights and average trajectories/muscles envelopes,
via a basis of functional Principal Components (fPCs) extracted in advance
on an a priori dataset. Then, the missing portion of the state is estimated
via MVE. Finally, the whole muscle-skeletal system temporal evolution is
reconstructed by properly combining the fPCs with the estimated extended
state (decoding).

motion patterns [25].
Low-dimensional feature extraction methods such as princi-

pal component analysis (PCA) and Locally Smooth Manifold
Learning (LSML) were also proposed to extract linear and non
linear manifolds of human motion data, e.g. for hand avatar
animation [26] or for humanoid robot interface design [27].

Although promising, all the aforementioned methods lack of
a theoretical understanding of the statistical properties of human
muscular-skeletal data, which prevents their use to solve the
twofold problem of the estimation of the temporal evolution
of multi-modal data, in spite of scarce and noisy sensory
information, and the definition of optimal design strategies
for engineering wearable sensing devices. Furthermore, data-
driven and learning approaches are usually strongly dependent
on the size and quality of the training data, and have important
requirements in terms of computational power, which are hardly
achieved with on-board electronics used for data processing in
wearable applications (whose memory resources are usually in
the order of some megabites or lower).

In [28], we proposed a Minimum Variance Estimation
(MVE) technique to fuse the a priori information, organized
in terms of inter-joint covariation patterns of the most frequent
human grasping postures [15], with a reduced number of noisy
measures, to reconstruct the most probable joint angles in a
Bayesian sense. In [29] we pushed further this investigation
to identify the optimal hand joints that should be measured
to maximize the reconstruction accuracy (i.e. minimizing in
average the reconstruction error), as the result of an optimiza-
tion problem based on the minimization of the a posteriori
covariance matrix. These outcomes led to the development
and the design of wearable sensing gloves for hand pose
reconstruction, using a reduced number of sensing elements
(affected by noise) [30].

However, the methods presented in [28], [29] relied on
a priori information of static postures, and then they can-
not be applied in a straightforward manner for estimating
temporal trajectories. Furthermore, they cannot be applied to
the simultaneous reconstruction of multi-modal motion-related
quantities (e.g. joint angles and EMG signals), due to the
intrinsic difficulties of providing a reliable estimation of the
covariance matrix from heterogeneous data [31]. Finally, an
application of these techniques to human upper limb data has
not been performed yet.

In this paper, we propose a method to generalize the
estimation based on minimum variance to the whole upper
limb temporal evolution of joint and EMG measurements,
capitalizing on two pillars: (1) the existence of covariation
patterns in human upper limb motions, which we demonstrated
in [32]; (2) the application of functional analysis for enabling
the reconstruction of the whole trajectory over time and the
estimation of the covariance matrix from multi-modal data (see
Fig. 1). In brief, our solution relies on three phases: encoding
phase, estimation phase and decoding phase. The idea is to use
functional Principal Component Analysis (fPCA) to identify a
basis of functions, whose combination can approximate any
generic joint and EMG signal temporal evolution [33]. The
coefficients of this decomposition (encoding phase) or weights,
which are extracted from an a priori dataset, can be organized
together with the average trajectories to form an extended state
space and represented by a static vector. As soon as a novel
motion is performed, it can be encoded, through the basis of
functional Principal Components, in terms of the extended state.
We then apply MVE to estimate all the components of the state
corresponding to all the joints and EMG recorded signals of
the kinematic chain, even when some of them are not directly
determined by the measurements or are corrupted by noise
(estimation phase). Finally, a decoding procedure is applied
to reconstruct the whole motion of the upper limb joints, by
properly combining the functional Principal Components with
the estimated extended state.

We validated our framework with two different datasets
which are freely available online [34]. The first is a dataset of
30 gestures performed by a cohort of 33 healthy subjects and
collected at the University of Pisa (hereinafter referred to as the
dataset D1). Data consisted of the 3D positions of the markers
fastened on the upper-limb links over time (see [34] for details).
From the Cartesian position of the optical markers, we extracted
joint angular values by solving a mapping problem on a 7 DoFs
kinematic model (three for the shoulder, two for the elbow and
two for the wrist, see [32]). To prove that our work can be
generalized to multi-modal data, we also included a second
dataset, which was recorded at the Hannover Medical School
(MHH) (hereinafter referred to as the dataset D2) and also
available in [34]. Also in this case, movements were recorded
with a motion capture system, but also complemented with
surface electormyographic recordings (sEMG) from 12 muscles.
The motion capture recordings and hence the 3D optical marker
positions allow the definition of a 7 DoFs kinematic model,
which is however different from the one that characterizes the
first dataset since it enable to retrieve two additional DoFs
for the shoulder and no DoFs for the wrist. In both cases, we
splitted the dataset (where the same upper limb actions were
considered) in two parts, one (containing the 70% of all the
entries) was used as a priori information, and the remaining
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TABLE I
LIST OF NOTATION

Sym Quantity Sym Quantity

ξ s
j Single fPC P0 A-priori covariance matrix

l No. of DoFs r No. of muscles
N No. of dataset elements q(t) Joint angular values
m(t) Muscles activation evelopes t Normalized time
T No. of time frames smax Max no. of fPCs
αi Weight of fPCS θ j weights coefficients
Q j Motions of joint j Θ j Matrix of weights
Φ Matrix (m.) of fPCs k No. of fPcs used
q̄J Average joint trajectory y Sensor measures
d No. of sensors R Noise covariance matrix
ν Measures noise H Joints-measures mapping
PP A posteriori covariance m. p p-value
xe Extended state space

part for testing. We quantified the norm of the error between
the real and the estimated signal on the testing data, without
considering a number of independent joints/EMG signals and
adding different magnitudes of noise to the measured ones. Our
results demonstrate the capabilities of accurately reconstructing
the trajectories of the whole kinematic chain, with respect
to two alternative methods that we used for comparison, one
based on the usage of the pseudoinverse (as done in [28]) and a
second one which recursively estimates the current joint static
posture through an iterative Minimum Variance Estimation
based on a static covariance matrix [28] (the latter cannot be
applied in a direct manner to multi-modal data).

Motivated by these outcomes, we designed an optimization
problem to identify the optimal selection of independent
joints/EMG that one should measure to maximize the estimation
accuracy, by leveraging on a metric of uncertainty estimation
based on the a-posteriori covariance matrix as in [29]. We
believe that our findings can open interesting perspectives
for the design of an optimized under-sensorized wearable
system for multi-modal upper limb tracking, and potentially
for the whole body, which could be successfully exploited for
every-day life human body monitoring in different application
fields, e.g. rehabilitation, assistance and advanced human-robot
interaction and cobotics.

II. METHODS AND THEORETICAL FOUNDATIONS

A. Motion decomposition via fPCA: encoding phase
As anticipated before, our reconstruction of human multi-

modal motion data leverages on the decomposition of signal
provided by functional Principal Component Analysis (fPCA),
a statistical method to identify functional primitives from time-
varying data. In the following, we will briefly introduce the
theory behind fPCA, while we refer the reader to [35] for more
details.

Let us consider, without any loss of generality, a l-DoFs
kinematic model moved by r muscles, N independent ob-
servations of joints temporal evolution q1(t), . . . ,qN(t) and
(eventually) of muscles activation envelopes m1(t), . . . ,mN(t),
where q(t) : R→ Rl , m(t) : R→ Rr. Let us also assume that
the time-series are defined over a normalized time t ∈ [0,1]
sampled in T evenly spaced points. The latter can be achieved
for example through the solution of a Dynamic Time Warping
problem, i.e. a pre-processing technique that, given a dataset of
time series of arbitrary length, produces a time-normalization
to generate entries with the same number of time-points. In

our implementation, given two time series, v1 and v2, the
affinity between the two signals is maximized by the following
optimization problem:

(S,T ) = argmax
S>0,T

ρ(v1(t),v2(St −T )) (1)

where the operator ρ is the cross correlation between two
vectors. Note that this implementation also imposes time-
monotonicity, to preserve the coherence in time of the samples,
and linear distortion of time with a constant scaling factor to the
time domain. All the elements of the dataset are time-warped
w.r.t. a common reference signal identified as the dataset entry
of average duration. Of note, the optimal parameters S∗,T ∗ for
each dataset entry are shared across all the DoFs to preserve
the coordination of movements.

Then, a generic signal (representing either a joint temporal
profile or a muscle activation envelope) can be decomposed
as a weighted sum of basis elements ξ s

j (t), aka functional
Principal Components (fPCs):

q(t)≃ q̄(t)+
smax

∑
i=1

q
α

i ◦q
ξ

i(t)

m(t)≃ m̄(t)+
smax

∑
i=1

m
α

i ◦m
ξ

i(t) ,
(2)

where q/mα i ∈ Rl/r is a vector of weights, q/mξ i(t) ∈ Rl/r is
the ith basis element or fPC and smax is the number of basis
elements considered. The operator ◦ is the element-wise product
(Hadamard product), q̄ ∈ Rl and m̄ ∈ Rr is the average of q(t)
and m(t) respectively. The output of fPCA, which is calculated
independently for each joint or muscle j, is a basis of functions
{ξ 1

j , . . . ,ξ
smax
j } that maximizes the explained variance of upper

limb motions collected in the dataset. Therefore, the first fPC
ξ 1

j (t) is the function that solves the following problem:

max
ξ 1

j

N

∑
i=1

(∫
ξ

1
j (t)q

i
j(t)dt

)2

s. t. ||ξ 1
j (t)||22 =

∫ 1

0
[ξ 1

j (t)]
2dt = 1 .

(3)

Subsequent fPCs ξ s
j (t) are the functions that solve the same

problem of Eq. 3, with an additional constraint of orthogonality,
i.e.: ∫ 1

0
ξ

s
j (t)ξ

i
j(t)dt = 0 , ∀i ∈ {1, . . . ,k−1} . (4)

Note that Eqs. 3 and 4 refer to joint angular values, but the
extension to muscles is straightforward and here omitted to
improve readability. For practical implementations of fPCA that
bypass the solution of the optimization problem the interested
reader can refer to [35].

Given the optimal selection of basis elements, the movements
of the upper limb are now described by an average configuration
plus a reduced number of weighting coefficients, i.e. a generic
trajectory qi

j(t) is now represented by the average q̄i
j and by

the vector qθ i
j = [qα1

j , . . . ,
q αk

j ]
′ ∈Rk, where k is the cardinality

of the fPCs basis and (•)′ is the transpose operation (an
analogous nomenclature holds for the characterization of
muscles activation envelopes). Note that k can be intended
as a free integer parameter, arbitrarily selected in the interval
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[1,smax]. It is important to note the significant reduction of
dimensionality, given that in practical cases k (the number of
fPCs, in our case equal to 5, see Sec. III-B) is usually at least
two order of magnitude smaller than T (the number of time
frames, in our case 100 samples for each second of recordings,
i.e. 9.7s for the signal used for the Dynamic Time Warping
procedure and ≈ 4.7s for the shortest signal in our dataset,
see Sec. III-A). More importantly, this change of domain
comes with the additional benefit that a movement can be now
described by a single static vector of coefficients or weights.
Clearly, higher values of k enable a more precise approximation
of the real motion, yet augmenting the dimensionality of the
state in the weights domain. For each joint, the relationship
in matrix form between the joint and the weights domains is
then:

Q j(t) = q̄ j +
q

Φ
q
jΘ j (5)

where
Q j =

[
q1

j(t) . . .q
N
j (t)

↓ . . . ↓

]
∈ RT,N ,

q
Φ j =

[
qξ 1

j (t) . . .
q ξ k

j (t)
↓ . . . ↓

]
∈ RT,k

(6)

and qΘ j ∈ Rk,N is composed by columns collecting the
weights θ i

j associated to the dataset elements. An equivalent
matrix form exists for muscles activation envelopes:

M j(t) = m̄ j +
m

Φ
m
j Θ j. (7)

B. Estimating non-measured motion-related quantities via MVE
(estimation and decoding phase)

As briefly introduced in the previous sections, in [28] we
proposed a method to estimate the posture of human hands
leveraging on a set of observations previously collected and
used as a priori information. This information was organized
and described in terms of joint mean µ0 and covariance matrix
P0. When some of the joints are not directly measured or
the measurements are corrupted by noise, we can fuse such
insufficient sensory information with the prior data to estimate
the whole posture through Minimum Variance Estimation MVE.
In the following, we will provide only a basic description of
how to use MVE to improve the posture estimation, while we
invite the reader to refer to [28] for more theoretical details. Let
us consider a set of measures y ∈Rd provided by a selection of
d sensors , and let us also assume a linear relationship between
the joint variables q ∈ Rl and the measures y:

y = Hq+ν , (8)

where H ∈ Rd,l is a full row rank measurement matrix
(hereinafter we consider, without loss of generality, H as a
selection matrix or discrete measurement matrix [29]) and ν

is the measurement noise. The goal is to estimate q given y
when d < l. Because the number of unknown is higher than the
number of measures, the problem admits an infinite number
of solutions:

q̂ = H†y+NHψ, (9)

where H† stands for the pseudo-inverse of H, NH is the null
space of H and ψ ∈ Rl−d a free vector of parameters. The
least-squared solution is:

q̂ = H†y. (10)

Yet, the output of Eq. 10, although it represents the vector
of minimum Euclidean norm, can be very far from the real
one. However, from neuroscientific studies it is known that
human movements are characterized by stable and coherent
covariation patterns between joints [15]. This is indeed a source
of information that can be used to improve the estimation in
Eq. 9. Given a (large enough - [36]) number of realizations of
qi collected in a matrix of a priori X ∈ Rl,N , we can compute
the covariance matrix

P0 =
(X − q̄)(X − q̄)′

N −1
, (11)

where q̄ is a matrix whose columns contain the average µ0 of
X. Given P0, the best estimate q̂ of q is the vector that solves
the following optimization problem:

q̂ = argmin
1
2
(q−µ0)

′P−1
0 (q−µ0) s.t. y = Hq. (12)

Under the hypothesis of ν with zero mean and Gaussian
distribution with covariance matrix R, the solution of Eq. 12
can be found in closed form and is:

q̂ = (P−1
0 +H ′R−1H)−1(H ′R−1y+P−1

0 µ0) (13)

and the a posteriori covariance matrix (which brings informa-
tion about the uncertainty of the corresponding state estimation)
is

PP = (H ′R−1H +P−1
0 )−1. (14)

This work generalizes the MVE-based posture estimation
method to heterogenous data and motion profiles by applying
Eq. 13 to the extended state of the weights qΘ for joint angular
values, eventually complemented with mΘ for the estimation of
muscles activation. Indeed, considering the kinematic domain
only, we can leverage on the relationship introduced in Eq.
5 to build an extended state vector, where a general motion
trajectory for the whole upper limb can be represented as in
the following:

xe = [q̄q
1α

1
1 . . .

q
α

k
1 |q̄

q
2α

1
2 . . .

q
α

k
2 | . . . |q̄q

pα
1
p . . .

q
α

k
p]
′, (15)

where the subscript (•) j stands for the i-th joint, q̄ j is the mean
value of the j-th joint and qαk

j are the coefficients in weight
space identified in Sec. II-A. Obviously, the extension to the
muscle-skeletal case is straightforward and can be obtained by
expanding xe with the terms associated to muscles activation
envelopes (Eq. 7). xe can be considered as an extended space,
represented by a vector ∈ R(k+1)∗l for the kinematics-only
case and ∈ R(k+1)∗(l+r) for the muscle-skeletal case (i.e. joint
and muscle activation signals). If some of the q/mαk

j -related
components cannot be directly computed (because the related
measurements are missing) or are affected by noise, we can
perform an estimation of the whole extended state by applying
the static formalization of [28]. The estimated coefficients can
then be used to reconstruct the motion of all the elements of
the kinematic chain according to Eq. 5.

C. Optimal sensors placement
As anticipated in the previous section, MVE relies on a

dataset of complete measures available a priori to provide,
given partial measurements of the current state, a complete
estimation of the whole muscle-skeletal configuration. Such an
estimation is affected by a certain degree of uncertainty, which
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Fig. 2. A) Kimematic model used to model the dataset D1. Three DoFs are
used to describe the rotation of the shoulder (in order abduction–adduction,
external–internal rotation, flexion–extension), two for the elbow (in order
flexion–extension and pronation–supination) and two for the wrist (in order
abduction–adduction and flexion–extension); B) Kimematic model used to
model the dataset D2. Two DoFs are used to describe the rotation of the scapula
(in order abduction-adduction and elevation-depression), three for the shoulder
(in order external–internal rotation, flexion–extension and abduction–adduction)
and two for the elbow (in order flexion–extension and pronation–supination).

is directly related to the amount of noise (with covariance
matrix R) that characterizes the measurements y, and, most
importantly, to the choice of matrix H, i.e. the choice of which
degrees of freedom to measure (see eq. 14). For this reason,
a proper selection of the DoFs to be measured can improve
the accuracy of the estimation. This problem, which is dual
to the estimation problem described in the previous section,
targets the optimal placement of a given number of sensors
, with the goal of minimizing the estimation uncertainty, and
therefore maximizing the accuracy. To do this, one could rely
on the a posteriori covariance matrix PP and minimize a cost
function associated to a given norm of PP, where the argument
of the minima is the matrix H itself [29]. Among the possible
choices of norm definitions available, it is worth mentioning the
Frobenius Norm [29], which leads to the definition of a matrix
H that - used with the estimation approach described in Eq.
12 leads to the minimization of the average uncertainty across
joints. However, with this choice it could happen that some
DoFs could be affected by large uncertainties, compensated
by other DoFs where the estimation is more accurate. To
avoid this problem, in this work we rely on a differentiable
approximation of the maximum eigenvalue of PP, which we
can get considering the Schatten norm

||PP||p =

(
∑

i
σ

p
i (PP)

) 1
p

(16)

when p >> 1 (ideally p = ∞) [37]. A minimization of the
index defined in Eq. 16 with H as the argument of the minima,
then, will converge toward a matrix H, i.e. a sensor placement
distribution, which minimizes the uncertainty in the worst
case. Exploiting the differentiability properties of the Schatten
norm, it is possible to calculate a gradient of the cost function
by differentiating Eq. 16 after substituting Eq. 14. However,
because of the particular structure of H for our extended
state, which is composed of blocks of squared k-dimensional
diagonal matrices, it is not possible to introduce a constraint
in the gradient-based optimization procedure, which can also
guarantees that H preserves the block structure. For this reason,

TABLE II
LIST OF MUSCLES CONSIDERED IN THIS STUDY

# Muscles

1 M. Deltoideus pars clavicularis (DC)
2 M. Biceps brachii (BB)
3 M. Triceps brachii (TB)
4 M. Flexor digitorum superficialis (FDS)
5 M. Extensor digitorum (DE)
6 M. Brachioradialis (BR)
7 M. Flexor carpi ulnaris (FCU)
8 M. Extensor carpi ulnaris (ECU)
9 M. Pronator teres (PT)
10 M. Flexor carpi radialis (FCR)
11 M. Abductor pollicis brevis (APB)
12 M. Abductor digiti minimi (ADM)

gradient-free methods should be applied to minimize Eq. 16
in our case.

III. IMPLEMENTATION

A. A dataset of upper limb actions
To test our framework over a wide range of functional tasks,

we considered a dataset of upper limb movements collected
during daily living activities [34]. More specifically, we picked
from [34] two blocks of data. The first, which hereinafter we
refer to as the dataset D1, consists of motions performed by 33
healthy subjects (17 Female, age 26.56±2.77, all right-handed)
who were asked to execute three times with their right arm a
selection of 30 daily living tasks (enumerated in [34]), while
the motion of the upper limb was recorded via optical motion
tracking (PhaseSpace, sampling frequency 100Hz). The 3D
position of the 20 optical markers used to track the movement
were given as input to a two-step procedure: i) an optimization
routine to estimate the subject-specific physical parameters of
a pre-defined 7 DoFs kinematic model (i.e. length of the links,
distances between joints and markers etc. – see Fig. 2-A); ii)
an Extended Kalman filter to estimate the time evolution of
joint profiles that generate the measured markers’ motion [19].

To further validate our method with multi-modal data, we
complemented our analysis with a second dataset, the dataset
D2, also available in [34]. This is a collection of signals
acquired by the Hannover Medical School and consists of
motions performed by 20 healthy subjects (12 Female, age
46.8±15.3, of which eight right-handed) who were asked to
perform the same set of tasks of the first dataset, but in this
case the placements of optical markers was different. In this
manner, the estimation of the relative motion of the shoulder
with respect to (w.r.t.) the torsum, but not of the hand w.r.t. the
forearm can be obtained. This resulted in a kinematic model
that is different from the one used for the dataset D1 (see Fig.
2-B). The Cartesian position of markers was processed using
the same procedure introduced above for the dataset D1 to
extract joint angular values. In addition, the activation of 12
different muscles was also collected during the execution of the
tasks (see list of involved muscles in Tab. II). Muscular data
were pre-processed using standard techniques to extract muscle
activation envelopes, namely: rectification, filtering (low-pass,
cut-off frequency equal to 20Hz), Resampling. These data -
and the related information - are also available at [34].

To enable a meaningful comparison between different time-
series (different joint trajectories and/or EMG signals) for
each dataset we applied Dynamic Time Warping (DTW)
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independently. The output of this procedure is a dataset of
signals with the same number of time frames T , which for the
dataset D1 is equal to 970 - duration of the reference signal
used for DTW [33].

Finally, for each dataset independently, the total number
recordings was splitted in two blocks, one (containing a random
selection of 70% of all samples) that was then used to build
the a priori dataset (see Sec. II-B) and the second (containing
the remaining entries) that served for testing.

Once data were properly warped in time w.r.t. a common
reference, we used functional Principal Component Analysis
on the a priori dataset to identify a low-dimensional set
of primitives/basis functions that can be combined with the
measurements of few joint/EMG trajectories to optimally
reconstruct the joint evolutions and/or the muscles activation
envelopes in time. This set of basis elements extracted from
data can then be used to map any new movement from the
testing dataset to the weight space by simply inverting Eq. 5
and 7 - see Section II-A.

B. Estimation and metrics for performance evaluation

As already mentioned, the usage of MVE as in [28] cannot
be used for estimating time-varying and multi-modal signals,
and the aim of this paper is to propose a solution which
generalizes to the estimation of multi-modal temporal data.
Our approach relies on the decomposition of signals via fPCA,
which enables the definition of an extended state space xe
in place of joint trajectories. All the experimental validation
performed in this paper used the first five functional PCs only
(i.e. k = 5), because these are sufficient to explain over 93%
of the total variance in the a priori dataset for all the joints
[19]. Of note, the number of fPCs used is to be considered
as a trade-off between accuracy and computational burden. To
quantify the effectiveness of our estimation method, we used
as quality index the norm of the estimation error over all the
degrees of freedom w.r.t. the real motion. For performance
comparison, we considered two different alternative estimation
methods, i.e. a direct application of static MVE over each time
frame, and a standard pseudo-inverse (Eq. 10) as in [28]. The
first is a straightforward application of [28] and consisted in the
definition of a static covariance matrix, which we built starting
from the matrix of average poses (i.e. for each movement, we
picked the average joint configuration). Note that this method
can be used for uni-modal data only, due to the problems of
computing the matrix P0 from heterogeneous data. To this aim,
we implemented a recursive MVE algorithm in which each
time frame is estimated through standard MVE relying on
the updated measure (i.e. values of joint angular values/EMG
measured at the specific time frame) and the same a-priori
information. The second, instead, refers to the implementation
of Eq. 10 applied to the extended state. All the methods
were tested over multiple examples, where we discarded the
information coming from one or more DoFs, and considering
random values of noise amplitude. For each testing condition,
we evaluated the norm of the reconstruction error (in rad) for
all the entries of the testing dataset. Statistical significance
of differences between estimations performed through pseudo-
inverse, static MVE and the proposed method was evaluated
using the Wilcoxon signed-rank test applied to the norm of
the reconstruction error.

It is worth noticing that the whole procedure described in
this paper relies on the information of the set of movements
considered in the a priori dataset. In our case, these are
complete actions, i.e. the initial and final arm kinematic postures
are close to each other. Therefore, the description of generic
movements in terms of functional components is more effective
when the new signal considered for testing is a complete action
as well. It is important to state that this is not a limitation of
the work per-se, since it depends on the particular selection of
tasks included in the a priori dataset. The choice we made in
our paper makes our method particularly suitable to estimate
cyclic motions (as the ones commonly performed by humans
in human-robot industrial collaborative tasks [3]) and, given a
novel stream of sensory data, to (likely) automatically detect
the end of a cycle and the beginning of the following one,
based on the estimation performance. This point will be further
discussed later in the manuscript and analyzed as future work.

C. Minimization of a posteriori covariance matrix: optimal
sensing design

As mentioned in Sec. II-C, we target the identification of
an optimal placement of sensors to minimize the estimation
uncertainty. Unfortunately, because of the block structure of
H, it is not possible to employ gradient based optimization
algorithms, and search methods over discrete states should
be considered. We developed an implementation in Matlab
which uses a genetic algorithm (Population size = 150, Max
number of generations = 200, Elite Count = 10) to solve the
optimization problem:

H∗ = argmin V1 (P0,H, R) , (17)

where

V1 (P0,H. R) =
∣∣∣∣∣∣(H ′R−1H +P−1

0
)−1
∣∣∣∣∣∣

p
=∣∣∣∣∣∣P0 −P0H ′ (HP0H ′+R
)−1 HP0

∣∣∣∣∣∣
p
.

(18)

IV. RESULTS

To verify the accuracy in reconstruction, we applied our
method and the two alternative solutions to estimate all the
entries of the test dataset D1, assuming to measure only a
limited number of DoFs and artificially adding a Gaussian noise
on the measured ones, with standard deviation (std) equal to
0.1 rad ([28]) in the exemplary tests, and in the range [0,2] rad
to test how the results are affected by the Signal-to-Noise (SN)
ratio. As anticipated in the previous section, the accuracy of
the estimation highly depends on the number and the selection
of joints that are measured. For this reason, without any loss of
generality, we will first discuss the optimization of the sensor
placement, i.e. the solution of the minimization problem of Eq.
17, considering a trade off between number of sensors used
and accuracy of the estimation. Then, we will use the optimal
placement of sensors to evaluate the estimation accuracy of
our method compared to the alternative solutions.
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Fig. 3. Minimum value of the P Schatten norm calculated over the a
posteriori covariance matrix (i.e. an approximation of the maximum estimation
uncertainty) versus the number of different DoFs measured for the dataset
D1. For each point, the corresponding label reports the n-tuple of measured
joints that provides the minimum estimation uncertainty. The label associated
to seven DoFs is trivial and omitted for sake of clarity. Results are drawn
considering a random added noise in the range [0,2] rad. The filled line refers
to the average minimum of ||PP||P w.r.t. different instances of noise, while
the coloured area marks the standard deviation of ||PP||P over the mean.

A. Optimal sensing design

As mentioned above, we can identify an optimal placement
of sensors by minimizing a norm of the a posteriori covariance
matrix reported in Eq. 18. However, the number of DoFs to
be measured must be known in advance, and this is a free
parameter of the problem that has to be set as a trade-off
between estimation uncertainty and complexity of the sensing
setup. Indeed, it is reasonable to expect that an higher number
of available measures contributes toward a reduction of the
maximum uncertainty error (see Fig. 3). Interestingly, there
is a consistency over the joints that are subsequently enrolled.
In other words, if the optimal placement of three sensors is
the one that measures joints number one, four and seven,
this n-tuple will be part of all the optimal n-tuples with
higher cardinality. Furthermore, we also studied the effect
of noise on the identification of the optimal set of DoFs to
measure, and verified that a reduction in the signal-to-noise
ratio (coherently across joints) does not affect the resulting
optimal design, as depicted with the shaded area in Fig. 3, while
we anticipate that it will play a crucial role in the accuracy of
the estimation itself. For this reason, and without any loss of
generality, hereinafter we will consider and discuss the optimal
sensing setup corresponding to four measured DoFs. In this
case, we obtained that the optimal placement that minimizes
the objective function of Eq. 18 is composed by the n-tuple
1,4,6,7 (see. Fig. 2 for joints definition). Of note, the most
important joints in terms of reduction of the estimation accuracy
is the flexion-extension of the elbow, which indeed represents
one of the DoFs that is largely involved in reaching tasks.
Then, the algorithm gives particular relevance to one of the
joints that move the shoulder and the two DoFs of the wrist,
which are highly variable across different movements. Of note,
although we can explain the biomechanical reason underlying
the particular selection of the most informative joints, their
identification is not feasible a priori without our analysis.

Considering the multi-modal case (dataset D2), similar
observations could be made, and are here omitted for sake of

clarity, leaving space to discuss the optimal setup we identified.
Indeed, in this case it is important to mention that, considering
the strong causality relationship between muscle activation
and consequent joint temporal evolution, one could impose a
number of constraints on a minimum selection of muscles/joints
that needs to be recorded. For example, given the list of muscles
available in the dataset D2, it is possible to observe that four
of them (i.e. Flexor digitorum superficialis, Extensor carpi
ulnaris, Abductor pollicis Brevis and Abductor digiti minimi)
are specifically enrolled in the movement of the wrist and
of the fingers and, therefore, cannot be estimated relying on
the kinematic counterpart. Without any loss of generality, we
report here on the optimal sensor placement that minimizes the
a-posteriori covariance matrix when only three joints and eight
muscles are directly measured. In this case, the optimal sensor
placement resulted in the joint n-tuple 3,5,6 complemented with
the muscles n-tuple 1,2,4,7,8,9,11,12. It is interesting to observe
that our optimization converged to an optimal sensing setup in
which the system exploits the readings of M1 and M2, i.e. the
Deltoideus pars clavicularis and the Biceps brachii muscles,
which are involved in most of the movements considered in
the dataset. In addition, also M7 (Flexor carpi ulnaris) and M9
(Pronator teres), which are responsible for elbow pronation-
supination, are enrolled in the optimal setup.

B. Estimation accuracy

To assess the estimation accuracy of our method, we used the
optimal placement of sensors identified in the previous section.
Considering the dataset D1 and joint trajectory estimation
corrupted by Gaussian noise with standard deviation equal
to 0.1 rad, numerical results demonstrate that the n-tuple
that yields the minimum estimation uncertainty (1,4,6 and
7) provides a norm of estimation error equal to 0.013±0.006
rad (expressed in median ± interquartile range, values are nor-
malised over T). Our approach outperforms the pseudoinverse
method (0.05±0.014 rad, i.e. on average 280% higher than
our approach) and the static mve (0.017± 0.08 rad, i.e. on
average 35% higher than our approach). A Wilcoxon signed-
rank test applied to the norm of the reconstruction error, with
Bonferroni correction to compensate for multiple tests, verified
that the difference in performances is statistically significant for
all the three methods (p < 0.0001), with higher performances
provided by our method. In Fig. 4 we show a random task
selected from the test dataset. It is possible to observe that
the estimation performance between the pseudo-inverse, the
static MVE and our approach are similar for the joints that can
be directly measured, while our method strongly outperforms
the alternative solutions in case of no direct measure of the
joints. Both the methods based on MVE are able to provide an
estimation of the joint temporal evolutions in case of missing
data, however only our method based on fPCA+MVE can
guarantee the likelihood of the estimated movement, since it is
directly embedded in the functional components that encode the
a-priori information [19]. Furthermore, it is worth noticing that,
although on average the estimation accuracy of the static MVE
is close to our approach yet statistically significantly different,
it provides a very noisy estimation (see Fig. 4), which depends
on the SN ratio and is intrinsically unavoidable, because there is
no direct relationship between subsequent time frames. We also
verified the performances of our method for different values of
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Fig. 4. Motion estimation for a random entry of the test dataset (D1) when the n-tuple of joints [2,3,5] is assumed to be not measured and the remaining
measurements are corrupted by Gaussian noise (std. 0.1 rad)). In this plot we compare the estimation provided by three different methods: the pseudo-inverse
(in red) a static MVE (in magenta) and our fPCA+MVE approach (in blue). Note how our method (blue lines) provides a good and clean approximation of the
real signal (green line) unlike the pseudo-inverse technique, which cannot estimate joints not measured, and the static MVE, which is highly affected by noise.

Fig. 5. Norm of the estimation error (n-tuple of joints not measured [2,3,5])
(normalized over T) vs. noise standard deviation (in rad).

standard deviation of the Gaussian noise applied to the data,
testing values ranging in the interval [0,2] rad. Results are
depicted in Fig. 5. It is possible to observe that, although - as
expected - the error increases for all the methods at high noise
level, numerical values obtained with the pseudo-inverse and
with the static MVE are consistently higher than our approach,
especially in the range [0,0.2] deg, which corresponds to a
reasonable amount of noise observed in common sensors [38]
and therefore will be the proper working range of our system.
Statistical significance of the differences in estimation error
was proved also in this case through Wilcoxon signed-rank test
with Bonferroni correction, proving the difference between the
three conditions (p < 0.0001).

Finally, to evaluate the effectiveness of our approach with
different sensing sources, we also quantified the estimation
accuracy obtained with our method using the dataset D2 and
obtained a reconstruction error of 0.038± 0.023 rad for the
kinematic joints and 0.003±0.002 mV for the muscles (values
expressed in median ± interquartile range and normalised over
T). An example of motion estimation carried out on a random
entry of the test dataset D2 is given in Fig. 6. Using the
pseudo-inverse, instead, we obtained 0.224±0.046 rad for the
kinematic joints and 0.005± 0.002 mV for the muscles. Of
note, in this second dataset the reconstruction error obtained
on the kinematic temporal profiles is slightly higher that in the
D1 case. This is caused by the fact that here we measure only
three joints. It is also interesting to observe that our approach
is able to provide a reasonable estimation of muscles envelopes,
which is not feasible with the static MVE implementation.

V. DISCUSSIONS AND CONCLUSIONS

In this paper, we presented an integrated framework which
extends the Minimum Variance Estimation to the more chal-
lenging case of multi-modal time-varying temporal kinematics
of multi-modal upper limb muscular-skeletal dataThe idea is to
leverage on fPCA to establish a mapping from the domain of the
time series to a static extended state of weighting coefficients.
We demonstrated that, despite the measurement noise, our
approach can provide an accurate estimation of all motion
profiles, including those referred to the joints not directly
measured, leveraging on the covariation patterns identified on
a priori dataset of motions. However, since the estimation
strongly relies on the set of movements used as a priori
information, it is reasonable to expect that the estimation
accuracy could degrade when the novel signal is significantly
different with respect to the ones that are present in the a priori
dataset. This is an intrinsic limitation of minimum variance
estimation procedures, and it could be particularly relevant
for the muscular domain, where the signals shape may vary
significantly as a consequence of stiffness modulation during
the action. With the choice of a priori data reported in this
paper, our method seems particularly suitable to estimate cyclic
tasks, as the ones commonly performed in industrial human-
robot collaboration. The development of an index based on the
estimation performance could be used to identify whether the
analysed motion is a complete action or not, and - on line -
detect the end of a cycle. Furthermore, this could also provide
important information on how a specific cycle is performed
w.r.t. the previous iterations. Indeed, if significant changes
in the estimated parameters can be observed while analyzing
subsequent iterations of a given task, it is reasonable to expect
that these changes could be correlated with modifications in
the execution of the cycle, which can be caused for example
by fatigue or other non-ergonomic conditions. Our future work
will investigate these aspects together with the capability to
generalize to other, significantly different, classes of motions
and prior information, for on-line motion reconstruction and
prediction. The extension to whole-body reconstruction is also
envisioned. Another interesting result is that specific joints seem
to be more informative than others, and hence they should be
preferably measured, if some constraints due to wearability as
well as to economic and environmental conditions impose limits
on the number of sensing elements and their accuracy. This
opens to the perspective of devising optimal design strategies
for the development of under-sensorized wearable sensing
systems [29].

Finally, it is worth mentioning that there are no constraints on
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Fig. 6. Motion estimation for a random entry of the test dataset (D2) when we use a noised recording of joints [3,5,6] and muscles [1,2,4,7,8,9,11,12] (
Gaussian noise with std. 0.1 rad for joints, with std. 10−2 mV for muscles). In this plot we compare the estimation provided our fPCA+MVE approach (in
green) versus the real signal. In A the kinematic signals, in B the muscles.

the kind of signals used with our method. We demonstrated this
by applying our method to a second dataset that included both
kinematic and muscular data. We observed that, while a static
implementation of static MVE cannot provide an estimation of
multi-modal data because of the difficulties in defining a reliable
covariance matrix, with our approach we are able to provide a
reasonable estimation of the whole muscle-skeletal temporal
evolution relying on a reduced set of measures. However, we
noticed that the estimation of muscles profiles is more difficult
than the kinematic counterpart. This could be also partially
ascribed to the fact that not all the muscular activity is devoted
to generate motion. Indeed, a not negligible part of muscular
activation is used to preserve muscular tone and to regulate
the stiffness during the movement. Our method is not able to
discriminate between the different components of the muscle
activity and, therefore, this could result in reduced estimation
performance for certain muscles and tasks. It is reasonable
to expect that this phenomenon can be accentuated when the
kinematic component of the signal cannot compensate for the
missing information, as for Muscle 10 (Flexor carpi radialis
FCR) in Fig. 6. Indeed, FCR muscle is mostly involved in
the flexion and abduction of the wrist, which are not part
of the available a priori kinematic data in the dataset D2.
It is likely that the availability of joint angular values of
wrist flexion and abduction could also improve the muscular
estimation. This point is left for future developments of our
work. Interestingly, in principle, using as a-priori information
a set of data extracted in a low-stiffness condition, one could
also use our method to develop a reliable on-line estimation
of arm stiffness even in functional tasks. This will be one of
the focuses of future works of our group, in conjunction with
the extension of our framework to other sensing modalities,
such as pressure forces at the feet level (which we can record
with sensorized insoles), electroencephalographic data etc. This
extension will also take into consideration that the relationship
between measurements and DoFs could be, in general, non
linear (i.e. H will be a block-based non-linear matrix). This

will require the integration in our framework of a mapping
tool from measurement recordings to the DoFs, as for example
done in [9] and in our previous work [33], [32]. We strongly
believe that this work can provide interesting insights for
the development of under-sensorized tracking solutions for
multi-domain applications, opening interesting perspectives in
different scenarios, such as advanced human robot interaction
(including brain machine interfaces), tracking of working
conditions, assessment of muscular fatigue, rehabilitation and
modelling of the neuro-muscular system.
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